We would like to express our sincere gratitude to the Editor for keeping the discussion open upon request and to the Reviewers
for recognizing the significance of our work. We are especially thankful for their constructive comments and valuable
suggestions, which we have carefully addressed in the revised version. The comments were found to be very helpful in
enhancing the clarity and overall quality of the manuscript.

Reviewer #1:

This paper is in the context of flash floods, loss estimation models, and flood preparedness. The paper introduces the
FLEMOniash model, using data from past German flash floods; methodologically, it combines machine learning and Bayesian
networks to estimate probabilistic losses and their uncertainties. In terms of topics, the paper is relevant for and aligned with
NHESS. The paper is well-written and -organised. Comments are mostly minor (even typos).

The authors would like to thank the reviewer for acknowledging significance and for providing us with the valuable feedback.
The comments were found to be very helpful in improving the quality of the manuscript and will be acknowledged. We have
responded (in black) to each comment (in blue). Please note that the page and line numbers cited in our responses refer to the
clean version of the manuscript. All references cited in our responses are listed at the end of this letter.

The only major comment is about preparedness. From the paper, | do not understand what is meant by preparedness, and in
specific what ‘high’ and ‘low’ preparedness mean.

We thank the reviewer for this question. We have added the following text in Section 3.3.1 (P15/L322-329) to address the
missing clarification.

“Through feature selection and Bayesian Networks we identified emergency measures success (ms) and knowledge about
emergency action (ke) for companies and private households respectively, as the significant variables (see Tables S2 and S3
for details on the questions and responses). Building on this, we conceptualised preparedness using these variables and
categorized it into low, medium, and high levels. For companies, high preparedness was defined as having undertaken
emergency measures that were perceived to be mostly or completely effective (ms = 3) and low preparedness (ms = 1)
reflected low perceived effectiveness of such measures. For private households, high preparedness was defined as having a
clear understanding of emergency actions based on official warnings (ke = 5), and low preparedness reflected limited to no
understanding of what to do (ke < 2).”

What are the assumptions behind ‘preparedness’? e.g. that people with more knowledge of risk will act in a certain way (which
way?)? At page 14, it is said: ‘...doesn’t knew what to do’. For high preparedness, what people know about what to do?

Residents with high levels of preparedness are more likely to take effective emergency measures, thereby reducing the severity
of flood loss. Despite its importance, the way preparedness is conceptualized in this study has certain limitations. Specifically,
the variable does not capture which exact actions respondents undertook. Therefore, it would be misleading to speculate
particular actions directly resulted in reduced losses. While the specific actions likely varied across respondents, empirical
evidence indicates that having clear knowledge of emergency action generally contributes to better preparedness, consistent
with previous findings.

We mentioned this limitation in the revised manuscript in P16/L.358-364 as follows:

“Residents with high levels of preparedness are more likely to take effective emergency measures, thereby reducing the severity
of flood loss (Kreibich et al., 2005, Sairam et al., 2019). Despite its importance, the way preparedness is conceptualized in
this study has certain limitations. Specifically, the variable does not capture which exact actions respondents undertook.
Therefore, it would be misleading to speculate particular actions directly resulted in reduced losses. While the specific actions
likely varied across respondents, empirical evidence indicates that having clear knowledge of emergency action generally
contributes to better preparedness, consistent with previous findings (Kreibich et al., 2021).”

The model seems suited to derive the predictive density of losses, however | have doubt about the effect of preparedness. |
would be very cautious to include this part in the paper.

Thank you for this constructive feedback. We have revised the manuscript to clarify how predictive densities are summarized.
The following text has been added in P15/L.329-336:

“While preparedness has been extensively studied in the context of fluvial or riverine floods (Liidtke et al., 2019; Schoppa et
al., 2020, Wagenaar et al., 2018), its role in flash floods has not yet been systematically investigated. To address this gap, we
applied the FLEMOjqsn model to derive predictive densities of rloss. Results were summarized using the median and
associated uncertainty (25" and 75" percentiles) for selected combinations of hazard, exposure, and vulnerability conditions,
rather than displaying the full predictive densities (Figure 6). For clarity of interpretation, Figure Al illustrates step by step
how predictive densities are derived from the prior and posterior distributions using kernel density estimation based on 1,000
resampled values, while Figure A2 provides an overview of the posterior and predictive densities across varying levels of
measure success (preparedness) under same conditions of water depth and number of employees.”
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Figure Al: Visualizations of the prior, posterior, and predictive distributions of rloss (a) Empirical kernel density
estimate of the prior rloss based on collected data (b) Prior distribution of rloss represented as bin weights (inverse
frequency) across discretized intervals (c) Posterior distribution of rloss conditioned on wd € [1.85, 2.40) and emp > 38
(d) Predictive distribution of rloss generated by resampling 1000 values using the prior bin weights and the posterior
probabilities. The solid vertical line indicates the median (50th percentile), while the dotted vertical lines represent the
25th and 75th percentiles, representing the predictive uncertainty. Shaded area highlight the interquartile range.
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Figure A2: (a) Posterior distribution and (b) predictive density of relative loss (rloss) under condition of water depth
(wd) € [1.85, 2.40) and number of employees (emp) > 38. (c—h) Posterior and predictive distributions of rloss for varying
levels of measure success (ms): Subplots ¢, e, g present posterior distributions of rloss under three ms conditions — not
at all, only limited, and yes — completely/most part — with wd € [1.85, 2.40) and emp > 38. Subplots d, f, h shows
corresponding predictive densities, estimated using kernel density estimation from resampled values (n = 1000). In each
density plot, the solid vertical line marks the median (50th percentile), while dotted vertical lines indicate the 25" and
75" percentiles, with shaded regions representing the uncertainty. The sequence from top to bottom illustrates
increasing levels of preparedness.

A secondary comment is that | would add some background about the previous /traditional version of FLEMO (e.g.
https://www.gfz.de/en/section/hydrology/ projects/4-flood-loss-model-flemo-for-residential-and-commercial-sectors); there
is none at the moment | think.



Thank you for the helpful suggestion. In the revised manuscript (P2-3/L54-75), we have incorporated additional background.

“Traditionally, flood loss estimation relied on univariate stage-damage functions (SDF) (Middelmann-Fernandes, 2010). To
improve the description of complex damage processes, the Flood Loss Estimation MOdel (FLEMOps) for the private sector,
was developed as rule-based, multivariate, deterministic model (Thieken et al., 2008). Merz et al. (2013) and Sieg et al. (2017)
introduced decision tree-based damage models that explicitly quantify uncertainty associated with both data variability and
model structure uncertainty through bootstrap aggregation. Subsequently, Bayesian Networks were used (BN-FLEMO),
enabling the modelling of complex flood loss processes through conditional probability relationships (Liidtke et al., 2019;
Schoppa et al., 2020; Schroter et al., 2014, Vogel et al., 2018).

In parallel, various machine learning approaches have also been developed for flood loss estimation, including neural
networks (Salas et al., 2023), random forests (Ghaedi et al., 2022), Bayesian regression (Mohor et al., 2021). Among these,
Bayesian networks are particularly advantageous due to their probabilistic representation of conditional dependencies among
multiple variables, handle missing data, and model transferability (Schriter et al., 2014). Bayesian models enhance the
understanding of flood loss dynamics by quantifying uncertainty and offering probabilistic estimates. For instance, Wagenaar
et al. (2018) developed a regional and temporal transferable BN-FLEMO for microscale residential applications, which was
later upscaled to mesoscale by Liidtke et al. (2019). In addition to the FLEMO typology, various synthetic, multivariate, rule-
based flood loss models have been proposed for fluvial flood contexts (Amadio et al., 2019, Dottori et al., 2016; Nofal et al.,
2020; Sairam et al., 2020).

However, all these loss models were developed to simulate damage processes during fluvial floods. In this study, we present
the first probabilistic flash flood loss model — Flood Loss Estimation Model affected by flash floods (FLEMOyys1) using a BN-
based approach and gain new knowledge about flash flood damage processes based on the conditional probabilities among
multiple influencing variables. The study identifies the important variables and underlying processes that govern the flash
flood losses. Additionally, we examine the predictive performance of FLEMOjqs, model and compare it with conventional SDF
models. Finally, we illustrate the effect of preparedness in controlling the extent of loss reduction”

Specific comments (P for page, L for line):

Valid for all direct citations: coma is not needed before the year, e.g. Smith et al. (2000) - and not Smith et al., (2000)
Thank you for pointing this out. We have corrected it.

Valid for the whole paper: equation factors, such as rloss, need to be in italic in the main text of the manuscript
Corrected.

Valid for the whole paper: do not use contracted forms like ‘doesn’t’. L223: The direction of the arrow represents an association
between two variables but doesn’t necessarily represent causality.

We have corrected it in the revised manuscript.
P2L42: double parenthesis in the citation

Corrected.

P2L50: double space before ‘significant’

Corrected.

P4L101: double space before ‘The percentage’?
Corrected.

P7L146, P11L236: ‘This’ what? Add a noun, specify

Thank you for pointing out this lack of clarity. The revised text now reads as follows:

P7/L154-156: “Within the predicted bins of the discrete BN (rloss bins), we fit a continuous distribution by applying weighted
sampling to the empirical loss data, resulting in a smoothed representation of the loss distribution (Schoppa et al., 2020). For
further details on the BN structure learning we refer to Text SI and Figure A1.”

P11/L241-243: “Examining the performance with optimal predictors while modifying the number of bins, revealed significant
differences for companies but not for households, which could be attributed to the fact that the number of data points for
companies is relatively limited and more heterogenous (Schoppa et al., 2020) compared to households.”

PIOL190: remove the dot before the parenthesis of Fig. 1d-e

Corrected.



Reviewer #2:

The paper introduces FLEMOflash, a novel multivariate probabilistic Flood Loss Estimation Model tailored for flash floods.
The model builds on survey data collected after flash flood events in 2002, 2016, and 2021 in Germany, encompassing both
affected companies and households. FLEMOflash employs a data-driven feature selection approach alongside Bayesian
networks to derive probabilistic loss estimates. The topic clearly falls within the scope of the journal, and the manuscript is
generally well written and well organised. However, | have concerns regarding some of the underlying assumptions of the
model, which, in turn, raise doubts about its validity for reliably estimating flash flood damage. | believe the authors should
provide a more robust justification for their hypotheses to strengthen the credibility and robustness of their results. Below, |
first present general concerns, followed by more specific comments.

The authors would like to thank the reviewer for acknowledging significance and for providing us with the valuable feedback.
The comments were found to be very helpful in improving the quality of the manuscript and will be acknowledged in the
revised manuscript. We have responded (in black) to each comment (in blue). Please note that the page and line numbers cited
in our responses refer to the clean version of the manuscript. All references cited in our responses are listed at the end of this
letter.

General concerns

1) My first concern relates to the criteria used for identifying flash flood events (and then data to be implemented to derive the
model). Specifically, I find the use of average slope as a proxy problematic. While slope may influence local flow velocity, it
does not adequately capture the main defining characteristic of flash floods — their rapid onset and short lead times. This
concern is further supported by the reported warning lead times in Tables 1 and 2, which range from 0 to 240 hours and 0 to
168 hours, respectively. These values appear inconsistent with typical flash flood dynamics, where lead times are often just a
few hours. Additionally, the use of a low-resolution DEM may not provide the accuracy needed to derive reliable slope
estimates at the point observation scale.

Have the authors considered using the concentration time of the river basin where the observations are located as a more
physically meaningful proxy for flash flood potential? This could provide a better indication of response time and be more
consistent with established hydrological understanding of flash flood processes.

We thank the reviewer for this important and constructive comment. The flood loss models presented in this study are based
on empirical, microscale data collected from individual private households and companies. To identify flash flood samples,
we applied a spatially informed terrain analysis. For this purpose, 14 reference municipalities with documented flash flood
occurrences or described as particularly susceptible to flash floods were selected. An overview of these municipalities is
provided in Table A1l (included in the revised manuscript).

Table Al: Overview of 14 municipalities affected by past flash flood events.

Reference (including research papers, official reports
Mllfl?ilzli;:lfity Latitude (N) | Longitude (E) municipal ﬂa(sh flood Elaps, medig cI:)vel,*age of pas:) eveI;ts)
Triftern 48.3957 13.0060 (LfU, 2017), Thieken et al. (2022)
Simbach am Inn 48.2869 13.0113 Hiibl et al., (2017), (LfU, 2017), Thieken et al. (2022)
Obernzenn 49.4492 10.4886 (LfU, 2017), Thieken et al. (2022)
Kiinzelsau 49.2802 09.7378 Miihr et al. (2016), Thieken et al. (2022)
Julbach 48.2547 12.9313 (LfU, 2017), Thieken et al. (2022)
Forchtenberg 49.2799 09.5149 Miihr et al. (2016), Thieken et al. (2022)
Flachslanden 49.4081 10.5205 (LfU, 2017), Thieken et al. (2022)
Braunsbach 49.2007 09.7873 (Bronstert et al., 2018), Thieken et al. (2022)
Ansbach 49.2888 10.5553 (LfU, 2017), Thieken et al. (2022)
AVOSS Test Municipality (https://www.avoss.uni-
Stadtallendorf 50.8308 09.02447 freiburg.de/testgebiete). Past event (https://www.feuerwehr-
wetter.de/informationen/buergerinformationen/starkregen.html)
AVOSS Test Municipality (https://www.avoss.uni-
Grafschaft 50.5752 07.0852 freiburg.de/testgebiete). Past event( https://hochwasser-
grafschaft.de/?p=936)
AVOSS Test Municipality (https://www.avoss.uni-
Herrstein 49.7845 07.3461 freiburg.de/testgebiete). Past event (https://fachtagung-funke.de/wp-
content/uploads/2024/06/6 Fuhr Eisatzbericht-Herrstein 2018.pdf)
AVOSS Test Municipality (https://www.avoss.uni-
. freiburg.de/testgebiete). Past event
Otting 48.8801 10.7978 (https:/%wwwl .fvdr.de/zlachrichten/westfalen-
lippe/aufracumarbeiten-starkregen-ottfingen-100.html)
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AVOSS Test Municipality (https://www.avoss.uni-
freiburg.de/testgebiete). Municipal flash flood maps
(https://www.emmendingen.de/leben-umwelt/vorsorge-
krise/starkregen)

Emmendingen 48.1225 07.8623

We agree with the reviewer that slope alone does not fully capture the characterization of flash floods. Other metrics, such as
river basin concentration time, may indeed provide a more process-based representation of flash flood potential. Nevertheless,
we used slope alone as a pragmatic solution to balance two competing needs: maintaining physical relevance in identifying
flash flood—prone companies and households, and retaining a sufficient number of data points for robust model development.

We have added the following text in the revised manuscript:

P4/1L.99-103: “Other metrics, such as river basin concentration time, may indeed provide a more process-based
characterization of flash flood potential. Nevertheless, we used slope alone as a pragmatic solution that balances two
competing needs: maintaining physical relevance in identifying flash flood prone companies and households, and retaining a
sufficient number of data points for robust model development.”

P17/L370-374: “While FLEMOjash already provides a robust tool to support risk analyses, and impact-based forecasting,
future developments could further strengthen its applicability by integrating complementary hydrological indicators (e.g.,
basin concentration time), incorporating building-level susceptibility factors (e.g., construction materials, structural
condition, floor count), and expanding the empirical database by including high loss observations and more diverse
geographic regions.”

To assess the influence of DEM-granularity on our calculations, we compared the analysis results using the 90 m resolution
DEM (SRTM GL3) to those acquired when using the 30 m resolution SRTM GL1 (see below Table, provided here for response
only). We found that slope angles between the two medium-resolution DEMs generally increase with DEM-resolution, a
relationship that is discussed in more detail by several studies (Chang and Tsai, 1991; Grohmann, 2015; Wu et al., 2008).
However, it is arguable if these differences in calculated slope angles around the reference municipalities translate to significant
differences in the selection of survey data points.

Table: Summary statistics (mean, median, minimum, and maximum) of terrain slope (in degrees) derived from SRTM GL3
(90 m resolution) and SRTM GL1 (30 m resolution) for the selected municipalities.

SRTM GL3 (90 m resolution) SRTM GL1 (30 m resolution)

Municipality

mean median min max mean median min max
Triftern 1.75 1.49 0.00 6.06 5.37 4.30 0.00 38.78
Simbach am Inn  1.89 1.34 0.00 998 475 3.20 0.00 45.47
Obernzenn 1.68 1.41 0.01 722 4.69 3.04 0.00 37.71
Kiinzelsau 2.34 1.52 0.00 12.86 6.95 4.62 0.00 48.14
Julbach 1.62 1.21 0.00 998 497 3.45 0.00 48.70
Forchtenberg 2.40 1.92 0.00 10.74 7.21 5.16 0.00 54.09
Flachslanden 1.84 1.70 0.01 680 542 3.84  0.00 37.81
Braunsbach 2.35 1.31 0.00 12.86 6.18 354  0.00 4841
Ansbach 1.38 1.19 0.01 561 459 3.20 0.00 37.08
Stadtallendorf 1.72 1.55 0.00 10.81 4.45 3.30 0.00 43.48
Grafschaft 2.49 1.87 0.01 16.54 6.47 4.05 0.00 57.05
Herrstein 3.49 3.20 0.04 1286 9.32 734  0.00 60.95
Otting 1.54 1.41 0.02 589 534 4.17 0.00 43.45

Emmendingen 242 1.59 0.00 1396 17.79 4.66 0.00 59.19

Regarding the reported warning lead times, we agree that the values presented in Tables 1 and 2 appear long compared to
typical flash flood dynamics. This discrepancy arises because, the variable "warning lead time" includes both flash flood
warnings and heavy rainfall warnings. The latter are often issued days in advance by meteorological services, which explains
the broader range (0—240 and 0—168 hours) seen in Tables 1 and 2. To clarify this, the revised manuscript now includes an
overview of all variables for companies and private households (Tables S1 and S2), including the corresponding survey
questions and responses.
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2) My second concern relates to the set of explanatory variables used in the model. One of the primary damage mechanisms
in flash flood events is structural damage, which is strongly influenced by the physical vulnerability of affected buildings.
However, the model does not appear to include variables that capture this aspect, such as construction material, number of
floors, or level of maintenance — all of which significantly affect a building’s susceptibility to structural damage. While |
understand that the set of variables was likely constrained by the information collected through the survey, | would like to
know whether the authors considered integrating ancillary data to address these critical gaps. For example, building-level data
from national censuses or geoportals could provide valuable proxies for physical vulnerability. Inclusion of such information
could improve the explanatory power and practical relevance of the model, particularly in contexts where decisions rely on
nuanced understanding of asset-specific vulnerabilities.

Thank you for your valuable and constructive suggestion. We fully recognize the importance of incorporating variables that
directly reflect the physical vulnerability of buildings, as these factors significantly influence structural damage during flash
flood events. Our current dataset already includes some relevant vulnerability-related variables (e.g., building area, size of
premises, presence of a basement, and spatial situation), but it does not contain detailed information on construction materials
or number of floors. In this study, our aim was to advance the understanding of processes and develop models based strictly
on the available empirical survey data.

We also appreciate the suggestion of integrating ancillary data sources (e.g., open-source geoportals). While such data may
indeed provide valuable proxies for building vulnerability, ensuring consistent integration across all surveyed municipalities
was beyond the scope of the present study. Nevertheless, this represents a promising avenue for future research and model
enhancement.

We have added the following text in the manuscript:

P17/L370-374: “While FLEMOgash already provides a robust tool to support risk analyses, and impact-based forecasting,
future developments could further strengthen its applicability by integrating complementary hydrological indicators (e.g.,
basin concentration time), incorporating building-level susceptibility factors (e.g., construction materials, structural
condition, floor count), and expanding the empirical database by including high loss observations and more diverse
geographic regions.”

3) A third concern regards obtained results, especially in terms of damage mechanisms. | would have expected to observe a
significant influence of flow velocity or, at least, of the hydrodynamic force associated with the flow but this is not the case.

We thank the reviewer for this constructive comment. In the current study, we aimed to represent hydrodynamic forces through
two variables: velocity and human stability. While the velocity variable reflects a subjective but direct estimation of the local
strength of the water flow by the interviewed people, the human stability variable captures the perceived difficulty of standing
in floodwaters, thereby integrating both water depth and flow velocity. As shown in Figures 1(d—e), human stability emerges
as the second most influential factor affecting loss in the case of private households, indicating that the combined effect of
water depth and velocity is important for the model. We will include this explanation in Section 3.1 of the revised manuscript.
Additionally, the revised manuscript now includes an overview of all variables for companies and private households (Tables
S1 and S2), including the corresponding survey questions and responses.

P8/L197-203: “Although flow velocity has been identified as a significant contributor to flash flood losses (Kreibich and
Dimitrova, 2010), it does not appear among the most significant factors in the current study. In our analysis, we represent
hydrodynamic forces using two variables: velocity (v) and human stability (hs).. While velocity provides a subjective yet
direct measure of local strength of flow current, human stability reflects on the perceived difficulty of standing in flood waters.
As shown in Figure 1(d-e), human stability emerges as the second most influential factor affecting loss in private households,
indicating that the combined effect of depth and velocity play a crucial role for the flash flood model.”

4) All the concerns mentioned above converge in the results obtained, particularly in the relative loss estimates provided by
the model. These estimates range between 0.2 and 0.5, even for high water depths (around or above 2 meters). Such values are
comparable to those typically produced by models for riverine floods (see, e.g., FLEMOps), which raises doubts about the
model's ability to capture the distinctively more destructive nature of flash floods.

We agree that relative loss values between 0.2 and 0.5 may appear low compared to expectations for flash floods. However,
two key factors explain this pattern.

First, our dataset contains a greater number of observations with lower reported damages compared to high-damage cases,
resulting in a skewed distribution. This imbalance limits the model’s ability to generalize accurately at the upper end of the
water depth range. Please refer to Figure A1, which illustrates this distribution. Similar limitations have been reported in the
literature; for example, Schoppa et al. (2020) observed greater prediction uncertainty for higher water depths due to data
sparsity.



a) Empirical Density of Prior rloss b) Prior Distribution of rloss

c) Posterior Distribution of rloss d) Predictive Density of rloss

0.02

0.015

Density
Density

0.5
0.005

0.5

Conditional Probability for
wd €[1.85, 2.40]; emp > 38

Bin Weight (1 / Frequency)
°
2

0 0 0
0 0.2 0.4 0.6 0.8 1 S QD D S S S D D S S & 0 0.2 0.4 0.6 0.8 1
Hoss O N ¥ 7 P WS S N ¥ ? P WS ross
LN D N A S & AL O S >
S o N W o @ S o N W < &
& & & ¢ ¢ & & & ¢
rloss bins rloss bins

Figure A3: Visualizations of the prior, posterior, and predictive distributions of rloss (a) Empirical kernel density
estimate of the prior rloss based on collected data (b) Prior distribution of rloss represented as bin weights (inverse
frequency) across discretized intervals (c) Posterior distribution of rloss conditioned on wd € [1.85, 2.40) and emp > 38
(d) Predictive distribution of rloss generated by resampling 1000 values using the prior bin weights and the posterior
probabilities. The solid vertical line indicates the median (50th percentile), while the dotted vertical lines represent the
25th and 75th percentiles, representing the predictive uncertainty. Shaded area highlights the interquartile range.

Second, our analysis (see Figure A2) shows that even under condition of higher water depth and high exposure (e.g., many
employees), the level of preparedness, particularly the perceived success of emergency measures undertaken, plays a
substantial role in reducing losses. Specifically, relative loss is significantly lower when respondents reported that the measures
taken were either completely successful or protected the most critical parts of the property.
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Figure A4: (a) Posterior distribution and (b) predictive density of relative loss (rloss) under condition of water depth
(wd) € [1.85, 2.40) and number of employees (emp) > 38. (c—h) Posterior and predictive distributions of rloss for varying
levels of measure success (ms): Subplots c, e, g present posterior distributions of rloss under three ms conditions — not
at all, only limited, and yes — completely/most part — with wd € [1.85, 2.40) and emp > 38. Subplots d, f, h shows
corresponding predictive densities, estimated using kernel density estimation from resampled values (n = 1000). In each
density plot, the solid vertical line marks the median (50" percentile), while dotted vertical lines indicate the 25" and
75% percentiles, with shaded regions representing the uncertainty. The sequence from top to bottom illustrates
increasing levels of preparedness.



While the resulting loss estimates may initially appear to underestimate the destructive nature of flash floods, they instead
reflect the complex interplay between hazard intensity, exposure, and vulnerability. Nonetheless, we agree that increasing the
number of data points representing extreme hazard scenarios and improving the representation of structural vulnerability (e.g.,
building materials, number of floors) would enhance the model’s capacity to capture the full spectrum of flash flood impacts.
We have emphasized these aspects as important directions for future study as follows (P17/L370-374):

“While FLEMOjasn already provides a robust tool to support risk analyses, and impact-based forecasting, future developments
could further strengthen its applicability by integrating complementary hydrological indicators (e.g., basin concentration
time), incorporating building-level susceptibility factors (e.g., construction materials, structural condition, floor count), and
expanding the empirical database by including high loss observations and more diverse geographic regions.”

Specific Comments:

Table 1 and Table 2 — the meaning of some variables is not clear. For instance, does emergency plan refer to the existence of
a municipal emergency plan or a company emergency plan? Which is the meaning of the precaution indicator? Which are the
emergency measures considered? | suggest including an explanatory table in the supplementary material

Thank you for highlighting this lack of clarity regarding the interpretation of variables in Tables 1 and 2. In the revised
manuscript, we added overview of all variables for companies and private households (Tables S1 and S2), including the
corresponding survey questions and responses.

Table S1: Overview of the company variables, including abbreviations, full variable names, survey questions, response
options, coding, and index construction.

Predictors Survey question Response

At maximum water level, how high was the
wd | Water depth water above the Earth’s surface on your company | Continuous variable
premises in cm?

Inundation For how many hours did water remain on the

. . Continuous variable
duration company premises?

1 — Calm/slowly flowing
2

e 3
o 4
e 5
[ ]

6 — Wild/violent current

How strong was the water current in the

v | Velocity indicator | . . s
y immediate vicinity of your company?

Recoded categories (used in the

analysis):

1. Low flow (original categories 1-2)

2. Moderate flow (original categories
3-4)

3. Torrential flow (original categories
5-6)

Response (with multiple options

possible):

e Qil/Gasoline

e  Chemicals

e Sewage

e No contamination

Did contamination from the following substances | Recoded categories (used in the

con | Contaminati .
ontamination entered your company during the flood event? analysis):

No contamination

Sewage or Chemicals only
Oil/Gasoline only

Oil/Gasoline + Sewage, or
Oil/Gasoline + Chemicals

4. Oil/Gasoline + Chemicals + Sewage

=2

How many hours before the arrival of the flash
wt | Warning lead time | flood or heavy rainfall did the warning reach
your company?

Number of hours
e No warning received




ws

Early warning
source

From which source did your company receive
the flood warning?

Response (with multiple options

Loudspeaker announcements
App or SMS

Telephone call

Radio report

TV report

Newspaper report

Social media

Own research

Own observation

No warning

Recoded categories (used in the

analysis):

0.
1.
2.

No warning

Own research

Contacts (employees, acquaintances,
other companies, phone calls)

Media (radio, TV, newspaper, online,
social media)

Official authorities (direct official
warning, apps/SMS, civil protection,
loudspeaker announcements,
regional services)

ew

Early warning
received

Did your company receive an early warning of
the flood event?

Emergency
measures
undertaken

Were measures to reduce damage undertaken in
your company before or during the flood event?

€p

Emergency plan

At the time of the flood event, did your company
have an emergency or flood protection plan?

kh

Knowledge about
hazard

Had this site already been flooded before?

Were you aware that your company is located in
a flood-prone area?

Emergency
measures success

Were measures to reduce damage undertaken in
your company before or during the flood event?

How effective were these mitigation measures?

No measure undertaken
Not effective at all
Only partly effective
Mostly effective
Completely effective

Recoded categories (used in the

analysis):

ol =2

No measure undertaken
Completely ineffective,
Partly effective,

Mostly/ completely effective

fe

Flood experience

Q1: Had this company site already been flooded
before the event? If yes, how many times?

@0 g W = S

Number of previous floods:
Never
Once
Twice
Three times
Four times
More than four times




Q2: When was the company site last affected by
a flood prior to the event? (Year)

Time elapsed since the last flood:
25 years ago

10-25 years ago

5-10 years ago

2-5 years ago

0-2 years ago

@0 g W =

Flood experience was calculated from the
number of previous floods (Q1) and the time
elapsed since the last flood (Q2).

If only one value (Q1 or Q2) was
available, that value was used.

e Ifboth values were available, the
flood experience score was
calculated as the mean of the two.

Measures included

V1. Company insured against flood damages.

V2. Heating system adjusted (converted or
flood-protected).

V3. Emergency plan in place.

V4. Frequency of emergency drills conducted

Conversion:

e Each measure was coded as 1 if
implemented prior to the flood, 0
otherwise.

e For drills, any positive frequency (=1
per year) was coded as 1, absence as
0.

Weighting scheme:

before the flood. ) .
V5.  Tanks, silos, or storage facilities securely | ° Low impact / basic preparedness
aind el (weight =1): V1 to V4
Precaution V6.  Stationary or mobile water barriers *  Medium impact / protective but
N N T installed. limited scope (weight = 5): V5 to V8
V7. Sensitive equipment relocated to higher e  High impact / comprehensive
floors. protection (weight = 10): V9 to V11
V8.  Water-hazardous substances relocated to
higher floors. Calculation of weighted score (p):
Vo. U.se of ﬂggd-prone ar.eas.adapted to risk. p=vl+v2+v3+ v+ (5 x (5 +
V10. Air conditioning/ventilation system flood-
fod. v6 + v7 + v8)) + (10 x (v9 + v10 +
proo
V11. Building flood safety improved (e.g., vll))
seali.n.g basements, strengthening P et et e G
stability).
0. No precautionary measures
1. Medium precaution (p: 1 — 5)
2. Very good precaution (p = 6)
in | Insurance Is the company insured against flood damages 0. No
before the flood event? 1. Yes
1. Agriculture
2. Manufacturing
sec | Sector Which sector does your company belong to? 3. Trade
4. Finance
5. Services
1. Business premises with several
buildings belonging to the company
2. Entire building fully used by the
company
o6 | el ctivasten Which description best fits the spatial situation 3. One or more floors in a building
of this flood-affected company site? otherwise used for non-business
purposes
4. Less than one floor in a building
otherwise used for non-business
purposes
o | Qe Are the buildings or rooms owned by the é ggf;:g

company or rented?

3. Partly owned / partly rented




company is located?

T Number of How many people were employed in the Continuous variable
employees previous month?
sp | Size premise L8037 TS0 1010 IRy om prL e yonns Continuous variable

Table S2: Overview of the private household variables, including abbreviations, full variable names, survey questions,

response options, coding, and index construction.

Predictors Survey question Response
At the maximum water level: How
wd | Water depth high did the water stand Continuous variable
approximately outside the building?
d Inundation For how many hours did the water Continuous variable
duration remain inside the building in total?
0. No flow
1. Calm flowing
. 2.
. How strong was the water current in
v Velocity scaled the immediate vicinity of your house? i
5. .
6. Torrential flow
. 1. Person can stand effortlessly in calm water,
Do you think an average man could
.. P 2. Should make effort to stand,
hs | Human stability have stood upright in the flood near 1dh
our house? 3. Person would have been swept away,
M ’ 4. Too deep to stand
Response (with multiple options possible):
e Oil/Gasoline
e  Chemicals
e Sewage
e No contamination
Was your affected property . . .
con | Contamination contaminated by the following Recoded categories (used in the analysis):
substances? 0. No contamination
1. Sewage or Chemicals only
2. Oil/Gasoline only
3. Oil/Gasoline + Sewage, or Oil/Gasoline +
Chemicals
4. Oil/Gasoline + Chemicals + Sewage
. How did you become aware that the . .
Early warning . 0. No warning received
ew ’ flood danger was becoming acute for . )
received 1. Warning received
you?
How many hours before the onset of
wt | Warning lead time ﬂoqdmg Al b SRR A O, Continuous variable
or did you yourself become aware of
the danger?
0. No warning received
How did you become aware that the |1. Own observation
ws | Warning source flood danger would become acute for |2. Contacts
you? 3. Media
4. Official warning through authorities
Before the flood danger became 1. It was completely unclear to me
acute: Did you know how you and 2
Knowledge about 2
ke b your household could protect 3
emergency action . ) J
yourselves against flooding from 4.
heavy rainfall? 5.




6. It was completely clear to me

Emergency Did you — or someone else — take 0 No
me | measures measures to reduce damages in your 1' Y
undertaken house? - Xes
(Nominal: 0 = No, 1 = Yes)
e Secured documents and valuables
e  Moved/secured furniture and movable items
e  Secured oil tanks or other containers
e  Pumped out or scooped water
e  Brought animals to safety
e  Moved vehicles to flood-safe place
e Protected building against water intrusion
Number of ) e Redirected water flow on property
emergency Did you — or someone else — take e Received help from outside
mu | cures hrneasur)res to reduce damages in your |4 Unplugged electronic devices
undertaken ouse: o Dismantled fixed electrical installations
e  Shut off gas/electricity manually
e  Gas/electricity shut off centrally by authorities
e No measure taken
Score = documents + furniture + oil + pump +
pets + car + building + redirect + help +
unplugged + dismantled + gasseir + 8aSauthority
e  Minimum = 0 (No measure undertaken)
e  Maximum = 13 (All measures undertaken)
Number of previous floods:
0. Never
Q1: How often were you personally 1. Once
affected by heavy rainfall or floods 2. Twice
before the event? 3. Three times
4. Four times
5. More than four times
Time elapsed since the last flood:
) ) 1. 25 years ago
fe | Flood experience Q2: When was the last time YOUWEre |5 10 55 vears ago
affected by a flood or heavy rainfall- 3 510 vears ago
related inundation? (Year) ’ y &
4. 2-5 years ago
5. 0-2 years ago
Flood experience was calculated from *  Ifonly one value (Q1 or Q2) was available,
that value was used.
the number of previous floods (Q1) vatue was t .
ondlie e el psed e Mol e If both values were available, the flood
flood (Q2) experience score was calculated as the mean of
the two.
Measures included Conversion:
V1. Lﬁnd /Oflllt how to pffl()tegj[ Ay e Each measure was coded as 1 if implemented
ouse/tlat agamst flooding. rior to the flood, 0 otherwise.
V2. Itake out insurance against P ’
flood damage Weighting scheme:
. Precaution Ve hg 2?:;2?;[;;3561‘%%“}100(1 e Low impact (weight=1): V1 to V4
indicator V4.  Tuse ﬂood—pron'e Al fin o e  Medium impact (weight = 5): V6 to V10
low-value way (adapted use). *  High impact (weight = 10): V4, V5
V5. Tavoid valuable permanent

fittings in flood-prone storeys
and use water-
resistant/renewable materials
(adapted furniture).

Calculation of weighted score (p):

p=vl+v2+v3+v4+(5x6+v7+v8+
v9 +v10)) + (10 X (v4 + v5))




V6. Irelocate the heating system
and/or electrical supply to
higher floors.

V7. 1change the heating system or
flood-protect the oil tank.

V8. I improve the safety of the
building (e.g. seal basements)

V9. I install stationary or mobile
water barriers.

IV10. I prepare for emergencies (e.g.

water pumps, generator).

Precaution Indicator (pw):

0. No/Low precaution (p < 7)

1. Medium precaution (7 < p < 25)

2. Very good precaution (p = 25)

e Building footprint Wl‘lat~1s your estimate of the Continuous variable
area building’s floor area?
Does the building have a full or U o l?asement
b Basement rtial b s 1. Partial basement
parfial basement: 2. Full basement
How many people live permanently in
per | Household size your household, including yourself Continuous variable
and all children?
.| Number of How many children under 14 years of . .
chi . . Continuous variable
children age live in your household?
H le i househol
eld | Number of elders ow many people in your household Continuous variable
are older than 65?
1. <500€
. . 2. 500-1000
. M What is the approx1mate total 3 1001-1500
inc | . . monthly net income of your
income in classes . 4. 1501-2000
household in euros? 5 2001-3000
6. >3000€
1. No school degree
What is your highest educational 2o LLOmTE SEHTL Ay
ualification? 3. Secondary school
d ’ 4. Vocational or technical qualification
5. Higher education
Ownership structure:
1. Tenant
2. Apartment owner
3. House owner
Building type:
) ) 1. Single-family house
Socmecononpc 2. Multi-family house
socp | status according to 3 Semi-detached house

Plapp, (2003)

Living condition: Derived from
ownership structure and building type

Ownership Building Living
type condition
2 (multiple) 1

1l (Tenant) 1 (single) 2
3 (semi- 2
detached)

2 (Apartment 3

owner)

3 (House 4

owner)




- usable area

iving space = ——————
h hold

What is the total usable living area of ouseftota stze

the house (all floors together, but 1. Less than 25%
without the basement)? 2. 25%to <50%
3. 50% to<75%
4. 75% or more
Socp e  Minimum value: 3 (if all indicators are at their
, - . lowest)
= Education + L dit
n Liv?;a ;OZce tving congtion Maximum value: 13 (if all indicators are at
gsp their highest)

Line 102-104: “To maximise the amount of training data for model building, we employed the nearest neighbour technique to
impute the missing data. We tested a range of k-neighbours for our datasets (k =1,3,5,7,9) and selected the value with best
performance” — while this could be a good option for spatially correlated variables such as velocity and warning lead time
(after verifying that the distance between points is limited), it may lead to misleading assumptions for other missing variables.
For example, variables such as in, sp, and sec (for companies) or ke, fa, and b (for buildings) are not necessarily spatially
correlated. It would be helpful if the authors could provide a more thorough discussion on this point, particularly addressing
the potential limitations and implications of their imputation strategy for these types of variables.

We thank the reviewer for this valuable comment. In our dataset, missing values occurred because not all respondents answered
every survey question. To avoid significant data loss, we employed the k-nearest neighbours (kNN) imputation method. We
emphasize that the imputation was based on similarity in feature space, rather than on spatial proximity. The kNN algorithm
identified the most similar observations across all available variables to impute missing entries, regardless of their geographic
locations. We acknowledge that this assumption may be more suitable for certain variables than for others that may not exhibit
strong correlation with other features.

While kNN imputation is effective for preserving data quantity and minimizing loss, it introduces certain assumptions and
limitations. Primarily, it assumes that missing values can be reasonably predicted based on similarity to other observations in
the dataset. Additionally, imputation can reduce the natural variability of the data, potentially leading to additional uncertainty
in the modelling results. Despite these limitations, our analysis showed that the box plots and distributions remained stable
after imputation (not shown for brevity). Nevertheless, we advise interpreting the results involving imputed variables with
caution and recommend further validation using complete datasets in future studies.

In the revised manuscript we added the following text to Section 3.2.2 (P11/L250-256):

“The k-nearest neighbours (kNN) method of imputation assumes that the missing values can be inferred based on similarity
of feature space. This may not hold equally well across variables, particularly for those with weak correlation to other features.
To evaluate the robustness of imputation process, we compared the distribution of variables before and after imputation and
found them to be largely consistent (not shown for brevity). Nevertheless, the imputation process may still introduce
uncertainty or reduce natural variability in the data. Future studies could benefit from sensitivity testing using alternative
imputation techniques and explore models that explicitly incorporate imputation uncertainty.”

Section 3.1

The meaning of two CPTs in the table (d-con, wd-hs) should also be discussed. Moreover, | think this section should be
expanded discussing results for all damage components (i.e. companies BUI, EQU, GNS and household CON), even without
reporting all the CPTs.

We thank the reviewer for this valuable suggestion. We have provided a more comprehensive explanation of all the damage
components as follows (P13-14/L.283-313):

“The loss processes described by FLEMOgg is illustrated using the predictive density of predicted losses under scenarios of
hazard, exposure and vulnerability. For brevity, this section primarily focusses on the FLEMOgusn model for household
buildings (Fig 5), with a similar interpretation extended to other asset types (Fig S3-S6). The nodes of the model comprise of
water depth, human stability, inundation duration, contamination, knowledge about emergency action, and relative losses,
each with 7, 4, 7, 5, 6, and 8 classes, respectively. The Conditional Probability Table (CPT) was populated with joint
probabilities to find the predictive density of loss given the condition of other nodes.

The conditional probability of rloss based only on water depth indicates a monotonic relationship. Shallow inundations are
associated with very low losses, while deeper water substantially increases the probability of severe losses (Fig 5e). The
highest probabilities are concentrated along the diagonal, confirming this trend. For instance, depths <0.28 m are most likely
associated with very low losses (<0.017), whereas depths =2.3 m are strongly associated with high losses (> 0.42). Similar
patterns of increasing loss probability with greater water depth are observed across all asset types (Fig. S3—S6). Water depth
also influences human stability: while shallow flooding results in low instability, extreme depths markedly increase the

probability of instability (0.54) (Fig. 5b, Fig. S6a).



Contamination emerges as another important driver of losses. In uncontaminated conditions (class 0), the probability of very
low losses (<0.01) is high (0.82). Conversely, under severe contamination (class 4), the probability of very high losses (>0.427)
increases to 0.30 (Fig. 5¢), reflecting the destructive impact of oils, chemicals, and sewage entering buildings (Kreibich et al.,
2005; Laudan et al., 2020). Households exposed to inundation lasting [13—50) hours showed a high probability of experiencing
moderate contamination levels (classes 1-2). Knowledge about emergency action shows a strong mitigating effect. The CPT
(Fig. 5d) demonstrates that households with low awareness (Ke < 2) face a high probability of severe losses, whereas
households with very good knowledge (Ke > 5) display a substantially higher probability of reduced losses. Comparable
findings are observed for household contents (Fig. S6c). This agrees with Kreibich et al. (2021), who also reported that clear
awareness of emergency actions substantially reduces damages. Importantly, socioeconomic status indirectly shapes
vulnerability, as higher-income groups are more likely to report very clear knowledge of emergency actions after receiving
warnings (Fig. S6b).

For companies (Figs. S3-S5), the CPT results reveal consistent patterns across buildings, equipment, and goods & stock.
Smaller companies (with fewer employees or smaller premises) show higher probabilities of severe losses, whereas larger
firms and premises are more strongly associated with lower loss outcomes (Figs. S3b, S4d, S5c). Across all asset types, the
success of emergency measures emerges as a dominant factor, as unsuccessful measures are strongly associated with a high
probability of severe losses (Figs. S3d, S4b, S5a). Contamination further amplifies losses, with severe categories linked to
markedly higher probabilities of loss. Together, these results emphasize that hazard intensity (water depth, velocity,
contamination), exposure (number of employees, size premises) and vulnerability factors (effectiveness of emergency
measures) interactively determine relative losses for companies.”

Figure 5 — | think that results explanation will be supported if each CPT is identified with a letter

In the revised manuscript, we labeled each subplot in Figure 5 and Figures S3-S6.
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Figure 5. Conditional probability table (CPT) of the Bayesian network for the residential building. Each heatmap
illustrates the conditional probabilities of a child node given its parent node. Parent node states are shown along the x-
axis, and child node states along the y-axis. Darker shades of blue indicate higher probability values. Numerical values
are displayed in each cell, with an accompanying colorbar showing the probability scale. (a) Inundation duration given
contamination (b) Water depth given human stability (c) Contamination given relative loss (d) Knowledge about
emergency action given relative loss (e) Relative loss given water depth.

Line 289- 296 “The integration of knowledge about emergency action into the FLEMOxash model alongside water depth and
contamination provides a comprehensive understanding of how preparedness can mitigate loss during flash floods. Knowledge
about emergency action is categorized into six classes, ranging from 1 (low knowledge) to 6 (high knowledge). The CPT
clearly illustrates that a high level of emergency action knowledge can significantly reduce loss (Fig 5e). Specifically, when
households doesn’t knew what to do (1), there is a high likelihood of incurring higher loss. Conversely, when households with
good preparedness (> 4), the incurred loss significantly decreases. Residents with high levels of preparedness are more likely
to take effective emergency measures, thereby reducing the severity of flood loss” — Knowing what to do does not necessarily
imply that individuals will take action. Do the authors have any insight into why this variable appears to be significant in the
model, potentially even more so than the actual implementation of protective measures (me, mu)?



We thank the reviewer for raising this important question. Residents with high levels of preparedness are more likely to take
effective emergency measures, thereby reducing the severity of flood loss. Despite its importance, the way preparedness is
conceptualized in this study has certain limitations. Specifically, the variable does not capture which exact actions respondents
undertook. Therefore, it would be misleading to speculate particular actions directly resulted in reduced losses. While the
specific actions likely varied across respondents, empirical evidence indicates that having clear knowledge of emergency action
generally contributes to better preparedness, consistent with previous findings.

We will mention this limitation in the revised manuscript in P16/L.358-364 as follows:

“Residents with high levels of preparedness are more likely to take effective emergency measures, thereby reducing the severity
of flood loss (Kreibich et al., 2005, Sairam et al., 2019). Despite its importance, the way preparedness is conceptualized in
this study has certain limitations. Specifically, the variable does not capture which exact actions respondents undertook.
Therefore, it would be misleading to speculate particular actions directly resulted in reduced losses. While the specific actions
likely varied across respondents, empirical evidence indicates that having clear knowledge of emergency action generally
contributes to better preparedness, consistent with previous findings (Kreibich et al., 2021).”

Minor comments

Line 58-59: The conventional multivariate flood loss estimation models often employ decision tree-based approaches to assess
the role of different variables in influencing flood loss — Multivariate synthetic models also exist

Thank you for the suggestion. We will revise the introduction to include mention of existing multivariate synthetic models as
follows (P2-3/L54-75):

“Traditionally, flood loss estimation relied on univariate stage-damage functions (SDF) (Middelmann-Fernandes, 2010). To
improve the description of complex damage processes, the Flood Loss Estimation MOdel (FLEMOps) for the private sector,
was developed as rule-based, multivariate, deterministic model (Thieken et al., 2008). Merz et al. (2013) and Sieg et al. (2017)
introduced decision tree-based damage models that explicitly quantify uncertainty associated with both data variability and
model structure uncertainty through bootstrap aggregation. Subsequently, Bayesian Networks were used (BN-FLEMO),
enabling the modelling of complex flood loss processes through conditional probability relationships (Liidtke et al., 2019;
Schoppa et al., 2020, Schroter et al., 2014, Vogel et al., 2018).

In parallel, various machine learning approaches have also been developed for flood loss estimation, including neural
networks (Salas et al., 2023), random forests (Ghaedi et al., 2022), Bayesian regression (Mohor et al., 2021). Among these,
Bayesian networks are particularly advantageous due to their probabilistic representation of conditional dependencies among
multiple variables, handle missing data, and model transferability (Schriter et al., 2014). Bayesian models enhance the
understanding of flood loss dynamics by quantifying uncertainty and offering probabilistic estimates. For instance, Wagenaar
et al. (2018) developed a regional and temporal transferable BN-FLEMO for microscale residential applications, which was
later upscaled to mesoscale by Liidtke et al. (2019). In addition to the FLEMO typology, various synthetic, multivariate, rule-
based flood loss models have been proposed for fluvial flood contexts (Amadio et al., 2019; Dottori et al., 2016; Nofal et al.,
2020; Sairam et al., 2020).

However, all these loss models were developed to simulate damage processes during fluvial floods. In this study, we present
the first probabilistic flash flood loss model — Flood Loss Estimation Model affected by flash floods (FLEMOjug) using a BN-
based approach and gain new knowledge about flash flood damage processes based on the conditional probabilities among
multiple influencing variables. The study identifies the important variables and underlying processes that govern the flash
flood losses. Additionally, we examine the predictive performance of FLEMOjqsi, model and compare it with conventional SDF
models. Finally, we illustrate the effect of preparedness in controlling the extent of loss reduction.”

Line 72: The objective of this study is to build a novel Flood Loss Estimation MOdel affected by flash floods (FLEMOash) =
check grammar

Thank you. We have rephrased the sentence as follows:

P3/L70-73: “In this study, we present the first probabilistic flash flood loss model — Flood Loss Estimation Model affected by
flash floods (FLEMOjas) using a BN-based approach and gain new knowledge about flash flood damage processes based on
the conditional probabilities among multiple influencing variables.”

Line 254: The FLEMOsash model with the best performance, identified in Fig 3 — Which one is it? i.e., To which combinations
of predictors, bins and neighbours correspond?

We have revised the figure caption and mention the best-performing configurations as follows:

Figure 3. Model sensitivity of FLEMOgash to the number of predictors (f1-£5), bins (b3-b8), and number of neighbours used
for data imputation (k1-k9), evaluated using mean absolute error (MAE), continuous ranked probability score (CRPS), and
mean bias error (MBE) for the five asset types (x-axis). Each boxplot summarizes 100 repetitions of fivefold cross-validation
(companies) and tenfold cross-validation (households) with randomized data partitioning. Best-performing configurations
were identified through a sequential tuning process: first selecting the number of predictors based on the first panel, then



optimizing bin count in the second panel with predictors fixed, and finally selecting the number of neighbours in the third
panel with both previous parameters fixed. Best-performing configurations are: Companies — Buildings (C:BUI) 5, b6, k7;
Companies — Equipment (C:EQU) f5, b6, k5; Companies — Goods and Stock (C:GNS) f5, b6, k9; Private Households —
Buildings (P:BUI) 5, b8, k1; Private Households — Contents (P:CON) f5, b8, k3.

Line 256: C-GUI — Do authors mean C-BUI?

Corrected. We meant C:GNS.

Line 256-257

“For households (P:BUI and P:CON), the losses are significantly underestimated by the SDF-P” — | cannot appreciate that

We thank the reviewer for this observation. The corresponding statement has been removed in the revised manuscript.

Line 276 -278: “The CPT suggests that low water depths 275 (< 0.28 m) are most likely associated with low loss (< 0.05),
while high water depths (> 0.15m) with high loss (> 0.24)” — | would replace 0.05 with 0.17 and 0.15 with 1.5

Thank you for pointing out this typo-error. We have revised the statement as follows:

P13/1L290-292: “The highest probabilities are concentrated along the diagonal, confirming this trend. For instance, depths
<0.28 m are most likely associated with very low losses (<0.017), whereas depths >2.3 m are strongly associated with high
losses (> 0.42).”

Line 284-288: “The CPT clearly indicates that contamination significantly amplifies the likelihood of experiencing higher loss
(Fig 5). Specifically, when there is no contamination (class 0), the probability of experiencing loss is low (< 0.01). Conversely,
if there is high contamination (class 4), the probability of experiencing loss is high (> 0.24), reflecting the impact of oils,
chemicals, and sewage entering the building (Kreibich et al., 2005; Laudan et al., 2020)” — it seems numbers are incorrect,
please check or explain better

Thank you for pointing this out. We have revised the explanation as follows (P13/L295-299):

“Contamination emerges as another important driver of losses. In uncontaminated conditions (class 0), the probability of very
low losses (<0.01) is high (0.82). Conversely, under severe contamination (class 4), the probability of very high losses (>0.427)
increases to 0.30 (Fig. 5¢), reflecting the destructive impact of oils, chemicals, and sewage entering buildings (Kreibich et al.,
2005; Laudan et al., 2020).”

Line 292 — which is Figure 5e? see comment above

We have revised the figure where each subplot is indicated by a letter.
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