
Responses to the Reviewer 

We would like to express our profound gratitude to you for your insightful 

comments and suggestions. Your expertise has significantly contributed to the 

enhancement of our study. In response to your valuable feedback, we have made 

corresponding revisions and additions to the manuscript. The detailed responses to each 

point raised are presented in the following sections. The responses are highlighted in 

blue, and the changes made in the manuscript are marked in red. We sincerely hope that 

these revisions adequately address your concerns. 

  



General Comment: 

This manuscript presents a novel and practical approach to improving the simulation of 

near-surface wind speed over built-up areas by refining the aerodynamic roughness 

length (𝑧0) using a combination of ERA5 reanalysis and ground-based observations 

from the China Meteorological Administration (CMA). The authors developed a high-

resolution monthly gridded 𝑧0  dataset by applying a Random Forest Regression 

algorithm, and demonstrated its effectiveness through WRF simulations. The study is 

timely and potentially impactful for urban climate modeling and wind-related 

applications. 

While the manuscript introduces a potentially useful methodology, the current version 

does not provide sufficient critical evaluation or methodological transparency. To be 

suitable for publication, the manuscript requires revision, including clarification of the 

observational setup, deeper theoretical consideration of the methodology's assumptions, 

and further analyses related to model resolution and 𝑧0 scale dependency. 

Response: We would like to express our sincere gratitude for your positive feedback 

and insightful comments and suggestions. These have significantly enhanced the 

quality of our manuscript. We have carefully considered all your points. In the 

following sections, we provide a detailed response to each of your comments. 

Major comments: 

1. Uncertainty about CMA Wind Observation Heights: The manuscript assumes that 

CMA stations provide 10-m wind speed observations. However, there is no clear 

documentation or justification of this assumption in the text. Are all CMA anemometers 

calibrated and installed precisely at 10 m above ground level? Given that the accuracy 

of 𝑧0  estimation strongly depends on the reference height of the wind speed, this 

should be clarified and supported by official metadata or references. Otherwise, the 

credibility of the derived 𝑧₀ values may be significantly undermined. 

Response: Thank you for your question. All CMA wind speed observations used in 

this study were indeed measured at the standard height of 10 meters above ground level, 



as officially specified in the “China Surface Climate Data Hourly Value Dataset” 

provided by the China Meteorological Administration (Table R1). In addition, the 𝑧0 

estimated from these stations have been independently validated using wind speed 

simulations against both other CMA stations and anemometer tower observations. The 

validation results demonstrate that the derived 𝑧0  values lead to significant 

improvements in simulated wind speeds, thereby supporting the overall reliability of 

our 𝑧0 estimates. 

Table R1. Selected fields from the China Surface Climate Data Hourly Value Dataset 

provided by the China Meteorological Administration (CMA). 

No. Name Data Type Field Name Unit 

1 Station ID Number(5) V01000 — 

5 Year Number(4) V04001 — 

6 Month Number(2) V04002 — 

7 Day Number(2) V04003 — 

8 Hour Number(2) V04004 — 

9 Station Pressure Number(6) V10004 0.1 hPa 

11 Air Temperature Number(6) V12001 0.1 °C 

19 Precipitation Number(6) V13011 0.1 mm 

21 Wind Direction (at 10 m above ground) Number(6) V11011 16 directions 

22 Wind Speed (at 10 m above ground) Number(6) V11012 0.1 m/s 

2. Circular Logic in Using ERA5 to Derive 𝑧0 and Then Evaluating WRF Performance: 

The method uses ERA5 as the basis to derive optimal 𝑧0 values, and then uses these 

𝑧0 values in WRF to simulate wind fields, which are subsequently compared to CMA 

observations. However, since the 𝑧0 is essentially tuned to ERA5 wind characteristics, 

and WRF is driven by ERA5 data, it is not surprising that the WRF simulations become 

closer to observations. This circular logic reduces the strength of the validation. A 

deeper discussion is needed in the Discussion section to acknowledge this 

methodological dependency and to better clarify to what extent the improvements stem 

from 𝑧0 refinement as opposed to alignment with the reanalysis base. 



Response: Thank you for raising this important point. We address the concern about 

potential circular logic from three perspectives, to demonstrate that the improvement 

on wind speed primarily stems from the refinement of 𝑧0, rather than simply from 

alignment with the reanalysis dataset. 

First, the 𝑧0  values were estimated at 1,805 CMA station locations using CMA-

observed 10-m wind speeds, ERA5 10-m wind speeds, and ERA5 𝑧0. Based on these 

𝑧0 estimates, we used 80% of the data to train a machine learning model and construct 

a gridded 𝑧0  dataset, while the remaining 20% were reserved for independent 

validation. This gridded dataset (denoted as 𝑧0_𝑅𝐹𝑅) was then used in WRF simulations. 

In evaluating the WRF results, we considered wind speeds at both 10 m and 100 m, 

which are representative of meteorological observations and wind energy applications, 

respectively. At 10 m, simulation performance was assessed at all 753 CMA stations in 

the domain, including both the 598 training stations and the 155 independent validation 

stations. The results show that WRF simulations using 𝑧0_𝑅𝐹𝑅 outperform those using 

the default WRF dataset (𝑧0_𝐷𝑒𝑓𝑎𝑢𝑙𝑡) and a latest dataset (𝑧0_𝑃𝑒𝑛𝑔), as demonstrated in 

Fig. 6 of the manuscript. At 100 m, further validation was performed using wind 

measurements from anemometer towers, which were completely independent from 

both the CMA stations used in training the 𝑧0 model and the 𝑧0 estimation process. 

These results (Fig. 7 of the manuscript) also confirm the superiority of 𝑧0_𝑅𝐹𝑅 , 

strengthening the claim that the improvements stem from the enhanced representation 

of 𝑧0 rather than any alignment with ERA5 data. 

Second, according to your suggestion, we conducted an additional WRF simulation 

using NCEP reanalysis data instead of ERA5 as the driving input, while keeping all 

other model settings identical. The results (Figure R1 and Table R2) are consistent with 

those obtained using ERA5 forcing data (Figure 6a and 7a, and Table 1 in the 

manuscript), indicating that 𝑧0_𝑅𝐹𝑅 improves wind speed simulations. This strongly 

suggests that the improvements are not a result of alignment between the tuned 𝑧0 

values and the ERA5 data, but rather due to the intrinsic quality of the refined 𝑧0 

dataset itself. 



 

Figure R1 (Figure S8 in the Supplement). Comparison between simulated wind speeds and observations, with 

WRF driven by NCEP reanalysis data. (a) Comparisons of mean 10-m wind speed in April between the simulations 

using 𝑧0_𝐷𝑒𝑓𝑎𝑢𝑙𝑡, 𝑧0_𝑃𝑒𝑛𝑔, and 𝑧0_𝑅𝐹𝑅 versus observations from CMA stations. All points (grey circles and purple 

crosses) represent the 753 CMA stations within the d02 domain available for comparison, while the purple crosses 

represent the 155 stations utilized for independent validation, which were not used in training the 𝑧0_𝑅𝐹𝑅 model. 

The corresponding wind speed means, correlation coefficients (R), and root mean square errors (RMSE) of all 

stations are indicated. (b) Comparisons of mean 100-m wind speed in April between the simulations using 𝑧0_𝐷𝑒𝑓𝑎𝑢𝑙𝑡, 

𝑧0_𝑃𝑒𝑛𝑔, and 𝑧0_𝑅𝐹𝑅  versus observations from anemometer towers. The corresponding wind speed means, R, and 

RMSE of all towers are also indicated. 

 

Table R2 (Table S1 in the Supplement). The mean 10-m wind speed from simulations and observations at 753 

CMA stations, and the mean 100-m wind speed from simulations and observations at 50 anemometer towers. The 

simulations were conducted using 𝑧0_𝐷𝑒𝑓𝑎𝑢𝑙𝑡, 𝑧0_𝑃𝑒𝑛𝑔, and 𝑧0_𝑅𝐹𝑅, respectively, with NCEP reanalysis data used 

as the driving input for the WRF model. The percentage reduction in wind speed error is caused by 𝑧0_𝑅𝐹𝑅, compared 

to 𝑧0_𝐷𝑒𝑓𝑎𝑢𝑙𝑡  and 𝑧0_𝑃𝑒𝑛𝑔 , which is calculated as 

[|𝑢̅𝑧0_∗ − 𝑢̅𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛| − |𝑢̅𝑧0_𝑅𝐹𝑅 − 𝑢̅𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛|] |𝑢̅𝑧0_∗ − 𝑢̅𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛|⁄ × 100% ， where 𝑢̅𝑧0_∗  represents 



𝑢̅𝑧0_𝐷𝑒𝑓𝑎𝑢𝑙𝑡 or 𝑢̅𝑧0_𝑃𝑒𝑛𝑔, and 𝑢̅ denotes the mean 10-m or 100-m wind speed from simulations based on 𝑧0_𝐷𝑒𝑓𝑎𝑢𝑙𝑡, 

𝑧0_𝑃𝑒𝑛𝑔, and 𝑧0_𝑅𝐹𝑅 , as well as from observations (CMA stations or anemometer towers). 

 𝑧0_𝐷𝑒𝑓𝑎𝑢𝑙𝑡 𝑧0_𝑃𝑒𝑛𝑔 𝑧0_𝑅𝐹𝑅 Observations 

Mean 10-m wind speed (m/s) 2.94 2.86 2.14 2.08 

Percentage reduction in 10-m wind speed 

error caused by 𝑧0_𝑅𝐹𝑅 (%) 
93.0% 92.3% - - 

Mean 100-m wind speed (m/s) 6.89 7.10 6.21 6.26 

Percentage reduction in 100-m wind speed 

error caused by 𝑧0_𝑅𝐹𝑅 (%) 
92.1% 94.0% - - 

Third, we have examined whether the effectiveness of the proposed 𝑧0  estimation 

method is inherently dependent on the use of ERA5 data in Section “4 Discussion” of 

the manuscript. We applied the same approach to estimate 𝑧0 with 10-m wind speed 

and default 𝑧0 values from the WRF model itself, instead of ERA5. The estimated 𝑧0 

values based on this alternative dataset are similar to those derived from ERA5 (Figure 

8b in the manuscript). This demonstrates that the validity of our 𝑧0 estimation method 

does not rely on alignment with any specific reanalysis dataset, but rather reflects the 

robustness and general applicability of the method itself. 

In summary, through independent validation at both 10 m and 100 m heights, additional 

experiments using alternative reanalysis inputs (NCEP instead of ERA5), and further 

tests employing non-ERA5-based inputs for 𝑧0  estimation, we consistently 

demonstrate that the improved WRF performance arises from the refined 

characterization of 𝑧0 itself. These results collectively confirm that the effectiveness 

of our method is not due to any circular logic or alignment with a specific reanalysis 

dataset, but rather reflects the intrinsic value and robustness of the proposed 𝑧0 

refinement approach. Accordingly, we have reorganized Section “4 Discussion” in the 

revised manuscript. 

It was originally: “Here we discuss the sensitivity of the site 𝑧0 estimates to the used 

simulation/reanalysis data. Our study utilized ERA5 reanalysis and CMA observations 

for 𝑧0 estimation. Compared to traditional meteorological and morphological methods, 

the approach can obtain 𝑧0 values at most locations at a low cost, and these values 

demonstrate satisfactory performance in wind speed simulation. Here we show that the 



method is not restricted to using ERA5 reanalysis data. When it is applied to 10-m wind 

speed and default 𝑧0 from WRF model, we can estimate 𝑧0 similarly. The resulting 

𝑧0 estimates are comparable to those based on ERA5 (Fig. 8). The primary advantage 

of ERA5 is its extensive spatiotemporal coverage, which facilitates better alignment 

with observational data. In contrast, obtaining WRF simulation data with the same 

spatiotemporal coverage would require considerable computational resources. 

Therefore, the proposed method in this paper is a robust 𝑧0 estimation approach that 

can be widely applied to different reanalysis datasets and observational data, offering 

high flexibility and practicality for aerodynamic roughness length estimation.” 

It is now revised to: “Here we discuss the sensitivity and generality of the site 𝑧0 

estimation approach with respect to the input simulation or reanalysis data, addressing 

concerns about potential methodological dependence on ERA5. Our study utilized 

ERA5 reanalysis data and CMA observations for initial 𝑧0 estimation. Compared to 

traditional meteorological or morphological methods, our approach can provide 𝑧0 

values at large spatial coverage and low cost, and these values lead to clear 

improvements in WRF-simulated wind speeds at both 10 m and 100 m above ground 

level. To assess whether the performance gain stems from improved 𝑧0 representation 

rather than from alignment with ERA5 reanalysis data, we carried out two additional 

sets of evaluations.  

First, we applied the same approach to estimate 𝑧0 from WRF-simulated 10-m wind 

speed and the model's default 𝑧0 values (0.03° × 0.03°), instead of ERA5. The 𝑧0 

values estimated using this alternative dataset were found to be highly similar to those 

derived from ERA5 (Fig. 8), indicating that the method is not inherently reliant on 

ERA5 as a data source. The primary advantage of using ERA5 lies in its extensive 

spatiotemporal coverage, which offers greater convenience and consistency with 

observational data; however, the methodology itself is general and transferable to other 

datasets. Moreover, the agreement between ERA5- and WRF-derived 𝑧0  values 

suggests that the spatial representativeness of the estimated site-level 𝑧0 values is not 

determined by the resolution of the reanalysis or simulation dataset used, but rather by 

the measurement height of wind observations at the stations. In this study, 10-m wind 



speeds from CMA stations were used. As a rule of thumb, the horizontal 

representativeness of wind measurements is approximately 100 times the measurement 

height. Therefore, 𝑧0 values estimated from 10-m wind observations are reasonably 

representative at ~1 km scales, making the generation of 0.01° gridded 𝑧0 datasets for 

use in mesoscale simulations both appropriate and justified. 

Second, we further validated the robustness of the refined 𝑧0  dataset (𝑧0_𝑅𝐹𝑅 ) by 

conducting additional WRF simulations driven by the reanalysis from National Centers 

for Environmental Prediction (NCEP) instead of ERA5. These results (Fig. S8 and 

Table S1) still showed significant improvement in wind speed simulation performance 

when using 𝑧0_𝑅𝐹𝑅 , consistent with those driven by ERA5. This cross-reanalysis 

consistency demonstrates that the benefits are attributable to the improved surface 

representation through 𝑧0_𝑅𝐹𝑅 refinement, not simply tuning to match ERA5-driven 

wind fields. 

Taken together, these findings confirm that the 𝑧0 estimation method proposed in this 

study is robust, flexible, and not dependent on alignment with a specific reanalysis 

dataset. It provides a practical framework for 𝑧0 estimation that can be widely applied 

across different reanalysis/simulation datasets and observational data with consistent 

benefits. However, this method is limited in regions with sparse or no surface weather 

stations. Notably, these regions, such as western and northern China, are rich in wind 

resources and are key targets for wind energy development. Therefore, producing high-

quality gridded 𝑧0  datasets in these regions warrants further study by exploring 

alternative data sources, such as anemometer tower wind profiles, to supplement 𝑧0 

truth values (Wang et al., 2024).” 

3. Lack of Resolution-Dependent 𝑧0  Consideration: The aerodynamic roughness 

length is known to be resolution-dependent due to varying representations of land cover 

and orography. However, the manuscript does not address why a single 𝑧0  value 

(derived from coarser ERA5 resolution) is applied across finer-resolution WRF 

simulations. A justification is needed as to why scale-dependent roughness parameters 

were not considered, especially when moving from ERA5 (∼30 km) to WRF (3 km). 



Moreover, higher-resolution simulations are expected to better resolve local features 

influencing 𝑧0 . Has the relationship between horizontal resolution and 𝑧0  been 

explored in this study? Such an analysis would greatly strengthen the work, and I 

recommend adding or expanding this aspect if possible. 

Response: Thank you for your valuable question. In this study, we proposed a low-cost 

𝑧0  estimation method, allowing the acquisition of 𝑧0  values at routine weather 

stations. Specifically, this approach leverages 10-m wind speed and 𝑧0 values from 

ERA5 reanalysis data, along with observed 10-m wind speeds at CMA stations, to 

derive optimal 𝑧0  at stations by minimizing the difference in 100-m wind speeds 

between reanalysis and observations. Here, the 100-m wind speed is expressed with 10-

m wind speed and 𝑧0 using similarity theory. 

Regarding the use of ERA5 data in the estimation, we would like to clarify that although 

we introduced the assumption that the 100-m wind speed from ERA5 is comparable to 

that from observations, 100-m wind speed was not directly used in the actual estimation 

process of 𝑧0. Rather, this assumption served to conceptually support the feasibility of 

using ERA5 10-m wind speed and 𝑧0  information to estimate 𝑧0  values at 

observational sites. This assumption implies that the influence of 𝑧0 on wind speed at 

100 m is relatively small. While similar assumptions could be made using reanalysis 

datasets providing wind speeds at even higher levels (e.g., 200 m), we chose to use the 

100-m level because ERA5 provides wind speed at this height and there are 

anemometer tower data at 100 m available for preliminary validation of this assumption. 

Therefore, this assumption is not constrained by the spatial resolution of the dataset 

used. In practice, our method estimates 𝑧0 using 0.25° × 0.25° gridded 10-m wind 

speed and 𝑧0 data from ERA5. Essentially, what we utilize is the relationship between 

the wind profile and 𝑧0  as represented in ERA5 through similarity theory. The 

horizontal resolution of ERA5 does not affect the estimated 𝑧0 values at individual 

stations. To demonstrate this, we substituted ERA5 with higher-resolution WRF 

outputs (0.03° × 0.03°) to re-estimate 𝑧0 , and the results remained consistent, as 

discussed in Section “4 Discussion” of the manuscript. 



More importantly, the spatial representativeness of the derived 𝑧0  values is 

determined primarily by the measurement height of wind observations, rather than the 

resolution of the background dataset. As a rule of thumb, the effective fetch area 

influencing a wind measurement is approximately 100 times the measurement height. 

Since we used 10-m wind speed data from CMA stations, the estimated 𝑧0 values are 

representative of a footprint of ~1 km. Therefore, applying these 𝑧0  values to 

kilometer-scale simulations is scale-consistent and appropriate. In addition, we have 

previously emphasized in the manuscript that the 𝑧0 values derived in this study are 

intended for use in mesoscale simulations (see lines 81-83 (“This study contributes to 

the advancement of mesoscale wind speed simulation over built-up environments, 

which can promote wind field-dependent studies, such as urban planning, wind energy 

utilization, and air quality management.”) and 333-334 (“The resulting gridded 𝑧0 

dataset significantly reduces uncertainties in mesoscale near-surface wind speed 

simulations, particularly over relatively flat built-up areas.).  

Based on the above, the updated Discussion section (lines 357-363) now further 

elaborates on this point: “Moreover, the agreement between ERA5- and WRF-derived 

𝑧0  values suggests that the spatial representativeness of the estimated site-level 𝑧0 

values is not determined by the resolution of the reanalysis or simulation dataset used, 

but rather by the measurement height of wind observations at the stations. In this study, 

10-m wind speeds from CMA stations were used. As a rule of thumb, the horizontal 

representativeness of wind measurements is approximately 100 times the measurement 

height. Therefore, 𝑧0 values estimated from 10-m wind observations are reasonably 

representative at ~1 km scales, making the generation of 0.01° gridded 𝑧0 datasets for 

use in mesoscale simulations both appropriate and justified.” 


