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This study presents fhe development and sensitivity analysis of the sea level operator within the OceanVar software which
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Deleted: to create OceanVar2.0. The code has been extensively

parallelized framework

implements an oceanographic incremental three-dimensional variational data assimilation, scheme, In OceanVar, the /
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background error covariance matrix is decomposed into a sequence of physically based linear operators, allowing for individual

analysis of specific error matrix components. Jhe key development of OceanVar2.0 is the full integration of both dynamic '

height and barotropic model formulations as a flexible option for handling sea level govariance. The comparison of the two
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formulations of the sea level operator, which provides gorrelations between Sea Level Anomaly, temperature and salinity

increments, is presented. The sensitivity experiments were performed in the Mediterranean Sea and the quality of the analysis

assessed by comparing background estimates with observations for the period January-December 2021. The results gonfirm

dynamic height or a barotropic model for closed domains as sea level
operators. A diffusive operator to model the horizontal error
correlations, replacing the previously used recursive filter, has been
implemented. The new code was tested

(l‘ leted: highlight

the ynethodological advantage of the barotropic model operator, which successfully overcomes the physical and operational

limitations associated with choosing an appropriate level-of-no-motion for the dynamic height formulation. Furthermore, we

present a method to assimilate along track satellite altimetry considering a forecasting model with tides.

1. Introduction

Understanding the past state of the ocean and predicting its future behaviour is critical for sustainable development and for ;

climate change mitigation and adaptation strategies. Oceans are a key component of the Earth’s climate system, and they
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require specific data assimilation schemes due to the sparsity of data in the ocean interior. There are different methodologies .
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Moved down [1]: ocean surface and satellite altimetry contains
information of the subsurface thermohaline structure that is key to
obtain best estimates of the ocean variability at depth. Satellite
altimetric sea level data are available from 1992, and altimeters have
increased in coverage in the past ten years.

for ocean data assimilation, each with its own strengths and weaknesses. Within inverse problem theory, the two most used

approaches are the variational and the Kalman filter (Carrassi et al., 2018). Schemes based on Monte-Carlo algorithms, such

as the Particle filter, have been proven to be successful on low-dimensional systems and have become feasible for high-

(" leted: However, satellites help to cover almost synoptically the )

Deleted: Satellite altimetry and satellite-derived sea surface
temperature are crucial in bridging gaps left by in-situ observations.
However, their effective integration into model corrections requires
advanced extrapolation algorithms, as demonstrated in the influential
work of De Mey and Robinson (1987).°
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dimensional geophysical systems only recently (Van Leeuwen et al., 2019). The choice of data assimilation method depends

on factors such as the type of fhe observations, the desired forecast horizon, and the available computational resources.
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Recent machine learning (ML) advancements offer potential optimizations for ocean data assimilation (e.g., Barthélémy et al.,

2022; Beauchamp et al., 2023). ML can refine the representation of the errors and reveal complex relationships, improving
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accuracy. To fully leverage ML and new data streams, modular and flexible data assimilation software is essential. As research
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d: et al., 2005), ROMS-4DVAR (Moore et al., 2011),

progresses, these advancements will significantly enhance our ability to understand and predict ocean behaviour.

The data assimilation community has made substantial strides in developing widely used software tools and specific i/

(Deleted: ), just to mention a few.

4 (Deleted: and has contributed significantly to the field. However,

implementations. General frameworks such as PDAF (Nerger and Hiller, 2013) and DART (Data Assimilation Research

Testbed, Anderson et al., 2009) have contributed significantly to the field. Additionally, model-specific implementations such

as ROMS-4DVAR (Moore et al., 2011) have been instrumental in advancing ocean data assimilation. Each of these tools

offers unique capabilities, and the increasing complexity of data assimilation problems,—particularly with the adoption of ;
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ML, —drives the continuous development and innovation of both existing and new tools,in the community, as evidenced by

scheme

recent research (Martin et al., 2025).

OceanVar is the data assimilation gsoftware used in this study. It was first introduced by Dobricic and Pinardi (2008, hereafter

DPO08) and jmplements an incremental three-dimensional variational method. OceanVar features a modular design that allows

for flexibility in incorporating diverse data sources and error covariance representations. This adaptability has made it suitable

for a wide range of applications and research needs. The software has been extensively used in several operational and
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reanalysis systems, as evidenced by numerous publications (Dobricic et al., 2007, Storto et al., 2016, Escudier et al., 2021,

Lima ez al., 2021, Ciliberti et al., 2022, Coppini et al., 2023). It has been psed to fest new hybrid formulations (Oddo et af, .

2016, Storto et al., 2018) and to implement new observational operators for different data types, including Lagrangial

trajectories (Nilsson et al., 2012), sea-ice variables (Cipollone et al. 2023), daytime SST from SEVIRI (Storto and Oddo

(Deleted: ); it has been interfaced with Artificial Intelligence based

: [Deleted: (Storto et al., 2021), and has been used to test and develop

numerous new schemes and features
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2019). and Al-based operators (Storto et al., 2021, Broccoli and Cipollone, 2025). Furthermore, it has been instrumental in
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improving error covariance models (Dobricic et al., 2015) and advancing specific applications, such as biogeochemical .
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modelling (Teruzzi et al., 2014, Teruzzi et al., 2018), and new interdisciplinary uses like assessing the impact on underwater .

acoustic predictions (Storto ef al., 2020).

Thegxtensive use of the code in diverse applications has led to he creation of differentyersions, some of which are inconsistent -
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or incompatible. This core issue drives the development presented here. For this study, we used OceanVar2.0 (hereafter

OceanVar2 for improved readability), a new version of the underlying OceanVar framework, that unifies the various

developments into a single, consistent, and fully parallelized software package.

leted: versions that are not always consistent or compatible with
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JIn DP08 and all subsequent developments, horizontal covariance was approximated using the recursive filter (Lorenc, 1992;
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d: ) involved comprehensive testing and debugging

ully ensured the consistency and

Hayden and Purser, 1995). The filter is conceptually simple, typically requiring only a few iterations to approximate the
Gaussian function, and its application on a horizontal grid can be split into two independent directions (Purser ef al., 2003).
However, in cases of spatially or temporally varying correlation radii, the computational advantage of the recursive filter may

be questioned (Purser et al., 2022). To provide the system with greater flexibility in terms of horizontal correlation radii,
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OceanVar2 models the horizontal correlation by a repeated application of the Laplacian operator, which is also the solution of
the horizontal diffusion equation (e.g., Derber and Rosati, 1989; Weaver and Courtier, 2001).

Satellite altimetry and satellite-derived sea surface temperature are crucial in bridging gaps left by in-situ observations (Le

Traon, et al., 2025). Satellites help to cover almost the entire,ocean surface and satellite altimetry contains information of the

(Moved (insertion) [1]

subsurface thermohaline structure that is key to obtain best estimates of the ocean variability at depth. Satellite altimetric sea

level data are available from 1992, and altimeters have increased in coverage in the past ten years. The effective integration of

leted: In this paper we want to show the capability of
OceanVar2 to effectively assimilate along

satellite altimetry and sea surface temperature data into model corrections requires advanced extrapolation algorithms. While

this necessity was first emphasized in foundational work (De Mey and Robinson, 1987), it continues to drive development in

the field, as evidenced by cutting-edge solutions using machine learning (Zavala-Romero et al., 2025). In this work we

demonstrate the capability of OceanVar2 to effectively assimilate along-track satellite altimetry with the use of a barotropic

model operator and multivariate sea level, temperature and salinity statistics. Although the barotropic model was conceptually
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We believe this is still an open question

defined in DPO8, its implementation was not carried forward or maintained in subsequent mainline versions. This work
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the data assimilation community

presents its full integration and pptimization within the OceanVar2 framework. We present, for the first time, a detailed, direct

we offer a revisited formulation of the barotropic model

[defmed by DP08 and

comparison of the barotropic model defined by DP08 with the dynamic height operator. Additionally, OceanVar2 is applied

to ¢he latest version of the Mediterranean Sea forecasting System (Clementi et al., 2023) that considers tidal forcing. Tides are _
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a newly developed

becoming an essential component of the resolved variability of the ocean general circulation, and they gan no longer be - h (Deleted: circulation
neglected in numerical ocean circulation models (Arbic, 2022). Satellite altimeters sample tides along their track as well as the ., z'CDeIeted: model
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mesoscales. Using OceanVar2 we present a preliminary solution to the problem of assimilation in presence of tidal components

both in model and observations.
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The manuscript is organized as follows. After the introduction, Section 2 provides a general overview of the variational
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formulation and the characteristics of OceanVar2. Section 3 presents the background and the observational error covariance (l‘ leted: the
Jmatrix formulation and their specific operators. Section 4 describes the experimental set-up and the altimetry assimilation (l‘ leted: matrixes
methods. Section 5 discusses the results. Section 6 provides an overviewof the computational performance of the code, Finally, ‘» CDeIeted: In
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The standard cost function in three-dimensional variational data assimilation is defined as: (,. leted: performances is provided
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where, x is the analysis state vector containing the ocean model prognostic variables, x;, is the background state vector, B is _ (Deleted: rue
the background error covariance matrix, / is the non-linear observational operator, y are the observations, R is the observational ) CDeIeted: for

error covariance matrix and 7 indicates the matrix transpose. Equation (1) is linearized around the background state (e.g.
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The state vector contains the following model state
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Lorenc, 1997) and expressed in terms of the increments 6x = x — x,,:
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J(6x) = 3 8x"B718x + = (d — H5xy"R™1(d — H5xy, )

where d = y — hyx,] are the misfits (or innovations). and H is the Jacobian matrix of & at x = x,,. The analysis at a particular

time is defined as x, = x;, + dx, where J attains its minimum.

Existence and uniqueness of x, is guaranteed because J is quadratic with R and B positive definite matrices. The minimum
can be found by forcing the gradient of the cost function to zero. The gradient of equation (2) is:

V] (6xy = (B’1 + HTR’1H)§x —H'R'd

Following DP08, the OceanVar scheme assumes that the B matrix can be decomposed as:
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transformation matrix V
v =V"*dx,

where the superscript “+” indicates the generalized inverse. The vector v is defined on the control space, and the increment

vector §x on the physical space. The cost function (2) now obtains the form:

1 1
Jwy = EvTv + 7 (HVv - d)TR’l(HVv —dy.

The misfit in OceanVar is estimated using the FGAT (First Guess at Appropriate Time) method. The valid time of the
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Moved down [2]: where T'is the three-dimensional temperature
field, S the three-dimensional salinity field, u and v are the total
horizontal velocity components and 7 the two-dimensional sea
surface height.f
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When the observations are dynamical variables of the numerical
model, the observational operator is a spatial interpolation algorithm
to map the model solution into the observation locations. When the
observed variables are indirectly related to model dynamical
variables, the observational operator & may be nonlinear. Using a
Taylor expansion of the observational operator around the
background, we can write:"

hpx+x, — Xp] = h[xb + Sx] ~ h[xb] +Héx ¢
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increment using the FGAT algorithm has been discussed and investigated in literature (see Massart ef al., 2010). JThe purpose

of FGAT is to ensure that each observation (/) falling within the assimilation window [#,, ,+/] is compared against the model

background (x;,) at the specific time of the observation (), rather than only at the final analysis time (#:+:). The innovations

The minimum of /(x) in (3) is obtained for x, = x, so that we
obtain the increments 8x that give the analysis at an instantaneous
time:

X=X, +6x = x7

(d) are thus computed as:
A= (Ve hXp o)

re computed using the FGAT in the window [t ti+1]:

where xb(ti\ is the model background interpolated to the observational time #. The assimilation system then minimizes all

these innovations to compute a single analysis increment (6xy which is applied at ¢,+;. Formally our analysis is defined as the

instantaneous field:

Xa(tns1) = Xp(tner) + 0%,
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where x;, (tn+1) is the instantaneous background field simulated by the nonlinear ocean model starting from #:,

3. Modelling the background error covariance matrix

The transformation matrix V is modelled at each minimization iteration as a sequence of linear operators (e.g., Weaver ef al.,
2003). In this way. V successively transforms increments in the control space towards final increments in the physical space.
In OceanVar and OceanVar2 the matrix V is defined in the following way:

V =VpV,,V, Vi Vy 3)
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d using a new control variable v (e.g., Lorenc, 1997) defined
using the transformation matrix V*:¢

Deleted: is guaranteed because J is quadratic with R and B positive
defined and can be found by forcing the gradient of the cost function
to zero. The gradient of (3) is:"

VJ(6x) = (B! + H'R'H)6x —H'R™ ' d >~ (4)
Following DP08, the OceanVar scheme assumes that the B matrix
can be rewritten and decomposed as:*

B=VVToooooooon oo (5)

Where the superscript “+” indicates the generalized inverse. The
vector v is defined on the control space, and the vector §x on the
physical space. The cost function (3) now has the form:*

J=3vTv+ S HVY — &R HVY —d) oo ()
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From right to left, Vv defines the vertical error covariance; Vu the horizontal error correlation; Vi is the sea level operator

=

containing correlation between temperature, salinity and sea surface elevation; and V., forces a geostrophic balance between
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temperature, salinity and the velocity components. Finally, Vb is a divergence-damping operator avoiding spurious currents

close to the coast in the presence of complex coastlines, as defined by DP0S.
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The vertical transformation operator Vy has the form:

Vy = ScA. /2
where columns of S. contain eigenvectors and Ac is a diagonal matrix with eigenvalues of multivariate Empirical Orthogonal
Functions (EOFs). In the OceanVar and OceanVar2 code, the EOFs can be defined pointwise (Coppini et al., 2023) or by
regions (DP0S).

Differently from DP0S, to account for horizontal,correlations, Vu is considered as the discretized form of the diffusive operator:
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Vy=Vy- (chHC)
where P is the horizontal differential operator, k. is the spatially variable diffusivity coefficient corresponding to horizontal

correlation lengths, and C is a generic increment. Assuming a gaussian solution (Weaver and Courtier, 2001), the relation
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between k. and the horizontal correlation radius is:
Ry = \/chAt
Where Ry, in meters, is the horizontal correlation radius, and At = 1 second is the pseudo time-step used to integrate the

diffusion equation. This filter was implemented using a dimensional splitting approach. The operator is discretized with a

Euler-Backward implicit scheme solved by means of LU decomposition of a tridiagonal matrix, following Hoffman et al.

(2001). The tridiagonal matrix algorithm is chosen for its simplicity and the resulting ease of implementing its adjoint operator.

its memory efficiency, and its ability to avoid external libraries implementing direct methods, thus forming a compact

implementation which simplifies the porting of OceanVar2.

The V, operator, the focus of this study. incorporates correlations between sea surface elevation and the subsurface

thermohaline structure. Section 3.1 is dedicated to the detailed description of the two formulations implemented in OceanVar2.

The present formulation of OceanVar also allows for the computation of corrections for the velocity field; the V, , operator

The operator is discretized with a Euler-Backward
implicit scheme solved by means of LU decomposition of a tri-

diagonal matrix, following Hoffman et al. (2011).
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computes the velocity corrections assuming geostrophic balance. [JThis assumption gesults in an operator with small
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the possibility to compute correction also
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computational cost. However, this assumption is not valid at the equator and may produce velocity vectors orthogonal to the
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coast. When imposing the zero-boundary condition for the velocity component perpendicular to the coast, the divergence CDeIeted: The advantage of the geostrophic
component of the velocity field may become unrealistically large. Therefore, the divergence damping operator Vp in (3) is 7‘ (Deleted: is that it req“ire_s only a —
implemented to damp velocity divergence near coasts, while the vorticity yemains unchanged. Details on the implementation ‘ o g:e!etecj: :f:(z:}: the disadvantage I that
of the divergence damping operator are provided in DP08,, S C,. leted: 8
As highlighted in DP08, the sequence of operator multiplication is critical and determined through a combination of physical . . *Cr leted
reasoning and iterative experimentation. Initially, all increments are projected onto multivariate EOFs for sea level, CDeIeted: part
temperature, and salinity, as these effectively capture ocean stratification (Sanchez de la Lama et al., 2016) and the relationship %De'emd:
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with sea level for assimilation purposes (De Mey and Robinson, 1987). Next, the increments are distributed horizontally.
485 Following this, adjustments due to the sea level operator are computed based on the vertically projected temperature and
salinity increments. Subsequently, increments in horizontal velocities are derived, and the process concludes with the

application of fhe divergence damping filter.

3.1 The sea level operator and its relationship with the velocity ferms

490 Dobricic et al. (2007) found that the vertical EOFs computed from the covariance between temperature, salinity and sea level
could produce corrections that are not geostrophically balanced and proved that the enforcement of the geostrophic relationship

for the sea level in the error covariance matrix has a significant positive impact on the accuracy of the analysis. Thus, in

OceanVar2 the sea surface height increments from EOF projections are overwritten using a sea level operator. Two different

sea level operators, with different levels of complexity, are implemented in OceanVar2.

495  The first is the commonly used Dynamic Height operator (Vn =Vp H), which js defined as:

(" leted: operators
(" leted: analyses
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Vpy = 6nPH = 7%[—0[7(1571 + poS|dz %)

Where D is a uniform reference level, corresponding to a level;of:no;motion, 6T and §S are temperature and salinity

(o

increments respectively, @ and B the expansion and contraction coefficients. The correlation between Sea Level Anomaly
(SLA) from altimetry measurements and the dynamic height anomaly computed from in-situ measurements is high for regions

500 deeper than 1000 m (Dhomps et al., 2011), at synoptic, seasonal and interannual time scales.

OceanVar?2 allows the application of a more complex linear V,,. This operator is based on the formulation published in DP08
and derives from the steady state results of a linear barotropic model forced by buoyancy anomalies induced by the temperature

and salinity increments, While the methodology was previously described in the literature, the barotropic model code itself
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was_fully re-introduced and parallelized to function efficiently within the new OceanVar2 framework, with its general

505 mathematical structure remaining unchanged. Its inclusion as a fully integrated option is a new feature of this version. The

barotropic model equations, discretized in time by the semi-implicit scheme (Kwizak and Robert, 1971), are:

Un+1 _ Un—l 677* 0 0 d.6b
- no_ _ -0 ( ) g1 277%
AT fv gHax J'_H[f_z Ix dz]dz+yVU Q)
Vn+1 — anl ar]* 0 0 a (Sb
e n— _gH-—— 1 l 1 217%
AL +fU g [ sz o dz]dz+yV 14 (6
nn+l _nnfl auk avk _
2At +(6x+6y)_0

510 where U and V are vertically integrated velocity components, f'is the Coriolis parameter, g is the acceleration due to gravity,

H is the bottom depth, 7 is the surface elevation, §b is the buoyancy anomaly, and y is the horizontal viscosity coefficient.

The superscripts indicate the time step relative to n, and the superscript *“*” indicates the weighted average between two

6
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timesteps. A more detailed description of the barotropic model and its discretization can be found in DP0S. In the present

version the barotropic model assumes closed lateral boundaries,
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d: , thus the possibility to be used as balance operator needs

In the previous equations,(5) and (6), the buoyancy forcing term is defined as:

_ g
Sb=g (po)
and the density perturbation Jp is estimated by the linear equation of state:
6p = aéT — BSS (7)

Expansion and contraction coefficients (@ and ) in egs. {4) and {7) can be assumed space independent or spatially variable

to be carefully evaluated. In the future the barotropic model will be
developed also with open boundary conditions.
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and estimated by linearizing the equation of state around a user defined background temperature (T},) and salinity field (S;):
ap
a=r l7=1p,5=5,

p
p= s |T=T,,,s=s,J
In the latter case the coefficients are read from an external input file.

In OceanVar? the sea,level operators produce the final sea surface height increments, replacing the increment produced by the
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cross-covariance between temperature, salinity and sea,level provided by the EOFs (DP08, Storto ef al., 2018).
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The choice on the sea level operator has consequences on the velocity operator V, . V,,, computes the velocity correction

assuming geostrophic balance under the Boussinesq and jncompressibility approximations:
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Decomposing the pressure p at any level z as:
0 6p
P(2) = Patm + 9Po (n + f_zgdZ)
where p.., is the atmospheric pressure, g is the effective gravity, ) is the free surface elevation and §p is the density departure

from a reference state p,. Neglecting the atmospheric pressure, and rewriting the hydrostatic term as buoyancy term, the

geostrophic velocities become:

oy °ash

fug(z):—(g@-l—ﬁzde) ®)
n °ash

fvg(Z):+<ga+ﬁZWdz ©)

When adopting the barotropic model as V;, the sea surface height in egs. (8) and (9) is replaced by the increments deriving /
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from the solution of the barotropic model and the lower limit of the baroclinic jntegral yeaches - H(x,y), the ocean floor,On
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the other hand, when V,, = Vj; the horizontal pressure-gradient force must vanish at the level.ofzno;motion, D, in (4). In eqs. }

{8) and {9) 1 is then substituted with n°" and the velocity increments are computed only up to.depth D. Thus, in case of the
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barotropic model, velocity corrections are provided for the entire water column, while in case of dynamic height, velocity

corrections are provided from the surface to the level of:no;motion.

3.2. The observational error covariance matrix and quality checks

The observation error €° is defined as the difference between the observation vector y and the observation counterpart in the

true state x' (Cohn, 1997)

(oata
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d: Brankart ez al., 2009

y =R+ e - €= @Y - Yy =€t +e€,

where y'is the #rue (unknown) observation value, h* is an observation operator, €™ labels the instrumental or measurement

=

error (distance of the actual value from the true state) and €” gathers the different components of the representativeness errors,
due to inaccuracies in h* and the sampling error of the observations with respect to the true signal. Under the assumption of
unbiased error < €® >= 0 and that €™ and €” are uncorrelated, the error covariance matrix R can be constructed as the sum

of two terms that can be estimated independently;

y (Deleted:

(Deleted: greatly

d: data set

R=< €%’ >~< eme™ > +< €€ >=R™"+R".

If the errors associated to different observations are uncorrelated, the two matrices simplify greatly in diagonal ones. This

(o

hypothesis is valid for most of the current global/regional observational datasets and it is generally correct when observations

Deleted: Several options are implemented in the OceanVar2 to

‘| shape the observation error and the interested reader is asked to

consult with the code manual, available with the code.
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are sampled relatively far in time (say few hours to avoid cross-correlation term in R™) or are sparse with respect to_the model

/ (Deleted: defined in (2). Alternatively,

grid resolution (to not include off-diagonal elements in R"). Observation errors are a function of observation type in OceanVar2,, .

OceanVar2 contains various procedures for the quality control and preprocessing of observations. A background quality check

is included to reject observations that are too far from the model estimate. This quality check uses a threshold on the squared

misfit, While OceanVar2 supports approximating the misfit distribution with a Huber norm PDF (Storto, 2016) to mitigate th

impact of putliers, this feature was not required for the analysis presented in this work.
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| Deleted: Gaussian approximation when large initial misfits are

involved. In standard theory, these misfits are associated with large
weights and minimisation is primarily in the direction of reducing
such innovations rather than reducing the innovations close to zero.
In OceanVar2, following Storto (2016), the initial
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Jo ensure that the assumption of spatially and temporally uncorrelated, observation error is satisfied. data thinning and
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(" leted: such tails.

superobbing procedures are employed. Horizontal thinning rejects observations that are too close in space, and in cases where -

multiple data from the same instrument fall into the same model grid cell, pnly the observation closest to the analysis time is \ -

(Deleted: Provided

(Deleted: observation errors are assumed to be

retained. Along the vertical dimension, a superobbing procedure takes the average of all data falling within the same model

layer. Additionally, two important rejection griteria can be activated: coastal rejection prevents the assimilation of altimetric

and in-situ coastal observations,to avoid inconsistencies between observed and modelled coastal processe

(Deleted: , horizontal and vertical
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based rejection prevents the assimilation of data in shallow areas.

4. Experimental Design

The gxperiments are designed to determine the best configuration of OceanVar2 for the assimilation of satellite altimetry

and a bathymetry;

together with ARGO floats and XBT in the Mediterranean Sea. The set-up of the ocean model used in this study is a simplified

version of the physical component of the Mediterranean Forecasting System of the Copernicus Marine Service (Clementi et
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al., 2023). The model is implemented over the entire Mediterranean basin (Fig.1) with a horizontal grid resolution of 1/24°
(approx. 4 km) and 141 non-uniformly distributed vertical levels. The ocean model code is based on the Nucleus for European

Modelling of the Ocean (NEMO) v4.2,(Madec et al., 2023) and includes the representation of tides. Atmospheric forcings are

(ot

calculated interactively with the operational fields of the European Centre for Medium-Range Weather Forecasts (ECMWEF).

The only difference to the Copernicus operational system is the omission of the surface wave nodel coupling.

(

) (Deleted:

Starting from an operational analysis, we performed a 1-year simulation followed by one year of daily assimilation cycles of

in-situ (XBT and ARGO floats) and satellite SLA data for the whole year of 2021, Figure 1 shows the positions of the

modelling coupling. Details on the model implementation

[can be found in Clementi ef al. (2023).

(" leted: year. Fig.
assimilated in-situ and SLA data, The SLA data goverage in the bottom panel refers to the full 21-day repeat cycle of the (l‘ leted: ; the
satellite orbits. In our experimental set-up we perform daily assimilation cycles starting at midnight every day and we assimilate : (Deleted: refer
all pbservations available in the 24 hours before the analysis time. The figure also highlights the data used during a single daily | ) (Deleted: a period of
cycle (11 August 2021), specifically showing the in-situ and SLA track subset daily coverage. ‘ gz::::::: :zy:m available the day provious the analysis fime.

4.1. Correcting the misfits for tides

A fundamental aspect to consider when assimilating SLA is the possible presence of tides in the modelled solution and in the

observed data. Discrepancies between modelled and observed tides can, as a first approximation, be attributed to inaccuracies

AN NN N A

in the bathymetry of the model, the bottom and/or the coastal frictional dynamics. Jf the difference between observed and (l‘ leted: However,

modelled estimates js due to tides, then this part of the misfit is primarily composed of external gravity waves. In the present (Deleted: misfit containing tidal signal
OceanVar2 formulation, this high-frequency signal would be incorrectly projected into baroclinic increments by the covariance (Deleted: in

matrix of the background error (eq. 3). Since tidal errors are not dynamically linked to the slow baroclinic ocean state, using (Deleted: 8).

the standard B matrix leads to spurious analysis increments. It is therefore essential to filter out the tidal signal from both the

observed and modelled SLA. Thiswork offers a solution to the assimilation of satellite altimetry in a model with tides, showing

AN AN AN

that a filtering procedure can be accurate enough and that no additional adjustment is required in the analysis.

The Copernicus along-track sea level anomalies are provided together with an estimate of the tidal signal along the tracks so
tides can be filtered easily from the observations. To remove the tidal signal from the model background field, the tidal
amplitude and phase for the eight components included in the Mediterranean Sea model (M2, S2, K1, O1, N2, P1, Q1 and K2)
have been derived from a simulation output by harmonic analysis of the hourly sea level field. Following Cao ef al. (2015),
six months of hourly data were used for the harmonic analysis. The harmonic analysis was performed using the Pawlowicz et
al. (2002) algorithm, based on the Foreman method (Foreman 1977; Foreman 1978) at each model grid point. Knowing the
tidal constants, it is possible to estimate the model tidal sea level at the exact time and location of the altimetry data and remove
this component from the model outputs.

During the model simulation, misfits between model estimates and observations are computed and before entering OceanVar2,

=

the misfits are updated, removing the tidal signal from both observations and model results. In Fig.2 an example of an SLA

satellite track is provided with model estimates and the satellite observations, the position of the track is shown in Fig.1. In fhe

upper panel of Fig.2, the full signal from the model simulation and the observations is drawn as a function of latitude along
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the track.,The middle panel of Fig. 2 shows thesignals without tides, in addition to adebiasing procedure described by Dobricic _

C" leted: Figure 2
et al. (2012). Dobricic et al. (2012) show that this method is the best for considering differences between the large-scale steric . (Deleted: de-iided
signal and the mean dynamic topography between observations and model. The average difference along the track is removed Sy K(Deleted: de-biasing

Deleted: sh
if the track is continuous, or for individual segments if the track is discontinuous due to the presence of land. Finally, in the %D eted ;_OZS
eleted: Fig.

bottom panel of Fig.2 the two tidal components for the observational and modelled SLA are shown indicating the large-scale

signal of tides in the open ocean.

4.2. Sensitivity experiments

In addition to a free-run (non-assimilative model simulation), we present results from two sets of six 1-year assimilative

NN N

experiments gach, comparing them against each other and against observations. All the experiments assimilate ARGO floats

and XBT temperature and salinity data in the whole domain including the Atlantic part, while SLA data are assimilated only
within the Mediterranean Basin (see Fig.1). In every experiment the vertical component of the background error covariance
matrix is modelled using 25 tri-variate EOFs (temperature, salinity and SLA) computed following Dobricic et al. (2006) for

every model grid point. The EOFs are computed from a 30;year timeseries of the Mediterranean Sea reanalysis (Escudier et

are presented and their results compared and assessed

al., 2021). The horizontal correlation radius was set to a constant value of 27 kilometres, determined through sensitivity
experiments. The diffusive filter was iterated five times to model the horizontal covariance. To account for coastal effects, the

correlation radius was linearly decreased starting from about 30 kilometres offshore to the minimum grid resolution near the

coast. Additionally, a Neumann boundary condition was applied at the coast, setting the normal derivative of the field to zero.

Observations are rejected if they are Jess than 15 km from the coast and if the misfits are larger than fixed thresholds: 5°C for

years

temperature, 2 psu for salinity; and 30 cm for SLA. The observational error covariance matrix is assumed diagonal. The results

(os

closer

presented in Fig. 2 demonstrate that our model accurately reproduces along-track SLA tidal gradients, with the difference

between the modelled and observed tidal signal being nearly constant. We effectively remove this along-track bias by

subtracting the mean residual along each satellite track. This critical step ensures that the resulting misfit is very similar to the

one computed without tides. Based on these considerations, we decided not to modify the SLA observational error, maintaining

consistency with previous work (Escudier et al., 2021). Consequently, all the SLA data have an associated error of 3 cm

regardless of the satellite and the geographic distribution. The observational errors for in-situ observations were tuned via the

Desroziers’ method (Desroziers et al., 2005) and yary monthly. We first prescribed the observation errors used in the previous

system. The assimilation system was then run repeatedly. using the innovations and residuals to apply the Desroziers’ formula

to obtain an estimate for the observation error R. This process was iterated until the errors converged (e.g., Escudier et al.

2021). The resulting vertical error profiles are as follows: temperature and salinity observational errors peak at the surface with

values of 0.45 °C and 0.14 psu, from 75 to 325m depth they decrease linearly to values of 0.2 °C and 0.05 psu, starting from
750m they have constant values of 0.1 °C and 0.02 psu respectively.

Jn all the experiments, the state vector contains the following model state variables:

[diagonal. All

The observational error covariance matrix is assumed

CDeleted: varies monthly. Temperature

(on

x = [T,S,u,v,n]T
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velocity components and 1 the two-dimensional sea surface height.

Two sets of experiments are performed to compare the operational stability of mass-field-only (T, S, ny_correction against the

maximal impact of full-state variable (T, S,u,v, m correction. Each of the two sets consists of six individual experiments (Exp-
1 through Exp-6) with different OceanVar2 sea level operators and choices of free parameters. In Exp-1, which is used as a
reference experiment, the barotropic model is used as the sea level operator with constant (in space and time) a and B in eq,,
(7) and SLA data are rejected when falling in areas shallower than 100m. In the second experiment (Exp-2), consistently with
Adani et al. (2011), we rejected SLA data falling in areas shallower than 150m. Experiment 3 is similar to Exp-2, but we test

the sensitivity to variable expansion and contraction coefficients in eq. (7). The coefficients are computed by linearizing the

= CMoved (insertion) [2]
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equation of state around a monthly mean climatology. In all these three experiments we integrated the barotropic model for 3
days with a time-step of 3600 sec and then used the average of the last day as an approximation of the steady state solution,

The integration of the barotropic model is fully implicit and the turbulent viscosity is equal to 650 m?/s,,

1, the

Experiments 4, 5 and 6 use the dynamic height as the sea level operator. The difference between them is the choice of the

level of;ng;motion, In Exp-4 we used a level;of:ng;motion equal to 150m, thus Exp-2 and Exp-4 differ only for the sea level .

among

=

operator. This shallow depth was specifically chosen to test the upper limit of observation inclusion, ensuring that the |

assimilation scheme uses the maximum possible Sea Level Anomaly (SLA) data coverage, even in areas shallower than the

generally accepted level-of-no-motion. In Exp-5 the level;of:no-motion is 350m in agreement with the Mean Dynamic

Topography (Rio et al., 2014) used. Finally, in Exp-6 the level of:no;motion is set at 1000 m which is the traditional choice

‘ CDeIeted:

CDeIeted :

CDeIeted:

depth

¢ ‘(Deleted:

for the operational setting of the Mediterranean Sea forecasting system, (Coppini ef al. 2023). In all these experiments, the 5

depth of the level;of:no;motion naturally coincides with the minimum depth of SLA observations inclusion in the data )

assimilation scheme.

S CDeIeted:
The configuration of the six individual experiments (Exp-1 to Exp-6) is identical across both sets. The two sets of experiments L CDeIeted:
are designed to test the critical operational trade-off between numerical stability and maximal observational impact. In the first b EE::::::
set of experiments, we prioritize stability by applying the analysis increments only to the assimilated variables (7, S and n,). ‘(,. leted: .
even though the state vector contains the velocity field. This forces the model dynamics to adjust the velocities indirectly. In k;‘(De|eted; (
the second set of experiments, which tests the maximal assimilation scope. also velocity corrections are applied,directly in the : ‘(Deleted:
analysis step. Throughout the remainder of the ynanuscript, experiments marked with an asterisk refer to those with velocity * * ‘(Deleted:
corrections. The first sets of experiments are summarized in Table 1, The second set of experiments has the same naming \ (Deleted: - - -
convention as the first set, with the sole difference being the application of the velocity correction in the analysis definition. ; Ez::::::; :::;;::State yector contalns o the veloelty eld
: : :(Deleted: ).
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Exp-1 Exp-2 Exp-3 Exp-4 Exp-5 Exp-6
Sea level operator BM BM BM DH DH DH
a/B Const. Const. MC Const. Const. Const.
Reference Level for DH (m) N/A N/A N/A 150 350 1000
SLA Min depth rejection (m) 100 150 150 150 350 1000

Table 1 Sensitivity experiments gconfigurations. First row indicates the sea level operator used: BM= Barotropic Model, DH=Dynamic

height. Second row indicates the choice for expansion and contraction coefficients: constant in space and time (Const) and spatially and
temporarily variable as computed from monthly climatology (MC). Third row indicates the reference level for the lower integral limit of the
dynamic height operator and thus the level;of:no-motion for the V,, part of the model background error covariance matrix. Fourth row

2 C" leted: set-up.

indicates the minimum depth used as criterium to reject SLA data,
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4.3. Performance Metrics

To fully assess the performances of the experiments listed in Table 1. the mean squared error (e.g.. Murphy, 1988) is

decomposed and the single components are analysed:

MB=m-— o, (10)
SDE = o, — 0, (11)
1 N
S o N Y (MM o), 12

where MB is the mean bias error, SDE is the standard deviation error and CC is the cross correlation between the modelled

and observed fields. The i-th modelled and observed variable is denoted by m; and o;, respectively; m and o are the respective
averages (horizontal and temporal); while o,, and o, are the respective standard deviations. In addition, the unbiased root
mean squared error (uRMSE) is computed:

N

1
uRMSE = NZ[(mi —m)— (0; = 0)]2. 13y

Jt is important to note that the model results and obscrvations used here are the same as those used to calculate misfits within ..

the assimilation cycle. However, while not all misfits are utilized in the assimilation process, all available observations are

included in the error statistics. This ensures that all experiments are evaluated based on the same reference dataset of

observations. Furthermore, to evaluate model performance even in very shallow regions, the observational dataset used in the
misfits, and thus in the calculation of the error statistics, includes sea level anomaly (SLA) data covering regions up to 10m
depth. This allows for the assessment of model skill in very shallow regions where data are not assimilated in any of the
presented experiments.
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Given that the CC is always positive for all the experiments, the misfit statistics for the experiments listed in Table 1 are also

analysed in terms of relative improvement with respect to the free-run or Exp-1 according to the following metrics definition:

’(Deleted :

Before analysing the skills of the different experiments,

URMSEge; — URMSEgps

SuRMSE gps = < URMSEpy, ) x 100, 14
CCExp# - CCRef
SCCEXP# = CCrer %100, (15)

where # indicates the different experiments listed in Table 1 and “Ref” denotes the free-run or Exp-1. S_CC is only calculated

using Exp-1 as the reference. The exclusion of the free-run as a reference is necessary because the very small CC values would

lead to excessively large percentage values that hinder meaningful comparison between the different experiments. In the
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obtained, starting
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the same set of SLA misfits, but using the

set-up described in

shown in Fig.3

because

different

manuscript the relative performance statistics are presented only for the SLA data given that a similar comparison for the
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temperature and salinity did not provide additional insights

5. Results

Figure 3 shows the temperature and salinity increments yesulting from different assimilation scheme setups scheme setups

(Table 1), all starting with the same set of SLA misfits. These increments are presented before analysing the skills of the
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various experiments. The differences between the experiments are generally small, and of the order of 10%. The largest

differences are due to the different number of SLA data assimilated, a result of the constraint imposed by the level;ofino; |

; (Deleted:

motion used or the different minimum depth rejection criterion adopted. We note that when the same data are assimilated, thus
in areas deeper than 1000m, very similar increments in SLA are generated by the OceanVar2 regardless of the schemes
adopted. However, the schemes differ on how these increments are projected into temperature and salinity increments. Note
that the ordinate axes are strongly stretched in the figure to highlight the first 150m depth where most of the corrections are
confined. Comparing Exp-2 and 3, which differ only in the use of spatially and temporally variable expansion and contraction

coefficients, we observed small but noticeable differences in the temperature and salinity increments, particularly in the

amplitude of near-surface maxima. The choice of sea level operator substantially influenced the results. When using Dynamic |

Height with a level;of:no;motion set at 1000 meters (Exp-6), temperature and salinity increments were comparable to those

obtained with the barotropic model. The primary cause of the observed differences appears to be the constraint imposed on

assimilated data by the level-of:no;motion. Reducing the level of:no;motion (Exp-4 and 5) allowed for the assimilation of

more sea level anomaly data, but resulted in considerably different temperature and salinity increments within the first 100

|
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Moved up [5]: where MB is the mean bias error, SDE is the
standard deviation error and CC is the cross correlation between the

{| modelled and observed fields. The i-th modelled and observed

variable is denoted by m; and o;, respectively; m and o are the
respective averages (horizontal and temporal); while o, and g, are
the respective standard deviations. In addition, the unbiased root
mean squared error (1RMSE) is computed:§

Moved up [6]: It is important to note that the model results and
observations used here are the same as those used to calculate misfits
within the assimilation cycle. However, while not all misfits are
utilized in the assimilation process, all available observations are
included in the error statistics. This ensures that all experiments are
evaluated based on the same reference dataset of observations.
Furthermore, to evaluate model performance even in very shallow
regions, the observational dataset used in the misfits, and thus in the
calculation of the error statistics, includes sea level anomaly (SLA)
data covering regions up to 10m depth. This allows for the
assessment of model skill in very shallow regions where data are not
assimilated in any of the presented experiments.*

meters compared to the barotropic model.
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the mean squared error (e.g., Murphy, 1988) is decomposed and the
single components analysed:
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5.1. Barotropic sea level operator and free-run comparison (l‘ leted

The performance of Exp-1 is compared with free-run. In Fig.4 the statistics for the SLA are shown. Every point in the time- (l‘ leted: the non-assimilative model simulation
series represents 5-day window statistics. That is, the overbars and the standard deviations in eqs,(10), (11), (12) and{13) are (l‘ leted: 17, 18, 19
905 computed over a 5-day time window. ) (Dﬂeted: 20
The free-run has an error of about 5 cm, slightly growing during the second half of the year, The model with assimilation (l‘ leted: simulation
underwent a 10-20 day adaptation period, after which the uRMSE of the misfit stabilizes around 3 cm. A, consistent E (Deleted: > of about 5 cm

improvement is noted in the CC. No seasonal cycle is observed in the CC of Exp-1, whereas the free-run exhibits a distinct (Deleted: slight but

(Deleted: simulation

summer minimum in the correlations. The SDE in the free-run is on average negative and it is characterized by 5-day

(Deleted: simulation

910 oscillations. In Exp-1, the SDE, stabilized around values of 0.25 cm, indicating an overestimation of the observed variability. | AN (r leted: gencrally
The SLA yearly averaged statistics were clustered according to ocean pathymetry and are plotted in Fig.5. In areas with o O_ leted: days
bathymetry between 150 and 2500 m, the free-run exhibited an almost constant uRMSE. However, the error increases in Sy (" leted: (Fig.4 bottom panel)
shallower and deeper regions, reaching the maximum in areas deeper than 3500 m. The uRMSE of the Exp-1 was more stable . (Deleted: depth

and approximately half of the corresponding free-run statistics. Regardless of the region considered, Exp-1 has better statistics (Deleted: simulation

E (Deleted: constant

915  than the free-run, indicating the effectiveness of the assimilation procedure. For the CC differences between free-run and Exp- (D leted: simulati
N ieleted: simulation

1 results are also evident. In the free-run CC decreases with depth, while for the Exp-1 we observe an opposite tendency. In BS (,. tod

simulation

terms of SDE, the largest improvements yvith respect to the free-run are jn shallow areas. The free-run underestimates the . 1 ‘(r leted: simulation

variance in areas with bathymetry shallower than 1000m, this is particularly evident in areas shallower than 150m. The model (Deleted: simulation,

with data assimilation fends to overestimate the observed variability particularly in shallow areas. Wt

i (Deleted: simulation

920 In Fig.6 the vertical profiles of uRMSE, MB, CC and SDE for salinity (upper panels) and temperature (bottom panels) for the
(Deleted: confined

Jree-run and the Exp-1 are shown. Statistics are computed against all available ARGO and XBT profiles. [he vertical structure (r leted: smulation
of the salinity uRMSE is similar between the free-run and the Exp-1. The salinity errors are characterized by a near surface X ‘ S ‘(,. leted: tend
Jnaximum which is reduced in the assimilative run. The MB in the free-run has a subsurface minimum at 100 m depth, while L ‘(r leted: simulation
Exp-1 misfits have almost homogenous values through all the water column. The CC resembles the vertical distribution of the : [ﬁi!;tzt:;e

925 uRMSE, with values approaching the unity in both the experiments below 500 m depth. Finaly the salinity SDE confirms the (Delete d: simulation
large improvement arising from the assimilation procedure. In the near surface layer, the frec and the assimilative run have (r leted
opposite behaviours, with the free-run overestimating the observed variability while the assimilative run underestimating it. ‘ : (l‘ leted: maxima
Below 100 m depth the SDE salinity values of Exp-1 are noticeably reduced with respect to the free-run. (Deleted: simulation

The temperature uRMSE and CC are characterized by a strong, summer intensified (not shown), subsurface (Deeted: colmns

(Deleted: simulation

930 maximum/minimum due to the model difficulties in reproducing the correct stratification. A second uRMSE local maximum
(Deleted: simulation
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(CC minimum) is present around 300 m probably related to the misrepresentation of the Levantine Intermediate Water (LIW)
advection in the different Mediterranean regions. A third temperature error relative maximum is present between 1000 and

1500 m depth. The assimilation corrects all the errors by approximately 30-50% down to 500 m, less below this depth.
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Temperature MB is largely improved by assimilation. The free-run tends to overestimate the observed temperature variability,

C" leted: simulation )

and the SDE has a marked vertical structure. In general, the assimilation seems capable of correcting most of the model errors

except in the upper thermocline/mixed layer depth. Analysis of the corresponding time-series (not shown) indicates a clear
summer maximum in all the error statistics in proximity of the mixed layer depth. This behaviour is shared between all the

different experiments, but it is clearly reduced in the assimilative runs. However, the persistence of this error maximum

suggests a limitation in the current formulation of the Background Error Covariance. Specifically, the static, climatological

nature of the EOFs used to model the vertical error component struggles to fully capture the rapidly evolving stratification and

strong vertical gradients characteristic of the summer mixed layer. Future development will prioritize replacing these EOFs

with more dynamic and stratification-aware operators to address this deficiency.

5.2 Sensitivity experiments to the sea level operator

Figure 7 illustrates the performance of the six different data assimilation experiments (without velocity corrections) in terms

(" leted: to correct )

Deleted: Given that the CC is always positive for all the

of correlation coefficient (CC) and improvements in root-mean-square error (S_uRMSE) yelative to the model free-run. The

top panels display the time evolution of these improvements, highlighting both short-term fluctuations and overall trends. The

bottom panels present the time-averaged S uRMSE and (CG, clustered by bathymetric depth ranges, revealing how the }

effectiveness of each experiment varies with depth. All assimilative experiments outperformed the model free-run.

Experiments using the dynamic height as the sea level operator, with levels of no motion set at 150 meters (Exp-4) or 1000
meters (Exp-6), generally performed worse than the other experiments. For Exp-6, the differences in both uRMSE and CC
were particularly noticeable in regions shallower than 1000 meters, where SLA data were not assimilated. However, even in

these regions, Exp-6 substantially outperformed the model free-run, suggesting that corrections applied in deeper areas

i (Deleted: and correlation coefficient (S_CC)

experiments, the misfit statistics for the experiments listed in Table 1
are analysed in terms of relative improvement with respect to the
simulation or Exp-1 according to the following metrics definition:*

AURMSE, — URMSE,
S_URMSEp,py = W) X 100¢

CCRef
Where # indicates the different experiments listed in Table 1 and
“Ref” the simulation or Exp-1. In the following these statistics are
presented only for the SLA data given that a similar comparison for
the temperature and salinity did not provide additional insights.*

S_CChypy = CCEL_CC”;) x 1007
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effectively propagated into shallower regions. In Exp-4, the deterioration in results compared to other experiments was

primarily confined to deeper regions. Jn areas shallower than 150 m Exp-1 outperforms the other experiments, however the

(r d:s

5 ‘(" leted: simulation
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performances of the experiments are similar indicating that the coastal areas are strongly constrained by the open ocean

dynamics. A clear dependence of the LC on model bathymetry was evident in all experiments, with the most significant

. ‘ CDeIeted: simulation
CDeIeted:

improvements (with respect to the free-run) observed in areas deeper than 3500 meters, where the model free-run exhibited

E [Deleted: . The percentage of improvement in §_CC increased with

the smallest CC. In shallow regions, Exp-6 generally provided the smallest improvement in CC compared to the other

experiments. The results demonstrate that certain experiments achieve substantial improvements in deep-ocean regions, while
others show more consistent performance across all depths. These results highlight the challenges associated with choosing an

appropriate levelzof-no-motion in data assimilation of SLA. The requirement to define a spatially constant level-of-no-motion,
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growing depth,

CDeleted: simulation

which is inherent to the dynamic height operator, demonstrates the critical limitations imposed by its theoretical assumptions

and our experimental results explicitly highlight these deficiencies. This constraint imposes a critical methodological

compromise. For instance, maintaining a conservative, deep level-of-no-motion (e.g., 1000m in Exp-6) ensures physical

consistency but mandates the exclusion of a large fraction of the available SLA observations. Conversely, adopting a shallower

level-of-no-motion (e.g.. 150m in Exp-4) maximizes observation coverage, yet the resulting analysis is compromised due to
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the violation of the theoretical assumptions in deeper water, ultimately leading to degraded accuracy. The choice of the level-

of-no-motion can significantly impact the accuracy of model analysis, especially in complex regions with varying bathymetry

and ocean dynamics, thereby confirming the methodological advantage of the barotropic model operator which successfully

assimilates all available SLA data without imposing a constant level-of-no-motion constraint.

Figure 8 presents the relative performance of five data assimilation experiments (Exp-2 through Exp-6) compared to a baseline

assimilative experiment (Exp-1), now used as the reference. The top panels illustrate the time series of fhe relative change in

(" leted: percentage chang )

root-mean-square error (S_uRMSE) and correlation coefficient (S_CC). The bottom panels depict the time-averaged S uRMSE
and S_CC changes, categorized by bathymetric depth ranges. In contrast to the previous figure, where improvements were

relative to a model free-run, this figure demonstrates the relative performance of each experiment against the initial data

C" leted: simulation )

assimilation run. Negative values indicate a decrease in performance (higher uRMSE or lower CC) compared to Exp-1, while
positive values indicate improvement. This comparison highlights the incremental benefits or drawbacks of different

experimental configurations in relation to a specific data assimilation configuration.

All the gxperimental configurations employing the barotropic model perform similarly to each other. In terms of time-series

C" leted: setups

C" leted: experiments

comparison, Exp-4 (with dynamic height as sea level operator and level;of;ng;motion equal to 150m) has performance worse _

(ot

than all the other experiments. Among the experiments using the dynamic height operator, Exp-5 generally has better results

both in terms of uRMSE and CC. The analysis per bathymetric glass highlights the differences among the experiments. None

of the experiments outperform Exp-1 in regions shallower than 150m both in terms of uRMSE and CC. In deeper areas we see

that Exp-4 and Exp-5 produce, in general, worse results, and the worsening is amplified as the depth increases and the level:

‘ (Deleted:
(Deleted :

(Deleted: classes shows better

(" leted: the

ofzng;motion decreases; 1000m depth is a clear boundary for the effectiveness of Exp-6. Employing the barotropic model as ) (Deleted:
a sea level operator yields consistent results, with small sensitivity to the minimum depth used in the rejection criterion or to . EDeleted:
Deleted:

the choice of constant or variable expansion/contraction coefficients. This confirms the difficulty of establishing a constant

(oata

level-of:ng;motion and highlights the benefit of using the barotropic model as a balancing mechanism. ,

5.3. Sensitivity experiments to velocity corrections

Jhe second set of experiments (Exp-1* to Exp-6*) was carried out including velocity corrections in the analysis estimates.

‘ (Deleted:
(Deleted :

Jhis second set represents the maximal scope of multivariate assimilation, providing a benchmark against the mass-field-only

correction of the first set. The OceanVar2 configuration used in Exp-4* generated velocity increments that led to numerical

instabilities in the ocean model, preventing this simulation from completing. This critical instability confirms the operational

risk associated with introducing direct momentum corrections and highlights the sensitivity of Exp-4. In contrast, the other

experiments in this set ran without such issues, underscoring the challenges associated with dynamic height methods.

Consequently, our focus is on the stable experiments. Across all the stable configurations, the successful experiments in the

(Deleted: q
Y (Deleted: Another
) CDeIeted: The OceanVar2 setup

Deleted: Table 2 provides a summary of the spatially and
temporally averaged statistics for all experiments, including those
from the second set discussed subsequently.
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second set, which included velocity corrections, demonstrated improved performance compared to their counterparts in the

first set, without velocity corrections, The extent of improvement varies depending on the specific experiment and the region

(" leted: Notably )

(Deleted: which lacked

analysed.
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Figure 9 shows the time series and Fig.10 presents temporally averaged statistics by bathymetric class for the second set of
experiments. In terms of time series (Fig.9), the error components exhibit the same characteristics as those discussed for Exp-

1 (Fig.4 and 5). The uRMSE exhibits a summer minimum in all experiments. Exp-6" performs significantly worse than the

others throughout the year. All experiments using the barotropic model have similar uRMSE values, with Exp-1" generally
appearing slightly better than the others. The correlation coefficient (CC) increases throughout the experiment’s length. For
this statistic as well, Exp-6" is the worst, showing consistently lower values than the other experiments. Even for the SDE,

which is generally reduced compared to the previously studied experiments without velocity corrections, the relative

performance of the different experiments js confirmed.

Figure 10 presents the temporally averaged statistics clustered according to the bathymetry. All the stable experiments

benefited greatly from the inclusion of the velocity corrections. The overall reduction in error confirms the importance of the

velocity increments when the system remains stable. Exp-6" confirms its poor performance in areas shallower than 1500m.

However, by also correcting the velocities, its statistics in deep areas are now similar, or slightly better, than those obtained

(" leted: seems to be )

from experiments using the barotropic model as operator in the background error covariance matrix. Exp-1" is now the best
among those analysed for all the bathymetric classes shallower than 500m.
In terms of correlation coefficient, the results previously obtained by analysing uRMSE seem to be confirmed. For shallow

areas (<1000m), Exp-6" is significantly worse than the others. In all other bathymetric classes, while confirming the previous

) (Deleted: ,to

(ot

NN

findings, the differences between the experiments are less pronounced. A different behaviour is observed when analysing the

standard deviation of the error. Exp-1" remains the configuration that shows significantly lower error values than the others in

(Deleted: cven )

(" leted: setup

almost all bathymetric classes. Notably, Exp-6* is the one that benefits the most from velocity corrections, demonstrating that

for this specific configuration, the direct momentum increments overcome other methodological weaknesses.

6. Computational performance and parallelization

‘ (Deleted: in very deep water.

Deleted: However, for this statistic as well, the differences between
the experiments have decreased compared to the experiments where
velocity correction was not applied. Experiment

(Formatted: Not Superscript/ Subscript

To jmprove computational performance, OceanVar2 adopts a domain-decomposition scheme. This scheme leverages the

: “‘(Deleted: Parallelization

(" leted: Performances

computing power of a parallel computer by partitioning the computational domain into subdomains. Each process executes the
necessary operations to update its portion of the global domain, sharing communications with neighbouring processes for

lateral boundary treatments using Message Passing Interface (MPI) calls (The MPI forum, 1993).

AN N N N R N

(Deleted: optimize

(" leted: MPI calls ( )

Rigorous testing has been conducted to guarantee bit-for-bit (BFB) reproducibility for the entire data assimilation system

excluding the cost function minimizer, across runs with different MPI processes as well as runs with the same amount of MPI

processes but different partitioning of the structured geographic grid. The quasi-Newton L-BFGS minimizer (Byrd et al.,
1995), employed for numerical minimization of the cost function, necessitates global matrix-vector multiplication, which
precludes BFB reproducibility when domain decomposition is utilized. Divergences between executions stem from the non-

associativity of floating-point operations, particularly floating-point summation within the minimizer. To gpecifically test and

(" leted: mitigate this )

ensure that the parallelization of the rest of the assimilation system is fully reproducible, OceanVar2 offers the flexibility to
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execute the minimizer serially (by aggregating variables from all domains and forcing a fixed order of operations) while the

remaining code is parallelized using MPI domain decomposition. Extensive testing has demonstrated that using this specific

serial pption for the minimizer, ensures BFB reproducibility. Moreover, even when the minimizer is executed in parallel,

- (" leted: execution of

differences arising from various domain decompositions are statistically insignificant. Possible future work includes the
introduction of a different minimizer suited for MPI parallelization.

Neglecting the differences arising from the parallel execution of the minimizer, the computational performance of the different

o CDeIeted: , aggregating variables from all domains,

NN

(" leted: performances

experiments gvas evaluated in terms of minimizer iterations and code scalability. Figure 11 compares the number of iterations

C" leted: were

required for the minimizer to converge in the various OceanVar2 experiments. The results are presented as a probability

distribution, with statistics calculated based on the year of assimilation testing,Consistently, all experiments using the dynamic

(Deleted

height operator converged with fewer iterations than those employing the barotropic model. The choice of the level;of-no-

motion had a small effect, where the median increased from 24 to 25 iterations when using 350m or 150m instead of 1000m.

NN

( Deleted: *
All..
Deleted: of no motion only slightly affected convergence, with a

However, the primary insight is that the choice of the free surface operator formulation and the level-of-no-motion have

negligible impact on the overall convergence speed. The median number of required iterations remains stable across all the

experiments, varying only from 24 to 26 iterations. These differences between the median values appear insignificant when

considered in the context of the wide day-to-day variability in the required convergence steps observed across the assimilation

year, which spans approximately 12 to 45 iterations due to fluctuation in data availability and associated misfit values. The

observed increase in the median number of iterations for the barotropic model schemes is likely due to the barotropic model's

inherent physical complexity, which results in a more intricate optimization landscape for the minimizer to navigate.

To assess scalability, we limited the comparison to Exp-2 and Exp-4, as they had the same number of assimilated observations.

We tested OceanVar2's performance with increasing numbers of cores. For a fixed number of cores, we performed experiments

median increase from 24 to 25 iterations when using 350m or 150m
instead of 1000m. Schemes with the barotropic model required few

more iterations, and the median is 25 for Exp2 and 26 for Exp-1 and
Exp-3...

Cl‘ leted: explored

using eight different sets of observations,and various decomposition strategies. (e.g., with 16 cores, we tested 4x4 and 8x2).

The results are shown in Fig.12. The model grid consisted of 1307x380x141 points along the x, y, and z directions, respectively.

Analysis not shown here confirms that, in these experiments, the gomputational load across subdomains does not show

- C" leted: minimization strategies (using 8 different set

- CDeIeted: )

C" leted: Results are

significant differences based on geometric peculiarities, such as coastal proximity. Instead, the computational load of a

h CDeIeted: Fig.12. Up to 36 cores

subdomain, and thus the fotal execution time, was primarily determined by the overall number of assimilated observations.

This finding is consistent with the global nature of the variational solver and the number of iterations required for convergence.

[Deleted: experiment with the dynamic height operator consistently

Notably, subdomains completely covered by land still required execution time comparable to the other domains. This occurred

as a direct result of the land-sea mask not being used to optimize the domain decomposition, since the decomposition was

based solely on the model grid geometry. The top panel of Fig.12 shows the CPU time per core as a function of the number of

cores for Exp-2 and Exp-4. Consistently with Fig.11, the solid lines, representing the average CPU time, indicate that the

difference between the dynamic height scheme (Exp-4) and the barotropic model,(Exp-2) operators is minimal across all core

A AN A

outperformed...
(" leted: onec using
C" leted: . However, Exp-4 reached

counts, especially considering the large variability in run times, evidenced by the shaded areas indicating the maximum and

minimum CPU time. More importantly, the speedup achieved is limited; increasing the cores from 1 to 36 yields a speedup of
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approximately 8, corresponding to a parallel efficiency of about 22%. Furthermore, both experiments reach a performance

plateau around 36 cores, with run time generally deteriorating at higher core counts due to increased communication pverhead. ]

To understand this limited parallel efficiency, the bottom panel of Fig.12 presents the scalability (expressed as a percentage of

efficiency relative to the serial code) for the different B matrix operators. The diffusive filter operator acts as the main

bottleneck. Its efficiency decreases rapidly at higher core counts and then exhibits a negligible further performances gain.

:("' d: at )

Deleted: while Exp-2 demonstrated a slight improvement up to 72
cores, where the performance of the two setups became identical. For
a larger number of processors, we observed a deterioration in
performance...

stabilizing beyond 36 cores. This filter, which utilizes an implicit scheme, was implemented using a dimensional splitting

approach. It is solved by means of LU decomposition of a tridiagonal matrix. We acknowledge that the implementation and

parallelization strategy employed is suboptimal. This design choice simultaneously precludes optimal parallelization and

results in the diffusive filter's extreme sensitivity to the geometry of the domain decomposition, which is the primary cause of

the wide run-time variability shown in the top panel. This sequential process requires all processors associated with subsequent

columns of subdomains to wait and then repeats along the second dimension (rows of subdomains). Although this crude, initial

implementation constrains the overall parallel efficiency, the resulting total execution time remains within acceptable limits

rendering the software suitable for our current purposes. Future development will prioritize a more scalable parallelization

strategy for this critical routine. Examining the remaining key operators reveals a strong general trend: while efficiency is high

up to 36 cores, all remaining components experience a reduction in scaling performance thereafter. The barotropic model

operator is the least affected by this change in scaling efficiency observed past 36 cores, maintaining the highest efficiency

among the B operators.

7. Conclusions

This study describes recent developments of the OceanVar software which implements an incremental variational ocean data

assimilation scheme. Key innovations compared to the previous schemes (DPO8, Storto et al, 2011, 2014) include the

(l‘ leted: load. )

C" | d: DB08 )

implementation and evaluation of two alternative solutions for the sea level operator, encompassing both barotropic model and
dynamic height operator. Furthermore, a diffusive operator has been adopted to model Gaussian horizontal covariances,
replacing the recursive filter used in previous code versions. Finally, the geostrophic velocity operator is utilized for total

velocity corrections, deviating from the DP08 approach and applied to both dynamic height and barotropic sea level operators.

(Deleted: DB03 )

Furthermore, a method for filtering the tidal components of the background model fields is applied and tested allowing the

assimilation of SLA without tides, together with in-situ temperature and salinity data to produce analyses. These,new and old

(Deleted: de-tided

features_in OceanVar2 have been tested and compared for a regional implementation of the assimilation scheme in the

Mediterranean Sea.
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It has emerged that the barotropic operator is the only pperator capable of consistently assimilating sea level anomaly data in CDeIeted: one

shallow and deep ocean regions. Variable alpha and beta parameters in the linear equation of state (7) yielded minor differences - (Deleted: to
CDeIeted: assimilate

NN

in our experiments, however this assumption is likely not to be valid in global models.

The dynamic height operator, though easy to implement, has clear limitations. Requiring the definition of a spatially

independent levelofno;motion, it does not provide an optimal solution in domains with highly variable bottom topography (l‘ leted )
and dynamics. For the Mediterranean Sea, a level of:no;motion equal to 1000m is appropriate, as demonstrated by the quality “ S CDeIeted: )
of the corrections obtained with OceanVar2. However, this represents a significant limitation, as it excludes the assimilation . CDeIeted: )
of SLA observations in shallower areas. Decreasing the level-of:na;motion depth reveals the limitations of this approach. For EE:::::Z %
shallower levels, the benefits of assimilating more data are offset by the loss of the quality of the corrections in deeper areas. » ““‘CDeIeted: )
The results are corroborated by the numerical instabilities arising when velocity corrections are applied in experiments with a 5 i‘(DeIeted: )
levelzof-no-motion shallower than 350m. The emergence of this critical instability provides a clear empirical demonstration (Deleted: )
that violating the inherent physical consistency assumptions used to construct the B matrix can lead to unstable solutions. ™. (Deleted: )
Consequently, the optimal choice of operator depends on balancing the need for maximal observational impact with the (Deleted: of no motion shallower than 350m )

requirement for numerical stability within the specific operational framework.

Although the barotropic model is inherently more complex and thus computationally more expensive than the dynamic height Cr leted: Computationally
operator, jts impact on the fotal run time is minor. This is because the semi-implicit scheme used to discretize the barotropic (l‘ leted: however it has a minor
equations allows for large time-steps, significantly limiting the computational demand. This small computational overhead - CDeIeted: minimization iterations. Further,

ensures that the barotropic model operator does not become the dominant factor in execution time. : (Deleted: step

the

The adopted solutions simplify the application of OceanVar2 in complex areas of the world’s oceans. To our knowledge (l‘ I

OceanVar?2 is the only data assimilation software employing a barotropic model in its model background error covariance - CDeIeted: world ocean.
CDeIeted: scheme

CDeIeted: It's
CDeIeted: The

matrix. Jt is important to note that the current implementation of the barotropic model uses closed lateral boundary conditions.

Its applicability is therefore limited to basins with a geometry that allows this approximation. Jn the future the barotropic model

AN AN\

will be implemented also with open boundary conditions.

Regarding parallel performance, the diffusive filter overhead is currently the dominant computing factor, constraining the

overall scalability. We acknowledge that the first implementation of the diffusive filter used in OceanVar2 Jimits the system's Cl‘ leted: code is stable, robust, its previous versions have )

parallel efficiency. However, we chose this direction, replacing the previously used recursive filter, due to the superior

flexibility and adaptability the diffusive filter offers for modeling horizontal error correlations.

The mathematical and algorithmic core of the system, first presented in DPO8 and subsequently used in various operational

forecasting frameworks, has been largely documented in several scientific works. Based on extensive testing, the revised code CDeIeted: papers, and the )

is stable and robust, with its performance results presented throughout this work. The present version, OceanVar2, is also open

to the community. Deleted: Future developments could explore the implementation of
lateral open boundary conditions into the barotropic model,
interfacing the system with Al, and adapting it to unstructured grids
and/or global applications.

Code availability
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The OceanVar2.0 code is publicly available under a GPLv3 licence (https:/www.gnu.org/licenses/gpl-3.0.txt) at

https://github.com/CMCC-Foundation/OceanVar2 (this manuscript) together with a user guide on compiling and running the
code (Adani et al., 2025, https:/github.com/CMCC-Foundation/OceanVar2/blob/main/doc/OceanVar User Manual.pdf).
The code used in this yjnanuscript is permanently archived at https://doi.org/10.5281/zenodo.15593468 (Oddo et al., 2025). A

test case can be downloaded at https:/github.com/CMCC-Foundation/MedFS831. The ocean model used is based on the
NEMO source code (version 4.2.0) is accessible on Zenodo. https://doi.org/10.5281/zenodo.6334656 (Madec et al., 2022).
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Fig.1 Top panel: Model domain and bathymetry. Green and yellow dots indicate the position of the assimilated ARGO floats

and XBT respectively. Red triangles indicate the subset of in-situ data assimilated during the single daily cycle of 11 August
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2021. Bottom panel: an example of 21-day altimetry data. Satellite tracks in red and green are used in Figure 2 and 6

respectively. The solid, bold black tracks highlight the satellite altimetry data available during the single daily assimilation

cycle of 11 August 2021. Three isobaths are drawn in both panels: 150, 350 and 1000m.
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Fig.2 An example of Sea Level Anomaly data along the red track of Figure 1. Blue lines indicate model free-run results, while
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black lines indicate observational data. In the upper panel the full signals are plotted. The dashed line indicates where SLA are

in regions shallower than 1000m. The middle panel shows the SLA after the removal of the tidal signals, separately in the
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simulation
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model and observations, and the along track averaged difference. ;The bottom panel shows the along track observational and

Middle
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model tidal signals.
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Fig.3 SLA, Temperature (red/blue) and Salinity (magenta/green) increments obtained from the different OceanVar2

onfigurations listed in Tablel, starting from the same misfits. The SLA track used is drawn in green in Fig.1. For each . .-(Deleted: sct-up
335 experiment in the top panel there are the SLA increments where black dots indicate assimilated data, green dots indicate data .- (l‘ leted: ;
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rejected based on the coastal distance criteria, red dots indicate data rejected due to the level;of;no;motion or minimum depth
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(in case of the barotropic model). : (Deleted: )
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Fig.4 Time series of SLA error statistics for the entire year 2021, Blue (‘free-run’) and green (‘EXP-1°) lines indicate the Cl‘ leted: year )
statistics for the free-run results and the misfit of Exp-1 respectively. Top panel: unbiased root-mean-square error. Middle Cl‘ leted: simulation )
panel: correlation coefficient, in the bottom panel the standard deviation error is plotted. ‘ (Deleted: Exp01 )
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Fig.5 SLA statistics as a function of the ocean depth. Blue and green bars indicate the free-run and Exp-1 results respectively.

Jn the top panel the number of observations used is also provided with dark bars.
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Fig.6 Vertical profiles of yearly averaged misfit statistics for salinity (top panels) and temperature (bottom panels). From left

to right: uRMSE, ME, CC,and SDE. Blue and green lines indicate free-run and Exp-1 results respectively.
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Fig.9 Second set of experiments SLA time series error statistics. Top panel: unbiased root-mean-square error. Middle panel:

correlation coefficient. Bottom panel: standard deviation error. Colour code is provided in the middle panel legend.
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Fig.10 SLA statistics as a function of the ocean depth. Top panel: unbiased root-mean-square error. Middle panel: correlation

1390  coefficient. Bottom panel: standard deviation error. Colour code is provided in the top panel legend.
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Fig.11 Probability density function (Y axis) of the number of iteration (X axis) needed for the OceanVar2 minimization
algorithm to converge. For each experiment, the lighter and darker shaded areas correspond to the 90% and 50% of the events

respectively. The vertical lines are the medians of each distribution. Exp-1 to Exp-6 from top to bottom.
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of cores for Exp-2 and Exp-4. Solid lines represent the average CPU time, while shaded areas indicate the maximum and

minimum CPU time pbserved for each core count. Bottom panel: Scalability analysis of individual Background Error
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Covariance matrix components. The Y-axis is the percentage of reduction time with respect to the serial (single core) execution.

Solid lines indicate the minimum execution time and dashed lines indicate the maximum execution time observed across

different days and domain decompositions for both the tangent linear and adjoint routines. The solid black line indicates the

linear reduction with the number of cores, and coloured lines show the performance of individual routines (component colours

are defined in the figure legend).
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