
1 

 

Forestlines in Italian mountains are shifting upward: detection and 

monitoring using satellite time-series 

Lorena Baglioni1, Donato Morresi2, Matteo Garbarino3, Carlo Urbinati1, Emanuele Lingua4, Raffaella 

Marzano3 and Alessandro Vitali1 

1Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy 5 

2Department of Forest Resource Management, Swedish University of Agricultural Sciences, Umeå, Sweden 

3Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy 

4Department of Land, Environment, Agriculture and Forestry, University of Padova, Padova, Italy 

 

Correspondence to: Lorena Baglioni (lorena.baglioni@pm.univpm.it) 10 

Abstract. The growing interest on the ecological effects of global warming and land use changes on vegetation, along with 

the development of remote sensing techniques, fostered applied research on the successional dynamics at the upper limits of 

forests. The aims of this study were: i) to develop an automated methodology for mapping the current position of the uppermost 

Italian forestlines; ii) to identify hotspots of change by the analysis of long-term greenness and wetness spectral dynamics. We 

carried out a Landsat-based trend analysis in buffer zones along the forestlines, testing differences between sparse and dense 15 

canopy cover classes and at different elevations and distances to the forestline. We used regional scale datasets and avoided to 

fix a minimum elevation threshold for the detection, in order to make the method replicable in different mountain ranges. For 

the spectral dynamics analyses, we used Landsat time-series of common vegetation indices for the period 1984-2023 and tested 

the significance of their long-term spectral trends with the Contextual Mann-Kendall test for monotonicity. We assessed that 

the highest forestlines are at the western sector in the Alps and at the central one in the Apennines. We observed a general 20 

expansion of the forest cover mainly close to the forestline and at lower elevations. The highest values of greenness and wetness 

indices were respectively in the sparse tree cover class, and in the dense one, particularly in the Alps.  
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1.  Introduction 25 

A treeline is the contiguous forest-grassland ecotone along an altitudinal or latitudinal gradient (Körner, 2008; Berdanier, 2010; 

Harsch et al., 2011). Nowadays, most treeline studies concern spatio-temporal dynamics to climate and/or land use changes 

https://www.slu.se/en/departments/forest-resource-management/
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(Malanson et al., 2011). Current treeline elevation and its spatial patterns derive from air temperature increase and past human 

activities that have modified their physiognomy and dynamics over time (Holtmeier et al., 2005; Harsch et al., 2011). Most 

European mountain landscapes have been shaped since prehistoric times through fire, deforestation and intensive grazing 30 

(Malanson et al., 2011; Vitali et al., 2018; Garbarino et al., 2020). In the Mediterranean region, the treeline elevation is much 

lower than its potential climatic position (Körner 2012; Piper et al., 2016). Moreover, human acrivities have locally altered, 

directly or indirectly, species composition (Obojes et al., 2024) and induced new disturbances as the in the western Alps 

favouring Larix decidua Mill to Pinus cembra L. and promoting an invasive resprouter like Alnus viridis (Chaix) DC. (Motta 

et al, 2006; Dziomber et al., 2024).  In the Apennines Pinus nigra plantations at higher elevations facilitated its upward 35 

encroachment in treeline ecotones (Vitali et al., 2017). The upward treeline shift occuring in many parts of the globe can 

therefore be associate not only to global warming (Hansson et al., 2023) but also to successional dynamics (Ameztegui et al., 

2016; Vitali et al., 2017) and to geomorphic processes (Leonelli et al., 2009).  

The development of remote sensing techniques and geographic information systems provided new opportunities in treeline 

studies (Holtmeier et al., 2020) such as detecting and monitoring the dynamic patterns of treeline shape and density (Fissore 40 

et al., 2015). Defining clear and easily replicable methods based on the application of modern technologies accessing to 

available datasets is fundamental for accurate and large-scale treeline monitoring. At the local scale, aerial photography is 

commonly used (Ameztegui et al., 2016; Hansson et al., 2020; Nguyen et al., 2024) since  it provides older images than satellite 

ones, although image quality and availability are limiting factors (Morley et al., 2018). At larger scales, He et al. (2023) 

detected closed-loop mountain treelines integrating high resolution tree cover maps and  digital elevation models, whereas 45 

Wei et al. (2020) in the Western United States proposed an “alpine treeline ecotone detection index” (ATEI) based on the 

analysis of altitudinal and normalized difference vegetation index (NDVI) gradients. At the regional scale, supervised and 

unsupervised classification of multispectral images are widely used (Fissore et al., 2015, Chhetri and Thai, 2019), as well as 

detection techniques based on land cover maps combined with digital elevation models (e.g. Pecher et al., 2011).  

Besides mapping, current treeline research includes also its spatio-temporal dynamics. Despite the coarser spatial resolution 50 

and the limitation of cloud cover, satellite optical imagery offers a finer time resolution by integrating data from several 

platforms and free processed time-series. It also provides spectral information for synchronic analysis of  vegetation changes 

(Gómez et al., 2016). The free access to its database in 2008 has increased the use of Landsat time-series (Zhu, 2017). Given 

their spatial resolution (30 m) and temporal data availability, Landsat images have been largely used for vegetation dynamics 

monitoring, such as post-disturbance forest recovery (Morresi et al., 2019), greening or browning in different ecosystems 55 

(Kumar et al., 2022; Rumpf et al., 2022; Bayle et al., 2024) and to study alpine treelines by applying greening proxies like 

vegetation indices (Fissore et al., 2015; Tian et al., 2022). The NDVI is widely used in treeline dynamics monitoring, being 

more sensitive in detecting biomass changes in open rather than in closed canopies (Bharti et al., 2012; Arekhi et al., 2018; 

Wei et al., 2020; Choler et al., 2021; Zou et al., 2022; Bayle et al., 2025). In the European Alps, Carlson et al. (2017) and 

Choler et al. (2021) used the annual peak values of NDVI (NDVI-max) to analyse the greening trends from Landsat and 60 

MODIS time-series. They assessed a significantly increasing spectral trend over the last two decades, mainly at north-facing 
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slopes and in sparsely vegetated areas. Nevertheless, Bayle et al. (2024) remarked that the higher number of Landsat 

observations throughout the growing seasons can affect the NDVI-max trend analysis, causing false outcomes. It is true that 

annual NDVI-max increase with the number of available observations, and therfore their frequency must be taken into account. 

In the southwestern part of the European Alps, Bayle et al. (2025) studied greening trends using the annual max of kernel 65 

normalized difference vegetation index (kNDVI) (Camps-Valls et al., 2021), a nonlinear version of the NDVI, overcoming the 

overestimation of greening by the harmonic analysis of time series (HANTS), as reported by Choler et al. (2024). Bolton et al. 

(2018), instead, used the enhanced vegetation index (EVI) for a Landsat based greening trend analysis of alpine treelines in 

the Canadian boreal zone. The EVI corrects the aerosol influence and canopy background noise and it is less affected by 

saturation than NDVI, being more sensitive to the NIR band (Huete et al., 2012). For this reason, it can detect the spectral 70 

behaviour of lower layers of vegetation while NDVI responds mainly to the RED band, which is involved in photosynthetic 

activity of the upper canopy layer. A single index can be combined with other vegetation indices to reduce the uncertainty on 

change detection analysis (Schultz et al., 2016; Zhou et al., 2023). EVI and NDVI can be considered greenness indices since 

they are linked to the photosynthetic activity of vegetation by using NIR and RED bands, while wetness indices introduce 

short-wave infrared (SWIR) bands that are especially sensitive to water content of vegetation (Huete, 2012). Examples of 75 

wetness indices are the normalized difference moisture index (NDMI) and the normalized burn ratio index (NBR). Such  

indices are sensitive to shadowing, forest structure, leaf internal structure, vegetation moisture and density (Schroeder et al., 

2011). In Landast-based forestry applications, indices derived from the tasseled cap transformation (TCT) (Kauth and Thomas, 

1976; Crist and Cicone, 1984) are also commonly used, since they are less affected by soil reflectance (Cohen and Goward, 

2004). The tasseled cap wetness index (TCW) considers the visible bands and both the SWIR1 and the SWIR2, and it is 80 

suitable to predict forest structural attributes, being slightly influenced by topographic variations, especially in closed conifer 

stands (Cohen et al., 1995). Another TCT index is the tasseled aap angle (TCA) (Powell et al., 2010), combining the greenness 

and brightness information as defined in Crist and Cicone (1984) to assess the ratio between vegetated and non vegetated areas 

(Gómez et al., 2011). In this study we considered “forestline” the line separating the closed forest from the shrubland and 

grassland above, and “treeline” or “forestline ecotone” the surrounding area, the spatial pattern of which was not investigated 85 

due to the scale of analysis adopted. Forestline ecotones are dynamic ecosystems and their monitoring at  regional scale can 

be conducted with the analysis of their spectral behaviour over time adopting different indices and tools. In this context, our 

study analyzed forestline dynamics of the two main Italian mountain ranges, the Alps and the Apennines. Our research aims 

were: 

1) To define and monitor the position of the uppermost forestlines with an automated methodology;  90 

2) To identify hotspots of change through satellite data, verifying whether and where forest recolonization dynamics are 

occurring. 

In particular, we analysed the long-term greenness and wetness spectral changes of the uppermost forests and the contiguous 

forestline ecotones using Landsat-based trend analysis of time-series for the period 1984-2023, and we tested if greenness and 

wetness indices trends differed with elevation, forestline distance and canopy cover densities. We hypothesised that greenness 95 
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indices are more fitted for forest recolonization of open areas, while wetness indices are better suited for detecting gap-filling 

processes by intercepting also the spectral signal of lower leaf strata.  

  

2. Materials and methods 

2.1. Study area 100 

The Alps and the Apennines are the two major mountain ranges of the Italian peninsula. They extend respectively for 1300 

and 1350 km: the Alps from west-to-east across northern Italy; the Apennines from NW to SE. They differ in climate, elevation 

range, and vegetation characteristics. In the Alps, annual precipitation ranges between 400 and 3000 mm, with rare summer 

dry periods and cold winters (Isotta et al., 2014). Conifer forests prevail in the subalpine zone, where the main species are 

Norway spruce (Picea abies (L.) H.Karst.), European larch (Larix decidua Mill.) and Swiss stone pine (Pinus cembra L.) 105 

(Fauquette et al., 2018). In the Apennines, the total annual precipitation range between 600 and 4500 mm (Vacchiano et al., 

2017), with short and pronounced summer dry periods (Blasi et al., 2014). Mixed broadleaf forests dominate at lower 

elevations, while common beech (Fagus sylvatica L.), locally mixed with silver fir (Abies alba Mill.), is the main species in 

the montane zone, except for rare locations in the central and southern Apennines, where also mountain pine (Pinus mugo 

Turra), European black pine (Pinus nigra J.F. Arnold), and Bosnian pine (Pinus heldreichii H.Christ) occur naturally. Being 110 

the Italian forestline ecotones the target of our study, we selected the highest peak for each mountain group of the Alps and of 

the Apennines, as defined by the Global Mountain Biodiversity Assessment (GMBA) inventory (Snethlage et al., 2022a, 

2022b). We located the exact position of the peaks using the nationwide Tinitaly Digital Elevation Model (DEM) v 1.1 

(Tarquini et al., 2023) that is a 10 m spatial resolution DEM obtained from the union and harmonisation of each Italian 

administrative regions Digital Terrain Models. We then filtered the mountain groups and retained only the ones with highest 115 

peaks located on bare soil or in snow/ice covered areas, according to the Dynamic World land cover map (Brown et al., 2022). 

In this way we excluded also the mountain groups completely covered by forest or affected by severe human impacts, such  

urbanized areas or areas with settlements. In addition, for excluding the mountain peaks lacking the alpine belt thermoclimatic 

features, we used the oro-temperate, cry-oro-temperate and gelid thermotypes, derived from the Bioclimates of Italy dataset 

(Pesaresi et al., 2017) based on the Worldwide Bioclimatic Classification System (WBCS) by Rivas-Martínez (1993). Other 120 

GMBA mountain groups have been removed after the previous selection based on land cover and bioclimatic parameters, 

because the Italian administrative and GMBA’s boundaries limited the altitudinal range and forest distribution of some groups 

on the border in the following analyses (Sect. 2.2). 
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2.2. Detection of forestlines 125 

We used the Tree Cover Density 2018 (TCD) of the European Environment Agency (EEA) derived from Sentinel-2 

multispectral data as a reference for forest cover. TCD has a 10 m spatial resolution and provides information about the 

percentage of crown coverage in each pixel with a minimum thematic target producer and user accuracies of 90 % (EEA, 

2025). According to the FAO “forest” definition (FAO, 2000), we selected only pixels having a TCD higher than 10 % to 

obtain a mask of forested areas. For each mountain group, we obtained the vertical distance between each forest pixel and the 130 

DEM derived highest peak. We then selected the forest pixels with a vertical distance within the 1st percentile of all the 

distances and extracted the contours of the forestline by considering only the side of each selected forest pixel facing the 

mountain peak. We avoided a minimum elevation threshold for the forestlines detection to facilitate the replicability of the 

method in geographic regions with different altitudinal ranges. We joined polylines with linear gaps shorter than 30 m 

(corresponding to the Landsat spatial resolution). We considered only resulting polylines longer than 500 m to avoid highly 135 

fragmented forestlines and to focus on more spatially extended and continuous ecotones and we removed closed loops to 

exclude the edges of forest gaps below the forestline. We defined a buffer zone of 250 m radius (Fig. 1c) along the forestlines 

to assess the presence of significant spectral changes in a gradient from closed forest to grassland. We also sampled points at 

10 m intervals along the detected forestlines to assess the mean, median and maximum elevation of all of them, clustered by 

mountain groups or ranges. We processed the data in the R software environment (v. 4.3.2) using the “terra” (Hijmans, 2023), 140 

“callr” (Csárdi and Chang, 2024) and “future.apply” (Bengtsson, 2021) packages, and with QGIS software (v. 3.34.1). 
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Figure 1 - (a) Selected peaks (triangles) along the Italian Alps (light blue) and the Apennines (orange); (b) Detected forestlines (red 145 
polylines) on a ESRI satellite image (ArcGIS/World_Imagery) of Punta Ramière (3330 m a.s.l.) in the Montgenèvre Alps GMBA 

group; (c) a 3D graphical model based on the Tinitaly DEM and the TCD forest mask (TCD >10 %) used for the forestlines detection 

and the buffer area definition (yellow area). 

 

2.3. Trend analysis of vegetation indices  150 

Sentinel-2 provide images with higher spatial resolution (10 m) but a shorter time span (since 2018) than Landsat. Infact, 

Landsat images supply multispectral information at medium resolution (30 m pixel size) since 1984, and are commonly used 

in treeline studies (Bharti et al., 2012; Arekhi et al., 2018; Morley et al., 2019; Garbarino et al., 2023) since they give a good 

compromise between space and time resolution at regional scale (Hansson et al., 2020). We collected Landsat images acquired 

from 1 June to 30 September of each year in the period 1984–2023, to analyse forest vegetation dynamics during the growing 155 
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season. In particular, we used Level-2 Collection 2 Landsat images acquired by the TM, ETM+, OLI and OLI-2 sensors. After 

masking pixels covered by snow, clouds, cloud shadows and water, we produced pixel-based reflectance composites based on 

the medoid compositing approach (Flood, 2013). We preferred the medoid technique over the traditional compositing 

approaches because it is more robust to outliers and noise. In fact, it consists of the closest value to the median.We computed 

common vegetation indices from reflectance composites that we grouped into i) greenness indices: normalized difference 160 

vegetation index (NDVI) (Tucker, 1979), enhanced vegetation index (EVI) (Huete et al., 2002) and tasseled cap angle (TCA) 

(Powell et al., 2010); and ii) wetness indices: normalized burn ratio (NBR) (García et al., 1991), normalized difference moisture 

index (NDMI) (Gao, 1996) and tasseled cap wetness (TCW) (Crist, 1985). Finally, we masked the 40 year-long time-series 

using the buffer areas around each selected forestline (Sect. 2.2).  

We assessed the significance in the monotonicity of the spectral trends, i.e. strictly increasing or decreasing, derived from 165 

vegetation indices time-series by applying the non-parametric Contextual Mann Kendall (CMK) statistical test (Neeti et al., 

2011). The CMK test is an estimator of the monotonicity of trends, based on the Mann-Kendall (MK) test, which takes into 

account the trends in the neighbouring pixels within a 3 x 3 kernel. In this way, the spatial autocorrelation is considered, thus 

improving the detection of spatial patterns characterised by homogeneous spectral trends. Specifically, we used the “ConMK” 

R package (available at https://github.com/geoporttishare/ConMK). The TAU statistics produced by the MK test ranges 170 

between +1 and -1, with positive values indicating an increasing trend, while negative values are associated with decreasing 

trends. Before checking the occurrence of significant trends by computing the p-value (α) associated with the TAU statistics, 

we pre-processed time-series in two steps. Firstly, we filled one-year data gaps at the pixel level through linear interpolation 

while discarding pixels with longer data gaps. Secondly, we removed the autocorrelation in the time-series by applying the 

pre-whitening procedure proposed by Wang and Swail (2001) and implemented in the “ConMK” R package. 175 

 

2.4. Assessment of the spectral trends 

For each group of vegetation indices, i.e. greenness and wetness, we selected only those pixels that exhibited a highly 

significant trend (α < 0.005), as proposed in Choler et al. (2021) for all the indices (Fig. 2). 
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 180 

Figure 2 - Example of the extraction of the highly significant (α < 0.005) greenness (top) and wetness (bottom) points trends in the 

buffer area (yellow dotted line) around a single forestline (full red polyline) in the Alps. Base map: ESRI Satellite 

(ArcGIS/World_Imagery). 

 

We used the points corresponding to the resulting pixel centroids to extract the mean TAU value among the vegetation indices 185 

and the elevation from the Tinitaly DEM. The original TCD excludes shrublands, dwarf pine or green alder in alpine areas 

(Copernicus Land Monitoring Service, 2021) but we resampled it to 30 m by average and assigned to each pixel centroid also 

the mean tree canopy cover. We excluded points with negative trends (TAU < 0) and with TCD = 0 that corresponded to areas 

without a tree canopy cover (e.g. grasslands) and where the significant increasing spectral trend of the last 40 years was 

probably due to factors and dynamics different from forest recolonization. We assigned the elevation value of the nearest 190 

forestline point to the resulting wetness and greenness points using the “join attributes by nearest” tool in QGIS. In this way, 

we obtained the Euclidean distance of each trend point to the forestline and the elevation difference, which we used to classify 

the points in above or below the forestline. In particular, we identified the relative position of each point to the forestline by 

multiplying the Euclidean distances by the sign of the elevation difference. We carried out the analysis separately for the Alps 
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and the Apennines, given their altitudinal, climatic and vegetation differences. After this characterisation of the trend points, 195 

we randomly sampled two sets of 40,000 points for each mountain range by the “slice_sample()” function of the “dplyr” R 

package (Wickham et al., 2023). Each set contained an equal number of greenness and wetness significant trend points. We 

then grouped the sampled points into three tree canopy cover categories according to TCD: i) sparse canopy cover (TCD < 10 

%); ii) moderate-to-dense canopy cover (10 % < TCD < 80 %); iii) dense canopy cover (TCD > 80 %). Because of the large 

canopy cover classes ranges to which the points were allocated taking into account a mean TCD value, a possible spatial 200 

mismatch between the resampled TCD and the Landsat data was ignored. We then assessed the relationship between TAU 

values and the canopy cover, the elevation and the distance to forestline, taking into account the mean values of each forestline 

segment. We used a Wilcoxon test (Wilcoxon, 1945) to verify significant differences between the mean TAU among wetness 

and greenness indices averaging the mean TAU values of each canopy cover class in each forestline buffer. Finally, we built 

generalized additive models (GAM) (Hastie and Tibshirani, 1990) using the cubic spline smoother of the “mgcv” R package 205 

(Wood, 2011) to test the presence of a significant non-linear relationship between the mean TAU values and i) the elevation 

and ii) the forestline distance, without considering the TCD classes.  

 

 

 210 
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Figure 3 – Flow chart of the analytical process: input data (black rectangles), outputs (red rectangles) and statistical analyses 

(irregular rectangles). Abbreviations: DEM (digital elevation model), TCD (tree cover density), NDVI (normalized difference 

vegetation index), EVI (enhanced vegetation index), TCA (tasseled cap angle index), NDMI (normalized difference moisture index), 220 

NBR (normalized burn ratio), TCW (tasseled cap wetness), CMK (contextual mann-kendall test), GAM (generalized additive 

model). 

3. Results 

3.1. Forestlines extraction 

We identified and processed 60 mountain peaks, 44 in the Alps and 16 in the Apennines (Table A1, Appendix A). We obtained 225 

approximately 5760 km of forestlines with a mean elevation of 2088 ± 193 m a.s.l. in the Alps and 1758 ± 161 m a.s.l. in the 

Apennines, with a maximum elevation respectively of 2500 and 2383 m a.s.l. In the Alps, the lowest forestline elevations were 

in the prealpine groups due to the lack of a suitable altitudinal gradient, whereas the highest ones were mainly in the western 

sector (Fig. 4a). In the Apennines, the lowest and less extended forestlines, if compared to the forested areas, were in the 
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northern sector, while the highest ones were in Central Italy: the Majella (MJ), Sirente Velino (SVE) and Marsicani (MM) 230 

mountain groups (Fig. 4b). The total area of interest extended approximately for 1880 km2.    

 

 

Figure 4 - (a) Forestline elevation ranges of the mountain groups in the Alps (n = 44), sorted by longitude (West – East);  (b) Forestline 

elevation ranges of the mountain groups of the Apennines (n = 16), sorted by latitude (South – North). Black dots are  the median 235 

values of each interval; colour intensity of ridges increases with forestline length and forested area ratio. Mountain groups codes are 

available in Table A1 (Appendix A). 

 

3.2. Trend analysis and performances 

We obtained 28.81 % of highly significant (α < 0.005) trends pixels for greenness and 19.69 % for wetness, considering only 240 

pixels with concordant p-values on all of the indices. The majority of TAU values were positive (Fig. 5) at both index types, 

with respectively 97.8 % and 99.8 % in the Alps, and 96.3 % and 99.7 % in the Apennines. 
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Figure 5 – Distribution of the highly significant (α < 0.005) wetness (blue) and greenness (green) pixels frequency with different TAU 245 

values). 

 

In total, we obtained  242233 greenness and 221554 wetness highly significant positive trend pixels for the Alps,  and 76348 

and 508745 rispectively for the Apennines. With sparse and moderate-to-dense canopy cover, the greenness and wetness 

positive trends were mainly near the forestline in both mountain ranges, and decreased in both directions, but mainly upwards 250 

where tree covered areas are gradually replaced by high-altitude grasslands. With dense canopy cover, only wetness positive 

trends in the Apennines showed a similar distribution, differently from greenness trends and from both types in the Alps, where 

the highest concentration was below and distant from the forestline (Fig. 6).  
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255 

Figure 6 – Positive wetness (blue) and greenness (green) trend pixels density according to their distance to the forestline (black 

dashed line) in different canopy cover classes: sparse (TCD < 10 %), moderate-to-dense (10 % < TCD < 80 %) and dense (TCD > 

80 %). Negative and positive values represent distances below and above the forestline, respectively.  

 

Significant differences between TAU trends and canopy cover classes occurred mainly in the Alps (Fig. 7). The highest ones 260 

were for the wetness indices in the dense canopy cover. For greenness, sparse canopy cover class had higher mean TAU than 

moderate-to-dense and  dense classes. In the Apennines only greenness values highlighted a significant difference between the 

sparse and the dense canopy cover class. 
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Figure 7 – Boxplots of the mean TAU values of wetness and greenness trends in the Alps (left) and in the Apennines (right). The 265 

mean values in each forestline buffer account for three different canopy cover classes: sparse (yellow),  moderate-to-dense  

(green), dense (dark green). Significant differences of Wilcoxon test are indicated with: * (α <= 0.05), ** (α <= 0.01), *** (α <= 

0.001),  **** (α <= 0.0001). For more information on the canopy cover classes percentage in the Alps and in the Apennines refer 

to Fig. B1 (Appendix B).  

GAM models did not detect a statistically significant relationship between greenness/wetness mean TAU values,  the  distance 270 

to forestline and the elevation (Fig. 8). This result is probably due to the fact that a combination of topographic, climatic and 

anthropogenic drivers must be considered to assess what are the main drivers of these spectral trends, taking into account the 

main differences between the Alps and the Apennines. Relatively similar patterns of the two indices mean trends appeared at 

both mountain ranges but with a higher varibility in the Apennines. In general, TAU greenness values were higher than wetness 

ones. In the Alps, greenness increased moving upwards to the forestline with a first culmination close to and below it, followed 275 

by a decrease and another increase, with the highest mean values over 200 m. In the Apennines instead, the mean TAU values 

increased close to the forestline with a culmination above it (about 100 m distance), followed by a decrease, with the lowest 
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values above 200 m. In both the mountain ranges we observed a decrease of the greenness trends from lower elevations up to 

about 1750 m a.s.l. in the Alps and 1500 m a.s.l. in the Apennines (Fig. 8b). Thereafter, the mean TAU values increase 

progressively in the Alps up to 2300 m a.s.l., but decrease slightly in the Apennines to around 1700 m a.s.l. to rise again up to 280 

the altitudinal limit. 

Wetness trend related to the forestline distance is very flat in the Alps and relatively similar to that of the greenness, whereas 

in the Apennines, the trend is far more variable and increasing progressively from forestline to 200 m above it (Fig. 8a). 

Wetness curves decrease for both Alps and Apennines from the lower elevations to about 1600 m a.s.l (Fig. 8b), with a more 

pronounced slope for the Apennines. Then they both rise up to about  2100 m a.s.l. with a steeper and fluctuating trend again 285 

in the Apennines.  

 

 

Figure 8 - Wetness (blue) and greenness (green) GAM functions with a level of confidence of 0.95, according to the elevation (a) and 290 

to the distance to the forestline (b) in the Alps (left) and in the Apennines (right). We considered the mean values of each forestline 

buffer. The models are not statistically significant (α  > 0.05). 
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4. Discussions 

4.1. The uppermost forestlines detection method 295 

The proposed forestline detection method is applicable at different spatial scales and in different geographic regions as it does 

not establish elevation thresholds and it can be based on regional datasets or other existing digital elevation models and forest 

masks. In addition, the method is also not exclusively based on climatic parameters, therefore applicable for the detection of 

human impacted forestlines. We considered as forestlines those closer to their potential climatic limit (e.g. tree species line), 

excluding forest margins at lower elevations and highly fragmented forestlines. We based the detection on the smallest 300 

elevation differences between the highest peaks and the forested pixels resulting from recent satellite derived data (TCD 2018). 

According to some authors, Italian and many others northern hemisphere forestlines could not be considered “climatic” 

treelines for their severe human constraints (e.g. grazing, fire and deforestation) that altered altitudinal position, spatial pattern 

and tree composition (Motta et al., 2006; Malanson et al., 2011; Piermattei et al., 2016; Vitali et al., 2018; Holtmeier and Broll, 

2020). In Italian mountains, forest upward expansion was favoured mainly by past large-scale disturbances, and took place 305 

mainly at warmer aspects (Malandra et al., 2019). Recurrent human direct impacts on these ecotones since the Holocene times 

have greatly affected vegetation structure and composition (Foster et al., 1998), and recent silvo-pastoral abandonment at high 

elevation sites triggered secondary succession (Debussche et al., 1999). The different forest cover and the bioclimatic features 

of the selected mountain groups provide a representative sample of the forestline trends along the Italian peninsula. The mean 

forestline elevations detected, confirm previous studies in the Alps (Caccianiga et al., 2008; Lingua et al., 2008; Diàz-Varela 310 

et al., 2010; Gilles et al., 2023) and in the Apennines (Vitali et al., 2018; Bonanomi et al., 2020). However, since the proposed 

method is closely dependent on the available regional/national datasets, some exclusion occurred with mountain groups at 

transnational borders.   

 

4.2. Long-term greenness and wetness spectral trends 315 

Overall, rising greenness and wetness trends were recorded at both mountain ranges in line with the ongoing natural 

reforestation processes (Vitali et al., 2018; Garbarino et al., 2020; Anselmetto et al., 2022). Pixel density distribution of Alps 

and Apennines are globally very similar, but some differences occur for the dense canopy cover class in the Apennines, where 

the wetness indices have the highest trend peak just below the forestline. This could be attributed to the different species 

composition at the two mountain ranges. Along the Apennines, with the exception of some scattered locations with Pinus spp., 320 

Fagus sylvatica is practically the only upper forestline species (Piermattei et al., 2014; Vitali et al., 2017). This would confirm 

the long term impact of human activity (Körner, 2012) and explain the occurrence of “abrupt” (Harsch et al., 2011) and static 

treelines (Bonanomi et al., 2018; Bader et al., 2021) given the very limited seed dispersal efficiency of beech (Vitali et al., 

2017). Dominant species colonization rates, reproduction, seed-dispersal strategy and vitality of the occurring species are 
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relevant issues when comparing forestlines shifts in Alps and Apennines (Holtmeier, 2009; Compostella et al., 2017; Garbarino 325 

et al., 2020). In general, gap-filling processes prevail at the deciduous Apennines forestlines (Malandra et al., 2019; Vitali et 

al., 2018), whereas in the Alps the coniferous treeline species (e.g. Larix decidua, Pinus cembra and Picea abies) are more 

prone to tree encroachment at higher elevations. In the Apennines abrupt treelines the beech regeneration (by seeds and 

suckers) have favoured processes of canopy thickening and gap filling below and near the forestline, better intercepted by 

wetness indices that are more sensitive to spectral response of the less exposed vegetation. Wetness indices are particularly 330 

sensitive to water content in both soil and plants especially in canopy leaf tissues. For this reason, we believe that significant 

increasing trends in areas with a dense canopy cover could be associated with crown thinning and biomass increase, as in gap 

filling, while in areas with sparse canopy cover, to new encroachment in open areas. 

Taking into account the magnitude of changes rather than their frequency, in the Apennines we found a significant difference 

only for greenness mean TAU, lower in dense rather than in sparse canopy cover conditions. We assume that the drier climate 335 

of the Apennines may have influenced the positive trends of wetness indices, reducing the TAU variability in different canopy 

classes. The Wilcoxon test revealed the most significant variations in the Alps, where summer drought is not a limiting factor 

as in the Apennines. This hypothesis is confirmed by the higher mean TAU values of greenness in the sparse canopy class, 

whereas those of wetness refer to the dense one. Carlson et al. (2017) in the French Alps found a stronger greening signal in 

low-shrubs and open areas (e.g. grasslands or rocky habitats) than in forested areas. As well McManus et al. (2012) in the 340 

forest-tundra ecotones in Canada found higher greening in shrub and grass canopy classes. Sometimes, the greening of sparse 

open areas may be affected by melting glaciers (Rumpf et al., 2022), inducing a possible increase in soil moisture and 

influencing wetness trends too. Without considering the canopy cover class, the most relevant changes in the Apennines 

occurred above the forestline and at the lowest (< 1500 m a.s.l.) and highest (> 2000 m a.s.l.) elevations. Further information 

about the forest structure could help detecting if the spectral signal sourced mostly from shrubs or newly established trees.  In 345 

the Apennines, the highest mean TAU values above the forestline can be due to species like Juniperus communis L., Pinus 

mugo Turra and Vaccinum mirtillus L., that facilitate the upward migration of beech trees (Bonanomi et al., 2021). In the Alps, 

we found a steadier increase of TAU greenness and wetness from below to above the forestline. This confirms that diffuse 

treelines are more common in the Alps (Garbarino et al., 2020). Some authors used LiDAR data from the Global Ecosystem 

Dynamics Investigation (GEDI), integrated with Landast and Sentinel-2 data (Potapov et al., 2021; Tolan et al., 2024; Lang et 350 

al., 2023) to assess canopy height, vertical canopy structure and surface elevation, with the aim of monitoring forest ecosystems 

and carbon fluxes. This approach could be adopted in monitoring ecotones like treelines (Bolton et al., 2018), also to predict 

future vegetation scenarios and provide suitable management options (Morales-Molino et al., 2022).  

Considering the greenness and wetness mean values of TAU trends only as a function of elevation, without the forestline 

distance information, their higher values are mainly at lower sites, where temperature is less limiting and the past human 355 

impact was greater (Malandra et al., 2019; Anselmetto et al., 2022). Furthermore, forests at lower elevations are more 

accessible and usually have been most intensively managed in the past, although now are largely abandoned (Malandra et al., 

2019; Garbarino et al., 2020). Above the mean forestline elevation of both Alps and Apennines, the mean TAU values increase 
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and then decrease at higher altitudes where the number of pixels with significant increasing trends is also lower. In the 

Apennines, a second short but clear decrease above 1750 m a.s.l. may depend on the frequent abrupt beech treelines where the 360 

forest margin is sharply separated from areas with sparse and different vegetation. This common trend for both mountain 

ranges confirms an upward recolonisation process at the Italian anthopogenic treelines. The decreasing magnitude observed at 

higher elevation with the increasing distance from the forestline is probably due to the larger distance from seed trees (Vitali 

et al., 2018), the more limiting effect of temperature and the synergic effect of topography and microclimate.  

Uncertainty remains about what caused the spatial variability of trends, as noted also by Choler et al. (2021). The time-series 365 

span and the spatial resolution of satellite images are crucial items in the definition of these ecological models. Nevertheless, 

the integration of different data sources (e.g. LiDAR) and the modelling of further environmental, climatic and anthropogenic 

drivers can be useful for a better understanding of the current and future forestline dynamics. 

5. Conclusions  

This study proposed a novel method to demarcate at a regional scale the upper forestlines in geographic areas where the 370 

climatic treeline threshold (i.e. the 6 °C isotherm sensu Körner and Paulsen, 2004) can not be matched. We introduced several 

parameters to define only the forestlines closest to their potential position, detecting the ones nearest to mountain tops with 

land cover and bioclimatic features. The use of TCD, with national or European digital terrain models, makes this method 

applicable in most parts of Europe, but with similar datasets also in other world regions  and at different scale of analysis. High 

spatial resolution, wide geographical coverage and open data availability policies are important issues for the replicability of 375 

the algorithm and for ensuring the quality of both the detection results and the trend analysis. Landsat images permit to analyse 

40 year-long time-series with a suitable spatial resolution. Even though the two types of indices have different targets 

(greenness indices for photosynthetic activity and wetness indices for water content), the results were congruous and 

emphasized the altitudinal expansion of the forestline ecotone at national scale. Wetness indices were more sensitive in areas 

with denser canopy cover, probably due to gap-filling processes and increasing biomass. Greenness indices detected more 380 

relevant trends, especially in areas with sparse or medium canopy cover, probably where recent tree encroachment occurred 

in previously open areas.  

In the current context of climate change and post-abandonment successional dynamics, the implementation of semi-automatic 

methods for detection and monitoring of vegetation spatial patterns and modelling of its spectral trends is definitely an added 

value. With this study, by different spectral indices we detected hotspots of changes and we put grounds for future landscape-385 

sgrcale analyses aimed to better assess the relationships between climate, topography, vegetation dynamics and forest structure 

changes. 
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6. Appendices 

Appendix A: 390 

Table A1 - Selected Italian GMBA mountain groups, whose peaks having land cover and thermotypes suitable for the proposed 

algorithm. Elevation information was extracted from the Tinitaly DEM, limiting the areas to the national administrative boundaries. 

ID Mountain group statistics Forestline statistics 

Code Name 
highest 

peak (m) 

min 

elevation 

(m) 

forested 

area 

(km2) 

area 

(km2) 

length 

(km) 

mean 

length 

(km) 

n°  

mean 

elevation 

(m) 

median 

elevation 

(m) 

max 

elevation 

(m) 

Length/forested 

area (km km-2) 

ALPS 

ADPA 

Adamello-

Presanella 
Alps 

3552 250 657 1379 115 
0.98 ± 

0.56 
118 2196 ± 27 2196 2343 0.175 

BA 
Bergamasque 

Alps 
3030 198 815 1417 151 

1.06 ± 

0.74 
146 2179 ± 39 2176 2332 0.185 

BER 
Bernina 
Range 

3998 0 431 976 76 
1.13 ± 
0.78 

67 2233 ± 46 2219 2416 0.176 

BG Brenta group 3163 190 455 706 68 
1.19 ± 

0.97 
57 2107 ± 37 2102 2272 0.149 

BLP 
Bellunese 

Prealps 
2457 26 1058 1494 128 

1.76 ± 

2.62 
73 1701 ± 60 1695 1889 0.121 

BSP 
Brescia 
Prealps 

2250 125 811 1124 96 
2.16 ± 
1.59 

44 1892 ± 48 1886 2109 0.118 

CAA Carnic Alps 2778 241 1202 1720 173 
1.36 ± 

1.38 
92 2049 ± 51 2042 2193 0.144 

CGA 
Central 

Graian Alps 
3747 660 136 619 26 

1.09 ± 

0.6 
24 2329 ± 37 2321 2479 0.191 

COA Cottian Alps 3286 0 345 823 69 
1.08 ± 

0.67 
64 2295 ± 51 2285 2481 0.2 

COP 
Como 

Prealps 
2242 0 569 847 78 

3.12 ± 

3.62 
25 1773 ± 82 1759 1950 0.137 

CP 
Carnic 

Prealps 
2703 132 933 1304 125 

2.21 ± 

3.1 
78 1899 ± 55 1892 2092 0.134 

FD 
Fiemme 

Dolomites 
2844 186 1445 1971 219 

1.56 ± 
1.4 

141 2140 ± 40 2134 2326 0.151 

GCA 
Grand 

Combin Alps 
3725 555 141 538 29 

1.14 ± 

0.8 
82 2293 ± 38 2287 2420 0.206 

GCC 

Gruppo 
Camino-

Concarena 

2547 158 1373 2003 164 
1.51 ± 

1.62 
106 1833 ± 63 1819 2126 0.119 

GP 
Garda 
Prealps 

2251 12 1273 1686 168 
1.87 ± 
1.72 

90 1911 ± 76 1897 2163 0.132 

GPM 

Grand 

Paradis 
Massif 

4060 236 537 1563 93 
1.01 ± 

0.61 
29 2299 ± 45 2291 2491 0.174 

JA Julian Alps 2751 311 286 439 48 
1.17 ± 

0.64 
41 1819 ± 47 1811 2017 0.168 

LGA 
Ligurian 

Alps  
2650 0 1503 2051 169 

1.88 ± 

1.58 
90 2008 ± 78 1994 2262 0.112 
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LHMA 

Lanzo and 
Haute 

Maurienne 

Alps 

3676 0 611 1291 114 
1.5 ± 

1.5 
76 2177 ± 56 2169 2387 0.186 

LP 
Ligurian 
Prealps 

1743 0 875 1043 50 
2.65 ± 
5.04 

19 
1474 ± 

109 
1452 1743 0.057 

LR 
Livigno 

Range 
3436 0 180 630 28 

1.01 ± 

0.64 
26 2303 ± 26 2301 2376 0.153 

MCA 
Mont Cenis 

Alps 
3468 515 126 352 27 

0.84 ± 
0.6 

26 2325 ± 37 2320 2444 0.216 

MGA 
Montgenevre 

Alps 
3301 277 797 1432 159 

1.31 ± 

1.21 
121 2339 ± 41 2332 2500 0.2 

MLSGA 

Mont Leone 

and Saint 
Gothard Alps 

3551 0 132 379 21 
1.51 ± 

1.13 
18 2157 ± 28 2153 2245 0.159 

MRA 
Monte Rosa 

Alps 
4607 197 584 1382 113 

1.75 ± 

1.38 
110 2275 ± 51 2266 2469 0.194 

MVA 
Monte Viso 

Alps 
3841 275 1041 1971 192 

1.32 ± 
1.28 

86 2282 ± 50 2277 2486 0.185 

MWA 

Mischabel 
and 

Weissmies 

Alps 

3610 223 194 392 42 
1.02 ± 

0.58 
41 2127 ± 48 2119 2313 0.216 

NED 
Northeastern 
Dolomites 

3261 529 744 1474 118 
1.11 ± 
0.72 

108 2158 ± 26 2154 2253 0.159 

NG 
Nonsberg 

Group 
2953 200 693 966 119 

1.61 ± 

1.33 
72 2181 ± 41 2180 2319 0.172 

NWD 
Northwest 
Dolomites 

3343 276 803 1426 156 
1.11 ± 
0.74 

141 2190 ± 29 2188 2298 0.194 

ORT Ortler Alps 3892 270 715 1768 123 
1.28 ± 

0.9 
99 2293 ± 36 2287 2419 0.172 

OTZ Ötztal Alps 3723 0 300 1024 51 
0.97 ± 
0.61 

53 2323 ± 30 2319 2438 0.171 

PSM 
Pale di San 

Martino 
3190 260 456 742 74 

1.8 ± 

2.05 
40 2064 ± 55 2060 2263 0.161 

PV Puster Valley 3424 807 257 531 61 
1.08 ± 

0.7 
56 2202 ± 19 2200 2288 0.236 

SA Sarntal Alps 2773 239 654 1115 124 
1.28 ± 

0.86 
97 2119 ± 29 2110 2245 0.19 

SED 
Southeast 

Dolomites 
3217 351 446 659 54 

1.52 ± 

1.09 
34 2050 ± 51 2041 2217 0.12 

STA Stubai Alps 3454 675 123 355 23 
1.01 ± 

0.66 
23 2125 ± 34 2118 2251 0.189 

SVA 
Southern 

Valais Alps 
2590 193 995 1412 155 

2.34 ± 

2.31 
66 

1953 ± 

105 
1927 2396 0.156 

SVR 
Sesvenna 

Range 
3174 0 120 359 17 

0.96 ± 

0.43 
19 2275 ± 22 2271 2370 0.141 

TVA 

Ticino and 
Verbano 

Alps 

3272 192 603 898 138 
1.58 ± 

1.48 
87 2098 ± 57 2093 2335 0.229 

VAP 
Varese 

Prealps 
1648 0 313 410 16 

2.31 ± 

2.44 
7 1424 ± 70 1417 1603 0.052 
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VIP 
Vicentine 

Prealps 
2333 34 1916 2843 175 

2.24 ± 

3.66 
78 1917 ± 57 1907 2135 0.091 

WMA 

Weisshorn 

and 
Matterhorn 

Alps 

4470 448 122 424 22 
0.97 ± 
0.72 

23 2340 ± 35 2336 2458 0.183 

ZA Zillertal Alps 3499 563 381 863 52 
0.81 ± 

0.31 
64 2186 ± 22 2186 2249 0.136 

APENNINES 

AL Alburni 1897 0 1699 2277 43 
3.09 ± 

3.2 
14 1643 ± 91 1622 1886 0.025 

APUA Apuan Alps 1937 0 965 1224 96 2.34 ± 3 41 
1484 ± 

111 
1468 1864 0.099 

CAAP 

Central 

Abruzzi 

Apennines 

1999 387 559 887 65 
2.61 ± 
3.44 

22 1746 ± 42 1742 1862 0.117 

GS Gran Sasso 2908 90 815 1795 80 
1.86 ± 

1.48 
43 1751 ± 61 1738 1964 0.098 

LA Laga 2457 90 1066 1662 132 
3.15 ± 

4.27 
42 1782 ± 48 1778 1989 0.124 

MA Matese 2049 60 810 1211 67 
2.58 ± 

2.66 
26 1651 ± 56 1641 1820 0.083 

MJ Majella 2792 98 766 1344 65 
2.25 ± 
3.83 

29 
2124 ± 

106 
2118 2383 0.085 

MM 
Monti 

Marsicani 
2284 325 507 943 72 

1.63 ± 

1.77 
44 1941 ± 35 1935 2066 0.142 

MR 
Monti 

Reatini 
2214 369 275 389 47 

1.63 ± 

1.12 
29 1773 ± 38 1768 1906 0.172 

MS 
Monti 

Sibillini 
2476 239 409 871 68 

1.89 ± 

2.11 
36 1692 ± 48 1686 1902 0.166 

MSE 

Monti 

Simbruini-
Ernici 

2155 223 811 1034 98 
2.57 ± 

2.28 
38 1818 ± 40 1813 1977 0.12 

PO Pollino 2265 0 1287 3326 107 
6.66 ± 

11.52 
16 1910 ± 88 1915 2147 0.083 

SVE 
Sirente 

Velino 
2484 248 426 1069 78 

1.62 ± 

1.56 
53 1904 ± 39 1897 2101 0.182 

TEA 

Tuscan 
Emilian 

Apennines 

2163 20 4387 6245 345 
2.85 ± 

5.46 
121 1667 ± 45 1664 1808 0.079 

TRA 

Tosco 

Romagnolo 

Apennines 

1654 47 3954 5659 28 
1.85 ± 
2.01 

15 1301 ± 47 1286 1427 0.007 

WAA 

Western 
Abruzzi 

Apennines 

2247 35 1142 1664 154 
2.49 ± 

2.62 
62 1844 ± 43 1839 2045 0.135 
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Figure B1 – Percentage of highly significant positive greenness (left panels) and wetness (right panels) trend pixels of each tree cover 

density class in GMBA mountain groups of  the Alps (A) and the Apennines (B).  Code explainations are in Table A1 (Appendix A). 

 400 

 

7. Code availability 

Available on request. 

8. Data availability 

Available on request 405 
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