
Responses to the Reviewer 

We would like to express our profound gratitude to you for your insightful 

comments and suggestions. Your expertise has significantly contributed to the 

enhancement of our study. In response to your valuable feedback, we have made 

corresponding revisions and additions to the manuscript. The detailed responses to each 

point raised are presented in the following sections. The responses are highlighted in 

blue, and the changes made in the manuscript are marked in red. We sincerely hope that 

these revisions adequately address your concerns. 

  



General Comments: 

This study estimated the aerodynamic roughness length (𝑧0 ) values using ERA5 

analyses and weather station observations to improve the near-surface wind speed 

modeling. Technically, the Random Forest Regression algorithm is suitable for the 

estimation of 𝑧0, and the results are encouraging, significantly improving the wind 

speed simulation in the WRF model. However, the evaluation of the improved 𝑧0 on 

the WRF near-surface wind simulation was only for one month, and a longer time 

evaluation is needed. Therefore, I recommend Major Revision in this round. 

Response: We are sincerely grateful for your positive feedback and constructive 

comments. Your comments have been thoroughly considered and have greatly 

contributed to the improvement of our manuscript. Our point-by-point responses are 

detailed below.  

Specific comments: 

Major comments: 

1. The new estimated 𝑧0  values were only evaluated for 1 month. A longer time 

evaluation should be conducted for a thorough evaluation. 

Response: Thank you for your insightful comment. In our study, we initially evaluated 

the performance of the newly estimated aerodynamic roughness length (𝑧0) using wind 

simulations for the month of April in 2019. April was deliberately chosen as the primary 

evaluation period because it exhibits the highest mean wind speeds across our study 

domain (Fig. R1), making the simulated wind fields particularly sensitive to 𝑧0 effects. 

This characteristic provides an ideal scenario for testing the impact and effectiveness 

of our proposed estimation method. To balance computational cost with scientific rigor, 

we implemented a re-initialization strategy whereby each 36-hour simulation was 

initialized daily at 12:00 LT (LT = UTC+8). Each simulation included a 12-hour spin-

up period followed by 24 hours of analysis, yielding 30 independent realizations. This 

approach ensured the capture of a wide range of meteorological conditions while 

maintaining statistical independence among daily cases. As presented in Section 3.3, 



the consistent improvement in simulated wind speeds across all April cases 

demonstrates the robustness of the newly estimated 𝑧0. 

To address the concern regarding longer-term evaluation, we additionally conducted 

WRF simulations for October 2019, a month characterized by generally weaker wind 

conditions (Fig. R1), using the same model configuration and evaluation framework as 

applied for April. The results from these additional simulations (Figs. R2-R4) further 

confirm the robustness of our method, as the use of the newly estimated 𝑧0 values 

consistently improves the accuracy of simulated wind speeds.  

 

Figure R1 (Figure S3 in the Supplement). Monthly variations of the 10-m wind speed averaged over the d02 

domain during 2015-2019 from ERA5. 

The results of these additional simulations have been included in the Supplement (Figs. 

S5-S7), and a corresponding explanation has been incorporated into the revised 

manuscript in lines 332-338, replacing the original sentence: “In summary, the 𝑧0 

derived from the combination of CMA and ERA5 data shows high reliability, and the 

resulting gridded 𝑧0 dataset in built-up areas can effectively reduce uncertainties in 

mesoscale near-surface wind speed simulations, especially over relatively flat built-up 

regions.” with the following revised version: “In summary, the 30 independent 

simulation cases conducted for April demonstrate that the 𝑧0 values derived from the 

combination of CMA observations and ERA5 data are highly reliable. The resulting 

gridded 𝑧0 dataset significantly reduces uncertainties in mesoscale near-surface wind 

speed simulations, particularly over relatively flat built-up areas. To further validate the 

robustness of the 𝑧0  estimation method and the resulting dataset, we conducted 



additional simulations for October 2019, a month characterized by generally weaker 

wind conditions (Fig. S3), using the same model configuration as in April. The results 

(Figs. S5-S7) also show consistent improvements when using 𝑧0_𝑅𝐹𝑅 , further 

reinforcing the reliability and applicability of the proposed 𝑧0 estimation approach 

under varying meteorological conditions.” 

 

Figure R2 (Figure S5 in the Supplement). (a) Frequency distribution of MBP in simulated 10-m wind speed in 

October using 𝑧0_𝐷𝑒𝑓𝑎𝑢𝑙𝑡, 𝑧0_𝑃𝑒𝑛𝑔, and 𝑧0_𝑅𝐹𝑅 against observations from CMA stations. MBP was calculated as 

[𝑢𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 − 𝑢𝐶𝑀𝐴] 𝑢𝐶𝑀𝐴 × 100%⁄ . (b) Distribution of MBP in 10-m wind speed as a function of TSD. (c) Box 

plot of MBP in 10-m wind speed across different TSD bins. 



 

Figure R3 (Figure S6 in the Supplement). (a) Comparisons of mean 10-m wind speed in October between the 

simulations using 𝑧0_𝐷𝑒𝑓𝑎𝑢𝑙𝑡 , 𝑧0_𝑃𝑒𝑛𝑔, and 𝑧0_𝑅𝐹𝑅 versus observations from CMA stations. All points (grey circles 

and purple crosses) represent the 753 CMA stations within the d02 domain available for comparison, while the 

purple crosses represent the 155 stations utilized for independent validation, which were not used in training the 

𝑧0_𝑅𝐹𝑅  model. The corresponding wind speed means, correlation coefficients (R), and root mean square errors 

(RMSE) of all stations are also indicated. (b) Distribution of the 155 independent CMA stations (black stars). Colored 

shaded areas represent TSD. (c) Comparison of daily mean 10-m wind speed between simulations and observations 

from 753 CMA stations. (d) Statistical metrics comparing simulated and observed 10-m wind speeds, including 

temporal and spatial R, mean absolute bias (MAB, 
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Figure R4 (Figure S7 in the Supplement). (a) Comparisons of mean 100-m wind speed in October between the 

simulations using 𝑧0_𝐷𝑒𝑓𝑎𝑢𝑙𝑡 , 𝑧0_𝑃𝑒𝑛𝑔 , and 𝑧0_𝑅𝐹𝑅  versus observations from anemometer towers. The 

corresponding wind speed means, R, and RMSE of all towers are also indicated. (b) The locations of 48 anemometer 

towers (black triangles) utilized for 100-m wind speed evaluation. Colored shaded areas represent TSD. (c) 

Distribution of MBP in 100-m wind speed as a function of TSD. MBP was calculated as 

[𝑢𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 − 𝑢𝑡𝑜𝑤𝑒𝑟𝑠] 𝑢𝑡𝑜𝑤𝑒𝑟𝑠 × 100%⁄ . (d) Statistical metrics comparing simulated and observed 100-m wind 

speeds, including temporal and spatial R, MAB, and RMSE. 

2. The grid-based 𝑧0 statistics are only available in the inner domain. This indicates 

that the 𝑧0  could only be improved where there are surface weather station 

observations. How to improve the 𝑧0  destination in areas where there is no good 

coverage of surface weather station observations? More discussions should be included. 

Response: We greatly appreciate your valuable question. We agree that the current 

implementation of our method is limited by the availability of surface weather station 

observations, which poses a challenge for estimating 𝑧0 in areas with sparse or no such 



coverage. Nevertheless, these under-observed regions, such as northern and 

northwestern China, are key zones for wind energy development. Thus, producing high-

quality gridded 𝑧0 datasets in these areas is not only of scientific interest but also 

crucial for enhancing the accuracy of wind speed simulations in practical applications. 

A sufficient number of 𝑧0 truth values is essential for generating such gridded datasets. 

The lack of 𝑧0 truth values in station-sparse regions remains a major barrier. With the 

rapid growth of the wind energy industry, tens of thousands of such towers have been 

deployed for wind resource assessments. This development may offer a valuable 

opportunity to expand 𝑧0 truth values and to construct a gridded 𝑧0 dataset once these 

tower data are accessible. 

We have included a discussion on this point in Section “4 Discussion” of the revised 

manuscript (lines 371-375), where we state: “However, this method is limited in regions 

with sparse or no surface weather stations. Notably, these regions, such as western and 

northern China, are rich in wind resources and are key targets for wind energy 

development. Therefore, producing high-quality gridded 𝑧0 datasets in these regions 

warrants further study by exploring alternative data sources, such as anemometer tower 

wind profiles, to supplement 𝑧0 truth values (Wang et al., 2024).” 

Minor comments: 

1. Line 39-41: It is a little bit causing here. Please revise it to be more clear. 

Response: Thank you for your constructive reminder. We have revised “The utilization 

of wind energy in built-up areas also depends on wind speed distribution (Ishugah et 

al., 2014; Stathopoulos et al., 2018; Tasneem et al., 2020). Whether establishing wind 

farms in urban suburbs or integrating wind turbines into building designs, both can help 

to reduce generation load and the need for transmission infrastructure. Additionally, 

wind speed profoundly affects building design and urban planning (Hadavi and 

Pasdarshahri, 2020) and even the preservation of historical-cultural heritage (Li, Y. et 

al., 2023).” into “The utilization of wind energy in built-up areas also depends on wind 

speed distribution (Ishugah et al., 2014; Stathopoulos et al., 2018; Tasneem et al., 2020). 



Proper utilization, through measures such as suburban wind farms or building-

integrated turbines, can minimize the need for transmission infrastructure. Beyond 

energy considerations, wind speed characteristics play a critical role in urban design 

and planning, influencing both contemporary building practices (Hadavi and 

Pasdarshahri, 2020) and the preservation of historical-cultural heritage (Li, Y. et al., 

2023).” in lines 37-42 of the revised manuscript.  

2. Line 47: ERA5 is the analysis from a DA system. In my opinion, it is the blend of 

observations and model forecasts. Therefore, it is not proper to use it as an example. 

Response: Thank you for your comment. We fully acknowledge that ERA5 is a 

reanalysis dataset generated through a data assimilation (DA) system, produced using 

4D-Var DA and model forecasts in CY41R2 of the ECMWF Integrated Forecast 

System (IFS). However, it is important to note that the assimilated observations, 

especially over regions such as China, are relatively limited in spatial coverage. This 

partly explains the poor performance of ERA5 in representing wind speeds near the 

surface. Wang et al. (2024) evaluated the performance of ERA5 10-m wind speeds in 

China using data from both surface weather stations and anemometer towers, and found 

significant biases (Fig. R5). These biases indicate that the representation of near-surface 

wind conditions in ERA5 still heavily relies on the underlying model parameterizations, 

including the use of fixed 𝑧0 based on land cover types. Therefore, we believe that 

using ERA5 as an example remains appropriate in the context of illustrating the 

limitations of 𝑧0 treatment in current model frameworks. 

 



Figure R5 (Figure 4a from Wang et al. (2024)). The distribution of MBP of 10-m wind speed between ERA5 and 

measurements ( (𝐸𝑅𝐴5 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠) 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠⁄ × 100% ). The dots and triangles represent the 

measurements from CMA stations and anemometer towers. 

3. Line 54: What does it mean here “low-type” and “high-type”? 

Response: Thank you for your insightful question. In this context, “low-type” and 

“high-type” vegetation refer to categories based on vegetation height. Specifically, 

“low-type” vegetation typically includes shorter land cover types such as grasslands 

and croplands, while “high-type” vegetation refers to taller vegetation such as forests. 

To enhance clarity, we have revised the sentence as follows: “In line with these findings, 

Luu et al. (2023) showed that the rise in 𝑧0, caused by shifts from short vegetation to 

high vegetation and urbanization, partly contributes to the decline in mean and 

maximum surface wind speed over Western Europe.” in lines 53-55 of the revised 

manuscript. 

4. Line 87: Better to add surface weather station observations before CMA. 

Response: Thank you for your useful suggestion. We have added “surface weather 

station observations” before “CMA” in lines 87-88 of the revised manuscript. 

5. Line 192: This could be because of the altitude differences between observation sites 

and the model terrain. 

Response: Thank you for your insightful comment. The altitude differences between 

observation sites and the model terrain could indeed contribute to the poor performance 

of ERA5 100-m wind speed data in these areas. To reflect this, we have revised the 

sentence as follows: “The exclusions of these stations can be attributed to the poor 

performance of ERA5 100-m wind speed data, which may result from altitude 

differences between the observation sites and the model terrain, thereby rendering our 

initial assumption, i.e. ERA5 100-m wind speed data are reliable for 𝑧0 estimation, 

invalid in these areas.” in lines 192-195 of the revised manuscript. 

6. Line 227: What is the temporal coverage of this monthly 𝑧0 dataset? 



Response: Thank you for your insightful question. In this study, our primary objective 

was to propose a cost-effective method for estimating 𝑧0  using weather station 

observations and reanalysis data. Accordingly, the monthly gridded 𝑧0  dataset we 

produced, referred to as 𝑧0_𝑅𝐹𝑅, was mainly intended to demonstrate the feasibility and 

effectiveness of the 𝑧0 estimation approach through wind speed simulations. For this 

purpose, the 𝑧0_𝑅𝐹𝑅  dataset was generated for the year 2019 as a representative 

example. It is important to note, however, that the Random Forest Regression (RFR) 

model developed for generating the gridded 𝑧0_𝑅𝐹𝑅 dataset is not limited to a specific 

year. It can readily be applied to other years, provided that the corresponding input 

features are available. 

To clarify this point, we have revised the manuscript and added the following 

statements: “As a representative example, the 𝑧0_𝑅𝐹𝑅 dataset was generated for the 

year 2019, and its spatial coverage is shown in Fig. 2d.” (lines 231-232) and “Although 

2019 was chosen for demonstration, the RFR model itself is year-independent and can 

be applied to other years, provided that the required input features are available.” (lines 

235-237). 

7. Figure 5: better to a reference line of y = 0 in panel (c) for reference, indicating which 

has a smaller bias. 

Response: Thank you for your constructive suggestion. We have added a reference line 

at y = 0 in Fig. 5c to indicate the direction and magnitude of the bias more clearly. 

8. Line 317: The values are significantly large when verified against the Mean values. 

However, if you take a deep look at Fig. 7d, the improvements are not that large from 

the perspective of MAB and RMSE. 

Response: Thank you for your insightful comment. In line 317 of the original 

manuscript, we stated: “This improvement using 𝑧0_𝑅𝐹𝑅 reduces wind speed mean bias 

by 85.7% and 88.1% compared to 𝑧0_𝐷𝑒𝑓𝑎𝑢𝑙𝑡  and 𝑧0_𝑃𝑒𝑛𝑔 , respectively.”, which 

indeed shows a substantial improvement. While this appears to contrast with the results 

presented in Fig. 7d, where the reductions in MAB and RMSE seem less pronounced, 



this discrepancy arises from the use of different evaluation metrics. Specifically, the 

percentage reduction of wind speed mean bias refers to the relative decrease in mean 

error. For example, in the simulation based on 𝑧0_𝐷𝑒𝑓𝑎𝑢𝑙𝑡  the average 100-m wind 

speed is 7.10 m/s; while using 𝑧0_𝑅𝐹𝑅, it is 6.38 m/s. The corresponding observed value 

from the anemometer towers is 6.26 m/s. Thus, the mean bias is reduced from 0.84 m/s 

(7.10 − 6.26) to 0.12 m/s (6.38 − 6.26), leading to a bias reduction of (0.84 −

0.12) ÷ 0.84 × 100% = 85.7%.  

In addition, even when evaluated using the MAB and RMSE metrics shown in Fig. 7d, 

the improvements brought by 𝑧0_𝑅𝐹𝑅 are still considerable. Specifically, in the spatial 

dimension, the 100-m wind speed simulations based on 𝑧0_𝐷𝑒𝑓𝑎𝑢𝑙𝑡 and 𝑧0_𝑃𝑒𝑛𝑔 show 

MAB values of 1.12 m/s and 1.47 m/s, respectively, while the simulation using 𝑧0_𝑅𝐹𝑅 

yields a significantly lower MAB of 0.58 m/s. Similarly, the corresponding RMSE 

values are 1.31 m/s for 𝑧0_𝐷𝑒𝑓𝑎𝑢𝑙𝑡 , 1.63 m/s for 𝑧0_𝑃𝑒𝑛𝑔 , and 0.82 m/s for 𝑧0_𝑅𝐹𝑅 . 

Although the improvements in the temporal dimension are not as pronounced as those 

in the spatial dimension, they are still evident. These results further confirm the overall 

improvement achieved by incorporating the 𝑧0_𝑅𝐹𝑅. 

To enhance clarity, we have added the formula used to calculate the percentage 

reduction in wind speed mean bias to the revised manuscript, as shown in the caption 

of Table 1: “The percentage reduction in wind speed error is caused by 𝑧0_𝑅𝐹𝑅 , 

compared to 𝑧0_𝐷𝑒𝑓𝑎𝑢𝑙𝑡  and 𝑧0_𝑃𝑒𝑛𝑔 , which is calculated as 

[|𝑢̅𝑧0_∗ − 𝑢̅𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛| − |𝑢̅𝑧0_𝑅𝐹𝑅 − 𝑢̅𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛|] |𝑢̅𝑧0_∗ − 𝑢̅𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛|⁄ × 100% ，

where 𝑢̅𝑧0_∗ represents 𝑢̅𝑧0_𝐷𝑒𝑓𝑎𝑢𝑙𝑡  or 𝑢̅𝑧0_𝑃𝑒𝑛𝑔 , and 𝑢̅ denotes the mean 10-m or 100-

m wind speed from simulations based on 𝑧0_𝐷𝑒𝑓𝑎𝑢𝑙𝑡, 𝑧0_𝑃𝑒𝑛𝑔, and 𝑧0_𝑅𝐹𝑅, as well as 

from observations (CMA stations or anemometer towers).” 

9. Figure 7: Better to add statists of mean/rms/r in the panels of (a). For (d), the units of 

MAB is not m/s, likely %. 

Response: Thank you for your suggestion. We have added the statistics of mean, RMSE, 

and correlation coefficient (R) to both Fig. 6a and Fig. 7a in the revised manuscript.  



MAB refers to mean absolute bias, which is calculated as
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number of hours for temporal MAB. Therefore, the unit of MAB is m/s.  

To enhance clarity, we have included the formula for MAB at its first occurrence, in the 

caption of Fig. 6 in the revised manuscript, as follows: “Figure 6. (a) Comparisons of 

mean 10-m wind speed in April between the simulations using 𝑧0_𝐷𝑒𝑓𝑎𝑢𝑙𝑡, 𝑧0_𝑃𝑒𝑛𝑔, and 

𝑧0_𝑅𝐹𝑅  versus observations from CMA stations. All points (grey circles and purple 

crosses) represent the 753 CMA stations within the d02 domain available for 

comparison, while the purple crosses represent the 155 stations utilized for independent 

validation, which were not used in training the 𝑧0_𝑅𝐹𝑅 model. The corresponding wind 

speed means, correlation coefficients (R), and root mean square errors (RMSE) of all 

stations are also indicated. (b) Distribution of the 155 independent CMA stations (black 

stars). Colored shaded areas represent TSD. (c) Comparison of daily mean 10-m wind 

speed between simulations and observations from 753 CMA stations. (d) Statistical 

metrics comparing simulated and observed 10-m wind speeds, including temporal and 

spatial R, mean absolute bias (MAB, 
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represents the number of hours for temporal MAB, and the number of stations for spatial 

MAB) and RMSE.” 
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