
The authors would like to thank the Editor and reviewers for the positive and encouraging feedback. 
The additional comments were found to be very helpful in improving the quality of the manuscript 
and will be acknowledged. We have responded (in black) to each comment (in blue). Please note 
that the page and line numbers cited in our responses refer to the clean version of the manuscript.  

Reviewer #1: 

As a reviewer of the previous version, I do appreciate the improvement made in the paper. 

However, I remain dubious about the ‘preparedness’ part. It still reads/looks as a (quick) addition, 

and not a key, well-thought contribution in the paper. In fact: 

- the Introduction does not mention preparedness at all (and then no background/SOTA on it); 

- the Methodology has not description about the methods for the preparedness analysis, except 

Tables 1/2 (which are not explained in the details of preparedness). 

The preparedness contribution is squeezed into Sec. 3.3.1 that mixes methodology and results. As 

a result, the quality of this contribution is very low. 

I would remove it, or I would revisit the paper (from the structure to content), in order to reflect 

how this aspect is embedded in the study. 

The authors would like to thank the reviewer for acknowledging the improvements done in the 
revised manuscript. We understand that the presentation of “preparedness” compromises with the 
continuity and clarity of the manuscript. As suggested by the reviewer we have removed the term 
“preparedness” unless in places where it means a general term rather than a conceptualized 
indicator. We have removed the section titled “Effect of preparedness”. As understanding the role of 
adaptation strategies such as emergency measures success (𝑚𝑠) and knowledge about emergency 
action (𝑘𝑒) is an important finding of the study, we have re-written the section with more clarity. 
We hope that this re-written section provides more clarity and suits the flow of the manuscript. 

 

P15/ L 321- 351: 

“Further, we analyse to what extent these adaptation strategies are helpful in reducing 𝑟𝑙𝑜𝑠𝑠. Through 
feature selection and Bayesian Networks we identified emergency measures success (𝑚𝑠) and 
knowledge about emergency action (𝑘𝑒) for companies and private households respectively, as the 
significant variables within the Markov Blanket of 𝑟𝑙𝑜𝑠𝑠 (see Tables S2 and S3 for details on the 
questions and responses). We applied the FLEMOflash model to derive predictive densities of 𝑟𝑙𝑜𝑠𝑠. 
Results were summarized using the median and associated uncertainty (25th and 75th percentiles) for 
selected combinations of hazard, exposure, and vulnerability conditions, rather than displaying the 
full predictive densities (Figure 6). For clarity of interpretation, Figure A1 illustrates step by step how 
predictive densities are derived from the posterior distributions using kernel density estimation based 
on 1,000 resampled values. Figure A2 provides an overview of the posterior and predictive densities 
across varying levels of measure success under same conditions of water depth and number of 
employees. 

For company building, the 𝑟𝑙𝑜𝑠𝑠 Markov blanket consists of water depth (𝑤𝑑), number of employees 
(𝑒𝑚𝑝), and emergency measures success (𝑚𝑠). The incurred loss increases with increasing water depth 
but combining the water depth and number of employees, the relative loss experienced by companies 
with 9 to 12 employees is higher compared to those with 38 or more employees. We further investigate 
the role of successful implementation of emergency measures in reducing loss. For example, when 
considering only water depth and number of employees, companies with 38 or more employees, 
inundated by water depths ranging from 1.85 m to 2.40 m above the ground, experience a 𝑟𝑙𝑜𝑠𝑠 of 
0.38. However, with successful implementation of emergency measures (𝑚𝑠=3), this 𝑟𝑙𝑜𝑠𝑠 decreases 
to 0.20, representing a substantial 47% reduction. On the other hand, when emergency measures were 



perceived to be ineffective (𝑚𝑠 = 1), the 𝑟𝑙𝑜𝑠𝑠 increases to 0.50, marking a 32% increase in estimated 
losses.  

For household buildings, considering hazard and exposure with a water depth of ≥ 2.3 m above ground 
and no contamination, the predicted 𝑟𝑙𝑜𝑠𝑠 is 0.22. However, when residents had clarity on emergency 
actions (𝐾𝑒 ≥ 5) this loss decreases to 0.05, reflecting a 77% reduction. Conversely, when residents 
did not have clear knowledge on emergency action (𝐾𝑒 ≤ 2), the 𝑟𝑙𝑜𝑠𝑠 rises to 0.27, a 23% increase. 
Similarly, for household contents, we observed that when considering only water depths (hazard) of 
height 2.3 m above ground, the 𝑟𝑙𝑜𝑠𝑠 is 0.38. With (𝐾𝑒 ≥ 5), this loss drops to 0.17, a 55% reduction. 
In contrast, with (𝐾𝑒 ≤ 2), the 𝑟𝑙𝑜𝑠𝑠 increases to 0.44, representing a 16% rise. These findings 
highlight the potential of successful implementation of emergency measures and knowledge about 
emergency action in reducing flash flood losses (Barendrecht et al., 2020; Berghäuser et al., 2023; 
Bubeck et al., 2013; Sairam et al., 2019; Surminski and Thieken, 2017). While residents with high 
knowledge about emergency actions are more likely to take effective emergency measures, thereby 
reducing the severity of flood loss (Kreibich et al., 2005; Sairam et al., 2019), the knowledge about 
emergency action (𝑘𝑒) variable as considered in this study, does not capture which exact actions 
respondents undertook. Though the specific actions likely varied across respondents, empirical 
evidence indicates that having clear knowledge of emergency action generally contributes to reduced 
flood losses, consistent with previous findings (Kreibich et al., 2021)” 

 

  

  

   
Figure 1. FLEMOflash application for company buildings, private household buildings and contents, considering relative loss Markov 

blankets. The first row in each panel shows the probabilistic predictive density of relative loss on the interval [0,1] based on the 

specific scenarios of hazard and exposure combination. The second to fourth rows in each panel illustrate the changes in relative 

loss with different levels of emergency measures success (𝒎𝒔) and knowledge about emergency action (𝒌𝒆) for the given hazard and 

exposure combinations. 
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Reviewer #2: 

I would like to thank the authors for their thorough and timely response to my comments, as well 

as for the revisions made to the manuscript, which in my view provide an appropriate justification 

for the modelling choices adopted and the results obtained.  

Nevertheless, I still have some reservations regarding the data underpinning the analysis and their 

representativeness with respect to the flash flood phenomena. While the use of the slope criterion 

allows for the inclusion of a larger number of data points, it may not necessarily ensure the quality 

or suitability of the dataset for this specific context. In addition, I remain uncertain about the 

inclusion of events related to heavy rainfall. The relatively low damage values estimated by the 

model (even in the absence of mitigation measures) seem to support these concerns. This aspect, 

however, does not preclude the publication of the article, since, as already mentioned, the 

manuscript clearly explains the modelling choices adopted.  

We sincerely thank the reviewer for the constructive feedback and positive evaluation of our revised 
manuscript. We appreciate the reviewer for the insightful comments.  

The slope-based approach was adopted as a simple and pragmatic criterion for point-based 
samples, allowing the inclusion of a broader empirical dataset while maintaining consistency across 
study sites. We fully acknowledge, however, that this criterion may select cases where the flash flood 
situation was not particularly severe. As highlighted in the conclusions, future developments should 
complement this approach with more physically based hydrological modelling and additional 
indicators. Specifically, we noted  

P16/L365-369: 

“While FLEMOflash already provides a tool to support risk analyses, and impact-based forecasting, 
future developments could further strengthen its applicability by integrating complementary 
hydrological indicators (e.g., basin concentration time), incorporating building-level susceptibility 
factors (e.g., construction materials, structural condition, floor count), and expanding the empirical 
database by including high loss observations and more diverse geographic regions.” 

 

In the methods section (P4/L100-101), we have already added “Other metrics, such as river basin 
concentration time, may indeed provide a more process-based characterization of flash flood 
potential.” to highlight the limitation of considering only slope criterion. 

 

We agree that we have used a rather broad definition of flash floods. However, the three flood events 
used in this study are already mentioned in section 2.1, of which one is a heavy precipitation event. 
We did not use rainfall as a criterion to distinguish flash floods, and only heavy precipitation events 
which qualified the slope criteria were used in this study. We have added a disclaimer to this effect 
in the methods section  

P4/L103-104:  

“The cases with longer warning lead times in the sample are likely to be due to warnings of high 
precipitation than to flood-specific warnings.”   

 

Nevertheless, I would suggest that the authors adopt a more cautious tone when discussing: 

-(i) the model’s ability to identify “the important variables and underlying processes that govern 

flash flood losses”. In fact, the model essentially indicates that damages depend on flood intensity, 

exposure, and preparedness — aspects that are already well-established in the literature. 



We agree with the reviewer in using a more cautious tone when discussing the models’ ability to 
identify important variables. It is true that the model essentially indicates that damages depend on 
flood intensity, exposure, and preparedness which have been well-established in the existing 
literature. However, using a machine learning ensemble approach helps us do quantitative 
comparison of factors that influence loss, and select the most significant variables from a list of 20 
variables considered in this study. This final selected list of variables is used for Bayesian Networks, 
which in turn help draw probabilistic dependencies  between different variables.   

In Section 3.1, we clearly highlight and acknowledge the role of existing studies stating that our 
results are in line with the previous findings. We have rephrased sentences that mention the 
“identification” of flash flood loss drivers as a novelty and highlight how the quantitative machine 
learning approach helps identify which of the variables are “more” important. 

We have made the following changes in response to the suggestions made by the reviewer: 

 

P3/L74-76: 

“We use machine learning based feature importance to select the most important variables from our 
dataset. The performance of FLEMOflash model is compared against conventional SDF models. Finally, 
we illustrate the loss processes with the CPT and Markov blanket in controlling the extent of loss 
reduction.” 

 

P6/ L120-121 

“To derive the most significant drivers of flash flood losses from our list of variables, this study adopts 
a data-driven feature selection approach to the empirical data.” 

 

P8/L 195-197: 

“By quantitatively comparing the varied drivers of flash flood losses, these results also emphasize the 
importance of multivariable loss estimation models that capture the interplay across these drivers and 
their influence on losses.” 

 

- (ii) the predictive capacity of the model (for example, in the abstract and conclusions), given that 

the model relies on a limited number of variables and is based on data that are difficult to estimate 

in a predictive phase at the individual-item level (e.g., preparedness, number of employees, income, 

contamination, inundation duration). 

As mentioned in Section 2.4.2, the model predictive capacity presented in this study pertains to an 
evaluation of model’s performance with respect to available data and established metrics (e.g., MAE, 
CRPS, MBE). We acknowledge that these metrics reflect outcome constrained by available data and 
model choices. 

As a word of caution, we have added the following part to the conclusion of the manuscript:  

 

P16/L369-371:  

 

“It is important to note that the model’s performance and predictive capacity, as presented are specific 
to the empirical dataset and survey variables available for FLEMOflash, and the results should be 
interpreted within the context and limitations of the underlying data.” 


