
We are grateful to the editor and referees for their time and energy in providing
helpful comments and guidance that have improved the manuscript. In this document,
we describe how we have addressed the reviewers’ comments. Please note that the
quantified results have slightly changed due to adjustments in the temporal range
(1982–2011) and the datasets (specifically, the removal of GOSIF GPP). Referee
comments are shown in black italics and author responses are shown in blue regular
text. A manuscript with tracking changes is attached at the end.

Reviewer #2:
General comments
The authors utilized existing GPP observations and multi-model simulations to
examine latitudinal differences in temperature responses (positive in boreal, negative
in tropics) and vegetation-type specific sensitivities. While the topic is within the
scope of Biogeosciences, I have several major concerns regarding the novelty and
methodology of this work.
 Thank you for your evaluations. We made substantial revisions following your

comments. We hope this version of paper have answered your concerns.

Numerous previous studies have already investigated GPP responses to temperature,
precipitation, and drought across different regions and vegetation types, as well as
global GPP responses to specific meteorological factors, i.e., tropical region (Piao et
al., 2013, Lomax et al. 2024), boreal forest to drought (Lindroth et al. 2020,
Martínez-García et al., 2024). The general relationships between GPP and
meteorological variables described in the abstract could essentially be obtained
through literature review alone. Therefore, I am not fully convinced by the motivation,
novelty, and critical insights in re-examining these well-documented responses.
 Thank you for your insightful comment. We acknowledge that previous studies

have extensively investigated the responses of GPP to climatic drivers. However,
we provided several new insights as listed below:
(1) This study systematically explored the responses of GPP to temperature,

precipitation, and drought across various vegetation types. Most previous
studies have focused on either a single vegetation type (e.g., boreal forests in
Lindroth et al., 2020) or a single climatic factor (e.g., precipitation in Lomax
et al., 2024).

(2) We validated the performance of state-of-the-art vegetation models, which
provide long-term carbon simulations for the annual Global Carbon Budget



report, against available benchmark datasets. This updated assessment (e.g.,
compared with Piao et al., 2013) offers an up-to-date understanding of the
credibility of the land carbon budget predicted by these models.

(3) Our analyses showed that state-of-the-art models tend to overestimate the
positive effects of precipitation on GPP, particularly in tropical regions. Such
biases may lead to an overestimation of carbon sink losses during drought
years. Furthermore, structural differences among models, such as the
inclusion of carbon-nitrogen coupling and the separation of direct and diffuse
radiation, can substantially influence the simulated GPP sensitivity to drought,
offering critical insights for model improvement.

In this revised paper, we have incorporated site-level validations of
benchmark GPP (Fig. 2), analyzed the simulated GPP sensitivity to climatic
factors across different model structures (Fig. 9), and substantially expanded
the discussion to examine the drivers of GPP responses and the sources of
biases in model simulations. Detailed revisions will be shown in the following
responses. With these updates, along with the original analyses, we aim to
provide a robust foundation for understanding multi-model ensemble
predictions, particularly for interpreting long-term trends and interannual
fluctuations of terrestrial carbon sinks.

The authors acknowledged the potential nonlinear relationship between GPP and
meteorological variables in the introduction, yet the analysis relied entirely on linear
regression/correlation methods. This approach is inadequate for capturing non-linear
GPP responses to extremes (e.g., drought thresholds, temperature optima).
 Thank you for your insightful comment. During the revision process, we

attempted to perform quadratic regressions to derive the optimal thresholds as
suggested. However, these regressions yielded low R2 values for most plant
functional types (not shown), indicating that the nonlinear relationships between
GPP and meteorological variables are highly complex and cannot be adequately
captured by a simple threshold. Moreover, for some PFTs, such as evergreen trees
in boreal regions, environmental temperatures are generally too low to reach their
optimal levels, making it difficult to determine such thresholds.

In this revision, we have expanded the discussion to acknowledge the importance



of the nonlinear responses of GPP to climatic factors:
“Some PFTs show limited GPP responses to climatic variations (Fig. 5), such as
DBF and shrubs to temperature, and ENF and EBF to precipitation. This is likely
because their GPP are not primarily constrained by these factors under typical
environmental conditions. In relatively stable climates, such as temperate forests
or humid tropical regions, temperature and water availability often remain near
optimal levels for photosynthesis, so additional warming or increased
precipitation brings little further benefit and may even reduce GPP(Reichstein et
al., 2006).” (Lines 507-512)

We also explicitly discussed the limitations of ignoring nonlinear responses:
“Finally, the nonlinear effects of climatic factors on GPP responses were not
considered in the analyses. We employed the linear regression to estimate GPP
sensitivity to the climatic changes. In reality, GPP often exhibits threshold-like
responses to climate drivers, such as declining photosynthetic efficiency under
heat stress (Doughty et al., 2023) or diminishing GPP with increasing
precipitation once water availability is no longer limiting (Li et al., 2022).
Ignoring these nonlinear dynamics may lead to underestimation or overestimation
of GPP sensitivities, particularly in regions where climatic conditions approach
environmental limits for plant growth. Future studies could incorporate nonlinear
analyzing approaches, such as quadratic or piecewise regressions, to better
capture the full range of GPP responses to climate variability.” (Lines 577-586)

Additionally, the observational datasets (GLASS, GOSIF, JUNG) cover different
periods (1982– 2017 vs. 2001– 2018 vs. 1982– 2011). The non-overlapping
timeframes may introduce biases in trend and sensitivity analyses, particularly given
accelerated climate change after the 2000s.
 Thank you for your insightful comment. We have revised the analysis by

removing the GOSIF dataset due to its relatively shorter and misaligned temporal
coverage. All analyses now rely on the overlapping period (1982–2011) between
the GLASS and JUNG datasets. The updated text is as follows:
“In this study, we use the overlapping period of 1982-2011 from both GLASS and
JUNG as the reference period.”(Lines 127-128)

The 17 models included in this study vary substantially in resolution, carbon-nitrogen
coupling, and radiation schemes as illustrated in Table 1. The authors should address



how structural differences contribute to inter-model variability through sensitivity
analyses or other methods.
 Thank you for your valuable suggestion. In the revised paper, we conducted a

sensitivity analysis to assess the impact of model structure on the simulated GPP
responses to climatic drivers. We added a new section 3.5 and Fig. 9 as follows:

“3.5 Impact of model structure on drought sensitivity
The TRENDY models use different structures and parameterizations for

carbon cycle simulations (Table 1), leading to varied GPP responses to climatic
variables (Fig. 4). To assess the impact of model structure on simulated GPP
sensitivity to drought, we grouped the models based on whether they include
carbon-nitrogen coupling and/or whether they use separate schemes for diffuse
and direct radiation. For most PFTs, incorporating the nitrogen cycle generally
increased GPP sensitivity to scPDSI compared to models without carbon-nitrogen
coupling, leading to a further overestimation of drought responses relative to the
benchmark datasets (Fig. 9a). Meanwhile, models that distinguish between direct
and diffuse radiation showed higher GPP sensitivity to scPDSI than those without
such a radiation scheme on the global scale (Fig. 9b). This feature is most
pronounced for non-tree PFTs (e.g., C3G, C4G, and crop). In contrast to the
effect of carbon-nitrogen coupling, which consistently magnified the simulated
drought responses, the two-leaf radiation scheme reduced GPP sensitivity to
scPDSI for EBF and shrubs, thereby improving the simulated drought responses
for these two PFTs.” (Lines 449-462)



Fig. 9. Comparison of GPP sensitivity to scPDSI across model configurations. Model groups are
categorized based on the presence or absence of carbon-nitrogen (C-N) coupling and the separate
treatment of diffuse and direct radiation (two-leaf). For each structural feature, ensemble means
are calculated from benchmark datasets (grey; including GLASS and JUNG), models with the
feature (blue), and models without the feature (pink). The errorbars indicate one standard
deviation across benchmark datasets or model simulations.

We also expanded discussion for the possible causes and implications:
“Our analyses showed that differences in model structures partly contribute to the
variations in simulated GPP sensitivities (Fig. 9). For instance, the representations
of carbon-nitrogen (C-N) coupling can substantially influence the simulated
response to water stress (Luo et al., 2008; Liu et al., 2025). By emphasizing
nitrogen limitation on photosynthesis, C-N coupled models may amplify the
interactions between water availability and carbon cycling in nitrogen-limited



ecosystems such as ENF, potentially leading to deviations from observed
sensitivity patterns (Yang et al., 2025). Furthermore, differences in canopy
radiative scheme affect simulated GPP responses to drought. In ecosystems with
complex canopy structures, such as EBF and shrubs, models incorporating a
two-leaf radiation transfer scheme show better agreement with observed GPP
sensitivity to scPDSI. This likely reflects a more realistic representation of light
distribution and leaf functional traits in multi-layered canopies, enhancing diffuse
radiation use efficiency and mitigating the limiting effect of water stress on
photosynthesis (De Pury and Farquhar, 2008). In contrast, in grassland
ecosystems with simplified canopy structure (both C3 and C4), models that
separate direct and diffuse radiation tend to overestimate GPP sensitivity to
scPDSI, likely due to overestimated diffuse fertilization effects (Kanniah et al.,
2013).” (Lines 544-558)

Specific comments
Please clarify all the units, Pg C or Pg CO2, throughout the manuscript.
 We clarified that the units of “Pg C” was used throughout the manuscript. All

relevant figures, tables, and text have been updated accordingly.

Only the GLASS GPP product is shown in Figure 1a, while the other two observation
datasets are not included. Please explain the rationale for this selective presentation.
 In the revised version, we have focused on GLASS and JUNG datasets as the

observational benchmarks. The time series for JUNG GPP has now been added to
Fig. 1a to ensure a complete and accurate representation of the data used in our
analysis.



Fig. 1. Comparison of spatiotemporal variations in Gross Primary Productivity (GPP) between

benchmark and model simulations. The (a) temporal variations in simulated GPP from individual

models and the multi-model ensemble (MME) mean (thick red line) are shown alongside

benchmark data from GLASS (thick black line) and JUNG (thick blue line). Spatial patterns of

GPP trends from (b) benchmark, represented as the mean of two products (GLASS and JUNG),

are compared with (c) the MME of the simulations. Latitudinal variations in GPP trends are also

shown, with benchmark data represented in black and model simulations in red; shading indicates

one standard deviation.

Line 380-383: The divergence between observations and models is already evident in
the GPP trends shown in Figure 1. This discrepancy should be explained before
analyzing the GPP responses to meteorological factors.
 Section 4.1 focuses on the drivers of GPP sensitivity to climatic factors based on

benchmark products, while Section 4.2 addresses the performance of model
simulations. Accordingly, we explain the divergence between benchmark data
and model results at the beginning of Section 4.2 as follows:
“For this study, we used two benchmark datasets to assess the simulated GPP
responses to climatic variables from 17 state-of-the-art vegetation models. The
model in general captured the increasing trends in benchmark GPP but with large
inter-model variability (Fig. 1). Meanwhile, the MME failed to reproduce the
decline in GPP over in Amazon. These biases likely originate from the inadequate



representation of key processes in the models, such as moisture stress,
phenological responses, and anthropogenic disturbances (e.g., deforestation and
forest degradation) in tropical ecosystems (Gu et al., 2002; Koch et al., 2021).
Many models also overestimate the benefits of CO2 fertilization under
moisture-constrained conditions, while failing to adequately represent the
constraints imposed by combined heat and drought stress on photosynthetic
activity, such as photoinhibition and stomatal closure (Green et al., 2020).
Furthermore, insufficient representation of thermal adaptation and resilience
mechanisms in tropical vegetation may lead to an overestimation of carbon sink
capacity under prolonged climatic stress (Doughty et al., 2023).” (Lines 521-532)

Line 385-388: references are needed for this. Is this from your analysis or previous
studies? Please clarify and provide appropriate citations.
 This statement is based on our analyses, particularly the results shown in Fig. 5.

In the revised manuscript, we have clarified it as follows:
“However, our analyses showed that models overestimated the impact of
precipitation on GPP, particularly in vegetation types such as C3G, DBF, ENF,
and EBF (Fig. 5).” (Lines 534-536)
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