Supplement of

Improvement of near-surface wind speed modeling through refined

aerodynamic roughness length in built-up regions: implementation and

validation in the Weather Research and Forecasting (WRF) model version

4.0

5

 $\label{thm:continuous} \mbox{Jiamin Wang, Kun Yang, Jiarui Liu, Xu Zhou, Xiaogang Ma, Wenjun Tang, Ling Yuan,}$

Zuhuan Ren

Correspondence to: Kun Yang (yangk@tsinghua.edu.cn)

1

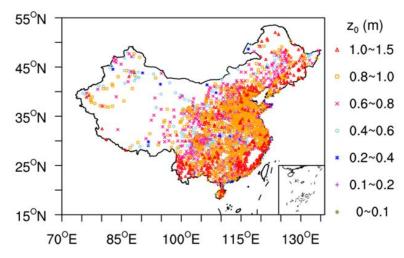
10 S1. The settings of z_{0_Peng} in the WRF model

Before conducting the simulation of wind speed in the WRF model with the gridded z_{0_Peng} , we had adjusted the roughness length over vegetated fraction (z_{0_veg}) in each grid from z_{0_Peng} . Then, the default z_0 values in WRF over vegetated fraction were replaced with z_{0_veg} .

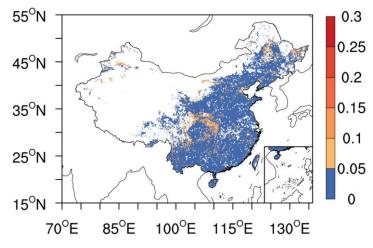
The mean shear stress ($\tau = \rho u_*^2$) in a grid is the sum of the shear stress over the bare and the vegetated areas weighted by vegetation fraction (*FVEG*):

$$u_{*mean}^2 = u_{*bare}^2 * (1 - FVEG) + u_{*veg}^2 * FVEG$$
 (1)

where u_{*mean} is the mean friction velocity (m/s) derived with z_{0_Peng} ; u_{*veg} and u_{*bare} are the friction velocity in the vegetated and the bare fraction, which are derived with z_{0_veg} and the roughness length over the bare fraction (z_{0_bare}).


Under neutral conditions, z_{0_veg} can be expressed as:

20


25

$$z_{0_{v}eg} = e^{\ln(z_{ref}) - \left\{ \left[\left(l \, n \left(\frac{z_{ref}}{z_{0_{p}eng}} \right) \right)^{-2} - (1 - FVEG) * \left(l \, n \left(\frac{z_{ref}}{z_{0_{b}are}} \right) \right)^{-2} \right] * \frac{1}{FVEG} \right\}^{-\frac{1}{2}}}$$
(2)

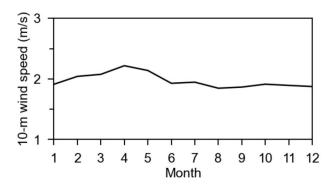

where z_{ref} is the reference height (m), and z_{0_bare} and FVEG can be obtained from WRF model.

Figure S1. Spatial distributions of annual mean $z_{0_optimal}$ across 2,162 CMA stations.

Figure S2. Spatial distributions of the standard deviation of monthly $\ln z_{0_RFR}$.

Figure S3. Monthly variations of the 10-m wind speed averaged over the d02 domain during 2015-2019 from ERA5.

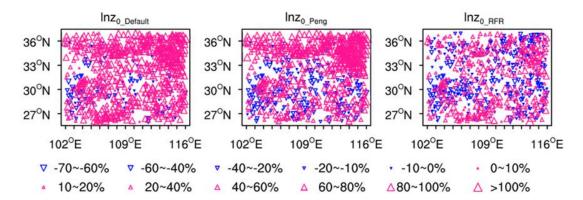


Figure S4. Distributions of mean bias percentage (MBP) in 10-m wind speed from simulations using $z_{0_Default}$, z_{0_Peng} and z_{0_RFR} against observations from CMA stations, calculated as $[u_{simulations} - u_{CMA}]/u_{CMA} \times 100\%$.