
We would like to express our sincere gratitude to the Editor for keeping the discussion open upon request and to the Reviewers 

for recognizing the significance of our work. We are especially thankful for their constructive comments and valuable 

suggestions, which we have carefully addressed in the revised version. The comments were found to be very helpful in 

enhancing the clarity and overall quality of the manuscript.  

 

Reviewer #1:  

This paper is in the context of flash floods, loss estimation models, and flood preparedness. The paper introduces the 

FLEMOflash model, using data from past German flash floods; methodologically, it combines machine learning and Bayesian 

networks to estimate probabilistic losses and their uncertainties. In terms of topics, the paper is relevant for and aligned with 

NHESS. The paper is well-written and -organised. Comments are mostly minor (even typos).  

The authors would like to thank the reviewer for acknowledging significance and for providing us with the valuable feedback. 

The comments were found to be very helpful in improving the quality of the manuscript and will be acknowledged. We have 

responded (in black) to each comment (in blue). Please note that the page and line numbers cited in our responses refer to the 

clean version of the manuscript. All references cited in our responses are listed at the end of this letter. 

 

The only major comment is about preparedness. From the paper, I do not understand what is meant by preparedness, and in 

specific what ‘high’ and ‘low’ preparedness mean.  

We thank the reviewer for this question. We have added the following text in Section 3.3.1 (P15/L322-329) to address the 

missing clarification.  

“Through feature selection and Bayesian Networks we identified emergency measures success (𝑚𝑠) and knowledge about 

emergency action (𝑘𝑒) for companies and private households respectively, as the significant variables (see Tables S2 and S3 

for details on the questions and responses). Building on this, we conceptualised preparedness using these variables and 

categorized it into low, medium, and high levels. For companies, high preparedness was defined as having undertaken 

emergency measures that were perceived to be mostly or completely effective (𝑚𝑠 = 3) and low preparedness (𝑚𝑠 = 1) 

reflected low perceived effectiveness of such measures. For private households, high preparedness was defined as having a 

clear understanding of emergency actions based on official warnings (𝑘𝑒 ≥  5), and low preparedness reflected limited to no 

understanding of what to do (𝑘𝑒 ≤ 2).” 

What are the assumptions behind ‘preparedness’? e.g. that people with more knowledge of risk will act in a certain way (which 

way?)? At page 14, it is said: ‘…doesn’t knew what to do’. For high preparedness, what people know about what to do? 

Residents with high levels of preparedness are more likely to take effective emergency measures, thereby reducing the severity 

of flood loss. Despite its importance, the way preparedness is conceptualized in this study has certain limitations. Specifically, 

the variable does not capture which exact actions respondents undertook. Therefore, it would be misleading to speculate 

particular actions directly resulted in reduced losses. While the specific actions likely varied across respondents, empirical 

evidence indicates that having clear knowledge of emergency action generally contributes to better preparedness, consistent 

with previous findings. 

We mentioned this limitation in the revised manuscript in P16/L358-364 as follows:  

“Residents with high levels of preparedness are more likely to take effective emergency measures, thereby reducing the severity 

of flood loss (Kreibich et al., 2005; Sairam et al., 2019). Despite its importance, the way preparedness is conceptualized in 

this study has certain limitations. Specifically, the variable does not capture which exact actions respondents undertook. 

Therefore, it would be misleading to speculate particular actions directly resulted in reduced losses. While the specific actions 

likely varied across respondents, empirical evidence indicates that having clear knowledge of emergency action generally 

contributes to better preparedness, consistent with previous findings (Kreibich et al., 2021).” 

The model seems suited to derive the predictive density of losses, however I have doubt about the effect of preparedness. I 

would be very cautious to include this part in the paper. 

Thank you for this constructive feedback. We have revised the manuscript to clarify how predictive densities are summarized. 

The following text has been added in P15/L329–336:  

“While preparedness has been extensively studied in the context of fluvial or riverine floods (Lüdtke et al., 2019; Schoppa et 

al., 2020; Wagenaar et al., 2018), its role in flash floods has not yet been systematically investigated. To address this gap, we 

applied the FLEMOflash model to derive predictive densities of 𝑟𝑙𝑜𝑠𝑠. Results were summarized using the median and 

associated uncertainty (25th and 75th percentiles) for selected combinations of hazard, exposure, and vulnerability conditions, 

rather than displaying the full predictive densities (Figure 6). For clarity of interpretation, Figure A1 illustrates step by step 

how predictive densities are derived from the prior and posterior distributions using kernel density estimation based on 1,000 

resampled values, while Figure A2 provides an overview of the posterior and predictive densities across varying levels of 

measure success (preparedness) under same conditions of water depth and number of employees.” 

 



 

Figure A1: Visualizations of the prior, posterior, and predictive distributions of rloss (a) Empirical kernel density 

estimate of the prior rloss based on collected data (b) Prior distribution of rloss represented as bin weights (inverse 

frequency) across discretized intervals (c) Posterior distribution of rloss conditioned on wd ∈ [1.85, 2.40) and emp ≥ 38 

(d) Predictive distribution of rloss generated by resampling 1000 values using the prior bin weights and the posterior 

probabilities. The solid vertical line indicates the median (50th percentile), while the dotted vertical lines represent the 

25th and 75th percentiles, representing the predictive uncertainty. Shaded area highlight the interquartile range. 

 

 

Figure A2: (a) Posterior distribution and (b) predictive density of relative loss (rloss) under condition of water depth 

(wd) ∈ [1.85, 2.40) and number of employees (emp) ≥ 38. (c–h) Posterior and predictive distributions of rloss for varying 

levels of measure success (ms): Subplots c, e, g present posterior distributions of rloss under three ms conditions — not 

at all, only limited, and yes – completely/most part — with wd ∈ [1.85, 2.40) and emp ≥ 38. Subplots d, f, h shows 

corresponding predictive densities, estimated using kernel density estimation from resampled values (n = 1000). In each 

density plot, the solid vertical line marks the median (50th percentile), while dotted vertical lines indicate the 25 th and 

75th percentiles, with shaded regions representing the uncertainty. The sequence from top to bottom illustrates 

increasing levels of preparedness. 

 

A secondary comment is that I would add some background about the previous /traditional version of FLEMO (e.g. 

https://www.gfz.de/en/section/hydrology/ projects/4-flood-loss-model-flemo-for-residential-and-commercial-sectors); there 

is none at the moment I think. 



Thank you for the helpful suggestion. In the revised manuscript (P2-3/L54-75), we have incorporated additional background.  

“Traditionally, flood loss estimation relied on univariate stage-damage functions (SDF) (Middelmann‐Fernandes, 2010). To 

improve the description of complex damage processes, the Flood Loss Estimation MOdel (FLEMOps) for the private sector, 

was developed as rule-based, multivariate, deterministic model (Thieken et al., 2008). Merz et al. (2013) and Sieg et al. (2017) 

introduced decision tree-based damage models that explicitly quantify uncertainty associated with both data variability and 

model structure uncertainty through bootstrap aggregation. Subsequently, Bayesian Networks were used (BN-FLEMO), 

enabling the modelling of complex flood loss processes through conditional probability relationships (Lüdtke et al., 2019; 

Schoppa et al., 2020; Schröter et al., 2014; Vogel et al., 2018). 

In parallel, various machine learning approaches have also been developed for flood loss estimation, including neural 

networks (Salas et al., 2023), random forests (Ghaedi et al., 2022), Bayesian regression (Mohor et al., 2021). Among these, 

Bayesian networks are particularly advantageous due to their probabilistic representation of conditional dependencies among 

multiple variables, handle missing data, and model transferability (Schröter et al., 2014). Bayesian models enhance the 

understanding of flood loss dynamics by quantifying uncertainty and offering probabilistic estimates. For instance, Wagenaar 

et al. (2018) developed a regional and temporal transferable BN-FLEMO for microscale residential applications, which was 

later upscaled to mesoscale by Lüdtke et al. (2019). In addition to the FLEMO typology, various synthetic, multivariate, rule-

based flood loss models have been proposed for fluvial flood contexts (Amadio et al., 2019; Dottori et al., 2016; Nofal et al., 

2020; Sairam et al., 2020). 

However, all these loss models were developed to simulate damage processes during fluvial floods. In this study, we present 

the first probabilistic flash flood loss model – Flood Loss Estimation Model affected by flash floods (FLEMOflash) using a BN-

based approach and gain new knowledge about flash flood damage processes based on the conditional probabilities among 

multiple influencing variables. The study identifies the important variables and underlying processes that govern the flash 

flood losses. Additionally, we examine the predictive performance of FLEMOflash model and compare it with conventional SDF 

models. Finally, we illustrate the effect of preparedness in controlling the extent of loss reduction” 

Specific comments (P for page, L for line): 

Valid for all direct citations: coma is not needed before the year, e.g. Smith et al. (2000) - and not Smith et al., (2000) 

Thank you for pointing this out. We have corrected it.  

Valid for the whole paper: equation factors, such as rloss, need to be in italic in the main text of the manuscript 

Corrected. 

Valid for the whole paper: do not use contracted forms like ‘doesn’t’. L223: The direction of the arrow represents an association 

between two variables but doesn’t necessarily represent causality.   

We have corrected it in the revised manuscript. 

P2L42: double parenthesis in the citation 

Corrected. 

P2L50: double space before ‘significant’ 

Corrected. 

P4L101: double space before ‘The percentage’? 

Corrected. 

P7L146, P11L236: ‘This’ what? Add a noun, specify 

Thank you for pointing out this lack of clarity. The revised text now reads as follows:  

 

P7/L154-156: “Within the predicted bins of the discrete BN (𝑟𝑙𝑜𝑠𝑠 bins), we fit a continuous distribution by applying weighted 

sampling to the empirical loss data, resulting in a smoothed representation of the loss distribution (Schoppa et al., 2020).  For 

further details on the BN structure learning we refer to Text S1 and Figure A1.” 

 

P11/L241-243: “Examining the performance with optimal predictors while modifying the number of bins, revealed significant 

differences for companies but not for households, which could be attributed to the fact that the number of data points for 

companies is relatively limited and more heterogenous (Schoppa et al., 2020) compared to households.” 

 

P9L190: remove the dot before the parenthesis of Fig. 1d-e 

Corrected.  



Reviewer #2:  

The paper introduces FLEMOflash, a novel multivariate probabilistic Flood Loss Estimation Model tailored for flash floods. 

The model builds on survey data collected after flash flood events in 2002, 2016, and 2021 in Germany, encompassing both 

affected companies and households. FLEMOflash employs a data-driven feature selection approach alongside Bayesian 

networks to derive probabilistic loss estimates. The topic clearly falls within the scope of the journal, and the manuscript is 

generally well written and well organised. However, I have concerns regarding some of the underlying assumptions of the 

model, which, in turn, raise doubts about its validity for reliably estimating flash flood damage. I believe the authors should 

provide a more robust justification for their hypotheses to strengthen the credibility and robustness of their results. Below, I 

first present general concerns, followed by more specific comments. 

The authors would like to thank the reviewer for acknowledging significance and for providing us with the valuable feedback. 

The comments were found to be very helpful in improving the quality of the manuscript and will be acknowledged in the 

revised manuscript. We have responded (in black) to each comment (in blue). Please note that the page and line numbers cited 

in our responses refer to the clean version of the manuscript. All references cited in our responses are listed at the end of this 

letter. 

General concerns  

1) My first concern relates to the criteria used for identifying flash flood events (and then data to be implemented to derive the 

model). Specifically, I find the use of average slope as a proxy problematic. While slope may influence local flow velocity, it 

does not adequately capture the main defining characteristic of flash floods — their rapid onset and short lead times. This 

concern is further supported by the reported warning lead times in Tables 1 and 2, which range from 0 to 240 hours and 0 to 

168 hours, respectively. These values appear inconsistent with typical flash flood dynamics, where lead times are often just a 

few hours. Additionally, the use of a low-resolution DEM may not provide the accuracy needed to derive reliable slope 

estimates at the point observation scale.  

Have the authors considered using the concentration time of the river basin where the observations are located as a more 

physically meaningful proxy for flash flood potential? This could provide a better indication of response time and be more 

consistent with established hydrological understanding of flash flood processes. 

We thank the reviewer for this important and constructive comment. The flood loss models presented in this study are based 

on empirical, microscale data collected from individual private households and companies. To identify flash flood samples, 

we applied a spatially informed terrain analysis. For this purpose, 14 reference municipalities with documented flash flood 

occurrences or described as particularly susceptible to flash floods were selected. An overview of these municipalities is 

provided in Table A1 (included in the revised manuscript). 

Table A1: Overview of 14 municipalities affected by past flash flood events.  

Name of 

Municipality 
Latitude (N) Longitude (E) 

Reference (including research papers, official reports, 

municipal flash flood maps, media coverage of past events) 

Triftern 48.3957 13.0060 (LfU, 2017), Thieken et al. (2022) 

Simbach am Inn 48.2869 13.0113 Hübl et al., (2017), (LfU, 2017), Thieken et al. (2022) 

Obernzenn 49.4492 10.4886 (LfU, 2017), Thieken et al. (2022) 

Künzelsau 49.2802 09.7378 Mühr et al. (2016), Thieken et al. (2022) 

Julbach 48.2547 12.9313 (LfU, 2017), Thieken et al. (2022) 

Forchtenberg 49.2799 09.5149 Mühr et al. (2016), Thieken et al. (2022) 

Flachslanden 49.4081 10.5205 (LfU, 2017), Thieken et al. (2022) 

Braunsbach 49.2007 09.7873 (Bronstert et al., 2018), Thieken et al. (2022) 

Ansbach 49.2888 10.5553 (LfU, 2017), Thieken et al. (2022) 

Stadtallendorf 50.8308 09.02447 

AVOSS Test Municipality (https://www.avoss.uni-

freiburg.de/testgebiete). Past event (https://www.feuerwehr-

wetter.de/informationen/buergerinformationen/starkregen.html) 

Grafschaft 50.5752 07.0852 

AVOSS Test Municipality (https://www.avoss.uni-

freiburg.de/testgebiete). Past event( https://hochwasser-

grafschaft.de/?p=936) 

Herrstein 49.7845 07.3461 

AVOSS Test Municipality (https://www.avoss.uni-

freiburg.de/testgebiete). Past event (https://fachtagung-funke.de/wp-

content/uploads/2024/06/6_Fuhr_Eisatzbericht-Herrstein_2018.pdf) 

Otting 48.8801 10.7978 

AVOSS Test Municipality (https://www.avoss.uni-

freiburg.de/testgebiete). Past event 

(https://www1.wdr.de/nachrichten/westfalen-

lippe/aufraeumarbeiten-starkregen-ottfingen-100.html) 

https://www.avoss.uni-freiburg.de/testgebiete
https://www.avoss.uni-freiburg.de/testgebiete
https://www.feuerwehr-wetter.de/informationen/buergerinformationen/starkregen.html
https://www.feuerwehr-wetter.de/informationen/buergerinformationen/starkregen.html
https://www.avoss.uni-freiburg.de/testgebiete
https://www.avoss.uni-freiburg.de/testgebiete
https://hochwasser-grafschaft.de/?p=936
https://hochwasser-grafschaft.de/?p=936
https://www.avoss.uni-freiburg.de/testgebiete
https://www.avoss.uni-freiburg.de/testgebiete
https://fachtagung-funke.de/wp-content/uploads/2024/06/6_Fuhr_Eisatzbericht-Herrstein_2018.pdf
https://fachtagung-funke.de/wp-content/uploads/2024/06/6_Fuhr_Eisatzbericht-Herrstein_2018.pdf
https://www.avoss.uni-freiburg.de/testgebiete
https://www.avoss.uni-freiburg.de/testgebiete
https://www1.wdr.de/nachrichten/westfalen-lippe/aufraeumarbeiten-starkregen-ottfingen-100.html
https://www1.wdr.de/nachrichten/westfalen-lippe/aufraeumarbeiten-starkregen-ottfingen-100.html


Emmendingen 48.1225 07.8623 

AVOSS Test Municipality (https://www.avoss.uni-

freiburg.de/testgebiete). Municipal flash flood maps 

(https://www.emmendingen.de/leben-umwelt/vorsorge-

krise/starkregen) 

 

We agree with the reviewer that slope alone does not fully capture the characterization of flash floods. Other metrics, such as 

river basin concentration time, may indeed provide a more process-based representation of flash flood potential. Nevertheless, 

we used slope alone as a pragmatic solution to balance two competing needs: maintaining physical relevance in identifying 

flash flood–prone companies and households, and retaining a sufficient number of data points for robust model development.  

We have added the following text in the revised manuscript: 

P4/L99–103: “Other metrics, such as river basin concentration time, may indeed provide a more process-based 

characterization of flash flood potential. Nevertheless, we used slope alone as a pragmatic solution that balances two 

competing needs: maintaining physical relevance in identifying flash flood prone companies and households, and retaining a 

sufficient number of data points for robust model development.” 

P17/L370-374: “While FLEMOflash already provides a robust tool to support risk analyses, and impact-based forecasting, 

future developments could further strengthen its applicability by integrating complementary hydrological indicators (e.g., 

basin concentration time), incorporating building-level susceptibility factors (e.g., construction materials, structural 

condition, floor count), and expanding the empirical database by including high loss observations and more diverse 

geographic regions.” 

To assess the influence of DEM-granularity on our calculations, we compared the analysis results using the 90 m resolution 

DEM (SRTM GL3) to those acquired when using the 30 m resolution SRTM GL1 (see below Table, provided here for response 

only). We found that slope angles between the two medium-resolution DEMs generally increase with DEM-resolution, a 

relationship that is discussed in more detail by several studies (Chang and Tsai, 1991; Grohmann, 2015; Wu et al., 2008). 

However, it is arguable if these differences in calculated slope angles around the reference municipalities translate to significant 

differences in the selection of survey data points. 

Table: Summary statistics (mean, median, minimum, and maximum) of terrain slope (in degrees) derived from SRTM GL3 

(90 m resolution) and SRTM GL1 (30 m resolution) for the selected municipalities. 

Municipality 
SRTM GL3 (90 m resolution) SRTM GL1 (30 m resolution) 

mean median min max mean median min max 

Triftern 1.75 1.49 0.00 6.06 5.37 4.30 0.00 38.78 

Simbach am Inn 1.89 1.34 0.00 9.98 4.75 3.20 0.00 45.47 

Obernzenn 1.68 1.41 0.01 7.22 4.69 3.04 0.00 37.71 

Künzelsau 2.34 1.52 0.00 12.86 6.95 4.62 0.00 48.14 

Julbach 1.62 1.21 0.00 9.98 4.97 3.45 0.00 48.70 

Forchtenberg 2.40 1.92 0.00 10.74 7.21 5.16 0.00 54.09 

Flachslanden 1.84 1.70 0.01 6.80 5.42 3.84 0.00 37.81 

Braunsbach 2.35 1.31 0.00 12.86 6.18 3.54 0.00 48.41 

Ansbach 1.38 1.19 0.01 5.61 4.59 3.20 0.00 37.08 

Stadtallendorf 1.72 1.55 0.00 10.81 4.45 3.30 0.00 43.48 

Grafschaft 2.49 1.87 0.01 16.54 6.47 4.05 0.00 57.05 

Herrstein 3.49 3.20 0.04 12.86 9.32 7.34 0.00 60.95 

Otting 1.54 1.41 0.02 5.89 5.34 4.17 0.00 43.45 

Emmendingen 2.42 1.59 0.00 13.96 7.79 4.66 0.00 59.19 

 

Regarding the reported warning lead times, we agree that the values presented in Tables 1 and 2 appear long compared to 

typical flash flood dynamics. This discrepancy arises because, the variable "warning lead time" includes both flash flood 

warnings and heavy rainfall warnings. The latter are often issued days in advance by meteorological services, which explains 

the broader range (0–240 and 0–168 hours) seen in Tables 1 and 2. To clarify this, the revised manuscript now includes an 

overview of all variables for companies and private households (Tables S1 and S2), including the corresponding survey 

questions and responses. 

 

https://www.avoss.uni-freiburg.de/testgebiete
https://www.avoss.uni-freiburg.de/testgebiete
https://www.emmendingen.de/leben-umwelt/vorsorge-krise/starkregen
https://www.emmendingen.de/leben-umwelt/vorsorge-krise/starkregen


2) My second concern relates to the set of explanatory variables used in the model. One of the primary damage mechanisms 

in flash flood events is structural damage, which is strongly influenced by the physical vulnerability of affected buildings. 

However, the model does not appear to include variables that capture this aspect, such as construction material, number of 

floors, or level of maintenance — all of which significantly affect a building’s susceptibility to structural damage. While I 

understand that the set of variables was likely constrained by the information collected through the survey, I would like to 

know whether the authors considered integrating ancillary data to address these critical gaps. For example, building-level data 

from national censuses or geoportals could provide valuable proxies for physical vulnerability. Inclusion of such information 

could improve the explanatory power and practical relevance of the model, particularly in contexts where decisions rely on 

nuanced understanding of asset-specific vulnerabilities. 

Thank you for your valuable and constructive suggestion. We fully recognize the importance of incorporating variables that 

directly reflect the physical vulnerability of buildings, as these factors significantly influence structural damage during flash 

flood events. Our current dataset already includes some relevant vulnerability-related variables (e.g., building area, size of 

premises, presence of a basement, and spatial situation), but it does not contain detailed information on construction materials 

or number of floors. In this study, our aim was to advance the understanding of processes and develop models based strictly 

on the available empirical survey data.  

We also appreciate the suggestion of integrating ancillary data sources (e.g., open-source geoportals). While such data may 

indeed provide valuable proxies for building vulnerability, ensuring consistent integration across all surveyed municipalities 

was beyond the scope of the present study. Nevertheless, this represents a promising avenue for future research and model 

enhancement. 

We have added the following text in the manuscript:  

P17/L370-374: “While FLEMOflash already provides a robust tool to support risk analyses, and impact-based forecasting, 

future developments could further strengthen its applicability by integrating complementary hydrological indicators (e.g., 

basin concentration time), incorporating building-level susceptibility factors (e.g., construction materials, structural 

condition, floor count), and expanding the empirical database by including high loss observations and more diverse 

geographic regions.” 

 

3) A third concern regards obtained results, especially in terms of damage mechanisms. I would have expected to observe a 

significant influence of flow velocity or, at least, of the hydrodynamic force associated with the flow but this is not the case.  

We thank the reviewer for this constructive comment. In the current study, we aimed to represent hydrodynamic forces through 

two variables: velocity and human stability. While the velocity variable reflects a subjective but direct estimation of the local 

strength of the water flow by the interviewed people, the human stability variable captures the perceived difficulty of standing 

in floodwaters, thereby integrating both water depth and flow velocity. As shown in Figures 1(d–e), human stability emerges 

as the second most influential factor affecting loss in the case of private households, indicating that the combined effect of 

water depth and velocity is important for the model. We will include this explanation in Section 3.1 of the revised manuscript. 

Additionally, the revised manuscript now includes an overview of all variables for companies and private households (Tables 

S1 and S2), including the corresponding survey questions and responses. 

P8/L197-203: “Although flow velocity has been identified as a significant contributor to flash flood losses (Kreibich and 

Dimitrova, 2010), it does not appear among the most significant factors in the current study.  In our analysis, we represent 

hydrodynamic forces using two variables: velocity (𝑣) and human stability (ℎ𝑠).. While velocity provides a subjective yet 

direct measure of local strength of flow current, human stability reflects on the perceived difficulty of standing in flood waters. 

As shown in Figure 1(d-e), human stability emerges as the second most influential factor affecting loss in private households, 

indicating that the combined effect of depth and velocity play a crucial role for the flash flood model.” 

4) All the concerns mentioned above converge in the results obtained, particularly in the relative loss estimates provided by 

the model. These estimates range between 0.2 and 0.5, even for high water depths (around or above 2 meters). Such values are 

comparable to those typically produced by models for riverine floods (see, e.g., FLEMOps), which raises doubts about the 

model's ability to capture the distinctively more destructive nature of flash floods.  

We agree that relative loss values between 0.2 and 0.5 may appear low compared to expectations for flash floods. However, 

two key factors explain this pattern.  

First, our dataset contains a greater number of observations with lower reported damages compared to high-damage cases, 

resulting in a skewed distribution. This imbalance limits the model’s ability to generalize accurately at the upper end of the 

water depth range. Please refer to Figure A1, which illustrates this distribution. Similar limitations have been reported in the 

literature; for example, Schoppa et al. (2020) observed greater prediction uncertainty for higher water depths due to data 

sparsity.  



 

Figure A3: Visualizations of the prior, posterior, and predictive distributions of rloss (a) Empirical kernel density 

estimate of the prior rloss based on collected data (b) Prior distribution of rloss represented as bin weights (inverse 

frequency) across discretized intervals (c) Posterior distribution of rloss conditioned on wd ∈ [1.85, 2.40) and emp ≥ 38 

(d) Predictive distribution of rloss generated by resampling 1000 values using the prior bin weights and the posterior 

probabilities. The solid vertical line indicates the median (50th percentile), while the dotted vertical lines represent the 

25th and 75th percentiles, representing the predictive uncertainty. Shaded area highlights the interquartile range. 

Second, our analysis (see Figure A2) shows that even under condition of higher water depth and high exposure (e.g., many 

employees), the level of preparedness, particularly the perceived success of emergency measures undertaken, plays a 

substantial role in reducing losses. Specifically, relative loss is significantly lower when respondents reported that the measures 

taken were either completely successful or protected the most critical parts of the property. 

 

Figure A4: (a) Posterior distribution and (b) predictive density of relative loss (rloss) under condition of water depth 

(wd) ∈ [1.85, 2.40) and number of employees (emp) ≥ 38. (c–h) Posterior and predictive distributions of rloss for varying 

levels of measure success (ms): Subplots c, e, g present posterior distributions of rloss under three ms conditions — not 

at all, only limited, and yes – completely/most part — with wd ∈ [1.85, 2.40) and emp ≥ 38. Subplots d, f, h shows 

corresponding predictive densities, estimated using kernel density estimation from resampled values (n = 1000). In each 

density plot, the solid vertical line marks the median (50th percentile), while dotted vertical lines indicate the 25th and 

75th percentiles, with shaded regions representing the uncertainty. The sequence from top to bottom illustrates 

increasing levels of preparedness. 

 



While the resulting loss estimates may initially appear to underestimate the destructive nature of flash floods, they instead 

reflect the complex interplay between hazard intensity, exposure, and vulnerability. Nonetheless, we agree that increasing the 

number of data points representing extreme hazard scenarios and improving the representation of structural vulnerability (e.g., 

building materials, number of floors) would enhance the model’s capacity to capture the full spectrum of flash flood impacts. 

We have emphasized these aspects as important directions for future study as follows (P17/L370-374):  

“While FLEMOflash already provides a robust tool to support risk analyses, and impact-based forecasting, future developments 

could further strengthen its applicability by integrating complementary hydrological indicators (e.g., basin concentration 

time), incorporating building-level susceptibility factors (e.g., construction materials, structural condition, floor count), and 

expanding the empirical database by including high loss observations and more diverse geographic regions.” 

Specific Comments: 

Table 1 and Table 2 → the meaning of some variables is not clear. For instance, does emergency plan refer to the existence of 

a municipal emergency plan or a company emergency plan? Which is the meaning of the precaution indicator? Which are the 

emergency measures considered? I suggest including an explanatory table in the supplementary material 

Thank you for highlighting this lack of clarity regarding the interpretation of variables in Tables 1 and 2. In the revised 

manuscript, we added overview of all variables for companies and private households (Tables S1 and S2), including the 

corresponding survey questions and responses. 

Table S1: Overview of the company variables, including abbreviations, full variable names, survey questions, response 

options, coding, and index construction. 

Predictors Survey question Response 

𝑤𝑑 Water depth 

At maximum water level, how high was the 

water above the Earth’s surface on your company 

premises in cm? 

Continuous variable 

𝑑 
Inundation 

duration 

For how many hours did water remain on the 

company premises? 
Continuous variable 

𝑣 Velocity indicator 
How strong was the water current in the 

immediate vicinity of your company? 

• 1 – Calm/slowly flowing 

• 2 

• 3 

• 4 

• 5 

• 6 – Wild/violent current 

Recoded categories (used in the 

analysis): 

1. Low flow (original categories 1–2) 

2. Moderate flow (original categories 

3–4) 

3. Torrential flow (original categories 

5–6) 

𝑐𝑜𝑛 Contamination 
Did contamination from the following substances 

entered your company during the flood event?  

Response (with multiple options 

possible): 

• Oil/Gasoline 

• Chemicals 

• Sewage 

• No contamination 

Recoded categories (used in the 

analysis): 

0. No contamination 

1. Sewage or Chemicals only 

2. Oil/Gasoline only 

3. Oil/Gasoline + Sewage, or 

Oil/Gasoline + Chemicals 

4. Oil/Gasoline + Chemicals + Sewage 

𝑤𝑡 Warning lead time 

How many hours before the arrival of the flash 

flood or heavy rainfall did the warning reach 

your company? 

• Number of hours 

• No warning received 



𝑤𝑠 
Early warning 

source 

From which source did your company receive 

the flood warning? 

Response (with multiple options 

possible): 

• Loudspeaker announcements 

• App or SMS 

• Telephone call 

• Radio report 

• TV report 

• Newspaper report 

• Social media 

• Own research 

• Own observation 

• No warning 

Recoded categories (used in the 

analysis): 

0. No warning 

1. Own research 

2. Contacts (employees, acquaintances, 

other companies, phone calls) 

3. Media (radio, TV, newspaper, online, 

social media) 

4. Official authorities (direct official 

warning, apps/SMS, civil protection, 

loudspeaker announcements, 

regional services) 

𝑒𝑤 
Early warning 

received 

Did your company receive an early warning of 

the flood event? 

0. No 

1. Yes 

𝑚𝑒 

Emergency 

measures 

undertaken 

Were measures to reduce damage undertaken in 

your company before or during the flood event? 

0. No 

1. Yes 

ep Emergency plan 
At the time of the flood event, did your company 

have an emergency or flood protection plan? 

0. No 

1. Yes 

𝑘ℎ 
Knowledge about 

hazard 

Had this site already been flooded before? 

Were you aware that your company is located in 

a flood-prone area? 

0. No 

1. Yes 

𝑚𝑠 
Emergency 

measures success 

Were measures to reduce damage undertaken in 

your company before or during the flood event?  

How effective were these mitigation measures? 

• No measure undertaken 

• Not effective at all 

• Only partly effective 

• Mostly effective 

• Completely effective 

Recoded categories (used in the 

analysis): 

0. No measure undertaken  

1. Completely ineffective,  

2. Partly effective,  

3. Mostly/ completely effective 

𝑓𝑒 Flood experience 

Q1: Had this company site already been flooded 

before the event? If yes, how many times? 

 

Number of previous floods:  

0. Never 

1. Once 

2. Twice 

3. Three times 

4. Four times 

5. More than four times 



Q2: When was the company site last affected by 

a flood prior to the event? (Year) 

Time elapsed since the last flood: 

1. 25 years ago 

2. 10–25 years ago 

3. 5–10 years ago 

4. 2–5 years ago 

5. 0–2 years ago 

Flood experience was calculated from the 

number of previous floods (Q1) and the time 

elapsed since the last flood (Q2). 

• If only one value (Q1 or Q2) was 

available, that value was used. 

• If both values were available, the 

flood experience score was 

calculated as the mean of the two. 

𝑝𝑟 
Precaution 

indicator 

Measures included 

V1. Company insured against flood damages. 

V2. Heating system adjusted (converted or 

flood-protected). 

V3. Emergency plan in place. 

V4. Frequency of emergency drills conducted 

before the flood. 

V5. Tanks, silos, or storage facilities securely 

anchored. 

V6. Stationary or mobile water barriers 

installed. 

V7. Sensitive equipment relocated to higher 

floors. 

V8. Water-hazardous substances relocated to 

higher floors. 

V9. Use of flood-prone areas adapted to risk. 

V10. Air conditioning/ventilation system flood-

proofed. 

V11. Building flood safety improved (e.g., 

sealing basements, strengthening 

stability). 

Conversion: 

• Each measure was coded as 1 if 

implemented prior to the flood, 0 

otherwise. 

• For drills, any positive frequency (≥1 

per year) was coded as 1, absence as 

0. 

Weighting scheme: 

• Low impact / basic preparedness 

(weight = 1): V1 to V4 

• Medium impact / protective but 

limited scope (weight = 5): V5 to V8 

• High impact / comprehensive 

protection (weight = 10): V9 to V11 

Calculation of weighted score (𝑝): 

𝑝 = 𝑣1 + 𝑣2 + 𝑣3 + 𝑣4 + (5 × (𝑣5 +

𝑣6 + 𝑣7 + 𝑣8)) + (10 × (𝑣9 + 𝑣10 +

𝑣11))  

Precaution Indicator (𝑝𝑟): 

0. No precautionary measures 

1. Medium precaution (𝑝: 1 − 5) 

2. Very good precaution (𝑝 ≥ 6) 

𝑖𝑛 Insurance 
Is the company insured against flood damages 

before the flood event? 

0. No 

1. Yes 

𝑠𝑒𝑐 Sector Which sector does your company belong to? 

1. Agriculture 

2. Manufacturing  

3. Trade 

4. Finance 

5. Services 

𝑠𝑠 Spatial situation 
Which description best fits the spatial situation 

of this flood-affected company site? 

1. Business premises with several 

buildings belonging to the company 

2. Entire building fully used by the 

company 

3. One or more floors in a building 

otherwise used for non-business 

purposes 

4. Less than one floor in a building 

otherwise used for non-business 

purposes 

𝑜𝑤𝑛 Ownership 
Are the buildings or rooms owned by the 

company or rented? 

1. Owned 

2. Rented 

3. Partly owned / partly rented 



𝑒𝑚𝑝 
Number of 

employees 

How many people were employed in the 

previous month? 
Continuous variable 

𝑠𝑝 Size premise 
How large is the property on which your 

company is located? 
Continuous variable 

 

Table S2: Overview of the private household variables, including abbreviations, full variable names, survey questions, 

response options, coding, and index construction. 

Predictors Survey question Response  

𝑤𝑑 Water depth 

At the maximum water level: How 

high did the water stand 

approximately outside the building? 

Continuous variable 

𝑑 
Inundation 

duration 

For how many hours did the water 

remain inside the building in total? 
Continuous variable 

𝑣 Velocity scaled 
How strong was the water current in 

the immediate vicinity of your house? 

0. No flow 

1. Calm flowing 

2. . 

3. . 

4. . 

5. . 

6. Torrential flow 

ℎ𝑠 Human stability 

Do you think an average man could 

have stood upright in the flood near 

your house? 

1. Person can stand effortlessly in calm water,  

2. Should make effort to stand,  

3. Person would have been swept away,  

4. Too deep to stand 

𝑐𝑜𝑛 Contamination 

Was your affected property 

contaminated by the following 

substances? 

Response (with multiple options possible): 

• Oil/Gasoline 

• Chemicals 

• Sewage 

• No contamination 

Recoded categories (used in the analysis): 

0. No contamination 

1. Sewage or Chemicals only 

2. Oil/Gasoline only 

3. Oil/Gasoline + Sewage, or Oil/Gasoline + 

Chemicals 

4. Oil/Gasoline + Chemicals + Sewage 

𝑒𝑤 
Early warning 

received 

How did you become aware that the 

flood danger was becoming acute for 

you? 

0. No warning received 

1. Warning received 

𝑤𝑡 Warning lead time 

How many hours before the onset of 

flooding did the warning reach you, 

or did you yourself become aware of 

the danger? 

Continuous variable 

𝑤𝑠 Warning source 

How did you become aware that the 

flood danger would become acute for 

you? 

0. No warning received 

1. Own observation  

2. Contacts  

3. Media 

4. Official warning through authorities 

𝑘𝑒 
Knowledge about 

emergency action 

Before the flood danger became 

acute: Did you know how you and 

your household could protect 

yourselves against flooding from 

heavy rainfall? 

1. It was completely unclear to me 

2. . 

3. . 

4. . 

5. . 



6. It was completely clear to me  

𝑚𝑒 

Emergency 

measures 

undertaken 

Did you – or someone else – take 

measures to reduce damages in your 

house? 

0. No 

1. Yes 

𝑚𝑢 

Number of 

emergency 

measures 

undertaken 

Did you – or someone else – take 

measures to reduce damages in your 

house? 

(Nominal: 0 = No, 1 = Yes) 

• Secured documents and valuables 

• Moved/secured furniture and movable items 

• Secured oil tanks or other containers 

• Pumped out or scooped water 

• Brought animals to safety 

• Moved vehicles to flood-safe place 

• Protected building against water intrusion 

• Redirected water flow on property 

• Received help from outside 

• Unplugged electronic devices 

• Dismantled fixed electrical installations 

• Shut off gas/electricity manually 

• Gas/electricity shut off centrally by authorities 

• No measure taken 

Score = documents + furniture + oil + pump +
pets + car + building + redirect + help +
unplugged + dismantled + gasself + gasauthority  

• Minimum = 0 (No measure undertaken) 

• Maximum = 13 (All measures undertaken) 

𝑓𝑒 Flood experience 

Q1: How often were you personally 

affected by heavy rainfall or floods 

before the event? 

Number of previous floods:  

0. Never 

1. Once 

2. Twice 

3. Three times 

4. Four times 

5. More than four times 

Q2: When was the last time you were 

affected by a flood or heavy rainfall-

related inundation? (Year) 

Time elapsed since the last flood: 

1. 25 years ago 

2. 10–25 years ago 

3. 5–10 years ago 

4. 2–5 years ago 

5. 0–2 years ago 

Flood experience was calculated from 

the number of previous floods (Q1) 

and the time elapsed since the last 

flood (Q2). 

• If only one value (Q1 or Q2) was available, 

that value was used. 

• If both values were available, the flood 

experience score was calculated as the mean of 

the two. 

𝑝𝑤 
Precaution 

indicator 

Measures included 

V1. I find out how to protect my 

house/flat against flooding.  

V2. I take out insurance against 

flood damage 

V3. I participate in neighborhood 

flood assistance.  

V4. I use flood-prone floors in a 

low-value way (adapted use).  

V5. I avoid valuable permanent 

fittings in flood-prone storeys 

and use water-

resistant/renewable materials 

(adapted furniture).  

Conversion: 

• Each measure was coded as 1 if implemented 

prior to the flood, 0 otherwise. 

Weighting scheme: 

• Low impact (weight = 1): V1 to V4 

• Medium impact (weight = 5): V6 to V10 

• High impact (weight = 10): V4, V5 

Calculation of weighted score (𝑝): 

𝑝 = 𝑣1 + 𝑣2 + 𝑣3 + 𝑣4 + (5 × (𝑣6 + 𝑣7 + 𝑣8 +

𝑣9 + 𝑣10)) + (10 × (𝑣4 + 𝑣5))  



V6. I relocate the heating system 

and/or electrical supply to 

higher floors.  

V7. I change the heating system or 

flood-protect the oil tank.  

V8. I improve the safety of the 

building (e.g. seal basements) 

V9. I install stationary or mobile 

water barriers. 

V10. I prepare for emergencies (e.g. 

water pumps, generator). 

Precaution Indicator (𝑝𝑤): 

0. No/Low precaution (𝑝 < 7) 

1. Medium precaution (7 ≤ 𝑝 < 25) 

2. Very good precaution (𝑝 ≥ 25) 

𝑓𝑎 
Building footprint 

area 

What is your estimate of the 

building’s floor area? 
Continuous variable 

𝑏 Basement 
Does the building have a full or 

partial basement? 

0. No basement  

1. Partial basement 

2. Full basement 

𝑝𝑒𝑟 Household size 

How many people live permanently in 

your household, including yourself 

and all children? 

Continuous variable 

𝑐ℎ𝑖 
Number of 

children 

How many children under 14 years of 

age live in your household? 
Continuous variable 

𝑒𝑙𝑑 Number of elders 
How many people in your household 

are older than 65? 
Continuous variable 

𝑖𝑛𝑐 
Monthly net 

income in classes 

What is the approximate total 

monthly net income of your 

household in euros? 

1. < 500 € 

2. 500-1000 

3. 1001-1500 

4. 1501-2000  

5. 2001-3000 

6. > 3000 € 

𝑠𝑜𝑐𝑝 

Socioeconomic 

status according to 

Plapp, (2003) 

What is your highest educational 

qualification? 

1. No school degree 

2. Lower secondary  

3. Secondary school  

4. Vocational or technical qualification  

5. Higher education  

Living condition: Derived from 

ownership structure and building type 

Ownership structure: 

1. Tenant 

2. Apartment owner 

3. House owner 

Building type: 

1. Single-family house 

2. Multi-family house 

3. Semi-detached house 

Ownership Building 

type 

Living 

condition 

1 (Tenant) 

2 (multiple) 1 

1 (single) 2 

3 (semi-

detached) 

2 

2 (Apartment 

owner) 

 3 

3 (House 

owner) 

 4 

 



What is the total usable living area of 

the house (all floors together, but 

without the basement)? 

𝑙𝑖𝑣𝑖𝑛𝑔 𝑠𝑝𝑎𝑐𝑒 =
𝑢𝑠𝑎𝑏𝑙𝑒 𝑎𝑟𝑒𝑎

ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑠𝑖𝑧𝑒
 

1. Less than 25% 

2. 25% to < 50% 

3. 50% to < 75% 

4. 75% or more 

𝑆𝑜𝑐𝑝

= 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝐿𝑖𝑣𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

+ 𝐿𝑖𝑣𝑖𝑛𝑔 𝑠𝑝𝑎𝑐𝑒 

• Minimum value: 3 (if all indicators are at their 

lowest) 

• Maximum value: 13 (if all indicators are at 

their highest) 

 

Line 102-104: “To maximise the amount of training data for model building, we employed the nearest neighbour technique to 

impute the missing data. We tested a range of k-neighbours for our datasets (k =1,3,5,7,9) and selected the value with best 

performance” → while this could be a good option for spatially correlated variables such as velocity and warning lead time 

(after verifying that the distance between points is limited), it may lead to misleading assumptions for other missing variables. 

For example, variables such as in, sp, and sec (for companies) or ke, fa, and b (for buildings) are not necessarily spatially 

correlated. It would be helpful if the authors could provide a more thorough discussion on this point, particularly addressing 

the potential limitations and implications of their imputation strategy for these types of variables. 

We thank the reviewer for this valuable comment. In our dataset, missing values occurred because not all respondents answered 

every survey question. To avoid significant data loss, we employed the k-nearest neighbours (kNN) imputation method. We 

emphasize that the imputation was based on similarity in feature space, rather than on spatial proximity. The kNN algorithm 

identified the most similar observations across all available variables to impute missing entries, regardless of their geographic 

locations. We acknowledge that this assumption may be more suitable for certain variables than for others that may not exhibit 

strong correlation with other features.  

While kNN imputation is effective for preserving data quantity and minimizing loss, it introduces certain assumptions and 

limitations. Primarily, it assumes that missing values can be reasonably predicted based on similarity to other observations in 

the dataset. Additionally, imputation can reduce the natural variability of the data, potentially leading to additional uncertainty 

in the modelling results. Despite these limitations, our analysis showed that the box plots and distributions remained stable 

after imputation (not shown for brevity). Nevertheless, we advise interpreting the results involving imputed variables with 

caution and recommend further validation using complete datasets in future studies. 

In the revised manuscript we added the following text to Section 3.2.2 (P11/L250–256): 

“The k-nearest neighbours (kNN) method of imputation assumes that the missing values can be inferred based on similarity 

of feature space. This may not hold equally well across variables, particularly for those with weak correlation to other features. 

To evaluate the robustness of imputation process, we compared the distribution of variables before and after imputation and 

found them to be largely consistent (not shown for brevity). Nevertheless, the imputation process may still introduce 

uncertainty or reduce natural variability in the data. Future studies could benefit from sensitivity testing using alternative 

imputation techniques and explore models that explicitly incorporate imputation uncertainty.” 

Section 3.1  

The meaning of two CPTs in the table (d-con, wd-hs) should also be discussed. Moreover, I think this section should be 

expanded discussing results for all damage components (i.e. companies BUI, EQU, GNS and household CON), even without 

reporting all the CPTs. 

We thank the reviewer for this valuable suggestion. We have provided a more comprehensive explanation of all the damage 

components as follows (P13-14/L283-313):  

“The loss processes described by FLEMOflash is illustrated using the predictive density of predicted losses under scenarios of 

hazard, exposure and vulnerability. For brevity, this section primarily focusses on the FLEMOflash model for household 

buildings (Fig 5), with a similar interpretation extended to other asset types (Fig S3-S6). The nodes of the model comprise of 

water depth, human stability, inundation duration, contamination, knowledge about emergency action, and relative losses, 

each with 7, 4, 7, 5, 6, and 8 classes, respectively. The Conditional Probability Table (CPT) was populated with joint 

probabilities to find the predictive density of loss given the condition of other nodes.  

The conditional probability of 𝑟𝑙𝑜𝑠𝑠 based only on water depth indicates a monotonic relationship. Shallow inundations are 

associated with very low losses, while deeper water substantially increases the probability of severe losses (Fig 5e). The 

highest probabilities are concentrated along the diagonal, confirming this trend. For instance, depths <0.28 m are most likely 

associated with very low losses (<0.017), whereas depths ≥2.3 m are strongly associated with high losses (> 0.42). Similar 

patterns of increasing loss probability with greater water depth are observed across all asset types (Fig. S3–S6). Water depth 

also influences human stability: while shallow flooding results in low instability, extreme depths markedly increase the 

probability of instability (0.54) (Fig. 5b, Fig. S6a).  



Contamination emerges as another important driver of losses. In uncontaminated conditions (class 0), the probability of very 

low losses (<0.01) is high (0.82). Conversely, under severe contamination (class 4), the probability of very high losses (>0.427) 

increases to 0.30 (Fig. 5c), reflecting the destructive impact of oils, chemicals, and sewage entering buildings (Kreibich et al., 

2005; Laudan et al., 2020). Households exposed to inundation lasting [13–50) hours showed a high probability of experiencing 

moderate contamination levels (classes 1–2). Knowledge about emergency action shows a strong mitigating effect. The CPT 

(Fig. 5d) demonstrates that households with low awareness (Ke ≤ 2) face a high probability of severe losses, whereas 

households with very good knowledge (Ke ≥ 5) display a substantially higher probability of reduced losses. Comparable 

findings are observed for household contents (Fig. S6c). This agrees with Kreibich et al. (2021), who also reported that clear 

awareness of emergency actions substantially reduces damages. Importantly, socioeconomic status indirectly shapes 

vulnerability, as higher-income groups are more likely to report very clear knowledge of emergency actions after receiving 

warnings (Fig. S6b).  

For companies (Figs. S3–S5), the CPT results reveal consistent patterns across buildings, equipment, and goods & stock. 

Smaller companies (with fewer employees or smaller premises) show higher probabilities of severe losses, whereas larger 

firms and premises are more strongly associated with lower loss outcomes (Figs. S3b, S4d, S5c). Across all asset types, the 

success of emergency measures emerges as a dominant factor, as unsuccessful measures are strongly associated with a high 

probability of severe losses (Figs. S3d, S4b, S5a). Contamination further amplifies losses, with severe categories linked to 

markedly higher probabilities of loss. Together, these results emphasize that hazard intensity (water depth, velocity, 

contamination), exposure (number of employees, size premises) and vulnerability factors (effectiveness of emergency 

measures) interactively determine relative losses for companies.” 

Figure 5 → I think that results explanation will be supported if each CPT is identified with a letter 

In the revised manuscript, we labeled each subplot in Figure 5 and Figures S3-S6.   

   

  

 

 

Figure 5. Conditional probability table (CPT) of the Bayesian network for the residential building. Each heatmap 

illustrates the conditional probabilities of a child node given its parent node. Parent node states are shown along the x-

axis, and child node states along the y-axis. Darker shades of blue indicate higher probability values. Numerical values 

are displayed in each cell, with an accompanying colorbar showing the probability scale. (a) Inundation duration given 

contamination (b) Water depth given human stability (c) Contamination given relative loss (d) Knowledge about 

emergency action given relative loss (e) Relative loss given water depth. 

Line 289- 296 “The integration of knowledge about emergency action into the FLEMOflash model alongside water depth and 

contamination provides a comprehensive understanding of how preparedness can mitigate loss during flash floods. Knowledge 

about emergency action is categorized into six classes, ranging from 1 (low knowledge) to 6 (high knowledge). The CPT 

clearly illustrates that a high level of emergency action knowledge can significantly reduce loss (Fig 5e). Specifically, when 

households doesn’t knew what to do (1), there is a high likelihood of incurring higher loss. Conversely, when households with 

good preparedness (> 4), the incurred loss significantly decreases. Residents with high levels of preparedness are more likely 

to take effective emergency measures, thereby reducing the severity of flood loss” → Knowing what to do does not necessarily 

imply that individuals will take action. Do the authors have any insight into why this variable appears to be significant in the 

model, potentially even more so than the actual implementation of protective measures (me, mu)? 



We thank the reviewer for raising this important question. Residents with high levels of preparedness are more likely to take 

effective emergency measures, thereby reducing the severity of flood loss. Despite its importance, the way preparedness is 

conceptualized in this study has certain limitations. Specifically, the variable does not capture which exact actions respondents 

undertook. Therefore, it would be misleading to speculate particular actions directly resulted in reduced losses. While the 

specific actions likely varied across respondents, empirical evidence indicates that having clear knowledge of emergency action 

generally contributes to better preparedness, consistent with previous findings. 

We will mention this limitation in the revised manuscript in P16/L358-364 as follows:  

“Residents with high levels of preparedness are more likely to take effective emergency measures, thereby reducing the severity 

of flood loss (Kreibich et al., 2005; Sairam et al., 2019). Despite its importance, the way preparedness is conceptualized in 

this study has certain limitations. Specifically, the variable does not capture which exact actions respondents undertook. 

Therefore, it would be misleading to speculate particular actions directly resulted in reduced losses. While the specific actions 

likely varied across respondents, empirical evidence indicates that having clear knowledge of emergency action generally 

contributes to better preparedness, consistent with previous findings (Kreibich et al., 2021).” 

Minor comments  

Line 58-59: The conventional multivariate flood loss estimation models often employ decision tree-based approaches to assess 

the role of different variables in influencing flood loss → Multivariate synthetic models also exist  

Thank you for the suggestion. We will revise the introduction to include mention of existing multivariate synthetic models as 

follows (P2-3/L54-75): 

“Traditionally, flood loss estimation relied on univariate stage-damage functions (SDF) (Middelmann‐Fernandes, 2010). To 

improve the description of complex damage processes, the Flood Loss Estimation MOdel (FLEMOps) for the private sector, 

was developed as rule-based, multivariate, deterministic model (Thieken et al., 2008). Merz et al. (2013) and Sieg et al. (2017) 

introduced decision tree-based damage models that explicitly quantify uncertainty associated with both data variability and 

model structure uncertainty through bootstrap aggregation. Subsequently, Bayesian Networks were used (BN-FLEMO), 

enabling the modelling of complex flood loss processes through conditional probability relationships (Lüdtke et al., 2019; 

Schoppa et al., 2020; Schröter et al., 2014; Vogel et al., 2018). 

In parallel, various machine learning approaches have also been developed for flood loss estimation, including neural 

networks (Salas et al., 2023), random forests (Ghaedi et al., 2022), Bayesian regression (Mohor et al., 2021). Among these, 

Bayesian networks are particularly advantageous due to their probabilistic representation of conditional dependencies among 

multiple variables, handle missing data, and model transferability (Schröter et al., 2014). Bayesian models enhance the 

understanding of flood loss dynamics by quantifying uncertainty and offering probabilistic estimates. For instance, Wagenaar 

et al. (2018) developed a regional and temporal transferable BN-FLEMO for microscale residential applications, which was 

later upscaled to mesoscale by Lüdtke et al. (2019). In addition to the FLEMO typology, various synthetic, multivariate, rule-

based flood loss models have been proposed for fluvial flood contexts (Amadio et al., 2019; Dottori et al., 2016; Nofal et al., 

2020; Sairam et al., 2020). 

However, all these loss models were developed to simulate damage processes during fluvial floods. In this study, we present 

the first probabilistic flash flood loss model – Flood Loss Estimation Model affected by flash floods (FLEMOflash) using a BN-

based approach and gain new knowledge about flash flood damage processes based on the conditional probabilities among 

multiple influencing variables. The study identifies the important variables and underlying processes that govern the flash 

flood losses. Additionally, we examine the predictive performance of FLEMOflash model and compare it with conventional SDF 

models. Finally, we illustrate the effect of preparedness in controlling the extent of loss reduction.” 

Line 72: The objective of this study is to build a novel Flood Loss Estimation MOdel affected by flash floods (FLEMOflash) → 

check grammar 

Thank you. We have rephrased the sentence as follows: 

P3/L70-73: “In this study, we present the first probabilistic flash flood loss model – Flood Loss Estimation Model affected by 

flash floods (FLEMOflash) using a BN-based approach and gain new knowledge about flash flood damage processes based on 

the conditional probabilities among multiple influencing variables.” 

 

Line 254: The FLEMOflash model with the best performance, identified in Fig 3 → Which one is it? i.e., To which combinations 

of predictors, bins and neighbours correspond? 

We have revised the figure caption and mention the best-performing configurations as follows: 

Figure 3. Model sensitivity of FLEMOflash to the number of predictors (f1–f5), bins (b3–b8), and number of neighbours used 

for data imputation (k1–k9), evaluated using mean absolute error (MAE), continuous ranked probability score (CRPS), and 

mean bias error (MBE) for the five asset types (x-axis). Each boxplot summarizes 100 repetitions of fivefold cross-validation 

(companies) and tenfold cross-validation (households) with randomized data partitioning. Best-performing configurations 

were identified through a sequential tuning process: first selecting the number of predictors based on the first panel, then 



optimizing bin count in the second panel with predictors fixed, and finally selecting the number of neighbours in the third 

panel with both previous parameters fixed. Best-performing configurations are:  Companies – Buildings (C:BUI) f5, b6, k7; 

Companies – Equipment (C:EQU) f5, b6, k5; Companies – Goods and Stock (C:GNS) f5, b6, k9; Private Households – 

Buildings (P:BUI) f5, b8, k1; Private Households – Contents (P:CON) f5, b8, k3. 

Line 256: C-GUI → Do authors mean C-BUI?  

Corrected. We meant C:GNS.  

Line 256-257  

“For households (P:BUI and P:CON), the losses are significantly underestimated by the SDF-P” → I cannot appreciate that  

We thank the reviewer for this observation. The corresponding statement has been removed in the revised manuscript.    

Line 276 -278: “The CPT suggests that low water depths 275 (< 0.28 m) are most likely associated with low loss (< 0.05), 

while high water depths (> 0.15m) with high loss (> 0.24)” → I would replace 0.05 with 0.17 and 0.15 with 1.5  

Thank you for pointing out this typo-error. We have revised the statement as follows: 

P13/L290-292: “The highest probabilities are concentrated along the diagonal, confirming this trend. For instance, depths 

<0.28 m are most likely associated with very low losses (<0.017), whereas depths ≥2.3 m are strongly associated with high 

losses (> 0.42).” 

Line 284-288: “The CPT clearly indicates that contamination significantly amplifies the likelihood of experiencing higher loss 

(Fig 5). Specifically, when there is no contamination (class 0), the probability of experiencing loss is low (< 0.01). Conversely, 

if there is high contamination (class 4), the probability of experiencing loss is high (> 0.24), reflecting the impact of oils, 

chemicals, and sewage entering the building (Kreibich et al., 2005; Laudan et al., 2020)” → it seems numbers are incorrect, 

please check or explain better  

Thank you for pointing this out. We have revised the explanation as follows (P13/L295-299):  

“Contamination emerges as another important driver of losses. In uncontaminated conditions (class 0), the probability of very 

low losses (<0.01) is high (0.82). Conversely, under severe contamination (class 4), the probability of very high losses (>0.427) 

increases to 0.30 (Fig. 5c), reflecting the destructive impact of oils, chemicals, and sewage entering buildings (Kreibich et al., 

2005; Laudan et al., 2020).” 

Line 292 → which is Figure 5e? see comment above 

We have revised the figure where each subplot is indicated by a letter. 
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