
 

We thank the reviewers for their constructive feedback. In the following, reviewers’ comments are shown in 

black, and our responses are provided in blue for clarity. 

 

General comments: 

 

This technical note entitled "GRACE-compatible filtering of water storage data sets via spatial 

autocorrelation analysis" addresses an important practical question in GRACE data processing: How to 

filter water storage component (WSC) datasets to make them compatible with GRACE-derived terrestrial 

water storage anomalies (TWSA)? While the topic is relevant and the approach is systematic, the note needs 

improvements in validation and methodological rigor before potential publication in HESS. 

 

• Thank you very much for your thoughtful review and for recognizing the relevance and 

systematic nature of our study. We greatly appreciate your constructive feedback on 

methodological rigor and validation. In the revised manuscript, we have clarified and 

strengthened the methodological descriptions, provided additional justification for key choices, 

and addressed each of your comments in detail. While a full validation against groundwater 

storage anomalies is beyond the scope of this technical note, we would like to emphasize that this 

aspect is being addressed in a separate manuscript currently under preparation, in which we 

evaluate the groundwater storage product derived from our approach. We believe that together, 

both studies will provide a comprehensive picture of the methodology and its application. 

 

 

Major issues: 

 

1.    Lines 15-17: The claim that DDK filters “introduced striping artefacts” needs quantitative support. 

Show correlation coefficients or other metrics demonstrating the inappropriateness. 

 

• Thank you for raising this point. The phenomenon of striping artifacts induced by the DDK filter is clearly 

demonstrated in Figure 8a of our manuscript. These artifacts are visually apparent as north–south stripes 

in the filtered WSC datasets, which originally do not contain GRACE-like correlated errors. This 

demonstrates that, when applied to non-GRACE datasets, the DDK filter can generate spurious structures 

rather than remove them. 

In the GRACE literature, similar striping patterns are a well-known issue. Kusche et al. (2009) and Yi and 

Sneeuw (2022) both discuss how the DDK filter partially mitigates north–south striping in GRACE Level-

2 data, and in some cases residual stripes remain even after filtering. While these studies focus on GRACE 

data, they illustrate that the DDK approach is not always fully effective in suppressing stripe noise.  

Our findings extend this picture by showing, to our knowledge for the first time, that applying DDK to 

non-GRACE data (such as snow water equivalent) can actively introduce striping patterns, because the 

underlying assumption of anisotropic correlated errors is not valid for such datasets. Thus, in this case the 

DDK filter is inappropriate. 

Given the clear visual evidence in Figure 8a and the conceptual link to limitations discussed in the 

literature, we believe that our demonstration provides sufficient support for the statement that DDK 

filtering can introduce artifacts when applied to WSC data. 



 

 

 
Figure 8. SWE anomaly of month 2002-04 (in mm water equivalent) filtered with (a) DDK3, and (b) Gaussian filter (250 

km filter width) 

 

 

2.    Lines 167-188: The DDK filter implementation description is unclear. How exactly were the WSC data 

converted to spherical harmonics? What degree/order was used? Please, add such details that are crucial for 

reproducibility. 

 

• Thank you for pointing this out. We agree that the description of the DDK filter implementation required 

additional technical detail. In our analysis, the WSC fields were first expanded into fully normalized 

spherical harmonics up to degree and order 90 which corresponds to the effective resolution of the GRACE 

products considered in this study. This step was carried out using spherical harmonic analysis based on 

the standard least-squares collocation approach. After applying the DDK filter coefficients in the spectral 

domain, the filtered spherical harmonic coefficients were truncated at the same degree/order (90) and 

subsequently transformed back into the spatial domain. 

We have revised the manuscript text accordingly to clarify these details and ensure reproducibility as 

follow: 

 

“For the application of the DDK filter, the WSC data were first converted from the spatial domain (i.e., 

gridded data sets) to the frequency domain using spherical harmonic analysis. Fully normalized spherical 

harmonic coefficients were computed up to degree and order 90, corresponding to the maximum degree 

and order of the GRACE products analyzed. The DDK filter coefficients were then applied in the spectral 

domain, and the filtered fields were subsequently transformed back into the spatial domain to obtain the 

filtered WSC fields.” 

 

 

3.    Lines 189-210: The de-trending and de-seasonalization approach (Lines 159-161) may remove important 

signal characteristics. The text justifies this as eliminating "long-distance correlations...not of interest" but this 

seems arbitrary. Seasonal signals are fundamental to water storage dynamics, and their removal may bias the 

autocorrelation analysis. 

 

• Thank you for raising this important point. We agree that seasonal signals are fundamental components of 

water storage dynamics. However, the purpose of our study is not on describing the hydro-meteorological 

variability of the WSCs themselves, but on characterizing the smoothing and spatial autocorrelation 

properties that are induced by GRACE-like processing.  



Leaving seasonal and trend components in the data would cause the autocorrelation function to be 

dominated by these strong, often long-range, hydrological signals, making it difficult to isolate and 

interpret the correlation structures that arise specifically from GRACE-type processing characteristics. By 

removing seasonality and trends, we minimize these dominant hydrological effects and ensure that the 

analysis more clearly reflects the degree of smoothing imposed by GRACE-like filtering. To clarify this, 

we have revised the manuscript to better explain our motivation for de-trending and de-seasonalizing prior 

to autocorrelation analysis as follows: 

 

“Furthermore, the mean seasonality (climatology) and the long-term trend were removed from all data 

sets and the autocorrelation analysis (see Chapter 3.3) was carried out on de-trended and de-seasonalized 

data. The purpose of this step is to isolate the correlation patterns that originate from GRACE-like data 

acquisition and processing, in particular the smoothing and decorrelation effects, rather than from the 

hydro-meteorological variability itself. Seasonal or long-term signals which often have long-range spatial 

correlations throughout climate zones, for instance would obscure the spatial dependencies introduced by 

GRACE processing. Physically, spatial autocorrelation expresses how strongly water storage anomalies at 

nearby locations resemble each other as a function of distance. High autocorrelation over long distances 

reflects spatially coherent hydrological variations or strong spatial smoothing of data by filtering, while 

short correlation lengths indicate more localized variability. In this study, we use these properties primarily 

to quantify GRACE-related smoothing effects, not to interpret the hydrological processes underlying the 

seasonal or long-term variability or a lower degree of spatial smoothing by data processing.” 

 

 

4.    Lines 195-210: The autocorrelation calculation (Equation 2) appears computationally expensive and may be 

sensitive to data gaps. Specifically, GRACE TWSA data contains missing values and temporal gaps (e.g., during 

the gap between GRACE and GRACE-FO missions, instrument failures, or data quality flags), yet the text does 

not address how these gaps affect the reference autocorrelation function calculation. Additionally, individual WSC 

datasets may have their own spatial or temporal gaps. The text should clarify: (1) How are missing values handled 

when computing correlations between grid cell pairs? (2) Are months with insufficient data coverage excluded 

from the analysis? (3) How sensitive is the optimal filter width determination to the presence of data gaps? (4) 

Given that the method aims to match WSC autocorrelation to GRACE autocorrelation, how do gaps in the GRACE 

reference data affect the reliability of the “target” autocorrelation function itself? Without proper gap handling 

procedures, the computed autocorrelation functions may be biased, potentially leading to suboptimal filter width 

selection. (5) What about grid cells with “insufficient” neighbors? 

 

• Thank you for raising this point. We would like to clarify that the correlation analysis was carried out on 

a monthly basis, and only months with available GRACE(-FO) TWSA data were included, both for 

GRACE-based TWSA and for all other WSC data sets. Thus, temporal gaps in GRACE (e.g., during the 

mission gap or flagged months) were automatically excluded from the analysis. 

 

Regarding the specific questions: 

 

1. Missing values: Grid cells containing missing data were excluded from the respective correlation pair 

calculations for all WSC data sets.  

 

2. Months with insufficient coverage: Months without GRACE(-FO) solutions were not considered in the 

autocorrelation analysis, ensuring consistency between GRACE and WSC autocorrelation functions. 



 

3. Sensitivity of filter width to gaps: We did not explicitly test the effect of individual missing months 

through a remove–restore experiment. However, our analysis covers 223 monthly time steps between 

2002–2023, so the empirical autocorrelation functions are derived from a large sample size. Occasional 

gaps (e.g., during the GRACE–GRACE-FO transition or isolated flagged months) represent only a small 

fraction of the total record. Therefore, their influence on the averaged global autocorrelation functions, 

and consequently on the determination of the optimal filter width, is expected to be minor. In addition to 

that, since only valid GRACE months were included for all WSCs, the optimal filter width is based on a 

consistent reference and is not biased by incomplete data. 

 

4. Reliability of GRACE reference: The “target” autocorrelation function is calculated only from months 

with valid GRACE(-FO) fields, meaning the reference is based on reliable data only. Furthermore, as 

mentioned in point 3. above, given an overall number of 223 valid months for the analysis, the impact of 

missing months can be expected to be small. In particular, the results can be expected to be robust as a 

missing January field in a particular year, for instance, is represented by about 20 other January fields in 

the entire time series for which similar spatial autocorrelation characteristics can be assumed.  

 

5. Grid cells with insufficient neighbors: The binning scheme naturally excludes pairs with missing 

neighbors. As we average over global land cells, the large number of valid pairs ensures robustness. 

 

Regarding computational expense: since our spatial resolution is coarse (0.5°), the pairwise autocorrelation 

calculation (Eq. 2) is not computationally expensive. Each distance bin for one monthly field can be computed 

within a few seconds, and the full autocorrelation function across all bins for one month typically takes only 1–2 

minutes. 

 

We have clarified the above issues in the revised manuscript as follows: 

 

“The autocorrelation analysis was performed on a monthly basis, restricted to those months for which GRACE(-

FO) TWSA data were available. WSC datasets are spatially and temporally gap-free, while GRACE(-FO) solutions 

may contain missing months due to instrument outages or mission gaps. These missing months were excluded 

from the analysis, ensuring that only valid, consistent time steps were used for both GRACE(-FO) and WSC 

autocorrelation functions. Within each valid monthly field, grid cells containing missing values (e.g., ocean or 

masked areas) were excluded from the respective correlation pair calculations. As a result, the reference 

autocorrelation function is based solely on valid GRACE(-FO) data. The large number of valid grid-cell pairs at 

the global scale ensures robust statistics, such that occasional (spatial) gaps do not bias the determination of the 

optimal filter width. Similarly, given a total number of 223 valid months for the analysis, a robust average 

autocorrelation with limited influence of individual missing months or the GRACE/GRACE-FO gap can be 

expected. It should be mentioned that at the chosen 0.5° resolution, the calculations remain computationally 

efficient, requiring only a few seconds per distance bin.” 

 

5.    Lines 213-225: The Weibull model fitting approach needs more justification. Why was this model chosen 

over simpler exponential decay (I guess the difference would be the shape parameter). What are the goodness-of-

fit statistics? 

 

• Thank you for this important comment. We initially tested several models to describe the decay of the 

empirical autocorrelation functions, including the simple exponential, Gaussian, inverse distance, 



logarithmic, double-logarithmic, and the stretched exponential decay models. However, because of the 

very steep decline from the first to the second distance bin, the simple exponential often produced 

systematic biases and poor fits, especially for SWE and SWS. 

We therefore tested the stretched exponential (Weibull) model, which allows for an additional shape 

parameter (β). This additional flexibility provided a consistently better fit across all WSCs. To evaluate 

performance, we compared the models using R² as a goodness-of-fit measure. The Weibull model 

systematically achieved higher R² values than the simple exponential or other tested alternatives, and was 

therefore selected as the most appropriate model for deriving correlation lengths. Please see Figure bellow: 

 
 

To clarify this in the manuscript, we have added a short explanation of the model selection process and 

a sentence highlighting why Weibull was chosen, as follow: 

 

“Several candidate functions were initially tested to represent the decay of autocorrelation with distance, 

including simple exponential, Gaussian, inverse distance, logarithmic, and stretched exponential 

(Weibull) decay functions. Because of the steep decline of the autocorrelation function from the first to 

the second distance bin, the simple exponential model often failed to provide an adequate fit, particularly 

for SWE and SWS. In contrast, the Weibull model, which introduces the additional shape parameter β, 

consistently achieved higher 𝑅2 values and provided the most robust fit across all WSCs. Therefore, the 

Weibull model was selected for estimating correlation lengths in this study.” 

 



 

 

6.    A proper validation of the proposed approach is required. The study demonstrates that filtered WSCs 

match GRACE autocorrelation functions, but it doesn't validate whether this actually improves groundwater 

storage anomaly (GWSA) estimates. Does the 250 km filter width actually produce more accurate GWSA 

compared to other approaches? How do the filtered WSCs compare against independent observations? 

What is the impact on signal preservation versus noise reduction? 

 

 

• We fully agree that a validation against independent groundwater storage anomaly (GWSA) 

observations would be valuable. However, such validation is beyond the scope of the present 

study, which is intended as a methodological note focusing on the filtering of water storage 

compartments (WSCs) in a GRACE-like manner. Our main objective was to evaluate and 

demonstrate an approach for identifying optimal filter widths based on spatial autocorrelation 

characteristics, and not to assess the full performance of GWSA estimates themselves. 

We would like to emphasize that a direct validation against independent GWSA observations 

would face several challenges: 

 

Multiple sources of uncertainty (e.g., uncertainties of the other WSCs that are subtracted from 

TWSA to obtain groundwater storage anomalies, differences in local hydrogeological conditions, 

scaling mismatch, measurement errors in well data, conversion errors from well observations of 

groundwater level into groundwater storage through uncertainties of specific yield/storativity) 

could dominate deviations, making it difficult to attribute differences specifically to the filtering 

step. 

 

Signal preservation vs. noise reduction trade-offs are indeed important, but their evaluation 

requires a dedicated study with independent reference data sets, which would extend far beyond 

the methodological focus of this technical contribution. 

 

Therefore, our study does not claim to provide a full validation of the GWSA estimates. Instead, 

we demonstrate that, based on our data sets, the chosen 250 km filter width achieves consistency 

of WSCs with GRACE-based TWSA autocorrelation functions, which is a necessary step to 

enable subsequent, application-specific analyses of groundwater or other storage components. 

We have clarified this scope in the revised manuscript to avoid any misunderstanding, as follow: 

 

“While this study demonstrates an approach for determining optimal GRACE-like filter widths 

based on spatial autocorrelation, it does neither present groundwater storage anomaly data that 

result through applying this approach nor evaluate the approach against independent 

observations. Such evaluation would require addressing additional sources of uncertainty (e.g., 

uncertainty of other storage compartments, scaling issues, local hydrogeological variability, 

conversion of in-situ groundwater level observation to groundwater storage) and is beyond the 

scope of this technical note.” 

 



 

7.    Lines 159, 275-280: The 0.5° resolution analysis may be too coarse to capture important small-scale 

spatial patterns, and although the text acknowledges this limitation (Lines 275-280), it doesn't adequately 

address it. 

 

 

• We agree that the 0.5° resolution used in our analysis does not capture fine-scale spatial patterns, such 

as topographically controlled water storage variations at the hillslope scale. While these patterns can 

be hydrologically important, they are not subject of this study which addresses the smoothing effects 

of GRACE-like data processing at large spatial scales. Our study is limited to the resolution of the 

available global WSC datasets, and our analysis is explicitly focused on scales resolvable at 0.5° and 

larger. We have clarified this issue in the manuscript by adding a sentence to emphasize that small-

scale spatial heterogeneity below 0.5° is not addressed (and does not need to be addressed) for the 

objectives of this study: 

 

“Nevertheless, further studies may revisit the validity of these correlation lengths by using data sets 

with higher spatial resolution. It should also be noted that our analysis is inherently addressing spatial 

scales of 0.5° and larger. Sub-grid scale heterogeneity, such as topographically driven water storage 

variations at the hillslope scale, while hydrologically important is not captured at this resolution and 

is not subject of this study which covers the smoothing effects of GRACE-like data processing at 

large spatial scales.” 

 

 

8.    Lines 336-340: The optimal 250 km filter width is presented as definitive, but Table 2 shows the 

RMSD minimum is quite broad (200-300 km range), and the sensitivity analysis seems insufficient. 

 

• Thank you for this valuable observation. We agree that the RMSD minimum in Table 2 is broad, 

with low values in the 200–300 km range, and not sharply peaked at 250 km. Within the scope of 

this technical note, which is based on a purely statistical analysis of spatial autocorrelation 

functions, we chose the global minimum RMSD value (0.02 at 250 km) as the “optimal” filter 

width. Thus, while we believe that 250 km is an objective and reproducible estimate, we 

acknowledge that this should not be interpreted as a universal or definitive value. As noted in the 

manuscript, the optimal filter width may vary depending on the dataset, time period, or 

application. Therefore, we suggest to apply the methodology also for other data sets and 

applications in future studies to identify the most suitable filter width. We modified the revised 

manuscript to clarify this point as follow: 

 

“For assessing the most suitable filter width of the Gaussian filter, we looked for the minimum 

RMSD value when comparing the autocorrelation functions of differently filtered 4WSC to the 

TWSA autocorrelation function (see Chapter 3.3). An optimal filter width of 250 km was 

identified (Fig. 9, Table 2). With this filter width, the decay of spatial autocorrelation of 4WSC is 

very similar to GRACE-based TWSA, in particular for the distance range up to 1100 km where 

the limit of significant correlation values has been found for this analysis (see Chapter 3.3). It 



should be noted that the RMSD values show a relatively broad minimum between 200 km and 

300 km, indicating that filter widths within this range yield similarly good results. The selection 

of 250 km thus reflects the lowest RMSD in this analysis and is thus an objective guiding value, 

but it is suggested to re-apply the methodology for other datasets or time periods in future studies, 

as the optimal width may vary (see also conclusions chapter)” 

 

Minor issues: 

 

1.    Line 27: "TWS is a fundamental component" - this statement is too strong. Consider "TWS is an important 

component." 

• Done. 

 

 

2.    Lines 40-45: The review of GRACE applications is superficial. Please provide a more comprehensive 

review of the studies that applied a filter to WSC components. For example, Ferreira et al. (2024, doi: 

10.1016/j.ejrh.2024.102046) did this through spherical harmonic analysis and synthesis. 

 

• Following your recommendation, we expanded this part by adding a more comprehensive 

overview of studies to provide a broader context of applied filtering to WSC as follow: 

 

“Several studies have addressed this challenge by applying spatial filtering or aggregation 

procedures to WSC components before subtracting them from GRACE-TWSA data. For instance, 

(Werth et al., (2009) emphasized the importance of smoothing model-based soil moisture, snow 

and surface water signals to make them consistent with GRACE-scale observations. Similarly, 

Döll et al., (2014) applied filtering techniques to WaterGAP Global Hydrology Model (WGHM) 

outputs before subtracting them from GRACE-TWSA to estimate groundwater storage changes 

at the global scale. More recently, Ferreira et al., (2024) estimated groundwater recharge across 

Africa by applying spherical harmonic analysis and synthesis to ensure consistency between 

GRACE-derived TWSA and model-based WSCs.” 

 

 

 

3.    Lines 154-164: The harmonization procedure needs more detail. Bilinear interpolation may introduce 

artifacts; was this tested? 

 

• We have clarified the interpolation choice in the revised manuscript. In our workflow, bilinear 

interpolation was applied to resample and harmonize the original WSC datasets (RZSM and SWE 

from 0.25° to 0.5°, and SWS from 0.1° to 0.5°) to the target resolution of 0.5° before applying 

the Gaussian filter. We tested the alternative sequence (filtering first at the native resolution and 

interpolating afterwards) and found that the results were virtually identical in terms of spatial 

autocorrelation. Since interpolation before filtering was computationally much more efficient, we 

adopted this order. Bilinear interpolation was also selected because it preserves coastal grid cells, 

which would be lost with conservative remapping, and provides a smooth resampling that avoids 



artificial discontinuities. At the target resolution of 0.5°, these anomalies vary smoothly in space, 

making bilinear interpolation an appropriate choice. Similar bilinear resampling approaches have 

also been adopted in previous GRACE–hydrology studies (e.g., Ali et al., 2022). 

The revised text in the manuscript now reads: 

“Bilinear interpolation ensures coverage of coastal grid cells, while conservative remapping 

would have led to the loss some of these pixels. Similar bilinear resampling approaches have also 

been adopted in previous GRACE–hydrology studies (e.g., Ali et al., 2022).” 

 

 

4.    Line 125: Equation (2) is missing the number. 

 

• Corrected. 

 

 

5.    Line 240: Equation (4) is missing the number, and consider using RMSD instead of RMSE for 

consistency throughout the text. 

 

• Corrected. 

 

 

6.    Consider improving Figure 4. 

 

• Thank you for this suggestion. We have revised Figure 4 using a clearer color scheme and 

updated shapes/formatting to make the flowchart more visually appealing and to improve 

readability and understanding. 



 
Figure 4. Schematic overview of the processing chain of the study towards a GRACE-like filter for WSC data. 

 

7.    Lines 365-385: For a technical note format, the computational efficiency discussion is appropriate and 

adds practical value. However, this section could be strengthened by providing more quantitative details. The 

study demonstrates that preprocessing at 0.5° resolution yields identical results to filtering at higher 

resolution, and that filtering the combined 4WSC dataset once is equivalent to filtering each WSC 

individually, both valuable practical insights. To enhance this section, consider adding: (1) quantitative timing 

comparisons between the different approaches, (2) memory usage considerations for large datasets, (3) 

specific computational cost savings (e.g., "reduces processing time by X%"), and (4) clearer 

recommendations for different use cases (e.g., when computational resources are limited vs. when maximum 

precision is needed). These additions would make the computational guidance even more actionable for 

researchers implementing this filtering approach. 

 

• Thank you for this valuable suggestion. We agree that quantitative details on computational efficiency 

strengthen this section. We therefore added specific timing and memory usage results comparing 

0.25° and 0.5° resolution processing. For preprocessing (unit checks, anomaly calculation, coordinate 

harmonization, etc.), the 0.5° workflow required ~0.6 minutes and 1.7 GB memory, while the 0.25° 

workflow required ~2.4 minutes and 6.3 GB. For the correlation length calculation (all 223 months, 



one distance bin of 300–400 km), the 0.5° workflow required ~38 seconds and 13 GB, whereas the 

0.25° workflow required ~998 seconds and 179 GB. This means that the 0.5° workflow runs about 

26 times faster and uses about 14 times less compared to the 0.25° workflow, while producing 

identical correlation length and optimal filter widths. We emphasize that when extending to all 

distance bins (0–2000 km), these differences become even more pronounced. We have updated the 

manuscript accordingly to highlight these computational trade-offs and provide clear 

recommendations for choosing the coarser resolution to ensure efficiency without compromising 

results: 

 

“For the standard approach in this study, all WSC data sets were resampled to a common 0.5° 

resolution before applying the GRACE-like filtering approach (Chapter 3.3). However, the original 

resolution of some individual WSC data was higher, with a 0.25° resolution of the SWE data, for 

instance. We therefore tested the effect of different input resolutions on both the computational 

performance and the filtering results. The resulting spatial patterns and the autocorrelation functions 

produced nearly identical results (Fig. 10) with no discernible effect on the optimal filter width. 

Preprocessing steps (e.g. anomaly calculation, unit consistency, and grid harmonization) at 0.5° 

required 0.58 minutes and 1.7 GB memory, while the same step at 0.25° resolution took 2.4 minutes 

and 6.3 GB. For the correlation length calculation across all 223 months and one example distance 

bin (e.g. 300–400 km), processing at 0.5° required 38 seconds and 13 GB memory, whereas at 0.25° 

it took 998 seconds and 179 GB. This means that Processing at 0.5° resolution was approximately 26 

times faster and required about 14 time less memory compared to 0.25°, while yielding identical 

results. The gap widens even further when considering all distance bins (0–2000 km). 

 

Based on these results, we recommend resampling WSC data to a common lower spatial resolution 

(0.5°) prior to filtering, as this approach ensures identical scientific results while substantially 

reducing computational costs.” 

 

8.    Consider adding an interpretation of what the autocorrelation patterns mean physically 

 

• Thank you for this suggestion. We agree that clarifying the physical meaning of spatial autocorrelation 

is helpful. Our study does not aim to provide a hydrological interpretation of the seasonal or long-

term variations in autocorrelation functions, but rather to use them as a methodological tool for 

defining appropriate filter widths. 

To address this, we have added the following explanatory sentence to the manuscript: 

 

“Physically, spatial autocorrelation expresses how strongly water storage anomalies at nearby 

locations vary with distance. High autocorrelation over long distances reflects spatially coherent 

hydrological variations, while short correlation lengths indicate more localized variability. In this 

study, we use these properties primarily to quantify GRACE-related smoothing effects, not to interpret 

the hydrological processes underlying the seasonal or long-term variability.” 

 

In line with our response to your major comment #3, we emphasize that our focus is not on describing 

hydrological seasonality or trends in the autocorrelation patterns themselves, but on quantifying the 

GRACE-like smoothing effect that is relevant for filter optimization. 


