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Abstract.  

Atmospheric rivers (ARs) are long filaments that transport large amounts of water vapor from the Tropics to mid- and 10 

high latitudes. They are directly related to heavy precipitation and extreme weather leading to flooding and mud slides. 

Accurate identification of AR structures over the ocean is important to improve the forecast of their landfall location and 

timing. Global Navigation Satellite Systems (GNSS) radio occultation (RO) is a space-based technique that can measure 

meteorological variables with high vertical resolution. While RO can observe structures like ARs in individual RO profiles, 

RO observations have non-uniform and sparse spatial and temporal sampling, so it is not yet possible to fully characterize AR 15 

morphology using RO alone. 

In this work, we use previous research in which we applied machine learning (ML) to enhance the spatial and temporal 

resolution of RO observations. Here, we train neural networks (NNs) to map RO observations and help resolve ARs. Analyses 

using existing RO data, such as from the COSMIC-2 mission, showed that the sampling density is insufficient to resolve and 

geo-locate ARs. Adding observations from the other available missions (for example METOP) improved matters, but was still 20 

insufficient to reliably reconstruct AR structure.  

We undertake a study to determine how many LEO RO satellites would be needed to quantify the structure, location, and 

timing of ARs. We simulate RO observations as would be obtained with Walker constellations of 12, 24, 36, 48 and 60 LEO 

RO satellites. First, we investigate possible constellations for proper AR monitoring. We aim for constellations that lead to 

hourly RO counts that change as little as possible during the AR (up to several days). This allows us to resolve ARs with 25 

similar accuracy during the scenario. We conclude that 3 or 6 orbital planes and inclinations between 85° and 90° perform 

best. Second, we make use of 12-h forecasts of the European Centre for Medium-range Weather Forecasts (ECMWF) system 

to interpolate the forecasts to the simulated RO constellation sampling coordinates. Third, we use the ECMWF-based RO 

observations to train ML models and map them to the ECMWF grid. We compare ML-mapped RO sampled grids to ECMWF 

products in a closed-loop validation. Initially, we map RO refractivity at 2 km geopotential height, where small-scale structures 30 
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related to water vapor are visible. We find that at least 36 RO satellites are needed to characterize the morphology of ARs in 

the Pacific basin with useful precision and accuracy (from the ML produced maps). Then, we use a framework with two 

consecutive NNs to map column-integrated water vapor (IWV) from profiles of RO. The first NN maps the refractivity into 

IWV, and the second NN maps the IWV spatially. In this case, we find that a constellation of 48 satellites is needed to 

continuously map IWV fields accurately and thus reconstruct the morphology of ARs with useful precision and accuracy. 35 

Finally, when using RO, we find that mapping refractivity into IWV is less accurate over land than over oceans. To further 

improve the AR mapping over land, we made use of IWV from ground-based (GB) GNSS. The significantly higher spatial 

and temporal resolutions of GB data compared to RO lead to much improved IWV fields and thus AR path and shape over 

land.  

1. Introduction 40 

Global Navigation Satellite Systems (GNSS) radio occultation (RO) is a well-established remote sensing space technique, 

where GNSS signals are received by satellites in low-Earth orbit (LEO). The atmosphere along the signal path refractively 

bends the GNSS signals, and the induced delays can be converted into bending angles which can further be reduced to profiles 

of refractivity (Kursinski et al., 1997), (Kursinski et al., 2000), (Mannucci et al., 2021), (Melbourne, 2004). Using background 

atmospheric models, valuable information for temperature and water vapor is acquired by breaking down the refractivity values 45 

(Kursinski et al., 2000). The main features that make GNSS RO very attractive to meteorologists and climatologists are its 

long-term stability, all weather capabilities (not affected by clouds and rainfall), global coverage, absolute accuracy, high 

vertical resolution (100 m), and the fact that RO receivers are low-cost, low-power and compact sensors (Kursinski et al., 

2000). The horizontal resolution of RO is 1.5 km in the cross-track direction. The horizontal resolution of an RO sounding in 

the along-track direction almost certainly depends on the effective vertical resolution of the retrieval. Through a 100-meter 50 

atmospheric layer, the horizontal path of an RO ray is ~70 km. This can be considered an optimistic horizontal resolution of 

an RO sounding. 

In the horizontal dimension, RO data are heterogeneous in sampling density because of the uncoordinated orbital 

configuration of multiple RO spacecraft; GNSS constellations’ orbits also lead to non-uniform RO observations. This leads to 

incomplete local time and meridional coverage as well as weak singularities at specific latitudes (Leroy et al., 2012). 55 

Additionally, RO sampling density has never been large enough to sample every cell of atmospheric synoptic variability, thus 

greater numbers of RO soundings should continue to improve our knowledge of the atmosphere without diminishing returns. 

(A cell is approximately described by the atmospheric Rossby radius of deformation (about 1000 km) and a span of several 

hours.)  

To overcome the drawbacks of low horizontal sampling, (Leroy et al., 2012) used Bayesian inference to map RO data and 60 

study synoptic variabilities. (Shehaj et al., 2023) used neural networks (NNs) to further improve the horizontal mapping of RO 

data; additionally, NNs could significantly increase the temporal resolution. This is beneficial for weather phenomena 
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developing at short time scales. This research leverages the methodology developed in (Shehaj et al., 2023) using RO 

observations to resolve atmospheric rivers (ARs). 

ARs are narrow maritime atmospheric low-level jets that transport large amounts of moisture from the Tropics into the 65 

mid- and high latitudes, often impinging on the continents (Newell et al., 1992), (Zhu and Newell, 1994), (Newell and Zhu, 

1994). ARs can release massive amounts of moisture in the form of precipitation  (NOAA, 2023). Depending on the size and 

intensity of the AR, it might lead to extreme precipitation (Leung and Qian, 2009), (Guan et al., 2010), (Lavers and Villarini, 

2013), (Guan et al., 2016), (Lamjiri et al., 2017), (Chen et al., 2018), (Huning et al., 2019). ARs are related to higher risk of 

flooding events (Ralph et al., 2006), (Leung and Qian, 2009), (Lavers et al., 2011), (Konrad and Dettinger, 2017), (Curry et 70 

al., 2019), high sea water levels (Khouakhi and Villarini, 2016) and snow accumulation (Gorodetskaya et al., 2014). The 

amount of water ARs transport is comparable to average flow at the mouth of the Mississippi river (NOAA, 2023). In addition, 

their implicit connection to extratropical cyclone strength has been discussed (Zhu and Newell, 1994). (Zhang et al., 2018) 

show that ARs can contribute to the intensification of extratropical cyclones. The collection ‘Atmospheric Rivers’, a first effort 

containing selected research associated to ARs in Geophysical Research Letters (agupubs, 2019), encompasses many papers 75 

that show the connection of ARs to extreme weather events, the challenges/capabilities of weather prediction models to 

forecast/model/predict ARs, and the relationship between climate and ARs. 

The more recent collection named ‘Atmospheric Rivers: Intersection of Weather and Climate’ in Journal of Geophysical 

Research Atmospheres (agupubs, 2024), presents further findings confirming the relationship between heavy 

precipitation/snowfall and ARs, capturing recent advances in numerical weather prediction (NWP) model capability to 80 

model/forecast ARs, comparing features in different ARs, evaluating the relationship between temperature and ARs, the effects 

of ARs on aerosols, modeling future ARs, and assessing the response of ARs to current climate change effects such as Arctic 

ice loss or mountain ice melting. (Zheng et al., 2021) shows that in-situ (dropsonde) observations along ARs improve forecast 

models and (Haase et al., 2021) shows that airborne ROs along rivers help distinguish key characteristics of ARs. 

AR widths are typically 1000 km, and their lengths 2000 km or longer (Zhu and Newell, 1998). The total precipitable 85 

(column-integrated) water vapor is at least 20 mm (20 kg m-2) (Ralph et al., 2004). While they cover only 10% of Earth’s 

circumference, ARs are still responsible for 90% of the total meridional moisture transport (Zhu and Newell, 1998).  

Previous works have utilized RO for ARs. (Ma et al., 2011) shows the importance of assimilation of RO data in NWM 

for improving AR forecasting. (Bonafoni et al., 2019) review the importance of GNSS RO (and ground-based) data for 

observing, understanding and predicting extreme events. (Murphy and Haase, 2022) evaluate GNSS RO profiles in the vicinity 90 

of ARs. (Cao et al., 2024) and (Haase et al., 2021) study a campaign of airborne RO flying during AR events, describing the 

system, evaluating collected data, and showing their importance to distinguish AR characteristics, as well as the impact of the 

assimilation of airborne RO data in forecast models to predict ARs. (Rahimi and Foelsche, 2024) analyze specific humidity 

profiles and IWV from RO to study the vertical structure of ARs, concluding that ARs provide additional vertically-resolved 

information not contained in background or operational analyses.  95 



4 

 

Similar to GNSS RO, the high moisture in ARs is reflected in ground-based (GB) GNSS precipitable water vapor 

observations (Wang et al., 2019). While such data cannot help to reconstruct initial formation of ARs, the data are very useful 

to sense the intensity of ARs when they reach landfall. These observations are characterized by high temporal (up to few 

minutes) and horizontal (depending on the network) resolutions. Typically, GB GNSS networks are dense due to low costs 

and because they serve other purposes, for example monitoring of earthquakes (Blewitt et al., 2018). 100 

Machine learning has been applied to RO data for different purposes, with many studies claiming promising results. 

(Hooda et al., 2023) uses machine learning to improve the water vapor retrieval from RO profiles. (Lasota, 2021) trains 

different machine learning models capable of retrieving tropospheric profiles of pressure, temperature and water vapor without 

using external data. (Chu et al., 2022) uses ML and RO to forecast wind fields. (Hammouti et al., 2024) and (Connor et al., 

2021) apply ML to detect volcanic clouds and cloud signature, respectively. Other studies apply machine learning to 105 

ionospheric products of RO data; (Pham and Juang, 2015) aims to improve the retrieval of electron density for RO observations, 

and (Ji et al., 2024) detect ionosphere scintillation.  

The goal of this paper is to utilize ML-mapped RO products to reconstruct the hourly evolution of ARs. The main questions 

that we address are: what type of RO constellation is necessary to resolve AR structures and, what is the optimal number of 

satellites that can accurately reconstruct our selected AR. We aim to resolve the total amount of water vapor present in ARs. 110 

In this context, RO profiles are mapped into hourly fields of IWV using two sequential NNs. Furthermore, we exploit the high 

temporal and spatial resolution IWVs from GB GNSS to further enhance the reconstruction of ARs over land. The RO signal 

dynamics become very complicated, and consequently tracking an RO signal in the planetary boundary layer (PBL) becomes 

difficult. Consequently, sometimes RO signals are not able to penetrate deeply into the PBL. In addition, present retrieval 

algorithms for RO must deal with several complications in the PBL such as spherical asymmetry (Ahmad and Tyler, 1998), 115 

(Ahmad and Tyler, 1999), RO signal loss, and truncation by operational retrieval systems. Also, RO retrievals are less precise 

due to apparent noisy behavior in the retrieved profiles of refractivity and water vapor. Most importantly, super-refraction 

induces negative biases in retrieved refractivity, which is associated with steep vertical gradients of water vapor and the 

resulting extreme bending of RO rays (Sokolovskiy, 2003), (Ao, 2007), (Xie et al., 2010). Advanced algorithms have been 

proposed to ameliorate such biases in retrieval (Xie et al., 2006), (Wang et al., 2020), (Wang et al., 2024) but have yet to be 120 

applied to program-of-record data. Before applying the ML algorithms above to actual RO data to measure AR water vapor 

content, RO retrieval algorithms that account for super-refraction must be applied operationally. Nevertheless, because the 

goal of our project is one of RO sampling densities, we assume perfect precision and accuracy in RO retrieval, leaving 

improvement in retrieval performance in the PBL to other ongoing research programs. In addition, it is important to point out 

that often RO data can be exploited down to the surface right in center of the ARs, where WV values are high, but gradients 125 

are not. 

Section 2 describes the selected AR scenario, the methodology and initial results using current RO data. Section 3 shows 

the chosen LEO constellations and the simulated ROs data using European Center for Medium-Range Weather Forecasts 

(ECMWF) model; then, it displays the results of different LEO constellations to reconstruct ARs. Section 4 shows the results 
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when using currently available actual RO observations. Section 5 shows the enhancement of AR mapping over lands using 130 

GB GNSS. Section 6 summarizes the results and future work. 

2. AR scenario and method to map RO data 

In this section, we present the AR scenario that we use for our analysis and give an overview of the ML method used to 

map the RO observations to reconstruct the AR.   

2.1 AR scenario  135 

We focus on the North Pacific and ARs that landfall along the west coast of North America. In this region, ARs are mainly 

responsible for extreme precipitation events, contributing to 30–50% of the annual precipitation (Dettinger, 2013). Figure 1 

depicts the AR scenario reported on the website of US National Weather Service, (NOAA, 2021). The left plot of Figure 1 

shows the region (90°W–160°W and 10°N–60°N), and the right plot of Figure 1 depicts the AR as a blue stream from the 

Pacific Ocean towards the US coast. The AR was visualized using ECMWF forecast data.  140 

 

 

Figure 1: AR scenario visualized using 12-h forecast ECMWF data, with a resolution of 0.1°. The left panel shows the scene, 

and the right panel shows the refractivity at 2 km height on the 24th of October 2021 at 19:00 UTC, (similar to (Shehaj, 2023)). 

The purple rectangle highlights the AR. 145 

This AR lasted about 2 days during 24th and 25th of October 2021. It was indicated in long range models by October 18th, 

and on October 20th the models were showing a high to moderate AR that could lead to high precipitation. This was abnormal 

considering the AR was happening early for the region (NOAA, 2021). The river evolved together with a bomb-cyclogenesis 

cyclone which developed above the river. Heavy rainfall precipitated on October 24th in the San Francisco Bay Area of the 

U.S. The AR led to strong winds, flood warnings in all the region, storms that caused flooding, fallen trees, power outages and 150 

minor mudslides. The event also generated large and powerful waves along the Pacific coast of the U.S. October 24th was the 

wettest day ever for many cities around the San Francisco Bay Area, as reported in table ‘Heavy Rain’ in (NOAA, 2021).   
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The evolution of the selected AR can be seen in the supplementary material where videos of ECMWF refractivity and 

IWV fields are included. 

2.2 Machine learning 155 

The machine learning (ML) approach used here is based on (Shehaj et al., 2023), in which we mapped global 

climatologies. In this work, we focus on mapping RO data at a more regional scale where the AR occurs. Our ML algorithm 

is a classical artificial fully connected NN, where the first layer has the inputs, the last layer the outputs and each neuron of 

one layer is connected to all the neurons of the previous layer (Haykin, 2009). This is also known as Multilayer Perceptron 

(MLP). NNs are one of the most important algorithms in ML, proven generalizable across several fields. We have successfully 160 

used NNs in previous research to map RO or GB GNSS tropospheric products (Shehaj et al., 2023), (Shehaj, 2023), (Shehaj 

et al., 2023), (Miotti et al., 2020). 

The loss function that the network aims to minimize is the mean squared error (mse) between the targets and model output, 

the latter of which is dependent on the weights and biases of each neuron. The stochastic gradient descent is used to find the 

local minimum of the function. The nonlinearities between inputs and outputs are defined using the activation function, in this 165 

case the Rectified Linear unit Function (ReLu) (Nwankpa et al., 2018). To avoid numerical issues, we have standardized the 

feature data before training, centering them around zero and using the variance to scale them, as typically performed in many 

ML applications.  

After the overview of the scenario and the ML method, the next section presents our approach to resolve ARs.  

3. Approach to detect ARs from RO and ML 170 

In this section, we present our approach to reconstruct ARs using simulated ROs in a closed-loop validation. In a first 

step, we investigate different LEO constellations’ designs to define suitable constellations for monitoring ARs. We use the 

LEO and GNSS orbits to define the locations and times of ROs, and the ECMWF weather model to simulate RO observations. 

In a second step, we train ML based on the simulated RO observations, and then map the RO quantities to the ECMWF grids 

for a closed-loop validation. We evaluate our approach for RO-based refractivities and IWV, by analysing the reconstruction 175 

of the AR for different LEO constellations to conclude on the necessary minimum number of satellites. 

3.1 First step: Simulated RO observations of LEO constellations designed for AR detection 

We investigate the sounding density that would be required to analyse the location and morphology of an AR. Commercial 

RO companies around the world are now projecting RO sounding densities exceeding 100,000 daily, 

(https://spire.com/blog/maritime/radio-occultation-in-less-than-500-words/, 2021). For this purpose, we will examine different 180 

LEO constellation designs in order to conclude a) what constellations are suitable to continuously and accurately monitor ARs, 
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and b) what is the minimum number of satellites that leads to an appropriate amount of RO observations for our purpose. Here, 

we define the amount of RO observations as appropriate if it is sufficient to reconstruct the humidity in the AR. We choose to 

work with Walker constellations because they promise the most uniform possible RO coverage globally and in local time and 

because they are infinitely scalable. Examples of constellations designed for uniform coverage are the medium Earth orbit 185 

(MEO) GNSS constellations themselves, which were developed to meet specifications of the minimum number of satellites 

that would be visible above the horizon at any time from any point on Earth. Although we will focus our analysis on the AR 

scenario located in the US West Coast, discussed in Section 2.1, we expect our results to be valid for ARs occurring in other 

regions globally.  

In Section 3.1.1, we analyse different orbital parameters to design an optimal constellation for monitoring ARs. In Section 190 

3.1.2, for the defined constellations, we display simulated RO refractivity and IWV based on NWM data. 

3.1.1 Simulated Walker Constellations 

We test Walker constellations with 12, 24, 36, 48, and 60 satellites, to decide on the minimum number of satellites 

appropriate for monitoring ARs. For all constellations, we set the eccentricity equal to 0 and the altitude to 800 km. Every 

LEO satellite can track RO events of 30 Global Positioning System satellites, 23 GLONASS satellites, 18 Galileo satellites, 195 

and 49 BeiDou satellites. These satellites were all operational on the dates of the AR event described in Section 2.1. The GNSS 

satellite orbits are taken from the two-line element records of Celestrak (https://celestrak.org/NORAD/elements/, 2024) for 

October 2021 and are propagated in time using SGP4 (https://pypi.org/project/sgp4/, 2024). To evaluate constellation 

performance, we count the number of RO observations in the AR region that results from using different Walker constellation 

configurations. We also consider the temporal uniformity of the sampling density since we aim to monitor and reconstruct the 200 

AR structure continuously in time.  

The free parameters of a Walker constellation are the number of orbit planes uniformly distributed in right ascension of 

the ascending node (RAAN), the number of satellites in each orbit plane distributed evenly in argument of latitude, the 

eccentricity and argument of perigee of each plane, the altitude of the orbit planes, and a parameter describing how the 

satellites’ orbit anomalies (timing) are staggered between planes. We consider only circular orbits, so the eccentricity is zero 205 

and the argument of perigee is undefined. We also fix the altitude of the orbits to 800 km. We compute the hourly RO counts 

for inclinations every 5° in the interval 65° to 100°, with 3–6 orbit planes, and with 12, 24, 36, 48, and 60 total satellites. Over 

four-days, an inclination of 100° corresponds to a nearly sun-synchronous orbit.  

Figure 2 displays the hourly number of RO counts in the AR region (10°N to 60°N and 90°W to 160°W) for an ensemble 

of the RO count simulations. Figure 3 displays the hourly RO counts in the AR region for inclinations of 85° for 3, 4, and 6 210 

orbital planes for constellations of 12, 24, 36, 48, and 60 satellites. Table 1 summarizes the statistics in terms of average and 

standard deviation (SD) of the hourly RO counts. The Walker constellation parameters that exert the greatest influence on the 

hourly number of RO observations in the AR region are the number of orbit planes and their inclination for a fixed number of 



8 

 

satellites. The inclination changes the distribution of RO soundings since low inclination leads to absence of coverage at high 

latitudes. For example, the COSMIC-2 mission with an inclination of 24° supports collecting RO up to ~45° latitude.  215 

This analysis has several prominent outcomes. (1) Three- and four-plane configurations show strong periodicity in the 

hourly RO counts. The periodicity itself depends on the number of orbital planes and on their inclination, and the timing of 

the extrema depends on inclination. (2) The least temporal variation of hourly RO counts for 3 planes happens at 90° 

inclinations, and for 4 planes at 65° inclination. For 6 planes, the temporal variation of hourly RO counts is very small for all 

inclinations, with a minimum at 85° inclination. (3) For constellations with 3 planes, inclinations of 65° and 100° lead to the 220 

largest average hourly RO counts. 85° inclination leads to the least average hourly RO counts; see Table 1. For constellations 

with 3 planes, inclinations of 65° lead to the highest variation of hourly RO counts, while 90° inclinations lead to the lowest 

variation. (4) For constellations with 4 planes, inclinations of 65° lead to the largest average hourly RO counts, while 95° 

inclinations lead to the lowest average hourly RO counts. For constellations with 4 planes, inclinations of 95° lead to the largest 

variation of hourly RO counts, while 65° inclinations lead to the least variation of hourly RO counts. (5) For constellations 225 

with 6 planes, inclinations of 65° lead to the largest average hourly RO counts, while 85° inclinations lead to the least average 

hourly RO counts. For constellations with 6 planes, inclinations of 65° lead to the largest variation of hourly RO counts, while 

85° inclinations (70° for 12 satellites) lead to the least variation of hourly RO counts. 

Heuristically, any LEO RO receiver in a high-inclination orbit obtains approximately 500 soundings per day per tracked 

GNSS constellation. This derives from a single satellite orbiting the Earth approximately 14 times daily and there being 230 

approximately 30 transmitters in a GNSS constellation, with the RO receiver tracking both rising (fore-viewed) RO soundings 

and setting (aft-viewed) RO soundings.  
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Figure 2: Hourly number of RO counts for Walker constellations of RO receivers in orbit planes with inclinations of 65°, 80°, 

90°, and 100° in the AR region. On the left are displayed the cases for 12-satellite constellations and on the right the cases for 235 

60-satellite constellations. The top, middle and bottom panels represent the cases of 3, 4 and 6 orbital planes.  

 

Figure 3: Hourly number of RO counts for 85°-inclination orbit planes, in the AR region, for 12, 24, 36, 48, and 60 satellites. 

The top, middle and bottom panels represent the cases of 3, 4 and 6 orbital planes.  
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 240 

Table 1 Temporal means and standard deviations (SD) of hourly RO counts for constellations of 12 and 60 satellites, for 3, 4 and 6 

planes, and for inclinations ranging from 65° to 100°.  

12 satellites 
Inclination [°] 65 70 75 80 85 90 95 100 

3  

planes 

Mean 99.7 95.4 96.3 95.9 90.8 93.7 93.2 99.3 

SD 32.9 23.0 23.5 17.0 9.0 6.6 11.5 20.2 

4  

planes 

Mean 98.5 98.1 96.9 94.2 93.3 92.4 91.9 98.2 

SD 10.5 12.0 14.6 16.8 17.7 16.7 18.6 15.0 

6  

planes 

Mean 98.5 98.1 95.8 94.4 91.6 92.7 94.7 97.5 

SD 8.0 7.1 7.2 7.5 7.2 7.9 7.2 7.6 

60 satellites 
Inclination [°] 65 70 75 80 85 90 95 100 
3 

planes 
Mean 496.7 478.4 482.9 479.8 452.9 468.5 466.5 497.5 

SD 164.0 114.4 116.4 82.6 40.7 28.7 55.5 98.8 

4 

planes 
Mean 492.1 490.1 483.3 471.7 465.3 462.8 459.3 489.6 

SD 45.3 50.3 68.1 79.1 81.8 76.6 88.0 69.2 

6 

planes 
Mean 492.8 491.5 481.7 472.9 458.4 463.2 471.9 490.6 

SD 32.2 25.0 23.2 25.0 20.3 28.9 28.2 25.5 

 

Using larger numbers of RO soundings and temporal uniformity as the criteria, we settle on the final configurations for 

our ML exercises: 245 

- 12 satellites: 3 planes and 90° inclination, yielding 145K global soundings, 8,992 in the AR region;  

- 24 satellites: 6 planes and 85° inclination, yielding 290K global soundings, 17,571 in the AR region;  

- 36 satellites: 6 planes and 85° inclination, yielding 434K global soundings, 26,343 in the AR region;  

- 48 satellites: 6 planes and 85° inclination, yielding 579K global soundings, 35,153 in the AR region;  

- 60 satellites: 6 planes and 85° inclination, yielding 724K global soundings, 43,956 in the AR region.  250 

 

Table 2: Final configurations of the LEO constellations. 

Number of LEO 

satellites 

Planes Inclination 

[°] 

Number of global 

soundings [K] 

Number of soundings 

in the AR region 

12 3 90 145 8,992 

24 6 85 290 17,571 

36 6 85 434 26,343 

48 6 85 579 35,153 

60 6 85 724 43,956 

 

The RO counts in  

Table 2 are for the entire 4-day period of 23–26 October 2021. 255 

From our simulations, we achieve about 180K occultations daily with a constellation of 60 satellites. While the number 

of current LEO RO satellites is already around 60 satellites, the number of RO counts reported is much lower compared to our 

simulation. This is because of different factors, for example, some LEO RO constellations do not collect data from all available 
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GNSS, in real constellations some data are not reported or difficult to obtain statistics on because they are considered ‘bad’ or 

poor-quality observations. In addition, different LEO RO satellites only collect data up to a certain latitude, e.g., COMSIC-2 260 

only collects data from 45°S to 45°N. Finally, as we will see in the following sections, the goal is to simulate a high-performing 

constellation in order to reconstruct the IWV field in the AR scene; we find that the statistical improvement is relatively small 

when we consider 60 satellites compared to 48 satellites (see Section 3.2.2 and Section 3.2.3.2), so we did not expand the 

constellation beyond 60 in this work. 

We also studied constellation design for another AR in the UK region between September 30th and October 3rd. The hourly 265 

number of ROs and the number of planes is similar to the event on the US West Coast. Differences appear for the inclination, 

where for the UK event an inclination of 100° appears more appropriate. This difference is mainly caused by the different 

GNSS TLEs for the two events. Using the same TLEs leads to similar results for both scenarios. We point out that for 6 planes, 

the variation of hourly RO counts is similar for the different inclinations. The variations for different inclinations for 3 and 4 

planes are much more noticeable, as also reported in Table 1. 270 

3.1.2 Refractivity and IWV from ECMWF 

In this section, we display the simulated RO observations that result from the selected Walker constellations in Section 

3.1.1. We use 12- to 23-hour forecast fields (at an hourly cadence) from the ECMWF operational 4DVar data assimilation 

system, and the time and location where ROs geometrically occur, to simulate the RO observations. Fields are published on 

0.1° grid in latitude and longitude. We used pressure 𝑝, temperature 𝑇, and water vapor pressure 𝑝𝑤  to compute refractivity 275 

(Rueger, 2002): 

𝑁 = (𝑛 − 1) × 106 = (77.6890 K hPa−1)
(𝑝−𝑝𝑤)

𝑇
+ (71.2952 K hPa−1)

𝑝𝑤

𝑇
+ (375463 K2 hPa−1)

𝑝𝑤

𝑇2 ,          (1) 

When interpolating the model to the times and locations of RO, we took the model refractivity profile in the cell nearest to the 

RO sounding and interpolated linearly the vertical dimension. Figure 4 displays the simulated refractivity at 2 km geopotential 

height. The refractivity plots show structures related to water vapor, which are also strongly correlated with boundary layer 280 

clouds. The AR structure is not obvious in these plots that collect four days of simulated refractivity because the AR changes 

position in that time frame.  

 

 

Figure 4: Simulated refractivity at 2 km geopotential height, based on ECMWF, for constellations of 12, 24, 36, 48, and 60 285 

satellite constellations, during 23 to 26 October 2021.  
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Figure 5 displays the simulated refractivity based on ECMWF, for the case of 12 satellites LEO constellation, for 1 km to 

10 km geopotential heights above the ground. The refractivity at different heights above ground shows similar structure over 

land. This reflects the terrain altitude (not shown here). We will use the refractivity at different altitudes above ground to map 290 

the IWV.  

 

 

Figure 5: Simulated refractivity from 1 to 10 km height above the ground, based on ECMWF, during 23 to 26 October 2021. 

Here we display the case of 12-satellite constellations. 295 

 

We use an ML approach to retrieving column-integrated water vapor given refractivity values at discrete geopotential 

heights at 1-km intervals above the surface topography up to 10 km above the surface. ECMWF forecasts are used as the 

training data set. ECMWF is a layer-based model that publishes temperature and humidity intended to represent a layer of 

fluid and the pressures and heights at the interfaces between the model layers (ECMWF, 2024). Layer indices are denoted as 300 

integers and layer boundaries as half-integers. The pressure for layer 𝑖  is determined by 𝑝𝑖 = (𝑝𝑖−1/2 + 𝑝𝑖+1/2)/2  and 

similarly for layer heights ℎ𝑖 . The integrated water vapor (IWV) for layer 𝑖 is calculated by  

 IWV𝑖 = 𝑄𝑖  (𝑝𝑖+1/2 − 𝑝𝑖−1/2)/𝑔0 (2) 

where, 𝑄𝑖 is the specific humidity for layer 𝑖, 𝑔0 is the WMO standard mean sea-level acceleration due to gravity, equal to 

9.80665 m s-2. The total column IWV is the sum of the individual layer integrated water vapors over all model layers. The 305 

ECMWF operational data assimilation system has 137 model layers. 

Figure 6 displays IWV calculated from ECMWF at the simulated RO geolocations. The IWV (from the ground) is a useful 

meteorological observation to model the total amount of water vapor in the AR structure. Again, from these stacked datasets 

(over 4 days), the AR shape and path is not obvious.  
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Figure 6: IWV, based on ECMWF, for constellations of 12, 24, 36, 48, and 60 satellites, during 23 to 26 October 2021. 

3.2 Second step: Machine learning framework to detect AR from RO 

This section displays the results of ML applied to ECMWF-based RO simulated data to reconstruct the AR structure for 

the constellations simulated in Section 3.1. Section 3.2.1 summarizes the input variables, output variables and hyperparameters 315 

for the different NNs used in this work. Section 3.2.2 shows the results of reconstructing the AR at 2 km height. In Section 

3.2.3, we show the results of reconstructing the entire IWV in the AR scenario, using two consecutive NNs. The first NN is 

used to map refractivity profiles into IWV (called mappable-IWV) and the second NN is used to spatially interpolate the 

mappable-IWVs. 

In this work, we aim to use RO to reconstruct (and monitor) an AR. By reconstruction we consider the capability of the 320 

ML model to produce fields of refractivity and IWV that describe the spatial and temporal morphology of ARs and quantify 

moisture associated with them to a degree sufficient for atmospheric studies. The reconstructed fields can be used to 

continuously monitor ARs. 

We also point out that the ML-mapped quantities (such as refractivity and IWV) are the result of an ensemble of 10 

different NN trained models. This makes our results more general and robust to randomness of the trained model caused by 325 

initialization of model parameters, stochastic optimization algorithms that randomly sample the data points or possible GPU 

precision and optimization implementation (Altarabichi et al., 2024).  

3.2.1 Architecture and hyperparameters tuning 

In this work, we test two approaches to reconstructing the AR structure. In the first approach, we train NNs that can map 

the refractivity at 2 km iso-height with high horizontal and temporal resolution. The NN-mapped fields displayed here have a 330 

temporal resolution of 1 hour and a horizontal resolution of 0.5°; these resolutions are enough for our visualization/evaluation; 

however, it is possible to interpolate at a higher resolution. These numbers are sufficient to resolve the spatial and temporal 

scales of ARs (Zhu and Newell, 1998). The NN learns to map the refractivity from the geolocations (and times) of the RO 

soundings. In the second approach, we used refractivity profiles in the geopotential height interval 1–10 km above the ground 

in 1-km intervals to compute and map IWV with high horizontal and temporal resolution. In this case two sequential NNs are 335 

used. The first NN maps refractivity profiles to IWV for each refractivity profile. In this step, the surface geopotential height 
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and sine and cosine of local (solar) time are also input to the NN. The second NN is trained to spatially (and temporally) map 

the IWVs from the soundings horizontally, including geolocation, surface geopotential, and UTC time as inputs.  

Table 3 provides a summary of all the NNs used in this work. In addition to the input and target variables, we also show 

the chosen hyperparameters and architectures of the NNs, which are selected based on the statistics of the validation set. These 340 

parameters are selected after tuning each of the NNs individually for the three different mappings—spatial mapping of 

refractivity, computing IWV from refractivity profiles, and spatially mapping IWV— for the different satellite constellations 

(12, 24, 36, 48, 60). We formulate a NN with standard hyperparameters for each of the three NN types; see Table 3. When 

mapping refractivity, we consider 30,000 epochs and a batch size of 100; however, the learning rate and the number of layers 

depend on the number of satellites in the Walker constellation. When computing IWV from refractivity profiles, we use 30,000 345 

epochs, a batch size of 50, a learning rate of 1 × 10−4, and always 5 layers. When computing maps of IWV from IWV 

soundings, we use 30,000 epochs, a batch size of 100, a learning rate of 1 × 10−3, and 5 layers. Considering that the postfit 

residuals can vary slightly when applying different models, different ML algorithms, or a (slightly) different input dataset, 

further tuning is not necessary.  

Table 3 Summary of the NNs developed for this work. Here, we show the input and target variables, as well as the tuned 350 
hyperparameters and architecture of the NNs. Only the hyperparameters whose tuning affects the results are displayed here. 

 Input Output Constellation Hyperparameters Architecture 

Epochs Learning 

rate 

Batch size Number 

of layers 

Number of 

neurons 

Mapping of 

refractivity 

at 2 km  

- Latitude 

- Longitude 

- UTC time 

N 12 satellites  

 

30’000 

1e-3  

 

100 

7  

 

 

 

 
Layer 1: 512 

 

Layer 2:n: 128 

24 satellites 1e-4 10 

36 satellites 1e-4 10 

48 satellites 5e-5 10 

60 satellites 5e-5 10 

Refractivity 

1-10 km 

above 

ground 

mapped to 

IWV 

- N 1 km 

- N 2 km 

- … 

- N 10 km 

- Cosine of LT 

- Sine of LT 

- Surface 

topography 

IWV All cases 30’000 1e-4 50 5 

Mapping of 

ground IWV 

- Latitude 

- Longitude 

- UTC time 

- Surface 

topography 

IWV All cases 30’000 1e-3 100 5 

3.2.2 Horizontal mapping of refractivity at 2 km iso-height  

We trained ML using the simulated refractivity data at 2 km shown in Figure 4, in Section 3.1.2. Initially, we randomly 

split the data into training and test datasets, where 80% was used for training and 20% for testing. We used a random 10% 

subset of the training dataset for validation. We computed the SD and mean relative error (MRE) of the residuals of the test 355 
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dataset for the constellations of 12, 24, 36, 48, and 60 satellites. The post-fit residuals had SDs of 6.1, 5.5, 4.7, 4.6, and 4.3 N-

units and mean-residual-errors of 1.6%, 1.4%, 1.2%, 1.2%, and 1.1% for those same 5 constellations in the given order. Post-

fit residuals are reduced when using more satellites no matter what metric we use; nonetheless, diminishing returns on the 

increase in the number of satellites becomes noticeable at 36 satellites.  

We validate our approach by comparing the ECMWF forecasts to our ML analysis interpolated onto the ECMWF 360 

longitude-latitude grid. Figure 7 (top panels) displays ECMWF and the ML analyses of the refractivity field at 2 km 

geopotential height for one epoch during the AR and the differences. The reconstructed field improves with the increasing 

number of satellites. With 12 and 24 satellites, an important part of the river is not reconstructed well. We need at least 36 

satellites to reconstruct the AR well and we need 60 satellites to also model some parts of the cyclone off the shore of British 

Columbia. The presence of the AR is apparent with all five constellation configurations; increasing the number of satellites, 365 

however, has the effect of refining the horizontal resolution and fine-scale structures in the AR. The improvement in fine-scale 

structure is reflected in the smaller residuals with increasing number of satellites, shown in Figure 7 (bottom panels). The 

improved horizontal resolution is further confirmed by the smaller SDs of the differences between ECMWF and ML-mapped 

grids for increasing number of satellites, shown in Figure 8. Increased horizontal resolution also leads to better estimations of 

maxima in refractivity associated with AR along its entire length.  Similar figures are produced for the entire scenario and 370 

stacked together as a movie, attached to this publication (see supplement material of this paper). 

 

 

 

Figure 7: Refractivity fields at 2 km geopotential height, for 25 October 2021, at 03:00. Top panels: the left panel shows the 375 

ECMWF forecast field and the other panels show the ML-based fields when using constellations of 60, 48, 36, 24, and 12 

satellites. Bottom panels: differences between the ECMWF field and the ML mapped fields.  
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The hourly time series of the SD of the residuals (in the bottom panels of Figure 7) are displayed in Figure 8. We can see 

the improvement from 12 to 24 satellites and a clear improvement from 24 to 60 satellites. The average SD for the 4 days 380 

duration of the scenario are 6.6, 5.7, 5.1, 4.8, 4.6 N-units for 12, 24, 36, 48, and 60 satellites, respectively.  

 

 

Figure 8: Time series of the SDs of the hourly differences between the ECMWF refractivity field and the ML-mapped 

refractivity fields at 2 km geopotential height for the different satellite constellations. 385 

3.2.3 AR from IWV framework 

We use a framework with 2 sequential NNs to reconstruct the AR shape in terms of IWV using RO profiles and to perform 

a closed-loop validation with the ECMWF grid. Figure 9 displays the flow chart, composed of three blocks: (1) we simulate 

the observations based on ECMWF, (2) we infer IWV from refractivity profiles, and (3) we map IWV in the horizontal. In this 

way we produce continuous IWV fields and compare them with the original ECMWF IWV analyses.  390 
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Figure 9: Flow chart of mapping IWV fields from simulated RO profiles. The flow chart consists of three main parts. The first 

part is the simulation of the observations where the orbits of the LEO Walker constellations (and GNSS), and ECMWF forecast 

grids are used to simulate RO observations. The second part is the first NN where refractivity profiles are mapped into IWV 395 

over the surface topography. The sine and cosine of the local time and the surface topography are also used as input variables. 

The output of this part are the mappable-IWVs. The third part is the second NN where model is trained to map the mappable-

IWVs spatially. This model can be used to produce grids of IWVs (same locations as ECMWF grid) and compare the ML-

mapped IWV fields with ECMWF fields, in a closed-loop validation. 

 400 

We include all RO locations simulated using the propagators. Simulation studies have shown that only 70% of potential 

RO soundings are actually recorded by actual RO missions. We point out that to make our experiments as realistic as possible, 

as shown in the flow chart, only 50% of the simulated RO profiles are used to train the 1st NN. The 2nd 50% is used to produce 

IWVs at untrained locations and they will train the 2nd NN to map the final IWV fields and study the AR structure. Using 

100% of the data to train the 1st NN is not realistic because the resulting mappable-IWVs are not independent. Indeed, in a 405 

real-case scenario, we would obtain refractivity profiles from RO, and to map the profiles into IWVs we must use already 

trained NN models. Clearly these NN models must be trained using other datasets.  

Considering that in RO processing we lose many observations because of processing adversities and not being able to 

process all current GNSS satellites, this amount of data can be considered conservative.  
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3.2.3.1 IWV inferred from refractivity profiles 410 

We trained NNs for the different constellations where we mapped the refractivity from 1 km to 10 km height above the 

ground to IWV.  We use refractivity at 1-km intervals up to 10 km above the surface for several reasons. The choice of profiles 

in the 1-10 km interval is conservative considering that in the lowest part of the atmosphere RO-retrieved refractivity is less 

accurate due to ducting and super-refraction, multipath, SNR attenuation or spherical symmetry in the atmosphere which have 

less accuracy for strong horizontal gradients. There is no simple retrieval of water vapor from refractivity values in the lower 415 

atmosphere without a prior, such as an atmospheric forecast, thus preventing retrieval and vertical integration of water vapor 

to obtain a column-integrated value. Thus, we rely instead on a few indicative values in the PBL and information on the 

atmospheric dynamical state, which information is contained in values throughout the tropospheric column. A good machine 

learning algorithm should be able to discern the meteorology of the local environment and draw on this information to establish 

a relationship between the refractivity values in the lower troposphere, where water vapor contributes most to refractivity, and 420 

column-integrated water vapor. Our motivation is justified by our results, which are found in Table 4. 

The results in terms of residuals on the 50% dataset not used for training are displayed in Figure 10. For simplicity, we 

display only 3 constellations. For constellations with 12, 24, 36, 48, and 60 satellites, respectively, the SDs of the residuals are 

2.0, 1.7, 1.6, 1.5 and 1.5 mm of precipitable water, while the MREs are 8.4%, 6.8%, 6.2%, 5.7% and 5.5%. Note that 1 mm of 

precipitable water is equal to 1 kg m-2 of mass per unit area of column IWV. These statistics reflect the importance of larger 425 

amounts of data to map IWV. In addition, Figure 10 shows regions of higher than usual residuals. One such region is the 

ocean-continent boundary, caused by micrometeorological phenomena associated with those boundaries. Another region is the 

Colorado Plateau, where most of the water vapor is trapped in the lowest 1 km part of the atmosphere because of large-scale 

subsidence. Inferred IWV in this circumstance is expected to be erroneous because our NN uses no input below 1 km height 

above the surface. In addition, errors in IWV over the continents are enhanced because of micrometeorology. Our NN trains 430 

only on a subset of RO soundings, which cannot be completely representative of all micrometeorological environments because 

of small-scale spatial heterogeneity, leaving some micrometeorological environments unsampled and thus subject to erroneous 

inference by the NN. Lastly, large residuals seen over the ocean are caused by abrupt horizontal discontinuities in IWV, 

especially near the AR itself, where large refractivity gradients occur within a few kilometers.   

 435 
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Figure 10: Differences between ML-mapped IWVs from refractivity profiles and IWVs simulated from ECMWF. The mapped 

IWVs are produced for the 50% of the dataset that was not used to train the ML model. Here we display the differences for 

constellations of 12, 36 and 60 satellites. 

 

In order to account for micrometeorological influences of topography we including topography as defined by the ECMWF 440 

model as input parameter for the NN for each sounding. This is to account for the fact that the terrain on continents varies 

much more significantly than the terrain over ocean. In addition, we added the sine and cosine of solar angle (local time) as 

input variables in order to provide the neural network additional information for the on-shore/off-shore flow and related diurnal 

cycles of water vapor. Both the sine and the cosine are provided in order to circumvent discontinuities across midnight that 

arise when instead providing a scalar on a finite [0,24] hour interval.  445 

Using only 50% of the data for training the model, we lose an important part of the observations. We also performed tests 

where we used 80% of the entire dataset to train the model and 20% to test it. The results for the test dataset are summarized 

in Table 4. We also computed separate statistics of the mapped IWVs over ocean and over land. The statistics over land and 

over ocean are similar in terms of SD, however MRE reveals elevated error over land relative to over ocean. We also trained 

models to learn the mapping over ocean and over land independently. We found no notable improvement in performance in 450 

the latter experiment; thus, we proceed to only consider joint land-ocean learning only. The results of mapping separately 

ocean and land show that the IWVs over ground, visible in Figure 6, are more difficult to map. One reason is the larger variation 

of the surface topography. For this reason, in Section 5, we augment the IWV data set with ground-based GPS station 

measurements of IWV.  

 455 

Table 4 Statistics of the differences between the ML mapped IWVs from refractivity profiles and the IWVs simulated using ECMWF 

model, for the 80% test dataset. The statistics, in terms of SD and MRE, are computed for the entire scene, for only the IWVs over 

ocean and for the IWVs over land.   

 N unit 12 satellites 24 satellites 36 satellites 48 satellites 60 satellites 

All data SD [mm] 1.8 1.6 1.4 1.4 1.3 

MRE [%] 7.6 6.0 5.5 5.2 4.8 

Over Ocean SD [mm] 1.6 1.6 1.4 1.4 1.3 

MRE [%] 6.0 5.3 4.4 4.4 4.1 

Over Land SD [mm] 1.8 1.5 1.4 1.3 1.3 

MRE [%] 9.7 7.3 6.8 6.4 6.2 

 

3.2.3.2 Continuous IWV fields from mappable-IWV 460 

We use the mappable-IWVs produced from the 1st NN (the NN that maps refractivity into IWV) to map continuous fields 

of IWVs. The error of the mappable-IWVs was shown in Section 3.2.3.1 (for example Figure 10 shows their differences to 

ECMWF IWVs). The mappable-IWVs, used to map IWV spatially (and thus produce continuous IWV fields), are for the 

profiles not trained in the 1st NN. This is for 50% of the simulated ROs, as shown in the flow chart in Figure 9.  
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Figure 11 (top panels) displays the IWV fields, for one epoch during the AR, for the ECMWF forecast model (left panel) 465 

and the reconstructed fields mapped with ML, for the different constellation configurations (60, 48, 36, 24, and 12 satellites 

from left to right). The bottom row displays the difference between the ECMWF field and the ML-mapped fields. The 

reconstructed field clearly improves with increasing number of satellites. From the residuals (bottom panels of Figure 11), we 

also see how the number of large value residuals (dark blue or dark red) decreases with increasing number of satellites. Again, 

similar figures are produced for the entire scenario and stacked together as an animation, available as supplementary material. 470 

 

 

Figure 11: IWV fields, for 25 October 2021, at 03:00. Top panels: the left panel shows the ECMWF forecast field and the 

other panels show the ML-based IWV fields when using constellations of 60, 48, 36, 24 and 12 satellites. Bottom panels: 

differences between the ECMWF field and the ML mapped fields. 475 

 

The hourly SD of the residuals (bottom panels of Figure 11) are displayed in Figure 12. Both the SD and the MRE are 

reduced with increasing numbers of satellites in the constellation, but improvement becomes marginal beyond 48 satellites. 

For 12, 24, 36, 48 and 60 satellites the average SDs of the differences are.  3.2, 2.6, 2.2, 2.1 and 2.0 mm; an increment of 12 

satellites improves the results by ~19% (12 to 24 satellites), ~15% (24 to 36 satellites), ~5% (36 to 48 satellites) and ~5% (48 480 

to 60 satellites). The average MREs (not visualized here) are 12.1%, 9.9%, 8.7%, 8.0% and 7.5%; an increment of 12 satellites 

improves the results by ~18% (12 to 24 satellites), ~12% (24 to 36 satellites), ~8% (36 to 48 satellites) and ~6% (48 to 60 

satellites). These numbers indicate that information saturates beyond 48 satellites.  
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 485 

Figure 12: Time series of the SDs of the hourly differences between the ECMWF IWV field and the ML mapped IWV fields, 

for the different satellite constellations. 

To further study how the error from the first network propagates into the output of the second network, we also mapped 

the ‘true’ ECMWF IWVs spatially, for the same 50% dataset as the mappable-IWVs. Then, we compared the ECMWF IWV 

fields, and the ones mapped with the trained NN models, i.e., computed their differences. For 12, 24, 36, 48, and 60 satellites 490 

the average SDs are 2.6, 2.1, 1.8, 1.6, and 1.5 mm; an increment of 12 satellites improves the results by ~19% (12 to 24 

satellites), ~14% (24 to 36 satellites), ~11% (36 to 48 satellites), and ~6% (48 to 60 satellites). The average MREs are 9.3%, 

7.4%, 6.3%, 5.7%, and 5.3.%; an increment of 12 satellites improves the results by ~20% (12 to 24 satellites), ~15% (24 to 36 

satellites), ~10% (36 to 48 satellites), and ~7% (48 to 60 satellites).  

The statistics of the mappable-IWVs, compared to ECMWF-based IWVs (with the same spatial distribution), are about 495 

20% worse in terms of SD and about 25% worse in terms of MRE. This is the additional error in the final IWV fields that 

propagates from the 1st NN to the 2nd NN. We conclude that the reconstruction of an AR structure requires a constellation of 

at least 48 satellites.  

4. Results based on available RO refractivity observations 

We investigate how well the COSMIC-2 mission, the most scientific RO-based mission, performs to reconstruct the AR 500 

of our scenario, shown in section 2.1. We use the COSMIC-2 data available on the website (https://registry.opendata.aws/gnss-

ro-opendata) on the Registry of Open Data on AWS (Leroy et al., 2024), where RO observations from different missions are 

collected. We evaluate the refractivity at 2 km, a height where small-scale structures related to water vapor are visible and so 

also the AR. To have a reasonable amount of data, we use observations for six days, from October 22nd until October 27th; i.e., 

we include two days before and after the AR. This resulted in approximately 31,000 observations globally from the COSMIC-505 

2 mission (UCAR, 2025).  

For our scenario, other observations were available from different scientific missions such as MetOp (EUMETSAT, 2025), 

Paz (https://paz.ice.csic.es/, 2025), KompSat5 (eoPortal, 2024), TerraSAR-X (GFZ, 2025), as well as the publicly available 
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commercial data from Spire (https://spire.com/blog/maritime/radio-occultation-in-less-than-500-words/, 2021). Adding these 

observations results in approximately 54,000 global observations of refractivity at 2 km geopotential height. We performed 510 

two experiments; one where only COSMIC-2 data were used, and a second one where all the available data are used. In this 

way we demonstrate the importance of higher density observations for monitoring and resolving ARs.  

Using only COSMIC-2 data, we had 673 occultations for 24th and 25th of October in the AR region; this results in ~14 

occultations hourly. Using data from COSMIC-2, MetOp, Paz, KompSat5, TerraSAR-X, and Spire, we had 1173 occultations 

for 24th and 25th of October in the AR region; this results in ~24.4 occultations hourly. The global datasets are visualized in 515 

Figure 13, and a refinement in the AR region is shown in Figure 14. To fill hourly every 1° latitude-longitude bin of the AR 

region that we selected we would need 3,500 occultations. As we can see in Figure 13 and Figure 14, the COSMIC-2 mission 

has observations up to ~45° latitude, while observations from all the missions fully cover the investigated region.  

 

  520 

Figure 13: Refractivity at 2 km height from COSMIC-2 (left panel) and all available missions (right panel), during 22nd and 

27th October 2021. The purple rectangle highlights the AR scene.  

 

 

Figure 14: Refractivity at 2 km height from COSMIC-2 (left panel) and all available missions (right panel), during 22nd and 525 

27th October 2021. This is a zoom of Figure 13 that highlights the AR scene. 

 

We initially perform ML experiments where we split the data into 80% training (and validation) dataset and 20% testing 

dataset. We see an improvement of about 15% in standard deviation (SD) of the residuals of the test datasets when the data 
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from all the missions are used compared to the case when only COSMIC-2 data are used. We produce hourly maps of 530 

refractivity at 2 km using the COMSIC-2 dataset and the dataset including all missions. Figure 15 and Figure 16 display the 

ML-mapped refractivity fields (center and right panels), and the ECMWF 12-h forecast maps (left panels), for two epochs 

during the AR occurrence. We computed the hourly SDs of the differences between ECMWF and ML-based maps. Using all 

RO missions rather than just COSMIC-2 reduces the SD from 11.49 N-units to 9.42 N-units over the entire timespan, an 

approximately 18% improvement. Considering only the latitudes covered by COSMIC-2, then the SD falls from 11.40 N-units 535 

to 10.59 N-units when considering all missions, an approximately 7% improvement. From Figure 15 and Figure 16 we can 

see that the greater number of observations better tracks the AR shape for a longer duration; at 15:00, on October 25th (Figure 

16) a narrow blue stream when we use all the observations (right panel) is visible, while using only COSMIC-2 observations 

results in dry values, thus, losing the AR shape (center panel).   

 540 

 

Figure 15: Refractivity fields at 2 km height, for 24 October 2021, at 06:00 UTC. The left panel shows the ECMWF forecast 

field; the center panel the ML-mapped field when using COSMIC-2 observations as input to train the NN; and the right panel 

the ML-mapped field when using observations from all the available missions as input to train the NN. 

 545 

 

Figure 16: Refractivity fields at 2 km height, for 25 October 2021, at 15:00. The left panel shows the ECMWF forecast field; 

the center panel the ML-mapped field when using COSMIC-2 observations as input to train the NN; and the right panel the 

ML-mapped field when using observations from all the available missions as input to train the NN. 
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5. AR in ground-based GNSS data 550 

We saw that mapping IWVs over land is not as accurate as over ocean. To enhance AR mapping over land we also exploit 

IWV estimated from ground-based (GB) GNSS. The IWVs from GB GNSS are computed from the zenith total delays, which 

are a principal output of GNSS processing. The dry delay is modelled using an empirical model, such as the Saastamoinen 

model (Saastamoinen, 1973), and subtracted from the total delay. The remaining wet delay is converted into IWV using the 

mean temperature from ERA5 (Yuan et al., 2023). NNs are not needed to produce mappable-IWVs, unlike the case of ROs. 555 

5.1 AR in GB GNSS data 

GB GNSS determinations of IWV are elevated when an AR crosses a station, just as GNSS RO determinations of IWV 

are elevated when they are located directly in an AR. The spatial density of GB GNSS stations is especially useful in improving 

the mapping of the fine structure of ARs, especially in the case of Pacific-coast stations for ARs in the Pacific basin. Moreover, 

GNSS GB determinations of IWV can be produced at a very high temporal resolution (down to 5 or 15 minutes). Figure 17 560 

(right panels) show the IWV from ECMWF 12-h forecast for two epochs, one during the AR life cycle and one when it has 

ended. The black dots mark the GNSS GB stations. The average GNSS stations distance over the entire scene (displayed here) 

is 20 km, with much smaller separations on the Pacific Coast where ARs occur. The left panels display the IWVs processed 

from the Nevada Geodetic Laboratory (NGL) (Blewitt et al., 2018). We can clearly see the higher values when the AR is 

occurring (Figure 17, top panels), and much lower IWV values when it has finished (Figure 17, bottom panels).  565 

Figure 17 (center panels) displays the IWV from the ECMWF model, interpolated at the NGL stations’ locations. Their 

agreement with the GNSS IWVs (left panels) is visibly very good. To be consistent with the results obtained from the test case 

of simulated RO, we also use ECMWF to simulate IWVs for the ground-based GNSS network. In Section 5.2, we use the 

simulated IWVs to display the improvement in AR shape and path over land with GB GNSS compared to RO. Similar figures 

are produced for the entire scenario and stacked together as an animation, provided as supplementary material to this paper. 570 

 

 

 

 

 575 
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Figure 17 AR scenario on October 24th at 13:00 when the river is occurring (top panels) and on October 26th at 09:00 when 

the river has finished (bottom panels). Right panels: the ECMWF field, the dots in black are the GB GNSS stations. Left panels: 

IWVs from GNSS processing, from NGL (Blewitt et al., 2018). Center panels: ECMWF IWVs interpolated at the GB GNSS 580 

locations. The green squares are used to highlight the AR location over ground. All IWV values are for precipitable water in 

mm.  

5.2 Continuous monitoring of ARs over land using mapped GB GNSS data 

We train a NN to spatially map the simulated IWVs for the GNSS network, shown in Figure 17. Then, we map IWVs at 

the ECMWF grid and compute the differences between the “original” ECMWF IWV field and the ML-mapped IWV field. For 585 

one epoch during the AR, Figure 18 displays ECMWF IWV field (left panel), the residuals for the case that simulated GB 

GNSS data were used (right panel), and the residuals for the case that ROs for a constellation of 60 satellites were used to map 

IWVs following the framework of Section 3.2.3 (center right panel). The results are displayed for the ground area surrounded 

by GB GNSS stations (30°N to 50N and 90°W to ~125°W); mapping outside this area leads to poor results due to extrapolation. 

Since the ML model is trained with a dataset collected in a defined area (such as the one shown in Figure 17), the model would 590 

fail to generalize for new meteorological environment. This is especially the case for a highly variable gas (in space and time) 

such as water vapor. From Figure 18, we clearly see that the residuals when mapping GB data are much smaller than when 

using RO data.  
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Figure 18 The left panel shows the ECMWF forecast IWV over ground, during 25 October 2021 at 04:00. The other panels 595 

show the differences between the ECMWF field and the ML mapped fields for the 60-satellites constellation (center right 

panel), and for the case when using GB GNSS data (right panel). 

 

Figure 19 shows the hourly SDs of the residuals for the different cases; again, these are the statistics over land for the area 

in the GB GNSS network shown in the Figure 19. There is a clear improvement of about 65% in SD when using GB GNSS 600 

data. Additionally, GB GNSS IWV induces no error from adjacent soundings with different IWV as is incurred by RO IWV. 

 

Figure 19 Time series of the SDs of the hourly differences between the ECMWF IWV field and the ML-mapped IWV fields over 

land, for the different satellite constellations and for the GB GNSS case (black curve).  

 605 

We also train NNs where we simultaneously use IWVs from GB GNSS and mappable-IWVs from RO. After tuning, the 

hyperparameters of the NNs when using GB data are: “number of epochs” equal to 15000, “batch size” equal to 4000 and 

“learning rate” equal to 0.001. The NNs had 5 layers with 512 neurons in the first layer and 128 neurons in the other layers. 

The results were similar to using only the GB data because the number of observations does not change much when considering 

ROs over land. For the 4-day scenario, there are ~330K GB observations and ~7.5K RO observations over land (for the 50% 610 

test dataset used to generate the mappable-IWVs, see Figure 9) assuming a 60-satellite constellation. The simultaneous use of 

GB IWVs and RO mappable-IWVs would be beneficial in areas with low-density GB networks; our study area has one of the 
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densest GB networks globally. We conclude that GB GNSS data are extremely helpful to reconstruct continuously and 

accurately the IWV structure of the selected AR over ground.  

6. Summary, conclusions and discussion 615 

In this work, we investigate GNSS RO as a method to reconstruct (and monitor) ARs. The high vertical resolution of GNSS 

RO is important to capture the amount of water vapor at different altitudes, for RO profiles located in the atmospheric planetary 

boundary layer. One drawback with GNSS RO is its horizontal and temporal resolution. Indeed, the narrow width of ARs and 

short timescales associated with ARs make it difficult to use current RO densities to reconstruct ARs. With current RO data, 

only few (tens) of occultations are available inside an AR scene (here defined ~ 70° × 50° in latitude/longitude). To ameliorate 620 

this problem, we leverage our previous work, where we developed an ML approach to map GNSS ROs, showing that our 

method can increase the resolution of RO observables both spatially (horizontally) and temporally. We focus our analysis on 

an AR that hit the West Coast of the US during the 24th and 25th of October 2021. This AR led to heavy precipitation, flooding 

events (and warnings), storms (treefalls), power outages and minor mud slides.  

We investigate how different prospective GNSS RO LEO constellation configurations might impact the reconstruction of 625 

the AR structure. Using an orbit propagator for the LEO satellites and actual ephemerides of the GNSS satellites, we calculate 

the geolocations and the times that RO would occur. We considere RO soundings, fore and aft, that would be obtained using 

the GPS, GLONASS, Galileo, and the BeiDou GNSS constellations. We use NWP forecasts from ECMWF with 0.1° 

latitude/longitude resolution to interpolate ECMWF refractivities and IWVs to the geolocations and times of the occultations, 

thus, producing simulated RO observations. By mapping the simulated ROs to the original ECMWF grid, we can perform 630 

closed-loop validations of our results. 

In this work, we have two main objectives: 

- The first goal is to design appropriate LEO constellations for detection of ARs. We consider Walker constellations 

because of their uniform RO sounding coverage, symmetrical distribution of satellites and scalability. We test constellations 

consisting of 12, 24, 36, 48 and 60 satellites. The main orbital parameters that we investigate are the number of planes and the 635 

inclination. We find the optimal inclination to be polar orbits, which minimize temporal variability in regional sounding 

numbers. For a 12-satellite constellation, 3 orbital planes and 90° inclination lead to the best results for reconstructing ARs. 

For 24, 36, 48, and 60 satellites, the best option is using 6 orbital planes with an inclination of 85°.  

- After finding the best constellations, and simulating the RO observations based on ECMWF, the second objective is 

to define the minimum number of satellites that is appropriate to reconstruct accurate and continuous AR fields. Initially, we 640 

map the refractivity at 2 km iso-height. In this case, we notice important improvements when increasing the number of satellites 

from 12 to 24 and from 24 to 60. A constellation of 36 satellites can reconstruct the AR structure well. Then, we map the IWV 

in the AR scene, using profiles of refractivity. In this case, we use an architecture with two consecutive NNs. The first NN is 

used to map the refractivity profiles into IWV; the output being mappable-IWVs. We can see that mapping refractivity into 
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IWV is less accurate (at least in terms of MRE) over land compared to locations over the ocean. The second NN uses the 645 

output of the 1st NN, i.e., the mappable-IWVs, to produce continuous fields of IWVs, i.e., to map IWV spatially and temporally. 

In this case, a 48-satellite constellation seems more appropriate to reconstruct the IWV field during the AR. By studying fields 

of IWV mapped using as inputs (1) the ML-based mappable-IWVs and (2) the original ECMWF-based IWVs, we can also 

conclude that the error propagating from the 1st NN network to the 2nd NN is ~20% in terms of SD and ~25% in terms of MRE. 

We point out that the ML results in this study are an average of an ensemble of 10 trained NNs. 650 

We use observations of current RO missions and map continuous fields of refractivity at 2 km height to reconstruct the AR 

path and shape. We map refractivities from the COSMIC-2 mission and refractivities from all RO missions horizontally during 

the AR occurrence. The hourly RO counts are 14 for COSMIC-2 only and 24.4 for all missions. Due to the low density (in 

both cases), while we are able to map parts of the AR structure, it is not possible to continuously produce refractivity maps 

that reconstruct appropriately the AR. However, these tests show that including more RO soundings can benefit the 655 

reconstruction of the AR. 

To enhance the reconstruction of the AR structure over land we use observations of GB GNSS. IWVs from GB GNSS have 

been used for a long time to monitor water vapor in the atmosphere. Here, after visualizing the AR sensed by the GB network, 

we map GB IWVs into gridded products over ground. In this case, we only need one NN to map IWV spatially. The high 

temporal and spatial distribution of GB GNSS leads to much improved (~65%) AR structure over ground compared to the case 660 

when we use RO. The combination of space- and ground-based GNSS observations works very well in areas with high-density 

of ground-based GNSS observations. Many atmospheric rivers occur in Western Europe, Australia, New Zealand and Chile 

that have local ground-based networks with a relatively high density.  

 

There is no question that current operational RO retrievals suffer from biases associated with super-refraction. The biases 665 

are typically -4% in refractivity, which leads to approximately -25% is water vapor. It is a long recognized and venerable 

problem. On the other hand, at least three methods have been proposed for mitigating the bias associated with super-refraction: 

(1) with collocated water vapor radiometer soundings, (2) with collocated infrared or microwave nadir radiance data, or (3) by 

consideration of the synchronous signal of the RO transmitter off of the ocean surface in maritime environments. None of 

these algorithms have been exercised on program-of-record data at scale yet, and certainly modifications to GNSS RO receiver 670 

design and formation flying of RO satellites with radiance sounder satellites are expected to help in the future. We leave the 

problem of super-refraction to the RO retrieval science community, which is very actively making progress along these lines.  

Our study aims to provide a framework to reconstruct ARs from space- and ground-based GNSS observations. An 

important part of our study is the demonstration of the ML framework with simulated observations. While the study sets a 

baseline to map and study IWV fields for AR events, there are some limitations worth mentioning due to our simulation design 675 

and focus on this particular AR: 
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- Distribution of GB GNSS networks: the GB network in the US West Coast of the Pacific is one of the densest GNSS 

networks. In areas with low density of GNSS stations, for example in Africa, the combination of GB and RO data will bring 

less improvement. In this case, we would benefit more from simultaneous IWVs from GB and RO over ground.  

- IWV at RO locations: the IWV at the RO location will often be underestimated due to missing RO data in the profile for the 680 

lowest hundred meters. While this is not a problem with simulated data, there will be an increased uncertainty from training 

ML models that map IWV from refractivity profiles for real data. A possible solution is to train the RO profiles on other 

datasets that do not miss the lowest IWV information such as datasets of reprocessed weather models or microwave 

radiometers. 

- Duration, location and lateral movement of ARs: the results we have presented are focused on one AR, a relatively 685 

representative AR event. However, the duration, location and movement vary for different ARs, which means that while our 

results can be generalized to some extent, a similar analysis would be appropriate when considering other ARs.  

- Possible combination with Special Sensor Microwave Imager/Sounder (SSMI/S) data: while in this work we focus on space- 

and ground-based GNSS data, SSMI/S satellite data are a viable IWV source to combine with RO over ocean. An important 

consideration for SSMI/S is that such datasets may contain large gaps under rainy and cloudy conditions that are typical in 690 

ARs. In addition, SSMI/S and other microwave radiometers can obtain high sounding densities, but they are poor at 

discerning the vertical structure of water vapor in a column, and they are far more costly instruments. As a consequence, 

they typically do not obtain good coverage of the diurnal cycle and leave significant gores in their sampling patterns at low 

latitudes. 

- Horizontal resolution of AR: in our study, in case of simulated observations we assume RO data with very high horizontal 695 

resolution. In case of real data, RO resolution is very good in the cross-track direction with 1.5 km resolution. The horizontal 

resolution of an RO sounding in the along-track direction has never been objectively quantified. It almost certainly depends 

on the effective vertical resolution of the retrieval, which is detected by radioholographic filters that are applied in “physical 

optics” retrievals and on any other smoothing of the raw data or retrieved profiles in the retrieval algorithm. In theory, it  

should be possible to obtain effective vertical resolution of ~100 meters in an RO retrieval. The horizontal path of an RO 700 

ray through a 100-meter atmospheric layer is ~70 km. We can consider this an optimistic horizontal resolution of an RO 

sounding. 
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