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ABSTRACT

Forecast verification plays a crucial role in the development cycle of operational numerical weather1
prediction models. At the same time, verification remains a challenge as the traditionally used non-2
spatial forecast quality metrics exhibit certain drawbacks, with new spatial metrics being developed3
to address these problems. Some of these new metrics are based on smoothing, with one example4
being the widely used Fraction Skill Score (FSS) and its many derivatives. However, while the FSS5
has been used by many researchers in limited area domains, there are no examples of it being used6
in a global domain yet. The issue is due to the increased computational complexity of smoothing7
in a global domain, with its inherent spherical geometry and non-equidistant and/or irregular grids.8
At the same time, there clearly exists a need for spatial metrics that could be used in the global9
domain as the operational global models continue to be developed and improved, along with the10
new machine-learning-based models. Here, we present two new methodologies for smoothing in a11
global domain that are potentially fast enough to make the smoothing of high-resolution global fields12
feasible. Both approaches also consider the variability of grid point area sizes and can handle missing13
data appropriately. This, in turn, makes the calculation of smoothing-based metrics, such as FSS and14
its derivatives, in a global domain possible, which we demonstrate by evaluating the performance15
of operational high-resolution global precipitation forecasts provided by the European Centre for16
Medium-Range Weather Forecasts.17

Keywords smoothing · global domain · forecast verification · global forecasting · spatial verification18

1 Introduction19

Forecast verification plays a crucial role in the development cycle of operational numerical weather prediction models.20
At the same time, verification remains a challenge as the traditionally used non-spatial forecast quality metrics, such as21
the Root-Mean-Square-Error metric [RMSE, Wilks, 2019], that only compare the values of the observed and forecasted22
fields at collocated locations, exhibit certain drawbacks. One example is the so-called ’double penalty’ issue, which23
penalizes forecasts for both false alarms and missed events. Another is the difficulty distinguishing between near misses24
and substantial spatial displacements [Brown et al., 2012, Skok, 2022].25

This is why different spatial verification measures have been developed over the years. These try to address the problems26
of the non-spatial metrics by comparing not only the values at collocated locations but also taking into account values27
at other locations. Depending on how they work, they can be classified into five categories [Gilleland et al., 2009,28
Dorninger et al., 2018]: scale separation/decomposition metrics [e.g., Casati et al., 2004, Mittermaier, 2006, Casati,29
2010, Buschow and Friederichs, 2021, Casati et al., 2023], feature-based approaches [e.g., Ebert and McBride, 2000,30



Skok and Kosovelj, 2025 Smoothing and spatial verification of global fields

Davis et al., 2006a,b, Wernli et al., 2008, Davis et al., 2009, Wernli et al., 2009], field deformation techniques [e.g.,31
Keil and Craig, 2007, 2009, Marzban et al., 2009] and distance metrics [e.g., Baddeley, 1992, Gilleland, 2017] and the32
neighborhood methods [e.g., Roberts and Lean, 2008, Roberts, 2008, Skok, 2022].33

To our knowledge, examples of high-resolution global fields analyzed by spatial metrics that adequately account for34
Earth’s spherical geometry are almost non-existent in the published literature (except for Skok and Lledó [2025] and35
possibly Mittermaier et al. [2016]). We have identified two likely reasons for this gap: existing methods are designed for36
planar geometry, and adapting them to the non-planar geometry of a global domain is challenging, and the computational37
complexity in spherical geometry significantly increases, rendering the use with contemporary state-of-the-art global38
high-resolution models prohibitively expensive [Skok and Lledó, 2025]. At the same time, there clearly exists a need39
for spatial metrics that could be used in the global domain as the operational global models continue to be developed40
and improved along with the new machine-learning-based models [e.g., Weyn et al., 2020, Bi et al., 2023, Lam et al.,41
2023, Lang et al., 2024] that also show increasing potential for global forecasting [Skok and Lledó, 2025].42

The Fraction Skill Score [FSS, Roberts and Lean, 2008, Roberts, 2008] is a widely used neighborhood-based verification43
metric. It works by first applying a threshold, thereby converting the original fields to binary fields, and then calculating44
the fractions that represent the ratio between the number of non-zero and all points located inside a neighborhood of45
prescribed shape and size, which are then used to calculate the score’s value. We note that calculating the fraction46
values from a binary field is mathematically equivalent to smoothing the binary field using a constant value smoothing47
kernel of the same shape and size as the neighborhood. FSS is a popular metric with many derivatives, as different48
researchers have tried to extend its functionality by developing new scores based on the same fundamental principles,49
for example, to extend the original FSS to be able to analyze ensemble/probabilistic forecasts [e.g., Zacharov and50
Rezacova, 2009, Schwartz et al., 2010, Duc et al., 2013, Bouallègue et al., 2013, Dey et al., 2014, 2016, Ma et al., 2018,51
Gainford et al., 2024, Necker et al., 2024], to verify non-scalar variables [e.g., wind, Skok and Hladnik, 2018], to52
also take into account timing errors [e.g., Duc et al., 2013, Ma et al., 2018, Mittermaier, 2025], to provide an estimate53
of forecast displacement [e.g., Skok and Roberts, 2018, Skok, 2022], to provide localized information on forecast54
quality [Woodhams et al., 2018, Gainford et al., 2024, Mittermaier, 2025], or to develop other similar smoothing-based55
metrics with somewhat different requirements and properties [e.g., ones that do not necessarily require thresholding, for56
example, Skok, 2022].57

Conceptually, employing the FSS or one of its derivatives in spherical geometry poses no inherent issues; however,58
challenges emerge due to the increased computational complexity of smoothing (fraction calculation), which is59
computationally the most expensive part of the score’s calculation. Namely, for a regular and equidistant grid, the60
smoothing can be done very efficiently using either the summed-fields approach [Faggian et al., 2015] with time61
complexity O(n) or by using the Fast-Fourier-Transform-based convolution [Smith, 1999] with time complexity62
O(n log(n)), with n being the number of points in a field. The problem is that these approaches cannot be used on63
a sphere because the grid is inherently non-equidistant and/or irregular. Using the so-called explicit summation for64
smoothing (where at each location, the distance to all other grid points is calculated to determine which fall inside65
the smoothing kernel) is still possible, but becomes prohibitively expensive for global high-resolution-model fields66
consisting of millions of points due to its time complexity of O(n2).67

An additional complication in spherical geometry is the variability of grid point area sizes. Namely, in a global domain,68
the area size represented by each grid point is usually not the same for all grid points. If the smoothing is done in a way69
that does not account for this, the spatial integral of the field could change considerably as a result of the smoothing.70
For example, smoothing a precipitation field could cause the total volume of precipitation in the domain to increase or71
decrease. To alleviate this issue, the smoothing method needs to be area-size-informed.72

This paper aims to develop novel computationally efficient methodologies for smoothing fields on a sphere. Such73
methodologies are required for the smoothing-based verification metrics, such as FSS and its many derivatives, to be74
used to evaluate the forecast performance of state-of-the-art operational global high-resolution models. The smoothing75
methodologies must also be area-size-informed and preferably able to handle missing data values appropriately.76

2 Area-size-informed smoothing77

The area-size-informed smoothed value at grid point i can be calculated as78

f ′
i(R) =

∑
j∈Ki(R)

fjaj∑
j∈Ki(R)

aj
, (1)

where fj is the field value at point j, aj the area size representative for point j, and Ki(R) the subset of all points79
around point i, for which the great circle distance (along the spherically curved surface of the planet) to point i is80
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Figure 1: A visualization showcasing the area-size-informed smoothing methodology in two-dimensions. The small
circles denote the grid points, while the polygons represent the corresponding Voronoi cells (defined as the region that
is closest to the corresponding grid point). The large circle represents the smoothing kernel around the point denoted by
a + sign, while the Voronoi cells of points inside the kernel are colored in gray.

less than R. In other words, the smoothed value represents the area-size-weighted average value of points inside a81
spherical-cap-shaped smoothing kernel centered on the selected point. The radius of the smoothing kernel can also be82
called a smoothing radius.83

Fig. 1 showcases an example of area-size-informed smoothing in the case of an irregular grid in two dimensions. Since84
the grid is irregular, the area sizes of points, denoted by the corresponding Voronoi cells, differ. In this case, the subset85
of points inside the smoothing kernel, denoted as Ki(R) in Eq. 1, is shown by the gray color, while the rest of the points86
are white.87

Fig. 2 shows some examples of smoothed fields of forecasted 6-hourly accumulations of precipitation produced by88
the high-resolution deterministic Integrated Forecasting System [IFS, ECMWF, 2023a,b] of the European Centre89
for Medium-Range Weather Forecasts (ECMWF). The IFS is considered one of the best-performing operational90
medium-range global deterministic models and is frequently used as a benchmark to which other models are compared91
against [e.g., Bi et al., 2023, Lam et al., 2023, Lang et al., 2024], which makes it especially suitable to be used as an92
example.93

The IFS uses an octahedral reduced Gaussian grid O1280 [Malardel et al., 2016], which consists of around 6.5 million94
grid points. The points are arranged in fixed-latitude circular bands, with the band closest to the equator consisting of95
5136 equidistant points spread around the Earth. In the poleward direction, each next band has four points fewer than96
the previous one, with the last band, located close to the poles, consisting of only 20 points. This setup makes the grid97
irregular, with area size of the points also varying substantially with latitude, from 61 km2 at the equator, to 93 km298
at 75º, where it is the largest, to 18 km2 close to the poles, where it is the smallest [Skok and Lledó, 2025]. The IFS99
precipitation data was provided to us by the ECMWF in the form of netCDF files that contained the lat-lon locations100
of the points, the precipitation accumulation values, and the area size data of all the points. All the numeric data was101
provided in float32 numeric format.102

The smoothing methodology represented by Eq. 1 does not have any limitations or requirements about the grid being103
regular - the only assumption is that the points are located on a sphere (in our case, we also assumed that the sphere104
radius was equal to the Earth’s radius). It is worth noting that the smoothing methodology does not require the105
connectivity information. The only data required for calculating the smoothed values are the original field values, the106
locations of all the points on the sphere, and their area size information. In the case of IFS fields, the area size data was107
already provided by the ECMWF, but if it was not available, it could be obtained by performing the Voronoi tessellation108
on the sphere, for example.109

Our computational setup consisted of a computer with an AMD Ryzen Threadripper PRO 5975WX processor with 32110
physical cores. The Debian 12 Linux operating system was installed on the computer. The code was written in C++,111
and the gcc compiler version 12.2 was used to compile the code with the OpenMP programming interface used for112
shared-memory multi-thread computing. Hyper-threading was enabled. Even though the IFS data was provided in113
float32 format, we consistently used double (float64) precision in the C++ code, except in one special case (for more114
information, please refer to the "Code and data availability" section).115

Due to the spherical periodicity of the global domain, the smoothing kernel with R ≥ 20 000 km will cover the whole116
surface of the Earth (i.e., in this case, Ki(R) is guaranteed to contain all the grid points), resulting in the smoothed117
value being the same everywhere - the so-called asymptotic smoothing value, which we denote as f ′

asy. The asymptotic118
value can be calculated easily with time complexity O(n) as f ′

asy =
∑

fjaj/
∑

aj , where both sums go over all the119
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Figure 2: Visualization of smoothed fields of forecasts of 6-hourly precipitation accumulations in the period 00-06
UTC for 11 October 2022 by the IFS model (the forecast was initialized at 00 UTC on the same day). (a) the original
non-smoothed field, (b-i) the smoothed fields using a smoothing kernel radius (R) ranging from 20 to 10 000 km. The
green circle indicates the size of the smoothing kernel.

points, and
∑

aj represents the surface area of the whole Earth. Thus, as the smoothing kernel becomes larger, the field120
will become less variable, with the smoothed values being ever closer to the asymptotic value. For example, Fig. 2i121
shows an example with the smoothing kernel radius 10 000 km, which covers about half the Earth’s surface, with the122
variability of the smoothed value being very low.123

To calculate the smoothed value via Eq. 1, the two sums over the points inside the smoothing kernel must be performed.124
The so-called linear search approach is the most straightforward way to identify these points. In this case, a test is125
performed for each point in the domain by calculating its distance from the point at the center of the smoothing kernel126
and comparing it to the size of the smoothing kernel radius, thereby identifying the ones that satisfy this criterion.127

Under the assumption that the Earth is spherical, the Great Circle Distance (GCD) between the two points can be128
calculated using the latitude/longitude coordinates of both points by utilizing the Haversine formula [Markou and129
Kassomenos, 2010]. However, using this approach, which requires the evaluation of multiple trigonometric expressions,130
turns out to be computationally slow.131

Alternatively, the grid points can be projected from the model’s native two-dimensional spherical coordinate system132
into a three-dimensional Euclidean space, where all the grid points are located on the surface of a sphere. In this new133
coordinate system, the Euclidean distance between two points on the Earth’s surface is the so-called tunnel distance134
(TD), representing a straight line between the two points that goes through the sphere’s interior. The GCD can be easily135
converted to the TD or vice versa, using the relation136

TD = 2rE sin

(
GCD

2rE

)
(2)
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or its inverse, where rE is the Earth’s radius. Since a larger GCD will always correspond to a larger TD and vice versa,137
searching for the points inside a specified search radius defined by TD in the three-dimensional space will yield the same138
results as using the corresponding value of GCD, utilizing the Haversine formula in the model’s native two-dimensional139
spherical coordinate system.140

Thus, for a specific GCD value, the corresponding value of TD can be obtained via Equation 2, and used as a141
search radius in the three-dimensional Euclidean space. The square of the distance between the two points in a142
three-dimensional Euclidean space is defined as d2(i, j) = (xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2, and its calculation143
does not require the costly evaluation of trigonometric functions. Moreover, the square of the distance can be directly144
compared with the precalculated square of the TD-defined search radius, thus avoiding the costly square root operation.145
This is why searching for the points inside the search radius in the three-dimensional Euclidean space is markedly faster146
than the Haversine-formula-based approach (in our case, testing showed it was approximately 50 times faster).147

Nevertheless, even with the projection into the three-dimensional Euclidean space, the smoothing via the linear search148
approach is slow. Namely, if the number of grid points in the field is n, and at each point, the distance to all the other149
points needs to be calculated, the time complexity is O(n2). This makes the linear-search-based approach prohibitively150
expensive for use with current state-of-the-art operational high-resolution models, which typically use grids with151
millions of points.152

For example, smoothing a precipitation field from the IFS model using a 1000 km smoothing kernel radius (Fig. 2g)153
takes about 11 hours on our computer when utilizing a single thread. The approach can be relatively effectively154
parallelized using multiple threads to parallelize the loop over all the points. Thus, using ten threads instead of just one155
reduced the computation time from 11 hours to about 1.2 hours. However, even with the parallelization, the approach is156
still too slow for operational use in a typical verification setting, as the model’s performance is usually evaluated over a157
large set of cases represented by a sequence of fields from a longer time period or a wide array of weather situations.158
Thus, a clear need exists for smoothing approaches that are considerably faster.159

3 K-d-tree-based smoothing160

This approach requires the points first to be projected to the three-dimensional Euclidean space in the same manner as161
described for the linear-search-based approach. Same as before, the search radius in terms of TD can be calculated162
from the GCD-defined smoothing kernel radius using Equation 2 and then used for the search in the three-dimensional163
Euclidean space.164

Identification of points that lie inside the search radius can be sped up considerably by the use of a k-d tree [short165
for a k-dimensional tree, Bentley, 1975, Friedman et al., 1977, Bentley, 1979]. A k-d tree is a multidimensional166
binary search tree constructed for each input field by iteratively bisecting the search space into two sub-regions, each167
containing about half of the nonzero points of the parent region [Skok, 2023].168

The so-called balanced k-d tree is constructed by first performing a partial sort of all the points according to the value of169
the first coordinate and then selecting the point in the middle for the first node (also called the root node), which splits170
the tree into two branches, each containing about half the remaining points. For each branch, the process is repeated by171
partially sorting the points by the second coordinate and selecting the middle point as the node again, which splits the172
remaining points into two sub-branches. The process is then repeated for the third coordinate, then again for the first173
coordinate (in case the space is three-dimensional), and so on until all the points have been assigned to the k-d tree as174
nodes.175

The time complexity of a balanced tree construction is O(n log(n)) [Friedman et al., 1977, Brown, 2015]. For example,176
constructing a balanced k-d tree for about 6.5 million points of the IFS model grid took about 2.5 seconds. Note that if177
multiple fields that use the same grid need to be smoothed, the tree can be constructed only once and kept in memory or178
saved to a disk to be reused later. Once it is needed again, it can be simply loaded from the disk, which is an operation179
with time complexity O(n).180

Once the tree is constructed, the identification of points that lie inside a prescribed search radius can be performed by181
traversing the tree starting from the root node and moving outwards by evaluating a query at each split and backtracking182
to check the neighboring branches if necessary. The search can be done in O(log(n) + k) expected time, where k is the183
typical number of points in the search region [Bentley, 1979], as opposed to O(n) for the linear-search-based approach.184

For all but the smallest smoothing kernels k ≫ log(n), thus the time complexity can be approximated as O(k). Since185
producing the smoothed field requires the search to be performed for all points, the expected time complexity of the186
smoothing using the k-d-tree-based approach is O(nk) as opposed to O(n2) for the linear-search-based approach. This187
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means that, for small smoothing kernels, the k-d-tree-based approach will be much faster, but for large kernels, when k188
becomes comparable to n, the benefit will vanish.189

Fortunately, the calculation speed can be improved further by embedding the so-called Bounding Box (BB) information190
on each tree node. The BB information consists of the maximum and minimum values of the coordinates of all the191
points on all sub-branches of a node. This information defines the extent of a multidimensional rectangular bounding192
box that is guaranteed to contain all the points in a specific branch. Adding BB information to the tree is trivial and very193
cheap since a single iterative loop over all the tree nodes is required to determine and add this data - the time complexity194
of this is O(n), and thus the cost is almost negligible.195

Once the BB data is available, it can be utilized to skip the branches that are guaranteed to fall completely outside the196
sphere defined by the search radius. This can be done by first determining which corner of the BB is the closest to the197
center of the search radius sphere. Next, if the distance of this corner to the center of the search radius sphere is larger198
than the search radius, then all the points in the node’s sub-branches are guaranteed to be located outside the sphere,199
meaning this branch can be ignored entirely, thus reducing the computational load.200

The BB information can also be used to identify the branches that are guaranteed to be fully inside the search radius201
sphere. This can be done by first determining which corner of the BB is the furthest away from the center of the search202
sphere. Next, if the distance of this corner to the center of the search sphere is smaller than the search radius, all the203
points in the node’s sub-branches are guaranteed to be inside the sphere. This means that all the points in this branch204
can simply be added to the list of points known to be inside the search sphere without the need to do any more checks205
and distance evaluations, thus reducing the computational load.206

However, although the above-mentioned BB-information-based improvements do make the search markedly faster, the207
time complexity of the smoothing approach remains O(nk), as in the end, the sums in Eq.1 still need to be performed208
over all the points inside the search radius sphere.209

Crucially, the speed of the k-d-tree-based smoothing can be further improved by realizing that, besides the BB210
information, additional data relevant to the smoothing can be embedded into the tree. Namely, one can precalculate the211
partial sums of fiai and ai terms (from Equation 1) of all the points in the node’s sub-branches and add this data to212
each node. Similarly to adding BB information to the tree, adding the partial sums data is very cheap as it requires a213
single iterative loop over all the tree nodes (the time complexity is again only O(n)).214

For branches that are fully located inside the search sphere (as mentioned above, this can be determined using the BB215
data), the partial sum information of a node can be used to account for all points in the whole branch without the need216
to dive deeper into it. Such branches, which happen to be located near the middle of the search sphere, far away from217
its border, can contain a large number of points. Thus, the reduction of computational cost can be potentially large, as218
one node can provide the sum information for many points.219

This is not true for branches with points near the border region of the search sphere, as there the algorithm needs to dive220
very deep into the tree to accurately determine which points lie inside or outside of the search region. Thus, the main221
part of the remaining computation cost can be attributed to the evaluation of points located near the search sphere’s222
border region. Since the number of points in the border regions is roughly proportional to

√
k, the time complexity of223

the smoothing reduces to approximately O(n
√
k), which is a huge improvement over O(nk). If the spatial density of224

points is roughly constant,
√
k is approximately proportional to R, with R being the smoothing kernel radius, and the225

time complexity is approximately O(nR).226

For example, as already mentioned, the linear-search-based smoothing of the IFS precipitation field shown in Fig. 2a,227
for a 1000 km smoothing kernel radius, takes about 11 hours using a single thread, with the calculation time being228
similar also for other kernel sizes. In comparison, the k-d-tree-based approach takes only eight minutes using a single229
thread and about one minute if ten threads are used in parallel. As expected, the smoothing calculation is faster if a230
smaller smoothing kernel is used. For example, using R = 100 km, the calculation takes 34 s using a single thread,231
which reduces to 4.5 s if ten threads are used in parallel. On the other hand, for very large smoothing kernels, the232
k-d-tree-based approach is still markedly faster than the linear-search-based approach, but the difference is not as large233
as for the smaller kernels. For example, for a kernel with R = 10 000 km, the k-d-tree-based calculation took about 70234
minutes using a single thread and about 12 minutes if ten threads were used in parallel.235

In the end, we would like to note that we are not the first to use the k-d trees with FSS-based verification. Namely,236
Mittermaier [2025] already used k-d-trees for calculating FSS-based metrics. However, in their study, they focused237
on a limited area domain over the Maritime continent while seemingly assuming a planar geometry without properly238
taking into account the spherical geometry of the Earth. Contrary to our work, they also did not seem to actively focus239
on trying to come up with ways to make the smoothing calculation substantially faster and only used relatively small240
smoothing kernels with radii below 100 km, while at the same time relying on precalculated lookup tables of points241
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Figure 3: Same as Fig.1, but also showing the smoothing kernel for a second point located right of the original point
(the points are marked with + signs and 1 and 2). The Voronoi cells of points located inside both kernels are shown with
a light shade of gray. The darker shades of gray indicate the points inside only one kernel.

inside the smoothing kernel, to make the smoothing calculation somewhat faster. This means the time complexity242
of their approach was limited to O(nk), which is unfortunately too slow for use with global high-resolution fields;243
moreover, for larger neighborhoods, the precalculated lookup tables would be very large and require too much memory244
in order to be used effectively.245

4 Overlap-detection-based smoothing246

While the k-d-tree-based smoothing is markedly faster than the linear-search-based approach and makes the smoothing247
of high-resolution fields potentially feasible, it is still relatively slow for very large smoothing kernels, which can be248
problematic if many fields need to be smoothed. Thus, it makes sense to try to come up with a different approach that249
would be even faster.250

The alternative approach is based on identifying and then using the information on the overlap of the smoothing kernels251
centered at nearby points to increase the speed of the smoothing calculation. Fig. 3 is similar to Fig. 1 but also shows252
the smoothing kernel for a second point located to the right of the original point. The Voronoi cells with points inside253
the two kernels are colored with different shades of gray, according to the point being located inside both kernels or254
only one.255

Let us assume that for the first point, the values of two sums from Eq. 1 (i.e.,
∑

fjaj and
∑

aj) are known. The256
equivalent sums for the second point can be obtained by subtracting the fkak or ak terms corresponding to the points257
that are located in the smoothing kernel of the first point but not the second (indicated by the dark gray shading on the258
left side in Fig. 3), and adding the terms corresponding to the points that are located in the kernel of the second point259
but not the first (indicated by the dark gray shading on the right side in Fig. 3). This can then be repeated for the next260
neighboring point, and so on.261

This means that the total sums (over all the points inside the smoothing kernel) must be calculated only for the first262
point (which can be randomly chosen). For all the next points, the values of the sums can be obtained with the help of263
the nearby points for which the values of the sums are already known by subtracting and adding the appropriate terms264
with respect to the overlap of the two smoothing kernels. If the two points are neighbors, the number of terms that need265
to be subtracted and added can be approximated by the number of points that comprise the border of the smoothing266
kernel area, which is approximately proportional to

√
k.267

Evaluating the overlap of the smoothing kernels of nearby points and determining which terms need to be subtracted268
or added can be done using the linear-search-based approach. That is, for a pair of nearby points, denoted by A (for269
which the values of the full sums are already known) and B, the distances from these points to all other points need270
to be calculated. Next, if a distance from some point P to A is smaller than the smoothing kernel radius, and at the271
same time, the P to B distance is larger than the smoothing kernel radius, then the terms concerning point P need to be272
subtracted from the values of sums for A (or added if vice versa is true) to obtain the sums for B.273

For the smoothing to be performed, the only information needed at each point is which previously calculated point is274
used as a reference, and the list of points that need to be added and subtracted.275

Determining the reference points can be performed in a simple manner. First, randomly select the initial point from276
the list of all points - this point does not have a reference point since it is the first one. Secondly, select its nearest277
neighbor as the second point and set the first point as its reference. Third, from the list of all remaining unassigned278
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points, identify the nearest neighbor of the second point and use it as a third point. Fourth, from the list of all the points279
that have already been assigned (in this case, these are only the first and second points), identify the nearest neighbor280
and use it as a reference for the third point. Then, repeat steps three and four until all the points have been assigned.281

Alternatively, the fourth step could be to always use the point assigned in the previous step as a reference. However, this282
has some downsides. Namely, the procedure is iterative, with each addition and subtraction incurring a small numerical283
rounding error. In a field consisting of millions of points, the numerical error could potentially accumulate (especially284
if a large smoothing kernel is used, as in such cases, the data from hundreds of points might need to be subtracted285
or added at each step). By allowing other than the point assigned in the previous step to be used as a reference, the286
accumulated numerical error is significantly reduced. There is also a second benefit, namely that the nearest-neighbor287
search can identify the reference point that is closer and thereby has better overlap of the smoothing kernel than the288
previously assigned point.289

Fig. 4a shows the number of iterative steps needed to reach a certain point in the IFS model grid (which consists of290
about 6.5 million points). As can be observed, the median value is about 19 000 steps, meaning that the number of the291
required steps is in the tens of thousands, not millions, and thus the numerical error remains limited.292

Multiple factors can affect the size of the numerical error. For example, the total number of grid points in the field,293
the size of the smoothing radius, and which point is selected as the initial starting point. The numerical error will294
also depend on the nature of the field that is smoothed, for example, whether the original field is less or more variable295
(like precipitation, which can have large areas with zero values as well as many smaller regions with very large296
gradients and values). At the same time, even though the error size depends on many factors, the size of the numerical297
error in a particular setup can be determined relatively easily by comparing the smoothed values obtained via the298
overlap-detection-based approach to the smoothed values obtained via the kd-tree-based approach, which is as accurate299
as the linear-search approach and has negligible numerical error. Thus, we recommend that the user first check the300
magnitude of the numerical error for a few representative fields to make sure it is acceptably small so as not to affect301
the results of the analysis.302

For example, Fig.4b shows the analysis of numerical error for the IFS precipitation field shown in Fig. 2. The graph303
shows the cumulative distribution of the absolute numerical error (the difference between the smoothed values computed304
via the overlap-detection and kd-tree-based approaches) for eight different sizes of smoothing radii ranging from 10 to305
15 000 km. The graph legend also shows the size of the maximal absolute numerical error for a particular smoothing306
radius. As expected, the error sizes depend on the smoothing radius, but overall the errors tend to be relatively small,307
typically smaller than 10−4 mm/6h, with the maximum error always smaller than 0.01 mm/6h. Note that this is still308
substantially less than the typical resolution of the raingauge measurements, which tends to be 0.1 mm or more.309

Moreover, although we did not use them here, additional mitigation measures could be implemented to reduce the310
numerical error further. For example, one could require the explicit calculation of the full sums (over all the points311
inside the smoothing kernel) each time the number of iterative steps increases by a certain threshold (e.g., every 10 000312
steps).313

Generating the smoothing data that describes the terms that need to be added or subtracted at each point is relatively314
slow, but luckily, it only needs to be done once for a particular smoothing kernel size, as it can be saved to disk and315
then simply loaded into memory whenever needed. For example, generating the smoothing data for the IFS grid for 16316
different smoothing kernel sizes (R ranging from 10 km to 20 000 km) took about 23 hours when utilizing ten threads.317

The smoothing data can take up a lot of space, especially for large smoothing kernels. For example, the data for318
smoothing a field defined on the IFS grid takes up about 1.2 GB at R = 100 km, 12 GB at R = 1000 km, and 70 GB at319
R = 10 000 km (Fig. 5). At R > 10 000 km, when the kernel becomes larger than half the Earth’s surface area, the320
amount of data starts to decrease as the length of the border of the smoothing kernel becomes smaller with increasing R321
due to the spherical geometry of the global domain.322

Since smoothing a field using an overlap-detection-based approach requires a simple loop that goes through all the323
smoothing data while adding or subtracting the appropriate terms, the time complexity of the smoothing calculation324
is proportional to the size of the smoothing data. Using a single thread, smoothing a field defined on the IFS grid325
takes about 0.3 s at R = 100 km, 3 s at R = 1000 km, and 45 s at R = 10 000 km (Fig. 5). The 15-fold increase in326
calculation time when R increases from 1000 to 10 000 km is larger than one would expect, especially as the increase327
in the size of the smoothing data is only 6-fold. The larger-than-expected increase in computation time is likely related328
to performance degradation linked to large blocks of memory, which need to be reserved for the smoothing data in case329
of large smoothing kernels. Likely, the data is split over many RAM modules, which can, in turn, slow down the speed330
of the CPU accessing the data.331
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Figure 4: (a) A histogram, showing the number of iterative steps needed to reach a specific point for the IFS model grid
when using the overlap-detection-based approach. The grid consists of about 6.5 million points. (b) The analysis of
numerical error for the overlap-detection-based approach in the case of IFS precipitation field shown in Fig.2. The
graph shows the cumulative distribution of the absolute numerical error (the difference between the smoothed values
computed via the overlap-detection and kd-tree-based approaches) for eight different sizes of smoothing radii ranging
from 10 to 15 000 km. The values in the parentheses in the legend show the size of the maximal absolute numerical
error, expressed in mm/6h, for a particular smoothing radius.

Figure 5: Size of the smoothing data (green) and computation time (blue) for the smoothing of a field defined on the
IFS grid with respect to smoothing kernel radius R using the overlap-detection-based approach. The computation time
reflects the time needed on a computer with an AMD Ryzen Threadripper PRO 5975WX processor when utilizing a
single thread.

Nevertheless, for efficient calculation, it is best to keep the smoothing data in the memory, where it can be accessed332
quickly instead of reading it from the disk every time. Thus, it makes sense to load the data from the disk into the333
memory as part of preprocessing and then use it to smooth multiple fields in a row. The large size of the smoothing data334
presents a potential problem as it requires the computer to have a large memory, at least in the case of large smoothing335
kernels that cover a substantial portion of the Earth’s surface.336

The smoothing calculation can also be parallelized using a shared-memory setup. Namely, the calculation of the sums337
of the terms that need to be added or subtracted at each point, which represents the computationally most demanding338
part of the calculation, can be precalculated independently for each point and can thus be calculated in a parallel manner.339
For example, by using ten threads instead of one, the computation time for R = 1000 km reduced from 3 to 0.6 s, while340
for R = 10 000 km, it reduced from 45 to 12 s. Although the decrease is not tenfold as one would hope (most likely341
due to the same memory access speed limitations mentioned earlier), the decrease is nevertheless substantial.342

5 Limited-area domains and missing data343

While the focus of this research was the development of methodologies for smoothing of global fields, the approaches344
presented here can also be used to smooth fields defined on limited-area domains.345

Some efficient methods for smoothing fields defined on limited-area domains already exist. For example, the already346
mentioned summed-fields and Fast-Fourier-Transform-convolution-based approaches (see the Introduction section for347
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Figure 6: Smoothing in a limited-area domain centered over Europe. The precipitation data is taken from the IFS
forecast shown in Fig. 2. (a) the original non-smoothed precipitation field, (b) the smoothed field using a 200 km
smoothing kernel radius with the size of the kernel shown with a green circle in the top left corner, (c) the smoothed
field using a 200 km kernel radius in the presence of a missing data region in the middle of the domain (indicated in
gray).

details). However, the use of these two approaches is limited to regular grids, which are assumed to be defined in a348
rectangularly shaped domain on a plane, and they also assume equal area sizes for the grid points.349

The approaches presented here do not have these limitations and can thus be used with irregular grids defined in350
non-rectangularly shaped domains, while the smoothed values also reflect the potential differences in area size of351
different grid points. Moreover, the approaches also correctly handle the spherical curvature of the planet’s surface,352
which can be important in the case of very large domains and for ensuring the consistent size and shape of the smoothing353
kernel everywhere in the domain.354

The smoothing calculation for a limited-area domain is done the same way as for the global domain and is again355
based on Eq. 1. As before, all that is needed is a list of grid points with values, corresponding latitude and longitude356
coordinates, and the associated area size data. In the case of a limited-area domain, the points will come only from a357
specific geographic sub-region, as opposed to the whole Earth, like in the case of a global domain. Any of the two358
approaches, the k-d-tree-based and the overlap-detection-based, can be used to calculate the smoothed values.359

Fig. 6 shows an example of smoothing in a limited-area domain defined over Europe that encompasses the region360
20W-40E, 30N-70N. The precipitation data is taken from the IFS forecast shown in Fig. 2, but with points outside the361
domain removed. Out of 6 599 680 points of the full octahedral reduced Gaussian grid used by the IFS, only 217 421362
points inside the domain were selected and used to calculate the smoothed values. Figs. 6a,b show the original and363
smoothed precipitation using a 200 km smoothing radius.364

One noticeable feature is that the values near the domain borders do not decrease towards zero, which would happen,365
for example, if the smoothing method assumed the values outside the domain were zero. Moreover, although in terms366
of the latitude/longitude grid, the domain might be considered rectangular, it is not actually rectangular if the spherical367
shape of the Earth is taken into account, as the northern domain border is much shorter than the southern one.368

The methodology presented here can also appropriately handle missing data (i.e., points for which the value is not369
defined). Frequently, a smoothing method must make some kind of assumption regarding missing data values. For370
example, the aforementioned summed-fields and Fast-Fourier-Transform-convolution-based approaches must assume371
some values (e.g., zero is frequently used for precipitation) for the missing data for the calculation of the smoothed372
values to be successfully performed. This is problematic since it can artificially increase or decrease the values of points373
close to the regions with missing data (depending on which value is assumed for the missing data points).374

With the methodology presented here, the missing data points can be handled appropriately by excluding them from the375
two sums in Eq. 1. In practice, the same result can be achieved most easily by temporarily setting the area size of these376
points to zero before proceeding with calculating the smoothed values (this will result in the missing data points not377
having any influence on the smoothed values).378
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Fig. 6c shows an example of smoothing in the presence of missing data, where a region in the center of the domain379
(0E-20E, 40N-50N) was assigned a missing data flag. It can be observed that the values near the missing data region do380
not decrease towards zero, which would happen if the smoothing method assumed the missing data had a zero value.381

In the case of smoothing-based verification, where a pair of fields is compared against each other, and these fields382
contain some missing data points (which are not necessarily at the same locations in both fields), it is best to synchronize383
the missing data (i.e., if a certain point has a missing data flag in one field, then the same point in the other field is384
assigned a missing data flag as well) before smoothing is applied to maintain consistency.385

6 Verification demonstration386

While the main goal of this work was the development of novel smoothing methodologies that are fast enough to be387
used with the output fields of state-of-the-art operational high-resolution global models, we also wanted to include a388
limited demonstration of how the developed methodologies could be utilized for smoothing-based global verification.389
Our goal was not to do a proper verification but to showcase how the presented smoothing methodology can be used in390
practice. We chose to focus on the FSS metric since it is one of the most popular spatial verification methods, but the391
methodology could easily be used with any other smoothing-based verification metric.392

Thus, we present one example of FSS-based verification of the IFS precipitation forecasts, where the 1-, 3-, 5-, and393
9-day forecasts of 6-hourly precipitation accumulated between 00-06 UTC on 9 March 2022 are compared against the394
analysis (the precipitation produced in the first 6 hours by the same model initialized on the same day at 00 UTC). We395
note that comparing the forecast against an analysis produced by the same model is problematic in many aspects, but396
since our goal was not to do a proper verification but to showcase how the presented smoothing methodology can be397
used in practice, we felt the setup was nevertheless acceptable.398

Fig. 7 showcases the forecast against the analysis fields. As expected, the 1-day forecast (Fig. 7a) exhibits a relatively399
good overlap with the analysis, although some differences can nevertheless be observed, especially in the Tropics. At400
longer lead times, the overlap decreases, and the displacements increase as the forecasts become increasingly different401
from the analysis. For example, large displacements are evident in the 9-day forecast (Fig. 7d), especially in the402
mid-latitudes, where large-scale features like cyclones with their fronts and associated precipitation can be substantially403
displaced.404

To evaluate the forecast performance, we use the original FSS formulation [Roberts and Lean, 2008], which we modify405
to account for different area sizes represented by the grid points406

FSS = 1−
∑

aj (xj − yj)
2∑

ajx2
j +

∑
ajy2j

, (3)

where xj and yj are the values of the smoothed thresholded binary fields at grid point j, and the sums go over all the407
points. The aj is the representative area size for grid point j. It makes sense that the metric would take into account408
different area sizes since, for example, one would expect a grid point that represents a certain area size to have a smaller409
influence on the metric’s value compared to some other grid point that represents twice the area size. If the area size410
is the same for all points (i.e., aj = a), the FSS expression in Eq. 3 becomes identical to the original formulation in411
Roberts and Lean [2008]. The FSS values can span between 0 and 1, with a larger value indicating a better forecast.412

The FSS formulation in Roberts and Lean [2008] nominally uses a square-shaped smoothing kernel/neighborhood but413
also mentions the possibility of using other shapes, for example, circular or Gaussian. The use of a square-shaped414
kernel was likely preferable since it is the easiest to calculate in rectangularly-shaped limited-area domains defined on415
regular grids in planar geometry. However, using a square-shaped kernel also has a drawback, namely, as the kernel is416
not symmetric, it stretches further in some directions than others (i.e., along the square’s diagonal), making the metric417
sensitive to the kernel’s orientation Skok [2016]. Here we use a sphere-cap-shaped kernel, which is symmetrical and418
correctly takes into account the spherical geometry of the Earth.419

Similar to the asymptotic value for the standard FSS (when the neighborhood, aka the smoothing kernel, is large enough420
to cover the whole limited area domain), one can define an asymptotic value for the global domain. As already mentioned421
in Sect. 2, once the smoothing kernel is large enough to cover the whole Earth, the smoothed values will be the same422
everywhere. In this case, the FSS asymptotic value, denoted here as FSSasy, will be 1− (xasy − yasy)

2/(x2
asy + y2asy),423

with xasy and yasy being the asymptotic smoothing values for each field, respectively. Since, in this case, the x and y are424
binary fields produced via thresholding, the xasy and yasy represent the global frequencies of events in the two fields425
(i.e., the portion of the Earth’s surface where the original fields have values larger or equal than the threshold). If the426
frequency in both fields is the same (i.e., xasy = yasy), FSSasy will be equal to one and smaller than one otherwise.427
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Figure 7: The visualization of 1-, 3-, 5-, and 9-day IFS model forecasts (red) of 6-hourly precipitation accumulated
between 00-06 UTC on 9 March 2022 compared against the analysis (blue).

The FSS value depends on the smoothing kernel size and the threshold. In our case, we used three thresholds roughly428
corresponding to low-, medium-, and high-intensity precipitation: 0.1, 1, and 10 mm/6h. We applied the same thresholds429
to the whole field. We recognize that using the same threshold for different geographical regions that can have very430
diverse climatologies is likely not optimal. Potentially, different climatologically defined thresholds could be used for431
different regions, but as our main goal was showcasing how to utilize the smoothing methodology, we left this avenue432
of exploration for the future.433

The results of the FSS-based analysis for the IFS model global precipitation forecasts for the cases shown in Fig. 7 are434
visualized in Fig. 8(a-c). The results for the three different thresholds and smoothing radii between 20 and 2000 km are435
shown.436

As expected, the FSS values always increase with the smoothing radius. This is expected behavior as using a larger437
smoothing radius increasingly relaxes the requirement of precipitation events being forecasted at the correct locations.438
The results are successfully stratified according to the forecast lead time, with the 1-day forecast consistently performing439
the best (with the largest FSS value) and the 9-day forecast consistently performing the worst (with the smallest FSS440
value).441

The overall FSS values also decrease with increasing threshold. Namely, at the lowest threshold (0.1 mm/6h, Fig. 8a),442
the areas with precipitation tend to be large as they include regions with low-, medium– and high-intensity precipitation.443
Since the majority of global precipitation falls in the Intertropical Convergence Zone (ITCZ), the results for the global444
domain are dominated by the tropics. As the location of the ITCZ changes little on a day-to-day basis, the large regions445
defined using the lowest threshold exhibit a good overlap, resulting in a relatively high overall FSS value (i.e., mostly446
larger than 0.7), even at longer lead times. In the mid- and high-latitudes, where large-scale features like cyclones and447
their fronts can be significantly displaced at longer lead times, the overlap is worse, but since the tropics dominate the448
results, the global FSS value is nevertheless high.449

On the other hand, regions with more intense precipitation tend to be smaller and exhibit a larger displacement error.450
Consequently, their locations in the forecasts overlap less often with their actual locations in the analysis, even in the451
ICTZ, and the resulting FSS values are lower. For example, the FSS values for the 9-day forecast when using the 10452
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Figure 8: The FSS- and CSSS-based verification of the IFS model precipitation forecasts shown in Fig. 7. (a-c) The
FSS-based verification of global precipitation, (d-f) the CSSS-based verification of global precipitation, and (g-i) the
FSS-based verification of the precipitation over the Maritime Continent. The FSS- and CSSS-based verification is done
based on Eqs. 3-4.
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mm/6h threshold can be as low as 0.1 (Fig. 8c). Also, the differences in the FSS values between the 1-day and 9-day453
forecasts are largest at the highest threshold.454

Besides the FSS-based approach described above, we also want a similarly defined smoothing-based metric where455
the original non-thresholded fields could be used to calculate the metric’s value without thresholding. Namely, using456
the thresholding has some benefits as well as downsides. For example, one benefit of thresholding is that, when457
an appropriately high value for the threshold is used, the metric can focus on analysing only the heavy-intensity458
precipitation while disregarding the light-intensity precipitation. Another benefit is that the resulting fractions can be459
interpreted in terms of probability (of exceeding the threshold).460

On the other hand, thresholding always removes some information from the field, which can make interpreting the461
results more challenging [Skok, 2023]. For example, it does not matter by how much a certain value exceeds the462
threshold – the value might exceed the threshold value by just a small amount or a hundredfold - the effect on the score’s463
value will be the same. This issue can be somewhat alleviated by performing the analysis using multiple thresholds, but464
this can also make it harder to interpret the results. For example, it can be challenging to determine a general estimate465
of forecast quality for the field as a whole, reflecting precipitation of all intensities. The use of thresholding also makes466
the results sensitive to the selection of the values used for the thresholds, which means a sensitivity analysis needs to be467
performed to determine whether a small change in the thresholds will result in a substantial change in the metric’s value.468
Using a metric that does not rely on thresholding avoids some of these issues.469

We denote the new metric as Continuous Smoothing Skill Score (CSSS) and define it as:470

CSSSp = 1−
∑

aj |xj − yj |p∑
aj |xj |p +

∑
aj |yj |p

, (4)

where xj and yj are the smoothed values obtained from the original continuous (non-thresholded) fields. Similar to471
the FSS, the CSSS values can span between 0 and 1, with a larger value indicating a better forecast. Its asymptotic472
value can be expressed as CSSSp,asy = 1− |xasy − yasy|p/(|xasy|p + |yasy|p), with xasy and yasy being the asymptotic473
smoothing values for the original non-thresholded fields. If the asymptotic smoothing values of both fields are the same474
(i.e.,xasy = yasy), CSSSp,asy will be equal to one and smaller than one otherwise.475

The p is a user-chosen parameter that influences the score’s behavior; more specifically, it defines how much influence476
over the score’s value is exhibited by different magnitudes of precipitation intensity. Namely, in the case of p = 2 (when477
the CSSS expression is analog to the FSS expression in Eq. 3, but instead of binary fields obtained via thresholding,478
the original non-thresholded fields are used as input), due to the second power, areas with more intense precipitation479
will tend to exhibit a disproportionally large influence on the score’s value compared to the areas with less intense480
precipitation. In the case of p = 1, this influence will be more proportional, while in the case of p = 0.5, the influence481
will again be disproportional, with lower-intensity precipitation exhibiting a comparatively larger influence.482

Fig. 8(d-f) shows an example of CSSS-based verification using p = 0.5, 1, and 2. Same as with FSS, the CSSS483
values always increase with the smoothing radius, regardless of the p value. The CSSS results are also successfully484
stratified according to the forecast lead time, with the 1- and 9-day forecasts consistently performing the best or worst,485
respectively. The results for p = 2 (Fig. 8d, which is most similar to FSS in terms of how it is defined since an operator486
using the second power is used for both) are most similar to the FSS results for threshold 1 mm/6h. In this case, there is487
a significant difference in the CSSS values for different lead times at a smaller smoothing radius, but this difference488
vanishes at a larger radius when the 1- and 9-day have very similar CSSS values.489

Interestingly, for p = 1 and 0.5 (Figs. 8(e-f)), the difference between the results for lead times tends to be somewhat490
smaller (compared to p = 2), but it persists at all smoothing radii, indicating that 1-day forecast outperforms the 9-day491
forecasts even if a very large smoothing radius is used.492

To further examine the effect of the p parameter on the results, we calculated some relevant quantities using the analysis493
field, shown in Table 1.494

The table shows the portions of the surface area, precipitation volume, and the
∑

aj |xj |p sums from the denominator495
of Eq.4 for different latitudinally-defined regions, namely the Tropics (30S-30N), the Midlatitudes (30S-60S and496
30N-60N), and the Polar regions (60S-90S and 60N-90N). The

∑
aj |xj |p for a particular region can be used as a kind497

of rough indicator of how much influence on the CSSS values is exhibited by the region. It depends on the area size of498
the region and the amount and intensity of precipitation found in it, as well as on the value of the p parameter.499

For example, the Tropics cover about 50% of the Earth’s surface and contain about 56% of the total precipitation volume500
in the analysis field, but nevertheless contribute about 62% to the sum for p = 2. On the other hand, the Polar regions501
cover about 13% of the Earth’s surface and contain about 6% of the total precipitation volume but contribute less than502
2% to the sum for p = 2. This highlights how the Tropics have a disproportionately large influence on the resulting503
values at the expense of other regions, especially the Polar regions, which exhibit almost no influence on the result.504
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Table 1: The portions of the Earth’s surface area, total precipitation volume, and the
∑

aj |xj |p sums from the
denominator of Eq.4 for different latitudinally-defined regions: the Tropics (30S-30N), the Midlatitues (30S-60S and
30N-60N), and the Polar regions (60S-90S and 60N-90N). The values were calculated for the original (non-smoothed)
analysis field of the IFS forecast shown in Fig. 7.

Region Surface Precipitation
∑

aj |xj |p
area volume p = 2 p = 1 p = 0.5

Tropics 50.0% 56.4% 62.3% 56.4% 51.8%
Midlatitudes 36.6% 37.4% 35.9% 37.4% 37.7%
Polar regions 13.4% 6.2% 1.8% 6.2% 10.5%

The situation is different for p = 0.5, where the Tropics contribute about 50% to the sum, with the Polar regions505
contributing about 10%, meaning that they can have a noticeable influence on the result. This highlights how the p506
parameter can be used to adjust the comparative influence of drier and wetter regions.507

Finally, although global forecast quality information can be useful, the information for specific geographic sub-regions508
(such as a continent, a country, or a latitude belt) or types of surfaces (like land or sea) is often of greater interest, even509
in cases when a global model is used. In this case, smoothing can be performed for the whole global field, as before, but510
only a subset of smoothed values can then be used to determine the forecast quality for a specific sub-region. Smoothing511
the whole global field first avoids the so-called border-effect issues that can arise while using a smoothing-based metric512
in a limited area domain. For example, in some cases, the FSS value can markedly decrease or increase in a limited area513
domain depending on how the domain border is handled [e.g., Skok and Roberts, 2016]514

Fig. 8(g-i) shows FSS computed over the Maritime Continent. Smoothing is still performed globally, but the FSS score515
is computed via Eq. 3 by using only the grid points that fall between latitudes 15◦S and 15◦N and longitudes 90 and516
150◦E.517

The FSS score is quite high for the low and medium thresholds (Figs. 8(g-h)). This happens since the precipitation over518
the Maritime Continent mostly occurs in the ITCZ, which does not move much on a daily basis. Thus, the location519
of the medium-, and especially low-intensity precipitation envelopes that surround the convective cores containing520
high-intensity precipitation and cover a large area do not move much. This makes the forecast quality of lower-intensity521
precipitation almost independent of forecast lead time (e.g., the 1-day forecast is almost as good as the 9-day forecast).522
The situation is different for high-intensity precipitation, as the model can frequently struggle to correctly forecast the523
positions and intensity of precipitation in the convective cores, especially at longer lead times. Consequently, the FSS524
score is lower and more variable in this case (Fig. 8i).525

7 Discussion and Conclusions526

We present two new methodologies for smoothing fields on a sphere that can be used for smoothing-based verification527
in a global domain. One is based on k-d trees and one on overlap detection. The k-d-tree-based approach requires less528
memory, has negligible numerical error, and can be done in a single step without any additional preprocessing, but it is529
slower, especially for large smoothing kernels.530

The overlap-identification-based approach requires a preprocessing step that generates the smoothing data, which must531
be calculated only once for a specific smoothing kernel size. Once available, this data can be used to calculate the532
smoothed values much faster than the k-d-tree-based approach. The large size of the smoothing data presents a potential533
problem as it requires the computer to have a large memory (this is only problematic if a very large smoothing kernel is534
used). Since the procedure is iterative, the approach can also incur a degree of numerical error, but luckily, the size of535
the numerical error in a particular setup can be determined relatively easily by comparing the smoothed values obtained536
via the overlap-detection-based approach to those obtained via the kd-tree-based approach. Moreover, simple mitigation537
strategies exist that can be implemented to reduce the error size further.538

Alternatively, similarly to how it is done for the overlap-identification-based approach, the smoothing data for the539
k-d-tree-based approach, which would list all the nodes that need to be summed to get the smoothed value at a specific540
location for a particular size of the smoothing kernel, could be precalculated and saved to a disk. This data could then541
be simply loaded into memory when needed and used to quickly calculate the smoothed values, similarly to how it is542
done for the overlap-identification-based approach. However, testing showed that the size of this data is a few times543
larger than for the overlap-identification-based approach, meaning that the calculation of the smoothed values would be544
correspondingly slower.545
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Both methodologies can be used when the grid is not regular, thus avoiding the need for prior interpolation into a546
regular grid, which can introduce additional smoothing [Konca-Kedzierska et al., 2023]. They also take into account547
the spherical geometry of Earth, which is important to ensure a consistent size and shape of the smoothing kernel548
everywhere on the planet.549

The methodologies are also area-size-informed, meaning that they take into account the potentially different area sizes550
of the grid points. This is important since in some grids (e.g., a regular latitude/longitude grid), the difference between551
the area sizes of points at different locations on the planet can be very large. Not accounting for this could result in552
negative effects, for example, the spatial integral of the field could change considerably due to the smoothing.553

While the focus was on the development of methodologies for smoothing of global fields, both approaches can also be554
used in limited-area domains. Moreover, they are both able to deal with missing data appropriately. This is important555
since dealing with missing values can be problematic for some smoothing methods, as they are often forced to make556
some kind of assumptions regarding the value of missing data, which can cause the values near the missing data region557
to increase or decrease artificially.558

Overall, while each approach has its strengths and weaknesses, both are potentially fast enough to make the smoothing559
of high-resolution global fields feasible, which was the primary goal set at the beginning. The time complexity of both560
approaches can be approximated by O(n

√
k) with k being the typical number of points in the smoothing kernel, which561

is limited by n in the worst case.562

Based on the methodologies presented here, we prepared and published an easy-to-use Python software package for563
efficient calculation of the smoothing (please refer to the Code and data availability statement for details on how to564
obtain the package).565

In addition to the novel smoothing methodologies, we also included a verification demonstration where we presented an566
area-size-aware variant of the FSS, which takes into account the varying area sizes that are representative of different567
grid points. For example, one would expect a grid point with a larger area size to exhibit a larger influence on the568
metric’s value compared to one with a smaller area size. We also defined a smoothing-based metric, the CSSS, where569
the original non-thresholded fields can be used to calculate the metric’s value without thresholding. The CSSS has a570
user-selectable exponential parameter that affects how the precipitation magnitude influences the value of the metric,571
which can be used to adjust the comparative influence of drier and wetter regions. We also demonstrate how the572
smoothing-based scores can be used to provide localized forecast quality information for a global forecast by first573
smoothing the fields globally, thereby avoiding the border-effect issues that can arise for limited area domains, and574
then using a regionally-defined subset of points to calculate the metric’s values representative of a specific sub-region.575
Alternatively, one could also obtain even more localized information of forecast quality, for example, by calculating the576
Localized Fraction Skill Score [LFSS, Woodhams et al., 2018]. In this case, the fraction values in the global domain577
can be calculated efficiently using the new smoothing methodology, in the same way as before, but then, the fraction578
values can be used to calculate the LFSS instead of the "regular" FSS.579
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