We are grateful to the editor and referees for their time and energy in providing
helpful comments and guidance that have improved the manuscript. In this document,
we describe how we have addressed the reviewers’ comments. Please note that the
quantified results have slightly changed due to adjustments in the temporal range
(1982-2011) and the datasets (specifically, the removal of GOSIF GPP). Referee
comments are shown in black italics and author responses are shown in blue regular

text. A manuscript with tracking changes is attached at the end.

Reviewer #1:

General comments

This manuscript investigates how gross primary productivity (GPP) responds to
temperature, precipitation, and drought across global ecosystems, using two
satellite-derived GPP products (GLASS and GOSIF), a data-driven GPP product
(JUNG) and outputs from 17 DGVMs within the TRENDY vIl multi-model
simulations. This study refers to the mean of three GPP products as "observations"
and uses them to evaluate the sensitivity of DGVM-simulated GPP to environmental
variables in terms of the global spatial pattern and different plant functional types
(PFTs). The topic is important for understanding the terrestrial carbon cycle under a
changing climate. However, there are several major issues that still need to be
addressed regarding terminology, data selection and benchmarking, and incomplete
information, all of which undermine the study's reliability. Below, I outline major
concerns, missing information, and specific comments for revision.

» Thank you for your evaluations. We have made substantial revisions following

your comments. We hope this version of paper have answered your concerns.

Major concerns

The authors refer to GLASS (based on MODIS/AVHRR and LUE models), GOSIF

(based on SIF, proxy for GPP), and JUNG (data-driven, upscaled via machine

learning) products as "Observations of GPP." This is conceptually inaccurate and

misleading. The GLASS and GOSIF GPP products should instead be referred to as

"satellite-derived GPP'"/ '"satellite-based GPP," as none of them are direct

observations. I believe this mislabeling may also confuse other readers.

» Thank you for your valuable comment. In the revised manuscript, we have
clarified that the GLASS product is satellite-derived and the JUNG product is the

machine learning-based upscaled datasets, both of which are not direct



observations. We validated them against FLUXNET eddy covariance tower
measurements and found reasonable agreement (see the new Fig. 2). Therefore,
we treated them as observation-constrained benchmark datasets for model
evaluation and comparison and clarified in the revised paper as follows:

“In this study, we selected 51 eddy covariance sites from a total of 201
FLUXNET sites to evaluate the responses of GPP to temperature and
precipitation from the benchmark datasets. The selected sites should meet the
following criteria: (1) a record length of at least 8 years, and (2) a missing data
ratio of less than 50% for both individual days and years. Although neither the
GLASS nor JUNG GPP products represent direct observations, they show good
agreement with in situ FLUXNET measurements in terms of climatic sensitivity
during the specific validations. We therefore consider them reliable
observation-constrained benchmark datasets for model evaluation and
comparison.” (Lines 120-127)

“We evaluated the climatic sensitivity of the benchmark GPP datasets against
FLUXNET measurements (Fig. 2). Most FLUXNET sites available for
comparison are located in North America and Europe. Benchmark GPP correlated
positively with temperature in western Europe, weakly negatively in central
Europe, and negatively in southern North America (Fig. 2a). For precipitation,
FLUXNET GPP showed positive correlations across Europe, particularly along
the Mediterranean and Atlantic coasts, as well as over much of North America
(Fig. 2¢). The mean of the GLASS and JUNG datasets was reasonably consistent
with FLUXNET, with correlation coefficients of 0.63 (p < 0.01) for temperature
(Fig. 2b) and 0.59 (p < 0.01) for precipitation (Fig. 2d).” (Lines 291-299)
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Fig. 2. Distribution of correlation coefficients between FLUXNET GPP and climatic variables for
(a) temperature (T2M) and (c) precipitation (PRE). These correlations are compared with those
derived based on benchmark GPP (the mean of GLASS and JUNG) for (b) T2M and (d) PRE at

individual sites.

The authors use the mean of three GPP products as benchmarks to evaluate the
sensitivity of TRENDY model simulations to environmental drivers. Although these
products have been validated at flux tower sites, their performance is not consistently
reliable, especially for long term trends (Zheng et al., 2020, Bai et al., 2023). In
addition, Bai et al. (2023) reported large discrepancies in trends among different
satellite-derived GPP products. As shown in Figure 4 of this manuscript, for some
plant functional types (PFTs), the sensitivity of GPP to climatic variables varies
greatly among the three satellite-derived datasets — sometimes with differences as
large as the sensitivities themselves (e.g., for EBF in Fig. 4a and Fig. 4c). Therefore,
it is questionable to use the average of these three products as a robust benchmark.
» Thank you for the valuable comments. To enhance the robustness of our analysis,

we have implemented the following improvements in the revised manuscript:

(1) We removed the GOSIF dataset due to its relatively shorter temporal

coverage and retained only the overlapping period (1982-2011) for GLASS and

JUNG;

(2) While all benchmark GPP products include certain uncertainties, both GLASS

and JUNG have been validated against FLUXNET site data and demonstrate



consistent responses to key climatic variables. We used the mean of GLASS and
JUNG because validations showed that their average performed better compared
to individual dataset in capturing the climatic sensitivity from site-level
measurement (see the new Fig. S2). However, for most of analyses, we retain the

range from the two datasets to quantify the uncertainty.

In the revised paper, we clarified as follows:

“The mean of the GLASS and JUNG datasets was reasonably consistent with
FLUXNET, with correlation coefficients of 0.63 (p < 0.01) for temperature (Fig.
2b) and 0.59 (p < 0.01) for precipitation (Fig. 2d). These correlations are higher
than the those derived from individual benchmark GPP datasets (Fig. S2).
Therefore, we used the benchmark GPP datasets in subsequent analyses, given
the limited spatiotemporal coverage of FLUXNET measurements. To mitigate
potential biases while still accounting for uncertainties among individual datasets,

we also used their ensemble mean.” (Lines 296-302)
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Fig. S2. Comparison of GPP-climate correlations between FLUXNET in sifu data and the GLASS
or JUNG benchmark datasets for (a) temperature and (b) precipitation. At each FLUXNET site,
correlation coefficients are calculated between the FLUXNET eddy covariance GPP and climatic

variables, and compared with the corresponding correlations derived from the benchmark datasets.

The classification of grid cells by plant functional types (PFTs) is based on the 2001
-2012 MODIS land cover mean, but the analysis period spans as far back as 1982.

Since both real-world vegetation and modeled PFTs can shift over time, this temporal

mismatch introduces additional uncertainty. A more robust approach would be to

focus on flux tower sites with stable vegetation types and use site-level GPP - climate

relationships to evaluate both model and satellite-derived GPP responses.

>

Thank you for your valuable suggestion. We have added validations of GLASS
and JUNG products using FLUXNET flux tower site data in the revised paper.
Please see the new Fig. 2 and Fig. S2 in our above responses. We also added a
new Fig. S1 to show the distribution of PFTs. We checked that the changes of
MODIS PFT from 2001 to 2012 is limited, with the maximum of-2.82% for C4G.



In addition, we compared simulation results from the S2 (without land cover
change) and S3 (with land cover change) runs, and found limited differences in
the derived GPP sensitivities to climatic drivers from models (see Figs. S6-S7). It

suggests that land cover change may not change our main conclusions.

In the revised paper, we have included following discussion on the effect of land
cover change: “Second, we employed multi-model simulations from TRENDY
S3 run, which incorporates interannually varying meteorology and land cover. To
exclude the effects of land-use change, we collected GPP data from the S2 run
and re-calculated correlations/regressions with climatic variables (Figs. S6-S7).
Comparisons showed limited differences between the results from the S2 and S3
runs, supporting the robustness of our derived climatic impacts on GPP.” (Lines
567-571)
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Fig. S1. Spatial distribution of the dominant land cover type. The number of grids for each plant
functional type (PFT) is shown alongside the colorbar. The PFTs include cropland (Crop), Cs
grassland (C4G), C; grassland (C3G), shrubland (Shr), deciduous broadleaf forest (DBF),
evergreen needleleaf forest (ENF), and evergreen broadleaf forest (EBF).

Incomplete information

The caption of Figure 2 is the only place where the time periods of the three GPP
products are mentioned: "For observed GPP, correlation coefficients were calculated
at each grid cell over the period 1982 - 2017 for GLASS, 2001 - 2018 for GOSIF,
and 1982 - 2011 for JUNG." The manuscript does not explain how the temporal



mismatch was handled, nor how the three datasets were merged. Additionally, it is

unclear what time period was used when calculating the correlation between the

merged GPP dataset and climatic variables. Please clarify.

» We are sorry about this confusion. In response, we have revised the analysis by
removing the GOSIF dataset due to its relatively shorter and misaligned temporal
coverage. All analyses now rely solely on the overlapping period (1982 - 2011)
between the GLASS and JUNG datasets. The updated text is as follows:

“In this study, we use the overlapping period of 1982-2011 from both GLASS
and JUNG as the reference period.” (Lines 127-128)

“To facilitate the analyses, we interpolated all datasets, including GPP benchmark,
TRENDY simulations, ERA-5 meteorology, scPDSI, and MODIS land cover, into

the same resolution of 1° X 1° using linear interpolation.” (Lines 248-251)

Please provide a supplementary figure showing the spatial distribution and number of

grid cells classified under each land cover type.

» Thank you for your suggestion. We have added a new Fig. S1 to display the
spatial distribution of dominant plant functional type (PFT) used in our analysis.

The number of grids for each PFT is also shown.
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Fig. S1. Spatial distribution of the dominant land cover type. The number of grids for each plant
functional type (PFT) is shown alongside the colorbar. The PFTs include cropland (Crop), Cs
grassland (C4G), C; grassland (C3G), shrubland (Shr), deciduous broadleaf forest (DBF),
evergreen needleleaf forest (ENF), and evergreen broadleaf forest (EBF).



The definition of '"sensitivity" is not clearly stated in the manuscript. A formal

definition needs to be provided.

>

We have added a formal definition of "sensitivity" in the Methods section of the

revised manuscript as follows:

“The multiple linear regression model is formulated as:
Y = Bo + P1Xy + PoXz + € (7)

where Y represents GPP, X; and X> denote PRE and T2M respectively. Here, [
is the intercept, and 1, B, are the regression coefficients associated with each
predictor. These coefficients represent the partial effect of each variable on GPP
while holding other variables constant, and they are defined as the sensitivities of
GPP to the corresponding climatic variables (Piao et al., 2013).” (Lines 235-243)

In Section 2.3, please include the mathematical formulation of the scPDSI index.

>

In the revised manuscript, we have added the detailed mathematical formula of
the scPDSI index to Section 2.3 as follows:

“In this study, we used the self-calibrating Palmer Drought Severity Index
(scPDSI) to represent drought severity. scPDSI is an improved version of the
original PDSI and is widely recognized for its application in drought monitoring
and assessment (Wells et al., 2004). The core of PDSI is the water balance

equation:
= + + + (1)

where P is precipitation, E7 is evapotranspiration, R is soil recharge, RO is runoff,
and L is loss from the soil. These terms are computed using a two-layer soil
model (topsoil + underlying layer) and potential values derived from
meteorological data (temperature, precipitation, soil water-holding capacity).
Meanwhile, the CAFEC precipitation ( ) is defined as the amount of
precipitation needed to maintain “normal” soil moisture conditions:

= . + -+ . + . (2)
where , » , are the potential values of evapotranspiration, recharge,
runoff, and loss, respectively. The coefficients , , are defined as

water-balance coefficients, which are set to constant in PDSI calculations. The
scPDSI improves the traditional PDSI by incorporating adjusted (self-calibrated)
coefficients for each location rather than fixed values. These parameters are
derived using extensive historical meteorological data to establish baseline



moisture conditions, improving both the accuracy and stability of the index (Van
Der Schrier et al., 2013).

The departure of actual precipitation from CAFEC precipitation is:

= - (3)
This departure is scaled by a weighting factor K (also calibrated in scPDSI):

= @

where Z is a dimensionless moisture anomaly index for each time step. This Z
value is then used to derive scPDSI based on a recursive computation.” (Lines
152-182)

In Section 2.3, please specify the final temporal resolution of the data used in this

study. Are the analyses conducted at monthly or annual resolution?

>

We clarified that annual mean datasets are used for analyses: “We calculated the
annual mean value of both scPDSI and climatic variables and investigated their
relationships with GPP from both benchmarks and models.” (Lines 199-200)

The discussion in Section 4.1 is too general —it only addresses GPP responses to

temperature, precipitation, and drought on a global scale. Readers would benefit from

a more detailed discussion of how these responses differ across vegetation types

(especially where GPP responses differ significantly between PFT5).

>

Thank you for your constructive suggestion. In the revised manuscript, we have
expanded the discussion in Section 4.1 to include a more detailed analysis of how
GPP responses to temperature, precipitation, and drought vary across different
vegetation types. The changes include:

“In high-latitude areas, which are predominantly covered by coniferous forests
and tundra, low temperatures are the primary constraint on photosynthesis. Boreal
coniferous forests benefit most from spring warming which extends the
photosynthetic period, whereas tundra vegetation shows strongest response to
summer warming that accelerates their growth cycles.” (Lines 477-480)

“Tropical EBF are particularly sensitive to rising temperature as they already
function near their thermal optimum; further warming reduces stomatal
conductance and increases photorespiration. Savanna grasslands, although more

heat-tolerant, also experience GPP declines under extreme heat, especially when



accompanied by water stress.” (Lines 484-487)

“Arid and semi-arid ecosystems, such as dry shrublands, show the strongest GPP
responses to precipitation changes, whereas temperate forests exhibit more
moderate responses due to lower water limitation.” (Lines 495-497)

“Some PFTs show limited GPP responses to climatic variations (Fig. 5), such as
DBF and shrubs to temperature, and ENF and EBF to precipitation. This is likely
because their GPP are not primarily constrained by these factors under typical
environmental conditions. In relatively stable climates, such as temperate forests
or humid tropical regions, temperature and water availability often remain near
optimal levels for photosynthesis, so additional warming or increased
precipitation brings little further benefit and may even reduce GPP (Reichstein et
al., 2006). Many of these PFTs also possess structural and physiological traits,
such as deep root systems, evergreen leaf phenology, or high thermal tolerance,
which buffer them against short-term climate fluctuations and reduce their
sensitivity to seasonal or interannual variability in climate (Choat et al., 2018). In
some ecosystems, other factors such as light availability, nutrient limitation, or
biotic interactions exert stronger control over GPP, further dampening the
apparent influence of temperature or precipitation (Nemani et al., 2003).” (Lines
507-518)

The main text lacks a conclusion section.

» Thank you for your suggestion. In the revised paper, we have added a Conclusion
section as follows:
“5 Conclusion

This study systematically explored the responses of GPP to temperature,

precipitation, and scPDSI across various vegetation types. Both the benchmark
datasets and MME of simulations showed distinct GPP responses to temperature
between boreal and tropical ecosystems, with warming enhancing GPP in
high-latitude needleleaf forests but reducing GPP in low-latitude ecosystems such
as evergreen broadleaf forests and tropical savannas. Precipitation exhibited
positive effects on almost all PFTs, with stronger influences on non-woody
vegetation such as C3G, C4G, and croplands. Although current vegetation models
generally capture these response patterns, they tend to overestimate the positive
effects of precipitation on GPP, particularly in tropical regions. Such biases may
lead to an overestimation of carbon sink losses during drought years, as many

models fail to adequately represent drought adaptation mechanisms observed in



real ecosystems (Peng et al., 2024). Furthermore, structural differences among
models, such as the inclusion of carbon-nitrogen coupling and the separation of
direct/diffuse radiation, may substantially affect the simulated GPP sensitivity to
drought, highlighting the need for improved process representation in global
carbon cycle models.” (Lines 599-613)

Specific comments

fig la. JUNG and GOSIF GPP time series are missing.

» In the revised version, we have focused solely on GLASS and JUNG datasets as
the observation-constrained benchmarks. The time series for JUNG GPP has now
been added to Fig. 1a to ensure a complete and accurate representation of the data

used in our analysis.
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Fig. 1. Comparison of spatiotemporal variations in Gross Primary Productivity (GPP) between
benchmark and model simulations. The (a) temporal variations in simulated GPP from individual
models and the multi-model ensemble (MME) mean (thick red line) are shown alongside
benchmark data from GLASS (thick black line) and JUNG (thick blue line). Spatial patterns of
GPP trends from (b) benchmark, represented as the mean of two products (GLASS and JUNG),
are compared with (¢) the MME of the simulations. Latitudinal variations in GPP trends are also
shown, with benchmark data represented in black and model simulations in red; shading indicates

one standard deviation.

fig 1. Please Specify the exact time period over which GPP trends were calculated.

» In the revised manuscript, we have clearly specified the time period used for



calculating GPP trends as follows:

“In this study, we use the overlapping period of 1982-2011 from both GLASS
and JUNG as the reference period.” (Lines 127-128)

“We first compared the temporal variations of GPP between benchmark datasets
and simulations during 1982-2011 (Fig. 1a).” (Lines 255-256)

“The two benchmark datasets collectively showed that GPP trends exhibit
substantial spatial heterogeneity during 1982-2011 (Fig. 1b).” (Lines 278-299)

fig 3. Please adding the model ensemble mean result to the figure and analyzing it in

the corresponding text.

» We have added the multi-model ensemble mean (MME) to Fig. 4 (the original
Fig. 3) as suggested:
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Fig. 4. Heatmaps of Pearson correlation coefficients between GPP and climatic variables across
vegetation types. Panels show correlations between GPP and (a) T2M, (b) PRE, and (c) scPDSI
for two benchmark data products (GLASS and JUNG) and 17 vegetation models. Vegetation types
include evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), evergreen broadleaf
forest (EBF), shrubland (Shr), Cs; grassland (C3G), C4 grassland (C4G), and cropland (Crop).
Correlation coefficients are represented by circles, with larger circles indicating significant
correlations (P<0.05) and smaller circles indicating non-significant correlations (P>0.05).

fig 4. Suggest adding a global mean bar in this bar plot.

» We have added a global mean bar to Fig. 5 (the original Fig. 4) as suggested:
“Temperature showed moderately positive correlations with both benchmark and
simulated GPP on the global scale.” (Lines 365-366)

“These negative sensitivities outweighed the positive responses of other
vegetation types, leading to an overall negative GPP responses to warming on the
global scale.” (Lines 381-382)
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Fig. 5. Correlations and sensitivities of GPP to climatic variables across vegetation types. Panels
(a-c) show the partial correlation coefficients between GPP and (a) T2M, (b) PRE, and (c) scPDSI,
while panels (d-f) show the corresponding regression coefficients (sensitivities) for (d) T2M, (e)
PRE, and (f) scPDSI. Results are presented as the mean across two benchmark datasets (BEN;
blue) and the multi-model ensemble (MME; yellow) of S3 runs from 17 models, with errorbars

indicating one standard deviation across the benchmark datasets or the models.



fig 5. The "latitudinal variations" plots lack units.
» The units have been added to the "latitudinal variations" in Fig. 6 (the original Fig.
5) as suggested:
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Fig. 6. Response of GPP to extreme (a) warming and (b) drought events averaged for benchmark
datasets (GLASS and JUNG) and multiple model ensemble simulations. Changes in GPP are
calculated as deviations during years with the (a) highest 10% of temperature or (b) lowest 10% of
scPDSI at each grid point, relative to the long-term mean GPP. Latitudinal variations in GPP
changes are also shown, with benchmark data represented in black and model simulations in red;

shading indicates one standard deviation.

line 22. In sentence: "Precipitation had a relatively low impact on GPP" Please be
clear to state relative low positive or negative impact? — is this referring to the
model or to the GPP products?
» Thank you for your comment. In the revised paper, we clarified as follows:
“Both the benchmark datasets and models indicated a relatively weak but positive
effect of precipitation on GPP in deciduous and evergreen forests, whereas
non-tree vegetation types, such as grasslands and croplands, showed a much

stronger positive response.” (Lines 23-26)

line 61-62. "While this response is protective in the short term, it ultimately leads to a
decline in GPP." — needs citation.
» Added as suggested:
“While this response is protective in the short term, it ultimately leads to a decline
in GPP (Gupta et al., 2020).” (Lines 64-65)



line 64-68. Only one example is provided. Please add at least one more reference to

support the statement: "there has been a notable increase in the sensitivity of

global ..."

» Added as suggested:
“Over the past three decades, there has been a notable increase in the sensitivity
of global vegetation productivity to drought conditions and this sensitivity has
maintained an upward trend. For example, Wei et al. (2023) found that the
sensitivity of GPP to drought rose by 13.76% in 2006-2018 compared to
1993-2005. Chen et al. (2025) projected that under future climate scenarios,
extreme droughts will increasingly impact GPP, especially in semi-arid zones

(drought index 0.15-0.8).” (Lines 68-73)

line 81-83. Also needs at least one more reference to support the statement: "the need
of careful calibration and validation using observed data to improve model
reliability."
» Added as suggested:

“This underscores the need of careful calibration and validation using observed

data to improve model reliability (Zheng et al., 2020).” (Lines 89-90)

line 101. LAI is not an "environmental factor,”" but rather a vegetation structural

parameter. Please revise.

» Corrected as suggested:
“It integrates data from the Moderate Resolution Imaging Spectroradiometer
(MODIS) and Advanced Very High Resolution Radiometer (AVHRR), using
optimized light-use efficiency models to estimate GPP by combining absorbed
PAR with vegetation structural parameter (e.g., leaf area index) and
environmental factors (e.g., shortwave radiation) (Liang et al., 2024). ” (Lines

105-109)

line 101-103. Since the study analyzes GLASS GPP responses and uses GLASS as a

benchmark, please also cite literature showing the consistency between long-term

GLASS GPP and tower-based observations.

» In the revised manuscript, we have added citations to literature that demonstrates
the consistency between long-term GLASS GPP products and tower-based

observations:



“The GLASS dataset has been validated against ground measurements and aligns
well with tower-based observations, capturing seasonal and interannual
variability across ecosystems (Ma and Liang, 2022; Bai et al., 2023).” (Lines
109-111)

line 136. It is unclear whether the paper uses S2 or S3 TRENDY simulations —please

clarify.

» We have clarified in the revised manuscript that this study uses the S3
simulations from the TRENDY project. The updated text now explicitly states:
“For this study, we analyzed simulated GPP data from the 17 DGVMs for the S3
experiments, focusing on GPP responses to changes in major climatic variables,
and used the same method to analyze the S2 experiment for validation.” (Lines
144-146)

line 204-205. The interpolation method is not described —please add.

» The interpolation method has been clearly described in the revised manuscript.
The added text is as follows:
“To facilitate the analyses, we interpolated all datasets, including GPP benchmark,
TRENDY simulations, ERA-5 meteorology, scPDSI, and MODIS land cover,

into the same resolution of 1° X 1° using linear interpolation.” (Lines 248-251)

line 213. "Most models predicted..." — please specify the exact number of models

(e.g., X out of 17).

» The statement has been revised to specify the exact range of model predictions.
The updated text now is as follows:
“The global GPP trend predicted by these models is between 0.17 and 0.51 Pg C
yr2.” (Lines 260-261)

In the following analyses, we specified the number of models that are classified
into a group:

“The TRENDY models largely captured these relationships, with 13 out of 17
models yielding significantly positive correlations for ENF and 13 out of 17
showing significantly negative correlations for C4G.” (Lines 345-347)

“Among the 17 models, 10 predict significantly positive correlations for both
C3G and C4G, suggesting a consistent parameterization of water stress for these

grass species.” (Lines 345-350)



line 229. The phrase "The ensemble of three observational datasets revealed large
spatial heterogeneity in GPP trends" is ambiguous —it could be interpreted as
inconsistency among datasets. If the intended meaning is that GPP trends themselves
are spatially variable, please reword.
» We have revised the text as follows:
“The two benchmark datasets collectively showed that GPP trends exhibit
substantial spatial heterogeneity during 1982-2011 (Fig. 1b).” (Lines 278-279)

line 236-203. The statement that "Overall, the MME captured the latitudinal

variations in GPP trends but tended to overestimate positive trends in tropical

regions." is inaccurate. According to Figure 1, the trends in tropical regions differ in
sign between MME and satellite products. Please revise.

» Thank you for your comments. The statement has been revised in the manuscript

to accurately reflect the discrepancy between the MME and satellite products in
tropical regions. The updated text now is as follows:
“Overall, the MME captured the latitudinal variations in GPP trends, but showed
a GPP trend pattern that contrasts sharply with benchmark in tropical regions,
particularly in the Amazon region where the model predicted growth while
benchmark showed a decline.” (Lines 286-288)

line 255. The phrase "likely due to an inadequate representation of light dependency"

requires a citation.

» Added as suggested:
“While the MME generally captured the observed positive correlations between
GPP and precipitation (Fig. 3b), it did not predict the negative correlations north
of 50° N, likely due to an inadequate representation of light dependency in those
regions (Pierrat et al., 2022). 7 (Lines 322-325)

line 261. "(Figs. 3 and S1 -S83)" should be "Figures S1 - S3."
» Corrected as suggested.

line 296. "Tree species" is first defined in Line 308. Please move or adjust for clarity.

» This sentence has been deleted in the revised manuscript.

line 289-301. Figure S4 is cited four times in the main text. If it is so central to the



analysis, consider moving it into the main text.
> In the revised paper, we have merged the original Fig. S4 with the original Fig. 4

to form a new Fig. 5 in the main text.
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Fig. 5. Correlations and sensitivities of GPP to climatic variables across vegetation types. Panels
(a-c) show the partial correlation coefficients between GPP and (a) T2M, (b) PRE, and (c) scPDSI,
while panels (d-f) show the corresponding regression coefficients (sensitivities) for (d) T2M, (e)
PRE, and (f) scPDSI. Results are presented as the mean across two benchmark datasets (BEN;
blue) and the multi-model ensemble (MME; yellow) of S3 runs from 17 models, with errorbars

indicating one standard deviation across the benchmark datasets or the models.

line 305. "in C4 grasslands" should be "for C4 grasslands."
» Corrected as suggested.

line 303-305. GPP from shrublands also decreases with rising temperature —this

information is missing.

> Yes. The GPP of shrubs decreases with rising temperature. However, its
magnitude is much lower compared to EBF and C4 grassland. In the revised
paper, we clarified as follows:
“However, GPP for EBF and C4G largely decreased in response to rising

temperatures.” (Line 379)

line 343. "various dataset" is undefined - please clarify.



» We clarified as follows:
“To better understand these responses, we analyzed GPP responses to extreme
warming and drought across benchmark datasets, models, and vegetation types.”
(Lines 419-420)

line 342-353. Same issue as above with Line 289 - 301 — avoid repeatedly citing

supplementary figures in the main text. Either integrate them or move the relevant

discussion to the supplement.

» We have moved the original Figs S5 and S6 into the main text as the new Figs 7
and 8.
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Fig. 7. Heatmaps of GPP responses to extreme (a) warming and (b) drought across different
vegetation types. Changes in GPP are shown for years with the top 10% of (a) highest
temperatures and (b) lowest scPDSI values, relative to the mean state, based on two benchmark
datasets (GLASS and JUNG) and 17 vegetation models. The MME of model simulations is also

presented.
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Fig. 8. GPP responses to extreme warming and drought conditions across vegetation types.
Differences in GPP are calculated as deviations during years with the top 10% (a) highest
temperature or (b) lowest scPDSI values, relative to the long-term mean, for individual grids.
These differences are aggregated by seven vegetation types and averaged for two benchmark
datasets (blue) and the multi-model ensemble mean (yellow). The errorbars indicate one standard
deviation across benchmark datasets or models.

line 359. In addition to coniferous forests, high-latitude regions also include tundra,
deciduous broadleaf forests, and wetlands, etc. Please revise.
» The description has been revised in the manuscript to more accurately represent
the ecosystem diversity in high-latitude regions:
“In high-latitude areas, which are predominantly covered by coniferous forests

and tundra, low temperatures are the primary constraint on photosynthesis.”



(Lines 477-478)

line 390. The phrase "improper parameterization” is too vague. It sounds like the

models are fundamentally flawed. Please revise or provide a specific reference.

» We revised the text as follows:
“The discrepancies suggest that current parameterizations of water stress and soil
moisture dynamics could overestimate the sensitivity of GPP to water
availability.” (Lines 539-540)

line 420. The manuscript does not analyze interannual variability of GPP response to

climatic variables. Please revise the statement accordingly.

» We revised the text as follows:
“From the perspective of multi-model ensembles, the study assessed the overall
performance and biases of current state-of-the-art vegetation models, as well as
their ability to capture GPP responses to long-term climate change.” (Lines
591-593)
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