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Key points:  

• Applying Machine Learning on multi-event data reveals key drivers of flash flood losses such as flow velocity and 

emergency response. 

• The first probabilistic flash flood loss model provides robust estimates of company and household losses, including 15 

uncertainty information. 

• High preparedness during extreme flash floods was found to reduce building losses of households by up to 77%. 

 

Abstract. In light of the increasing losses from flash floods intensified by climate change, there is a critical need for improved 

loss models. Loss assessments predominantly focus on fluvial flood processes, leaving a significant gap in understanding the 20 

key drivers of flash floods and the effect of preparedness on losses. To address these gaps, we introduce FLEMOflash—a novel 

multivariate probabilistic Flood Loss Estimation Model compilation for flash floods. The models are developed for companies 

and households based on survey data collected after flash flood events in 2002, 2016, and 2021 in Germany. FLEMO flash 

employs a data-driven feature selection approach, combining machine learning techniques (Elastic Net, Random Forest, 

XGBoost) to identify key drivers influencing flash flood losses and Bayesian networks to model probabilistic loss estimates, 25 

including uncertainty. Model-based findings show that in extreme hazard scenarios, high preparedness can reduce building 

losses by up to 47% for large companies. Households who knew exactly what to do during high water depth were able to 

reduce their building losses by 77% and contents losses by 55%. Thus, FLEMOflash can support risk communication and 

management by providing reliable estimation of flash flood losses along with the loss differential considering the level of risk 

preparedness. 30 
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1 Introduction 

Flash floods characterized by their rapid onset and short duration, rank amongst the most devastating natural disasters, leading 

to significant loss of life and property (Zain et al., 2021). The flash flood events in western Germany and neighbouring 

countries during July 2021 caused an estimated USD 54 billion in losses (Munich Re, 2025), marking it as the costliest natural 

disaster in the history of Germany to date. Other notable examples include events in the Elbe and Danube rivers in Germany 35 

in 2002, which resulted in USD 9 billion losses (Kreibich et al., 2007). The 2017 flash floods in the Houston area of Texas 

during Hurricane Harvey resulted in losses ranging from USD 90 to 160 billion (Rözer et al., 2021). The 2012 event in Beijing 

caused total losses of USD 1.86 billion (Wang et al., 2013), and the monster flood of Pakistan in 2022 caused losses worth 

USD 30 billion (Chughtai, 2022). With the ongoing climate change crisis and high population density, the risk of flash floods 

is anticipated to increase in the future; thus, emphasizing the need for flash flood loss modelling to derive quantitative estimates 40 

of expected losses in monetary terms.  

While progress has been made related to fluvial flood loss models for households (Lüdtke et al., 2019; Thieken et al., 2008), 

there remains a limited understanding of the variables and mechanisms influencing flash flood losses. Unlike fluvial floods 

that have longer lead time and slower rise in water levels (Laudan et al., 2020), flash floods are characterized by rapid and 

unprecedented rise in water levels. Moreover, due to high flow velocities, sediment transport, and shorter lead times, flash 45 

floods often cause more losses than fluvial floods. The sudden nature of flash floods makes them extremely difficult to predict 

(Dougherty and Rasmussen, 2020), necessitating loss modelling tailored to these events. Unlike floods caused by slowly rising 

water levels, and dyke breaches, flash floods exhibit heterogeneity in hazard characteristics such as water depth, flow velocity, 

inundation duration, and contamination indicators (Kreibich and Dimitrova, 2010). Furthermore, earlier studies suggest 

significant differences in the variables and processes that influence losses in different flood types (Mohor et al., 2020). Thus, 50 

understanding the flash flood process is crucial, despite our previous understanding of the losses caused by fluvial floods. A 

comprehensive understanding of the complex processes behind flash floods is essential to develop sustainable and cost-

efficient flash flood risk management strategies.  

Traditionally, flood loss estimation relied on univariate stage-damage functions (SDF) (Middelmann‐Fernandes, 2010). To 

improve the description of complex damage processes, the Flood Loss Estimation MOdel (FLEMOps) for the private sector, 55 

was developed as rule-based, multivariate, deterministic model (Thieken et al., 2008). Merz et al. (2013) and Sieg et al. (2017) 

introduced decision tree-based damage models that explicitly quantify uncertainty associated with both data variability and 

model structure uncertainty through bootstrap aggregation. Subsequently, Bayesian Networks were used (BN-FLEMO), 

enabling the modelling of complex flood loss processes through conditional probability relationships (Lüdtke et al., 2019; 

Schoppa et al., 2020; Schröter et al., 2014; Vogel et al., 2018). 60 

In parallel, various machine learning approaches have also been developed for flood loss estimation, including neural networks 

(Salas et al., 2023), random forests (Ghaedi et al., 2022), Bayesian regression (Mohor et al., 2021). Among these, Bayesian 

networks are particularly advantageous due to their probabilistic representation of conditional dependencies among multiple 
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variables, handle missing data, and model transferability (Schröter et al., 2014). Bayesian models enhance the understanding 

of flood loss dynamics by quantifying uncertainty and offering probabilistic estimates. For instance, Wagenaar et al. (2018) 65 

developed a regional and temporal transferable BN-FLEMO for microscale residential applications, which was later upscaled 

to mesoscale by Lüdtke et al. (2019). In addition to the FLEMO typology, various synthetic, multivariate, rule-based flood 

loss models have been proposed for fluvial flood contexts (Amadio et al., 2019; Dottori et al., 2016; Nofal et al., 2020; Sairam 

et al., 2020). 

However, all these loss models were developed to simulate damage processes during fluvial floods. In this study, we present 70 

the first probabilistic flash flood loss model – Flood Loss Estimation Model affected by flash floods (FLEMOflash) using a BN-

based approach and gain new knowledge about flash flood damage processes based on the conditional probabilities among 

multiple influencing variables. The study identifies the important variables and underlying processes that govern the flash 

flood losses. Additionally, we examine the predictive performance of FLEMOflash model and compare it with conventional 

SDF models. Finally, we illustrate the effect of preparedness in controlling the extent of loss reduction.  75 

2 Data and Methods 

2.1 Multievent empirical data in different regions 

FLEMOflash is built based on self-reported flash flood losses along with associated information of the affected companies and 

households. The data was collected through different surveys using computer-aided telephone interviews with representatives 

of affected companies and households following three highly damaging flash flood occurrences in Germany (Kellermann et 80 

al., 2020; Kreibich et al., 2017). These include the 2002 event in the Elbe catchment in Eastern Germany, the 2016 heavy 

precipitation event, and the most recent July 2021 event in Western Germany. The variables potentially influencing losses are 

extracted and homogenized from the datasets of the 2002, 2016, and 2021 flood surveys. The variables are grouped into five 

categories, as presented in Table 1 for companies and Table 2 for households, respectively. An overview of all variables, along 

with the corresponding survey questions, response categories, and details on variable construction, is presented in Table S1 85 

and Table S2. The loss variable represented as relative loss (𝑟𝑙𝑜𝑠𝑠), is defined as the ratio between the reported loss and 

replacement cost on the [0,1] interval. A value of 0 indicates no loss, while 1 indicates complete loss (Kreibich and Dimitrova, 

2010; Schoppa et al., 2020; Sieg et al., 2017). For companies, losses are estimated for three categories of assets - buildings, 

equipment, and goods & stock. For households, losses are estimated for buildings and contents. Survey responses with no data 

on loss were excluded from the dataset.  90 

 

2.2 Terrain analysis for the identification of flash flood cases 

Since the surveys covered regions affected by both flash floods and riverine floods, we applied a terrain-based filtering to 

exclude riverine cases. We calculated the median slope within a 10 km radius around the location of each observation using 
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the Digital Elevation Model with a 90 meters resolution from the Shuttle Radar Topographic Mission. This process was 95 

repeated for 14 reference municipalities known to have experienced flash flood events in the past or described as prone to flash 

floods (see Table A1). The minimum value among the median slope from these 14 municipalities was then used as the slope 

threshold (see Table S4). Observations with slope values equal to or above this threshold were classified as flash flood cases. 

Other metrics, such as river basin concentration time, may indeed provide a more process-based characterization of flash flood 

potential. Nevertheless, we used slope alone as a pragmatic solution that balances two competing needs: maintaining physical 100 

relevance in identifying flash flood prone companies and households, and retaining a sufficient number of data points for 

robust model development. 

Table 1. List of variables for companies. The variable type stands C for continuous, O for ordinal, and N for nominal. An overview 

of all variables, along with the corresponding survey questions, response categories, and details on variable construction, is presented 

in Table S1. 105 

 Predictors Type and range 

Hazard 

𝑤𝑑 Water depth 𝐶: 0 cm to 963 cm above ground 

𝑑 Inundation duration 𝐶: 0 to 1440 h 

𝑣 Velocity indicator 𝑂: 1 = low flow to 3 = torrential flow 

𝑐𝑜𝑛 Contamination 𝑂: 0 = no contamination to 4 = heavy contamination 

Preparedness/ Emergency 

response 

𝑤𝑡 Warning lead time 𝐶: 0 to 240 h 

𝑤𝑠 Early warning source 𝑂: 0 = no warning to 4 = official warning through authorities 

𝑒𝑤 Early warning received 𝑁: 0 = no, 1 = yes 

𝑚𝑒 
Emergency measures 

undertaken 
𝑁: 0 = no, 1 = yes 

ep Emergency plan 𝑁: 0 = no, 1 = yes 

𝑘ℎ Knowledge about hazard 𝑁: 0 = no, 1 = yes 

𝑚𝑠 
Emergency measures 

success 
𝑂: 

0 = no measure undertaken, 1 = completely ineffective to 

3 = very effective 

Precaution  

𝑓𝑒 Flood experience 𝑂: 0 = no experience to 5 = recent flood experience 

𝑝𝑟 Precaution indicator 𝑂: 
0 = no precaution, 1 = medium precaution, 2 = very good 

precaution. 

𝑖𝑛 Insurance 𝑁: 0 = no, 1 = yes 

Company characteristics 

𝑠𝑒𝑐 Sector 𝑂: 
1 = Agriculture, 2 = Manufacturing, 3 = Trade, 4 = 

Finance, 5 = Services 

𝑠𝑠 Spatial situation 𝑂: 
1 = several buildings, 2 = entire building, 3 = one or more 

floors, 4 = less than one floor 

𝑜𝑤𝑛 ownership 𝑂: 
1 = building owned, 2 = rented, 3= partly owned/ partly 

rented 

𝑒𝑚𝑝 Number of employees 𝐶: 1 to 920 

𝑠𝑝 Size premise 𝐶: 10 to 69000 m2 

2021 data source: Survey "Flooding in Germany in July 2021: Damage of companies", German Research Centre for Geosciences, 

Deutsche Rückversicherung AG, 2022 

2016 data source: Survey "Pluvial Flooding and Flash Floods in May/June 2016: Damage of companies", University of Potsdam, German 

Research Centre for Geosciences, Deutsche Rückversicherung AG, 2017. 

2002 data source: Survey "Flooding in Germany in August 2002: Damage of companies“, German Research Centre for Geosciences, 

Deutsche Rückversicherung AG, 2003 
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Table 2. List of variables for households. The variable type stands C for continuous, O for ordinal, and N for nominal. An overview 

of all variables, along with the corresponding survey questions, response categories, and details on variable construction, is presented 

in Table S2. 110 

 Predictors Type and range 

Hazard 

𝑤𝑑 Water depth 𝐶: 245 cm below ground to 700 cm above ground 

𝑑 Inundation duration 𝐶: 1 to 1440 h 

𝑣 Velocity scaled 𝑂: 0 = no flow to 6 = torrential flow 

ℎ𝑠 Human stability 𝑂: 
1 = person can stand effortlessly in calm water to 3 

person would have been swept away; 4 = too deep to 

stand 

𝑐𝑜𝑛 Contamination 𝑂: 0 = no contamination to 4 = heavy contamination 

Preparedness/ 

Emergency response 

𝑒𝑤 Early warning received 𝑁: 0 = no, 1 = yes 

𝑤𝑡 Warning lead time 𝐶: 0 to 168 h 

𝑤𝑠 Warning source 𝑂: 
0 = no warning to 4 = official warning through 

authorities 

𝑘𝑒 
Knowledge about emergency 

action 
𝑂: 

1= It was completely unclear to me to 6= It was 

completely clear to me 

𝑚𝑒 
Emergency measures 

undertaken 
𝑁: 0 = no, 1 = yes 

𝑚𝑢 
Number of emergency 

measures undertaken 
𝑂: 

0 = no measures undertaken to 13 = all measures 

undertaken 

precaution 

𝑓𝑒 Flood experience 𝑂: 0 = no experience to 5 = recent flood experience 

𝑝𝑤 Precaution indicator 𝑂: 
0 = no/low precaution, 1 = medium precaution, 2 = very 

good precaution. 

building 

characteristics 

𝑓𝑎 Building footprint area 𝐶: 5 to 1000 m2 

𝑏 Basement 𝑁: 
0 = No basement, 1 = Partial basement, 2 = Full 

basement 

socio-economic status 

𝑝𝑒𝑟 
Household size, i.e. number of 

persons 
𝐶: 1 to 12 people 

𝑐ℎ𝑖 Number of children (< 14 yr) 𝐶: 0 to 9 

𝑒𝑙𝑑 Number of elders (> 65 yr) 𝐶: 0 to 4 

𝑖𝑛𝑐 Monthly net income in classes 𝑂: 1 = below 500 EUR to 6 = 3000 EUR and more 

𝑠𝑜𝑐𝑝 
Socioeconomic status 

according to Plapp, (2003) 
𝑂: 

3 = very low socioeconomic status to 13 = very high 

socioeconomic status 

2021 data source: Survey "Flooding in Germany in July 2021: Damage of private households“, University of Potsdam, data collection 

within the KAHR-project, funded by the German Ministry of Education and Research (BMBF, contract 01LR2102I), approved by the 

ethical committee of the University of Potsdam (60/2022) 

2016 data source: Survey "Pluvial Flooding and Flash Floods in May/June 2016: Damage of private households", University of Potsdam, 

German Research Centre for Geosciences, Deutsche Rückversicherung AG, 2017. 

2002 data source: Survey "Flooding in Germany in August 2002: Damage of private households“, German Research Centre for 

Geosciences, Deutsche Rückversicherung AG, 2003. 

 

The final database available for developing loss models consists of 241, 379, 355, 1131, 1448 observations for company 

building, equipment, goods & stock, household building, and contents, respectively. The percentage of missing data for 

different variables in each of the asset is summarized in Fig S1 (companies) and Fig S2 (households). To maximise the amount 

of training data for model building, we employed the 𝑘 nearest neighbour technique to impute the missing data. We tested a 115 

range of 𝑘-neighbours for our datasets (𝑘 =1,3,5,7,9) and selected the value with best performance.  
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2.3 Machine Learning-based feature selection 

Flood damage processes vary by region, flood type, and asset type (Mohor et al., 2020; Sairam et al., 2021; Wagenaar et al., 

2018). To derive the drivers of flash flood losses, this study adopts a data-driven feature selection approach to the empirical 

data. Feature selection involves identifying variables that have the highest influence on the target variable (i.e. relative loss). 120 

We train multiple models – nonlinear models: Random Forest (RF), Extreme Gradient Boosting (XGBoost), and linear model: 

Elastic Net (EN).  

RF is an ensemble machine learning method primarily used for classification and regression tasks, developed by Breiman 

(2001). RF generates an ensemble of decision trees, each trained on a random subset of the data using bootstrap sampling. At 

each node within these trees, a random subset of features is considered for splitting. The final prediction for a given input is 125 

obtained by averaging the predictions from all individual trees. This approach helps RF reduce overfitting and enhances the 

model's generalization ability. XGBoost, similarly to RF, is an ensemble learning algorithm that benefits from a decision tree-

based structure. However, the key difference compared to RF is that in XGBoost, each tree corrects the errors from the previous 

ones. The process starts with a simple model and iteratively adds trees that focus on the residuals or errors made by the existing 

ensemble. With its efficient implementation, XGBoost demonstrates superior performance and handles large-scale data more 130 

effectively than RF (Chen and Guestrin, 2016). While RF and XGBoost are non-linear models, EN is a regularization technique 

used in linear regression, combining both Lasso (L1) and Ridge (L2) regularization penalties. It effectively addresses 

multicollinearity in datasets by shrinking the less influential predictors toward zero (Lasso) while additionally providing some 

degree of regularization to prevent overfitting (Ridge). EN's ability to handle correlated features and select relevant predictors 

makes it a valuable tool in regression tasks (Zou and Hastie, 2005). 135 

During training, we employed a nested cross-validation framework with 10 splits and 10 repeats, resulting in a total of 100 

evaluations. We selected the best set of hyperparameters, which obtained the least mean absolute error, which was then applied 

to the final feature selection. From each resulting final model, we derived the feature importance. Next, we calculated each 

variable's weighted feature importance and overall rank. The final selection of the variables (Fig 1) is elaborated upon in the 

results section.   140 

2.4 Probabilistic FLEMOflash development 

Based on the identified features, a multivariate probabilistic Flood Loss Estimation MOdel (Bayesian Network – BN) is 

calibrated for predicting flash flood losses (Jensen and Nielsen, 2007; Kitson et al., 2023; Scutari and Denis, 2021). BNs are 

probabilistic graphical models where the predictor and target variables are connected through a directed acyclic graph (DAG). 

Each variable is depicted as a node, and related nodes are connected through arcs. These connections allow for the estimation 145 

of conditional probability distributions, facilitating an understanding of the underlying processes and probabilistic estimation 

of rloss (Vogel et al., 2018). The continuous variables are discretized using an equal frequency discretization approach (Scutari 

and Denis, 2021), and a discrete BN is formulated. The number of bins is determined based on the model performance against 
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different numbers of bins – the number of bins resulting in the best model performance is chosen. The specification of a discrete 

BN involves defining a set of variables (𝑋1, … 𝑋𝑛), constructing a DAG representing the probabilistic dependencies among 150 

variables, and obtaining the conditional probability distribution 𝑃 (
𝑋𝑖

𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)
) for each variable (𝑋𝑖) in the DAG, where 

𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖) denotes the parents of node 𝑋𝑖  in the DAG. The final joint probability distribution for the set of variables 

connected in a discrete BN is formulated as (Pearl, 1988): 

𝑃(𝑋1, … , 𝑋𝑛) = ∏ 𝑃 (
𝑋𝑖

𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)
)

𝑛

𝑖=1

 (1) 

Within the predicted bins of the discrete BN (𝑟𝑙𝑜𝑠𝑠 bins), we fit a continuous distribution by applying weighted sampling to 

the empirical loss data, resulting in a smoothed representation of the loss distribution (Schoppa et al., 2020).  For further details 155 

on the BN structure learning we refer to Text S1 and Figure A1.  

2.4.1 Comparison to stage damage function 

We compared FLEMOflash to a univariate stage-damage function (SDF), a conventional model in flood loss estimation (Gerl 

et al., 2016). We implemented the linear functional form of deterministic SDF (SDF-D) and probabilistic SDF (SDF-P) to 

assess the added value of the multivariate and probabilistic model. SDF-D is formulated as: 160 

𝑟𝑙𝑜𝑠𝑠𝑖 = 𝛼 + 𝛽(𝑤𝑑)𝑖 + 𝜀𝑖 (2) 

where 𝑟𝑙𝑜𝑠𝑠𝑖 is the relative loss for a given water depth (𝑤𝑑𝑖). 𝛼, 𝛽 and 𝜀𝑖 are the intercept, regression coefficient, and error 

of observation 𝑖, respectively. Further, to implement the SDF-P, we assume that the relative loss follows a zero-and-one-

inflated Beta distribution (Schoppa et al., 2020):  

𝑌𝑖  𝐵𝐸𝐼𝑁𝐹(𝜆, 𝛾, 𝜇𝑖 , 𝜙) (3) 

𝑙𝑜𝑔𝑖𝑡(𝜇𝑖) = 𝛼 + 𝛽(𝑤𝑑)𝑖 (4) 

In the above equation 3, we only predict the μ, whereas other distribution parameters are assumed constant across the 

observations. SI (Table S3) contains further information on the prior choice for model parameters as well as specification for 165 

Markov chain Monte Carlo sampling. 

2.4.2 Model validation and sensitivity 

We evaluate the performance of the FLEMOflash, SDF-D, and SDF-P models individually for the different types of assets in 

both, companies and households. We employed 10-fold cross-validation, which was repeated (n=100) with independent 

random seeds to obtain robust estimates. To address parameter sensitivity of FLEMOflash model performances due to Bayesian 170 

network structure learning, we systematically evaluated three critical factors:  
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1. Number of predictors (f1-f5): Section 2.3 identifies the ensemble-based important predictors, and the top five were used 

to develop the BN model. We demonstrated the model performance with varying number of predictors.  

2. Number of discretization bins (b3-b8): Continuous variables were binned using quantile-based stratification.  

3. Number of neighbours (k1-k9): Missing data were imputed with k-nearest neighbours. 175 

For each combination, we validated the model for each cross-validation fold using three performance metrics: mean absolute 

error (MAE), continuous ranked probability score (CRPS), and mean bias error (MBE) (Gneiting and Katzfuss, 2014; Jensen 

and Nielsen, 2007; Krüger et al., 2021; Schoppa et al., 2020). Detailed information on the validation procedure and three scores 

used to compare the models are provided in SI. 

3 Results and Discussion 180 

3.1 Drivers of flash flood losses 

An ensemble of linear and non-linear machine learning models ensures that both linear and non-linear relationships between 

the predictors and flood loss are captured. Water depth emerges as the most important predictor of damage across all asset 

types (Fig 1), which is consistent with previous loss models (Kreibich et al., 2010; Merz et al., 2013; Schoppa et al., 2020; 

Sieg et al., 2017; Thieken et al., 2008). For companies, emergency measures success and number of employees are also 185 

significant factors influencing the flood loss estimation. Among other flood characteristics, duration is ranked fourth for 

building (Fig. 1a), velocity is ranked third for equipment (Fig. 1b), and contamination is the fifth most significant driver for 

goods & stock (Fig. 1c), respectively. In case of households, human stability and contamination are most important hazard 

variables after water depth.  

The significance of water depth and emergency measures has also been emphasized by Hasanzadeh Nafari et al. (2016) in case 190 

of fluvial flood losses. Exposure variables such as number of employees significantly influence company losses. Additionally 

in case of households, losses are more influenced by variables representing flood vulnerability such as knowledge about 

emergency action (Fig. 1d-e). These findings are in line with the previous studies (Kreibich et al., 2005; Sairam et al., 2019; 

Zander et al., 2023) that highlight the potential for adaptation measures to reduce flood losses. By identifying the varied drivers 

of flash flood losses, these results also emphasize the importance of multivariable loss estimation models that capture the 195 

interplay across these drivers and their influence on losses. 

Although flow velocity has been identified as a significant contributor to flash flood losses (Kreibich and Dimitrova, 2010), it 

does not appear among the most significant factors in the current study.  In our analysis, we represent hydrodynamic forces 

using velocity (𝑣) and human stability (ℎ𝑠). While velocity provides a subjective yet direct measure of local strength of flow 

current, human stability reflects on the perceived difficulty of standing in flood waters.  As shown in Figure 1(d-e), human 200 

stability emerges as the second most influential factor affecting loss in households, indicating that the combined effect of water 

depth and velocity play a crucial role for the flash flood model. 
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Figure 1. Illustration of the feature importance in predicting the relative loss of companies categorized into (a) Building, (b) 205 
Equipment, (c) Goods and Stock. Similarly, households categorized into (d) Building and (e) Contents. X-axis denotes the weighted 

importance derived from an ensemble approach, combining two non-linear models (Random Forest and Extreme Gradient 

Boosting) and one linear model (Elastic Net). 

3.2 Probabilistic multivariate flash flood loss model 

3.2.1 FLEMOflash Bayesian network structure  210 

The FLEMOflash models are developed using a score-based structure learning algorithm and BN models are developed to 

capture the multivariate dependencies among variables. Data-driven BNs with the best performance were evaluated by domain 

experts to ensure consistency with the existing understanding about the underlying dynamics of flood loss processes (Fig. 2). 

The direction of the arrow represents an association between two variables but does not necessarily represent causality (Lüdtke 

et al., 2019; Sairam et al., 2020). Water depth emerged as the most important predictor for loss estimation across all asset types 215 

and is directly connected to the 𝑟𝑙𝑜𝑠𝑠 node in all BN structures (Fig. 2). In case of companies and households, the losses are 

influenced predominantly by water depth. Company characteristics (number of employees and size premise) significantly 

impact the losses for company assets (Fig. 2a-c). The measure success (ms) predictor is directly connected to 𝑟𝑙𝑜𝑠𝑠 in case of 

building and equipment (Fig 2a-b) and indirectly connected to 𝑟𝑙𝑜𝑠𝑠 through water depth for goods & stock (Fig. 2c).  

In households, building 𝑟𝑙𝑜𝑠𝑠 is directly connected to water depth, contamination, and knowledge about emergency action 220 

(Fig 2d). For contents, 𝑟𝑙𝑜𝑠𝑠 is directly connected to water depth and knowledge about emergency action, with contamination, 
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human stability, and income also playing important roles (Fig. 2e). Additionally, human stability, which is a factor of both 

depth and velocity, influences household losses through water depth. The direct connection of 𝑟𝑙𝑜𝑠𝑠 with measures success 

for companies’ assets (Fig. 2a-c), and with knowledge about emergency action for households (Fig. 2d-e) highlights the 

significance in mitigating flood losses. We derived joint probability distribution for all asset types and the findings reveal 225 

trade-offs between preparation strategies for different target losses. 

 

a) Companies : Building b) Companies : Equipment c) Companies : Goods & Stock 

   

d) Households: Building e) Households: Contents Predictors 

𝑤𝑑 Water depth 

𝑣 Velocity 

𝑐𝑜𝑛 Contamination 

ℎ𝑠 Human stability 

𝑑 Inundation duration 

𝑚𝑠 
Emergency measures 

success 

𝑘𝑒 
Knowledge about 

emergency action 

𝑒𝑚𝑝 Number of employees  

𝑠𝑝 Size premise  

𝑖𝑛𝑐 Income 

Predictand  

𝑟𝑙𝑜𝑠𝑠 Relative loss 
 

  

 

Figure 2. Bayesian Network structures for (a) Companies: Building, (b) Companies: Equipment, (c) Companies: Goods and Stock, 

(d) Households: Building, (d) Households: Contents, obtained from score-based structure learning algorithm.  230 

3.2.2 Performance and comparison 

The performance of the FLEMOflash BN structure was tested considering varying numbers of predictors, bins, and k-nearest 

neighbors. In the BN structure, null value was assigned to one predictor at a time (from lowest-5 rank to highest-1 rank based 

on feature importance – Fig 1) to examine the performance using the remaining variables (Fig 3). The performance metrics 
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(MAE, CRPS) vary with the number of predictors. The predictive performance improved with the number of predictors. For 235 

instance, the MAE values for all asset types decreased as the number of predictors increased. Based on the performance metrics, 

the optimum number of predictors was found to be five. However, the Markov Blanket of loss consists of two predictors (water 

depth and knowledge of emergency measures) for households: contents loss, and three predictors otherwise. Similarly, CRPS 

values also showed a declining pattern with increasing number of predictors, indicating better probabilistic predictions. The 

MBE was relatively stable, suggesting that bias in the prediction did not significantly change with the number of predictors. 240 

Examining the performance with optimal predictors while modifying the number of bins, revealed significant differences for 

companies but not for households, which could be attributed to the fact that the number of data points for companies is 

relatively limited and more heterogenous (Schoppa et al., 2020) compared to households. Company buildings model (C:BUI) 

with too few bins tend to lose information, resulting in higher MAE and CRPS values. Conversely, the goods & stocks model 

(C:GNS) performed better with fewer bins. For household models, MAE was not sensitive to the choice of bins, but model 245 

performance was slightly better with 8 bins. The MBE for company models showed fluctuations around zero, indicating some 

sensitivity to the choice of bins and potential bias.  

The number of neighbours used for data imputation does not show any significant difference in predictive performance. The 

MBE showed minor variations, remaining close to zero across different numbers of neighbours, suggesting that the bias in the 

predictions was not significantly affected by the imputation. The k-nearest neighbours (kNN) method of imputation assumes 250 

that the missing values can be inferred based on similarity of feature space. This may not hold equally well across variables, 

particularly for those with weak correlation to other features. To evaluate the robustness of the imputation process, we 

compared the distributions of variables before and after imputation and found them to be largely consistent (not shown for 

brevity). Nevertheless, the imputation process may still introduce uncertainty or reduce natural variability in the data. Future 

studies could benefit from sensitivity testing using alternative imputation techniques and explore models that explicitly 255 

incorporate imputation uncertainty.  

Overall, building assets in both company and household sectors performed better compared to other asset types. This superior 

performance is due to the effective inference of the relationship between water depth and building 𝑟𝑙𝑜𝑠𝑠 (Gerl et al., 2016; 

Lüdtke et al., 2019; Merz et al., 2013; Vogel et al., 2018). Additionally, the emergency response of mitigation measures for 

companies and knowledge about emergency action for households also boosted performance. 260 
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Figure 3. Model sensitivity of FLEMOflash to number of predictors (f1-f5), bins (b3-b8), number of neighbours used for data 

imputation (k1-k9) evaluated using mean average error (MAE), continuous ranked probability score (CRPS), and mean bias error 

(MBE) for the five asset types (x-axis). Each bocplot summarizes 100 repetitions of a fivefold cross-validation (companies) and 265 
tenfold cross-validation (households) with randomized data partitioning. Best-performing configurations were identified through a 

sequential tuning process: first selecting the number of predictors based on the first panel, then optimizing bin count in the second 

panel with predictors fixed, and finally selecting the number of neighbours in the third panel with both previous parameters fixed. 

Best-performing configurations are:  Companies – Buildings (C:BUI) f5, b6, k7; Companies – Equipment (C:EQU) f5, b6, k5; 

Companies – Goods and Stock (C:GNS) f5, b6, k9; Private Households – Buildings (P:BUI) f5, b8, k1; Private Households – Contents 270 
(P:CON) f5, b8, k3.  

The FLEMOflash model with the best performance, identified in Fig 3 was compared to SDF models (Fig 4). The FLEMOflash 

model consistently outperformed both the SDF-probabilistic and SDF-deterministic models across all five asset types due to 

its comprehensive representation of loss processes (Schröter et al., 2014). Study by Schoppa et al. (2020) also noted a similar 

observation reporting that probabilistic multivariate models performed better than univariate models for fluvial flood loss 275 

estimation. These findings highlight that FLEMOflash outperformed in estimating losses while also indicating the need for 

improvement to address biases in the predictions. 
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Figure 4. Comparison of FLEMOflash predictive performance against SDF-probabilistic and SDF-deterministic using MAE, CRPS, 

and MBE for the five assets (x-axis). Each boxplot summarizes 100 repetitions of a fivefold cross-validation (companies) and tenfold 280 
cross-validation (households) with randomized data partitioning.   

3.3 Description of loss processes by FLEMOflash 

The loss processes described by FLEMOflash is illustrated using the predictive density of predicted losses under scenarios of 

hazard, exposure and vulnerability. For brevity, this section primarily focusses on the FLEMOflash model for household 

buildings (Fig 5), with a similar interpretation extended to other asset types (Fig S3-S6). The nodes of the model comprise of 285 

water depth, human stability, inundation duration, contamination, knowledge about emergency action, and relative losses, each 

with 7, 4, 7, 5, 6, and 8 classes, respectively. The Conditional Probability Table (CPT) was populated with joint probabilities 

to find the predictive density of loss given the condition of other nodes. The conditional probability of 𝑟𝑙𝑜𝑠𝑠 based only on 

water depth indicates a monotonic relationship. Shallow inundations are associated with very low losses, while deeper water 

substantially increases the probability of severe losses (Fig 5e). The highest probabilities are concentrated along the diagonal, 290 

confirming this trend. For instance, depths <0.28 m are most likely associated with very low losses (<0.017), whereas depths 

≥2.3 m are strongly associated with high losses (> 0.42). Similar patterns of increasing loss probability with greater water 

depth are observed across all asset types (Fig. S3–S6). Water depth also influences human stability: while shallow flooding 

results in low instability, extreme depths markedly increase the probability of instability (0.54) (Fig. 5b, Fig. S6a).  

Contamination emerges as another important driver of losses. In uncontaminated conditions (class 0), the probability of very 295 

low losses (<0.01) is high (0.82). Conversely, under severe contamination (class 4), the probability of very high losses (>0.427) 

increases to 0.30 (Fig. 5c), reflecting the destructive impact of oils, chemicals, and sewage entering buildings (Kreibich et al., 

2005; Laudan et al., 2020). Households exposed to inundation lasting [13–50) hours showed a high probability of experiencing 

moderate contamination levels (classes 1–2). Knowledge about emergency action shows a strong mitigating effect. The CPT 

(Fig. 5d) demonstrates that households with low awareness (Ke ≤ 2) face a high probability of severe losses, whereas 300 
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households with very good knowledge (Ke ≥ 5) display a substantially higher probability of reduced losses. Comparable 

findings are observed for household contents (Fig. S6c). This agrees with Kreibich et al. (2021), who also reported that clear 

awareness of emergency actions substantially reduces damages. Importantly, socioeconomic status indirectly shapes 

vulnerability, as higher-income groups are more likely to report very clear knowledge of emergency actions after receiving 

warnings (Fig. S6b).  305 

For companies (Figs. S3–S5), the CPT results reveal consistent patterns across buildings, equipment, and goods & stock. 

Smaller companies (with fewer employees or smaller premises) show higher probabilities of severe losses, whereas larger 

firms and premises are more strongly associated with lower loss outcomes (Figs. S3b, S4d, S5c). Across all asset types, the 

success of emergency measures emerges as a dominant factor, as unsuccessful measures are strongly associated with a high 

probability of severe losses (Figs. S3d, S4b, S5a). Contamination further amplifies losses, with severe categories linked to 310 

markedly higher probabilities of loss. Together, these results emphasize that hazard intensity (water depth, velocity, 

contamination), exposure (number of employees, size premises) and vulnerability factors (effectiveness of emergency 

measures) interactively determine relative losses for companies. 

   

  

 

 

Figure 5. Conditional probability table (CPT) of the Bayesian network for the residential building. Each heatmap illustrates the 315 
conditional probabilities of a child node given its parent node. Parent node states are shown along the x-axis, and child node states 

along the y-axis. Darker shades of blue indicate higher probability values. Numerical values are displayed in each cell, with an 

accompanying colorbar showing the probability scale. (a) Inundation duration given contamination (b) Water depth given human 

stability (c) Contamination given relative loss (d) Knowledge about emergency action given relative loss (e) Relative loss given water 

depth. 320 
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3.3.1 Effect of preparedness 

Through feature selection and Bayesian Networks we identified emergency measures success (𝑚𝑠) and knowledge about 

emergency action (𝑘𝑒) for companies and households respectively, as the significant variables (see Tables S2 and S3 for 

details on the questions and responses). Building on this, we conceptualised preparedness using these variables and categorized 

it into low, medium, and high levels. For companies, high preparedness was defined as having undertaken emergency measures 325 

that were perceived to be mostly or completely effective (𝑚𝑠 = 3) and low preparedness (𝑚𝑠 = 1) reflected low perceived 

effectiveness of such measures. For households, high preparedness was defined as having a clear understanding of emergency 

actions based on official warnings (𝑘𝑒 ≥  5), and low preparedness reflected limited to no understanding of what to do (𝑘𝑒 ≤

2). While preparedness has been extensively studied in the context of fluvial or riverine floods (Lüdtke et al., 2019; Schoppa 

et al., 2020; Wagenaar et al., 2018), its role in flash floods has not yet been systematically investigated. To address this gap, 330 

we applied the FLEMOflash model to derive predictive densities of 𝑟𝑙𝑜𝑠𝑠. Results were summarized using the median and 

associated uncertainty (25th and 75th percentiles) for selected combinations of hazard, exposure, and vulnerability conditions, 

rather than displaying the full predictive densities (Figure 6). For clarity of interpretation, Figure A1 illustrates step by step 

how predictive densities are derived from the prior and posterior distributions using kernel density estimation based on 1,000 

resampled values, while Figure A2 provides an overview of the posterior and predictive densities across varying levels of 335 

measure success (preparedness) under same conditions of water depth and number of employees. 

For company building, the incurred loss increases with increasing water depth. Considering the company characteristics, the 

relative loss experienced by companies with 9 to 12 employees is higher compared to those with 38 or more employees. When 

taking preparedness into consideration, we see its significance in reducing loss. For example, when considering only hazard 

& exposure, companies with 38 or more employees, inundated by water depths ranging from 1.85 m to 2.40 m above the 340 

ground, experience a 𝑟𝑙𝑜𝑠𝑠 of 0.38. However, with high preparedness (ms=3), this 𝑟𝑙𝑜𝑠𝑠 decreases to 0.20, representing a 

substantial 47% reduction. On the other hand, with low preparedness, the 𝑟𝑙𝑜𝑠𝑠 increases to 0.50, marking a 32% increase in 

estimated losses.  

For household buildings, considering hazard and exposure with a water depth of ≥ 2.3 m above ground and no contamination, 

the predicted 𝑟𝑙𝑜𝑠𝑠 is 0.22. However, with high preparedness (𝐾𝑒 ≥ 5) this loss decreases to 0.05, reflecting a 77% reduction. 345 

Conversely, with low preparedness (𝐾𝑒 ≤ 2), the 𝑟𝑙𝑜𝑠𝑠 rises to 0.27, a 23% increase. Preparedness also plays a crucial role 

in mitigating losses to household contents. For instance, when considering only water depths of  height 2.3 m above ground, 

the 𝑟𝑙𝑜𝑠𝑠 is 0.38. With high preparedness, this loss drops to 0.17, a 55% reduction. In contrast, with low preparedness, the 

𝑟𝑙𝑜𝑠𝑠 increases to 0.44, representing a 16% rise. In both companies and households, losses are consistently higher with low 

preparedness and lower with high preparedness. The extent of this difference varies depending on hazard and exposure 350 

characteristics. These findings highlight the effect of preparedness in reducing the risk of flash flood risk. 
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Figure 6. FLEMOflash application for company buildings, private household buildings and contents, considering relative loss Markov 

blankets. The first row in each panel shows the probabilistic predictive density of relative loss on the interval [0,1] based on the 

specific scenarios of hazard and exposure combination. The second to fourth rows in each panel illustrate the changes in relative 355 
loss with different levels of preparedness for the given hazard and exposure combinations. 

Preparedness is crucial in mitigating potential losses (Barendrecht et al., 2020; Berghäuser et al., 2023; Bubeck et al., 2013; 

Sairam et al., 2019; Surminski and Thieken, 2017). Residents with high levels of preparedness are more likely to take effective 

emergency measures, thereby reducing the severity of flood loss (Kreibich et al., 2005; Sairam et al., 2019). Despite its 

importance, the way preparedness is conceptualized in this study has certain limitations. Specifically, the variable does not 360 

capture which exact actions respondents undertook. Therefore, it would be misleading to speculate particular actions directly 

resulted in reduced losses. While the specific actions likely varied across respondents, empirical evidence indicates that having 

clear knowledge of emergency action generally contributes to better preparedness, consistent with previous findings (Kreibich 

et al., 2021). 

4 Conclusions 365 

This study introduces FLEMOflash - new set of multivariate flash flood loss models for estimating relative losses for companies 

and households. The machine learning feature selection identified key loss drivers comprising hazard, company characteristics, 

and emergency response. Results further demonstrate that preparedness can substantially reduce losses. In extreme hazard 

scenarios, losses were reduced by nearly half for larger companies, and households that received timely warnings and has clear 

knowledge were able to reduce building losses by 77% and contents losses by 55%. While FLEMOflash already provides a 370 
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robust tool to support risk analyses, and impact-based forecasting, future developments could further strengthen its 

applicability by integrating complementary hydrological indicators (e.g., basin concentration time), incorporating building-

level susceptibility factors (e.g., construction materials, structural condition, floor count), and expanding the empirical database 

by including high loss observations and more diverse geographic regions. 

 375 

Table A1. Overview of 14 municipalities affected by past flash flood events.  

Name of 

Municipality 

Latitude 

(N) 

Longitude 

(E) 

Reference (including research papers, official reports, 

municipal flash flood maps, media coverage of past events) 

Triftern 48.3957 13.0060 (LfU, 2017), Thieken et al. (2022) 

Simbach am Inn 48.2869 13.0113 Hübl et al., (2017), (LfU, 2017), Thieken et al. (2022) 

Obernzenn 49.4492 10.4886 (LfU, 2017), Thieken et al. (2022) 

Künzelsau 49.2802 09.7378 Mühr et al. (2016), Thieken et al. (2022) 

Julbach 48.2547 12.9313 (LfU, 2017), Thieken et al. (2022) 

Forchtenberg 49.2799 09.5149 Mühr et al. (2016), Thieken et al. (2022) 

Flachslanden 49.4081 10.5205 (LfU, 2017), Thieken et al. (2022) 

Braunsbach 49.2007 09.7873 (Bronstert et al., 2018), Thieken et al. (2022) 

Ansbach 49.2888 10.5553 (LfU, 2017), Thieken et al. (2022) 

Stadtallendorf 50.8308 09.02447 

AVOSS Test Municipality (https://www.avoss.uni-

freiburg.de/testgebiete). Past event (https://www.feuerwehr-

wetter.de/informationen/buergerinformationen/starkregen.html) 

Grafschaft 50.5752 07.0852 

AVOSS Test Municipality (https://www.avoss.uni-

freiburg.de/testgebiete). Past event( https://hochwasser-

grafschaft.de/?p=936) 

Herrstein 49.7845 07.3461 

AVOSS Test Municipality (https://www.avoss.uni-

freiburg.de/testgebiete). Past event (https://fachtagung-

funke.de/wp-content/uploads/2024/06/6_Fuhr_Eisatzbericht-

Herrstein_2018.pdf) 

Otting 48.8801 10.7978 

AVOSS Test Municipality (https://www.avoss.uni-

freiburg.de/testgebiete). Past event 

(https://www1.wdr.de/nachrichten/westfalen-

lippe/aufraeumarbeiten-starkregen-ottfingen-100.html) 

Emmendingen 48.1225 07.8623 

AVOSS Test Municipality (https://www.avoss.uni-

freiburg.de/testgebiete). Municipal flash flood maps 

(https://www.emmendingen.de/leben-umwelt/vorsorge-

krise/starkregen) 

 

https://www.avoss.uni-freiburg.de/testgebiete
https://www.avoss.uni-freiburg.de/testgebiete
https://www.feuerwehr-wetter.de/informationen/buergerinformationen/starkregen.html
https://www.feuerwehr-wetter.de/informationen/buergerinformationen/starkregen.html
https://www.avoss.uni-freiburg.de/testgebiete
https://www.avoss.uni-freiburg.de/testgebiete
https://hochwasser-grafschaft.de/?p=936
https://hochwasser-grafschaft.de/?p=936
https://www.avoss.uni-freiburg.de/testgebiete
https://www.avoss.uni-freiburg.de/testgebiete
https://fachtagung-funke.de/wp-content/uploads/2024/06/6_Fuhr_Eisatzbericht-Herrstein_2018.pdf
https://fachtagung-funke.de/wp-content/uploads/2024/06/6_Fuhr_Eisatzbericht-Herrstein_2018.pdf
https://fachtagung-funke.de/wp-content/uploads/2024/06/6_Fuhr_Eisatzbericht-Herrstein_2018.pdf
https://www.avoss.uni-freiburg.de/testgebiete
https://www.avoss.uni-freiburg.de/testgebiete
https://www1.wdr.de/nachrichten/westfalen-lippe/aufraeumarbeiten-starkregen-ottfingen-100.html
https://www1.wdr.de/nachrichten/westfalen-lippe/aufraeumarbeiten-starkregen-ottfingen-100.html
https://www.avoss.uni-freiburg.de/testgebiete
https://www.avoss.uni-freiburg.de/testgebiete
https://www.emmendingen.de/leben-umwelt/vorsorge-krise/starkregen
https://www.emmendingen.de/leben-umwelt/vorsorge-krise/starkregen
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Figure A7: Visualizations of the prior, posterior, and predictive distributions of rloss (a) Empirical kernel density estimate of the 

prior rloss based on collected data (b) Prior distribution of rloss represented as bin weights (inverse frequency) across discretized 380 
intervals (c) Posterior distribution of rloss conditioned on wd ∈ [1.85, 2.40) and emp ≥ 38 (d) Predictive distribution of rloss generated 

by resampling 1000 values using the prior bin weights and the posterior probabilities. The solid vertical line indicates the median 

(50th percentile), while the dotted vertical lines represent the 25th and 75th percentiles, representing the predictive uncertainty. 

Shaded area highlights the interquartile range. 

 385 
Figure A8: (a) Posterior distribution and (b) predictive density of relative loss (rloss) under condition of water depth (wd) ∈ [1.85, 

2.40) and number of employees (emp) ≥ 38. (c–h) Posterior and predictive distributions of rloss for varying levels of measure success 

(ms): Subplots c, e, g present posterior distributions of rloss under three ms conditions — not at all, only limited, and yes – 

completely/most part — with wd ∈ [1.85, 2.40) and emp ≥ 38. Subplots d, f, h shows corresponding predictive densities, estimated 

using kernel density estimation from resampled values (n = 1000). In each density plot, the solid vertical line marks the median (50th 390 
percentile), while dotted vertical lines indicate the 25th and 75th percentiles, with shaded regions representing the uncertainty. The 

sequence from top to bottom illustrates increasing levels of preparedness. 
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