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We would like to express our sincere gratitude to the Editor for keeping the discussion open upon request and to 

the Reviewers for recognizing the significance of our work. We are especially thankful for their constructive 

comments and valuable suggestions, which we have carefully addressed in the revised version. The comments were 

found to be very helpful in enhancing the clarity and overall quality of the manuscript.  

 

Reviewer #2:  

The paper introduces FLEMOflash, a novel multivariate probabilistic Flood Loss Estimation Model tailored for 

flash floods. The model builds on survey data collected after flash flood events in 2002, 2016, and 2021 in Germany, 

encompassing both affected companies and households. FLEMOflash employs a data-driven feature selection 

approach alongside Bayesian networks to derive probabilistic loss estimates. The topic clearly falls within the scope 

of the journal, and the manuscript is generally well written and well organised. However, I have concerns regarding 

some of the underlying assumptions of the model, which, in turn, raise doubts about its validity for reliably 

estimating flash flood damage. I believe the authors should provide a more robust justification for their hypotheses 

to strengthen the credibility and robustness of their results. Below, I first present general concerns, followed by 

more specific comments. 

The authors would like to thank the reviewer for acknowledging significance and for providing us with the valuable 

feedback. The comments were found to be very helpful in improving the quality of the manuscript and will be 

acknowledged in the revised manuscript. We have responded (in black) to each comment (in blue). All references 

cited in our responses are listed at the end of this letter. 

General concerns  

1) My first concern relates to the criteria used for identifying flash flood events (and then data to be implemented 

to derive the model). Specifically, I find the use of average slope as a proxy problematic. While slope may influence 

local flow velocity, it does not adequately capture the main defining characteristic of flash floods — their rapid 

onset and short lead times. This concern is further supported by the reported warning lead times in Tables 1 and 2, 

which range from 0 to 240 hours and 0 to 168 hours, respectively. These values appear inconsistent with typical 

flash flood dynamics, where lead times are often just a few hours. Additionally, the use of a low-resolution DEM 

may not provide the accuracy needed to derive reliable slope estimates at the point observation scale. 

Have the authors considered using the concentration time of the river basin where the observations are located as 

a more physically meaningful proxy for flash flood potential? This could provide a better indication of response 

time and be more consistent with established hydrological understanding of flash flood processes. 

We thank the reviewer for this important and constructive comment. The flood loss models presented in this study 

are based on empirical, microscale data collected from individual private households and companies. To identify 

flash flood samples, we applied a spatially informed terrain analysis. For this purpose, 14 reference municipalities 

with documented flash flood occurrences or described as particularly susceptible to flash floods were selected. An 

overview of these municipalities is provided in Table A1 (to be included in the revised manuscript). 

Table A1: Overview of 14 municipalities affected by past flash flood events.  

Name of 

Municipality 
Latitude (N) Longitude (E) 

Reference (including research papers, official reports, 

municipal flash flood maps, media coverage of past events) 

Triftern 48.3957 13.0060 (LfU, 2017), Thieken et al. (2022) 

Simbach am Inn 48.2869 13.0113 Hübl et al., (2017), (LfU, 2017), Thieken et al. (2022) 

Obernzenn 49.4492 10.4886 (LfU, 2017), Thieken et al. (2022) 

Künzelsau 49.2802 09.7378 Mühr et al. (2016), Thieken et al. (2022) 

Julbach 48.2547 12.9313 (LfU, 2017), Thieken et al. (2022) 

Forchtenberg 49.2799 09.5149 Mühr et al. (2016), Thieken et al. (2022) 

Flachslanden 49.4081 10.5205 (LfU, 2017), Thieken et al. (2022) 
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Braunsbach 49.2007 09.7873 (Bronstert et al., 2018), Thieken et al. (2022) 

Ansbach 49.2888 10.5553 (LfU, 2017), Thieken et al. (2022) 

Stadtallendorf 50.8308 09.02447 

AVOSS Test Municipality (https://www.avoss.uni-

freiburg.de/testgebiete). Past event (https://www.feuerwehr-

wetter.de/informationen/buergerinformationen/starkregen.html) 

Grafschaft 50.5752 07.0852 

AVOSS Test Municipality (https://www.avoss.uni-

freiburg.de/testgebiete). Past event( https://hochwasser-

grafschaft.de/?p=936) 

Herrstein 49.7845 07.3461 

AVOSS Test Municipality (https://www.avoss.uni-

freiburg.de/testgebiete). Past event (https://fachtagung-

funke.de/wp-content/uploads/2024/06/6_Fuhr_Eisatzbericht-

Herrstein_2018.pdf) 

Otting 48.8801 10.7978 

AVOSS Test Municipality (https://www.avoss.uni-

freiburg.de/testgebiete). Past event 

(https://www1.wdr.de/nachrichten/westfalen-

lippe/aufraeumarbeiten-starkregen-ottfingen-100.html) 

Emmendingen 48.1225 07.8623 

AVOSS Test Municipality (https://www.avoss.uni-

freiburg.de/testgebiete). Municipal flash flood maps 

(https://www.emmendingen.de/leben-umwelt/vorsorge-

krise/starkregen) 

 
We agree with the reviewer that slope alone does not fully capture the characterization of flash floods. Other 

metrics, such as river basin concentration time, may indeed provide a more process-based representation of flash 

flood potential. Nevertheless, we used slope alone as a pragmatic solution to balance two competing needs: 

maintaining physical relevance in identifying flash flood–prone companies and households, and retaining a 

sufficient number of data points for robust model development.  

We have added the following text in the manuscript (P4/L99–103):  

“Other metrics, such as river basin concentration time, may indeed provide a more process-based characterization 

of flash flood potential. Nevertheless, we used slope alone as a pragmatic solution that balances two competing 

needs: maintaining physical relevance in identifying flash flood prone companies and households, and retaining a 

sufficient number of data points for robust model development.” 

P17/L373-377: “While FLEMOflash already provides a robust tool to support risk analyses, and impact-based 

forecasting, future developments could further strengthen its applicability by integrating complementary 

hydrological indicators (e.g., basin concentration time), incorporating building-level susceptibility factors (e.g., 

construction materials, structural condition, floor count), and expanding the empirical database by including high 

loss observations and more diverse geographic regions.” 

To assess the influence of DEM-granularity on our calculations, we compared the analysis results using the 90 m 

resolution DEM (SRTM GL3) to those acquired when using the 30 m resolution SRTM GL1 (see below Table, 

provided here for response only). We found that slope angles between the two medium-resolution DEMs generally 

increase with DEM-resolution, a relationship that is discussed in more detail by several studies (Chang and Tsai, 

1991; Grohmann, 2015; Wu et al., 2008). However, it is arguable if these differences in calculated slope angles 

around the reference municipalities translate to significant differences in the selection of survey data points. 

Table: Summary statistics (mean, median, minimum, and maximum) of terrain slope (in degrees) derived from 

SRTM GL3 (90 m resolution) and SRTM GL1 (30 m resolution) for the selected municipalities. 

Municipality SRTM GL3 (90 m resolution) SRTM GL1 (30 m resolution) 

mean median min max mean median min max 

Triftern 1.75 1.49 0.00 6.06 5.37 4.30 0.00 38.78 

Simbach am Inn 1.89 1.34 0.00 9.98 4.75 3.20 0.00 45.47 

Obernzenn 1.68 1.41 0.01 7.22 4.69 3.04 0.00 37.71 

Künzelsau 2.34 1.52 0.00 12.86 6.95 4.62 0.00 48.14 

Julbach 1.62 1.21 0.00 9.98 4.97 3.45 0.00 48.70 

Forchtenberg 2.40 1.92 0.00 10.74 7.21 5.16 0.00 54.09 
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Flachslanden 1.84 1.70 0.01 6.80 5.42 3.84 0.00 37.81 

Braunsbach 2.35 1.31 0.00 12.86 6.18 3.54 0.00 48.41 

Ansbach 1.38 1.19 0.01 5.61 4.59 3.20 0.00 37.08 

Stadtallendorf 1.72 1.55 0.00 10.81 4.45 3.30 0.00 43.48 

Grafschaft 2.49 1.87 0.01 16.54 6.47 4.05 0.00 57.05 

Herrstein 3.49 3.20 0.04 12.86 9.32 7.34 0.00 60.95 

Otting 1.54 1.41 0.02 5.89 5.34 4.17 0.00 43.45 

Emmendingen 2.42 1.59 0.00 13.96 7.79 4.66 0.00 59.19 

 

Regarding the reported warning lead times, we agree that the values presented in Tables 1 and 2 appear long 

compared to typical flash flood dynamics. This discrepancy arises because, the variable "warning lead time" 

includes both flash flood warnings and heavy rainfall warnings. The latter are often issued days in advance by 

meteorological services, which explains the broader range (0–240 and 0–168 hours) seen in Tables 1 and 2. To 

clarify this, the revised manuscript now includes an overview of all variables for companies and private households 

(Tables S1 and S2), including the corresponding survey questions and responses. 

 

2) My second concern relates to the set of explanatory variables used in the model. One of the primary damage 

mechanisms in flash flood events is structural damage, which is strongly influenced by the physical vulnerability 

of affected buildings. However, the model does not appear to include variables that capture this aspect, such as 

construction material, number of floors, or level of maintenance — all of which significantly affect a building’s 

susceptibility to structural damage. While I understand that the set of variables was likely constrained by the 

information collected through the survey, I would like to know whether the authors considered integrating ancillary 

data to address these critical gaps. For example, building-level data from national censuses or geoportals could 

provide valuable proxies for physical vulnerability. Inclusion of such information could improve the explanatory 

power and practical relevance of the model, particularly in contexts where decisions rely on nuanced understanding 

of asset-specific vulnerabilities. 

 

Thank you for your valuable and constructive suggestion. We fully recognize the importance of incorporating 

variables that directly reflect the physical vulnerability of buildings, as these factors significantly influence 

structural damage during flash flood events. Our current dataset already includes some relevant vulnerability-

related variables (e.g., building area, size of premises, presence of a basement, and spatial situation), but it does not 

contain detailed information on construction materials or number of floors. In this study, our aim was to advance 

the understanding of processes and develop models based strictly on the available empirical survey data.  

We also appreciate the suggestion of integrating ancillary data sources (e.g., open-source geoportals). While such 

data may indeed provide valuable proxies for building vulnerability, ensuring consistent integration across all 

surveyed municipalities was beyond the scope of the present study. Nevertheless, this represents a promising 

avenue for future research and model enhancement. 

We have added the following text in the manuscript:  

P17/L373-377: “While FLEMOflash already provides a robust tool to support risk analyses, and impact-based 

forecasting, future developments could further strengthen its applicability by integrating complementary 

hydrological indicators (e.g., basin concentration time), incorporating building-level susceptibility factors (e.g., 

construction materials, structural condition, floor count), and expanding the empirical database by including high 

loss observations and more diverse geographic regions.” 

 

3) A third concern regards obtained results, especially in terms of damage mechanisms. I would have expected to 

observe a significant influence of flow velocity or, at least, of the hydrodynamic force associated with the flow but 

this is not the case.  

 

We thank the reviewer for this constructive comment. In the current study, we aimed to represent hydrodynamic 

forces through two variables: velocity and human stability. While the velocity variable reflects a subjective but 



direct estimation of the local strength of the water flow by the interviewed people, the human stability variable 

captures the perceived difficulty of standing in floodwaters, thereby integrating both water depth and flow velocity. 

As shown in Figures 1(d–e), human stability emerges as the second most influential factor affecting loss in the case 

of private households, indicating that the combined effect of water depth and velocity is important for the model. 

We will include this explanation in Section 3.1 of the revised manuscript. Additionally, the revised manuscript now 

includes an overview of all variables for companies and private households (Tables S1 and S2), including the 

corresponding survey questions and responses. 

P8/L197-203: “Although flow velocity has been identified as a significant contributor to flash flood losses (Kreibich 

and Dimitrova, 2010), it does not appear among the most significant factors in the current study.  In our analysis, 

we represent hydrodynamic forces using two variables: velocity (v) and human stability (hs). While velocity 

provides a subjective yet direct measure of local strength of flow current, human stability reflects on the perceived 

difficulty of standing in flood waters. As shown in Figure 1(d-e), human stability emerges as the second most 

influential factor affecting loss in private households, indicating that the combined effect of depth and velocity play 

a crucial role for the flash flood model.” 

 

4) All the concerns mentioned above converge in the results obtained, particularly in the relative loss estimates 

provided by the model. These estimates range between 0.2 and 0.5, even for high water depths (around or above 2 

meters). Such values are comparable to those typically produced by models for riverine floods (see, e.g., 

FLEMOps), which raises doubts about the model's ability to capture the distinctively more destructive nature of 

flash floods.  

We agree that relative loss values between 0.2 and 0.5 may appear low compared to expectations for flash floods. 

However, two key factors explain this pattern.  

First, our dataset contains a greater number of observations with lower reported damages compared to high-damage 

cases, resulting in a skewed distribution. This imbalance limits the model’s ability to generalize accurately at the 

upper end of the water depth range. Please refer to Figure A1, which illustrates this distribution. Similar limitations 

have been reported in the literature; for example, Schoppa et al. (2020) observed greater prediction uncertainty for 

higher water depths due to data sparsity.  

 
Figure A1: Visualizations of the prior, posterior, and predictive distributions of rloss (a) Empirical kernel density estimate of the 

prior rloss based on collected data (b) Prior distribution of rloss represented as bin weights (inverse frequency) across discretized 

intervals (c) Posterior distribution of rloss conditioned on wd ∈ [1.85, 2.40) and emp ≥ 38 (d) Predictive distribution of rloss generated 

by resampling 1000 values using the prior bin weights and the posterior probabilities. The solid vertical line indicates the median 

(50th percentile), while the dotted vertical lines represent the 25th and 75th percentiles, representing the predictive uncertainty. 

Shaded area highlights the interquartile range. 

Second, our analysis (see Figure A2) shows that even under condition of higher water depth and high exposure 

(e.g., many employees), the level of preparedness, particularly the perceived success of emergency measures 

undertaken, plays a substantial role in reducing losses. Specifically, relative loss is significantly lower when 

respondents reported that the measures taken were either completely successful or protected the most critical parts 

of the property. 



 
Figure A2: (a) Posterior distribution and (b) predictive density of relative loss (rloss) under condition of water depth (wd) ∈ [1.85, 

2.40) and number of employees (emp) ≥ 38. (c–h) Posterior and predictive distributions of rloss for varying levels of measure success 

(ms): Subplots c, e, g present posterior distributions of rloss under three ms conditions — not at all, only limited, and yes – 

completely/most part — with wd ∈ [1.85, 2.40) and emp ≥ 38. Subplots d, f, h shows corresponding predictive densities, estimated 

using kernel density estimation from resampled values (n = 1000). In each density plot, the solid vertical line marks the median (50th 

percentile), while dotted vertical lines indicate the 25th and 75th percentiles, with shaded regions representing the uncertainty. The 

sequence from top to bottom illustrates increasing levels of preparedness. 

While the resulting loss estimates may initially appear to underestimate the destructive nature of flash floods, they 

instead reflect the complex interplay between hazard intensity, exposure, and vulnerability. Nonetheless, we agree 

that increasing the number of data points representing extreme hazard scenarios and improving the representation 

of structural vulnerability (e.g., building materials, number of floors) would enhance the model’s capacity to 

capture the full spectrum of flash flood impacts. We have emphasized these aspects as important directions for 

future study as follows (P17/L373-377):  

“While FLEMOflash already provides a robust tool to support risk analyses, and impact-based forecasting, future 

developments could further strengthen its applicability by integrating complementary hydrological indicators (e.g., 

basin concentration time), incorporating building-level susceptibility factors (e.g., construction materials, 

structural condition, floor count), and expanding the empirical database by including high loss observations and 

more diverse geographic regions.” 

 
Specific Comments: 

 

Table 1 and Table 2 → the meaning of some variables is not clear. For instance, does emergency plan refer to the 

existence of a municipal emergency plan or a company emergency plan? Which is the meaning of the precaution 

indicator? Which are the emergency measures considered? I suggest including an explanatory table in the 

supplementary material 

 



Thank you for highlighting this lack of clarity regarding the interpretation of variables in Tables 1 and 2. In the 

revised manuscript, we added overview of all variables for companies and private households (Tables S1 and S2), 

including the corresponding survey questions and responses. 

Table S1: Overview of the company variables, including abbreviations, full variable names, survey questions, 

response options, coding, and index construction. 

Predictors Survey question Response 

𝑤𝑑 Water depth 

At maximum water level, how high was the 

water above the Earth’s surface on your 

company premises in cm? 

Continuous variable 

𝑑 
Inundation 

duration 

For how many hours did water remain on 

the company premises? 
Continuous variable 

𝑣 
Velocity 

indicator 

How strong was the water current in the 

immediate vicinity of your company? 

• 1 – Calm/slowly flowing 

• 2 

• 3 

• 4 

• 5 

• 6 – Wild/violent current 

Recoded categories (used in the 

analysis): 

1. Low flow (original categories 1–

2) 

2. Moderate flow (original 

categories 3–4) 

3. Torrential flow (original 

categories 5–6) 

𝑐𝑜𝑛 Contamination 

Did contamination from the following 

substances entered your company during the 

flood event?  

Response (with multiple options 

possible): 

• Oil/Gasoline 

• Chemicals 

• Sewage 

• No contamination 

Recoded categories (used in the 

analysis): 

0. No contamination 

1. Sewage or Chemicals only 

2. Oil/Gasoline only 

3. Oil/Gasoline + Sewage, or 

Oil/Gasoline + Chemicals 

4. Oil/Gasoline + Chemicals + 

Sewage 

𝑤𝑡 
Warning lead 

time 

How many hours before the arrival of the 

flash flood or heavy rainfall did the warning 

reach your company? 

• Number of hours 

• No warning received 

𝑤𝑠 
Early warning 

source 

From which source did your company 

receive the flood warning? 

Response (with multiple options 

possible): 

• Loudspeaker announcements 

• App or SMS 

• Telephone call 

• Radio report 



• TV report 

• Newspaper report 

• Social media 

• Own research 

• Own observation 

• No warning 

Recoded categories (used in the 

analysis): 

0. No warning 

1. Own research 

2. Contacts (employees, 

acquaintances, other companies, 

phone calls) 

3. Media (radio, TV, newspaper, 

online, social media) 

4. Official authorities (direct 

official warning, apps/SMS, 

civil protection, loudspeaker 

announcements, regional 

services) 

𝑒𝑤 
Early warning 

received 

Did your company receive an early warning 

of the flood event? 

0. No 

1. Yes 

𝑚𝑒 

Emergency 

measures 

undertaken 

Were measures to reduce damage 

undertaken in your company before or 

during the flood event? 

0. No 

1. Yes 

ep Emergency plan 

At the time of the flood event, did your 

company have an emergency or flood 

protection plan? 

0. No 

1. Yes 

𝑘ℎ 
Knowledge about 

hazard 

Had this site already been flooded before? 

Were you aware that your company is 

located in a flood-prone area? 

0. No 

1. Yes 

𝑚𝑠 
Emergency 

measures success 

Were measures to reduce damage 

undertaken in your company before or 

during the flood event?  

How effective were these mitigation 

measures? 

• No measure undertaken 

• Not effective at all 

• Only partly effective 

• Mostly effective 

• Completely effective 

Recoded categories (used in the 

analysis): 

0. No measure undertaken  

1. Completely ineffective,  

2. Partly effective,  

3. Mostly/ completely effective 

𝑓𝑒 Flood experience 

Q1: Had this company site already been 

flooded before the event? If yes, how many 

times? 

 

Number of previous floods:  

0. Never 

1. Once 

2. Twice 

3. Three times 

4. Four times 

5. More than four times 



Q2: When was the company site last 

affected by a flood prior to the event? (Year) 

Time elapsed since the last flood: 

1. 25 years ago 

2. 10–25 years ago 

3. 5–10 years ago 

4. 2–5 years ago 

5. 0–2 years ago 

Flood experience was calculated from the 

number of previous floods (Q1) and the time 

elapsed since the last flood (Q2). 

• If only one value (Q1 or Q2) 

was available, that value was 

used. 

• If both values were available, 

the flood experience score was 

calculated as the mean of the 

two. 

𝑝𝑟 
Precaution 

indicator 

Measures included 

V1. Company insured against flood 

damages. 

V2. Heating system adjusted (converted or 

flood-protected). 

V3. Emergency plan in place. 

V4. Frequency of emergency drills 

conducted before the flood. 

V5. Tanks, silos, or storage facilities 

securely anchored. 

V6. Stationary or mobile water barriers 

installed. 

V7. Sensitive equipment relocated to 

higher floors. 

V8. Water-hazardous substances relocated 

to higher floors. 

V9. Use of flood-prone areas adapted to 

risk. 

V10. Air conditioning/ventilation system 

flood-proofed. 

V11. Building flood safety improved (e.g., 

sealing basements, strengthening 

stability). 

Conversion: 

• Each measure was coded as 1 if 

implemented prior to the flood, 

0 otherwise. 

• For drills, any positive 

frequency (≥1 per year) was 

coded as 1, absence as 0. 

Weighting scheme: 

• Low impact / basic preparedness 

(weight = 1): V1 to V4 

• Medium impact / protective but 

limited scope (weight = 5): V5 

to V8 

• High impact / comprehensive 

protection (weight = 10): V9 to 

V11 

Calculation of weighted score (𝑝): 

𝑝 = 𝑣1 + 𝑣2 + 𝑣3 + 𝑣4 + (5 ×

(𝑣5 + 𝑣6 + 𝑣7 + 𝑣8)) + (10 ×

(𝑣9 + 𝑣10 + 𝑣11))  

Precaution Indicator (𝑝𝑟): 

0. No precautionary measures 

1. Medium precaution (𝑝: 1 − 5) 

2. Very good precaution (𝑝 ≥ 6) 

𝑖𝑛 Insurance 
Is the company insured against flood 

damages before the flood event? 

0. No 

1. Yes 

𝑠𝑒𝑐 Sector Which sector does your company belong to? 

1. Agriculture 

2. Manufacturing  

3. Trade 

4. Finance 

5. Services 

𝑠𝑠 Spatial situation 

Which description best fits the spatial 

situation of this flood-affected company 

site? 

1. Business premises with several 

buildings belonging to the 

company 

2. Entire building fully used by the 

company 



3. One or more floors in a building 

otherwise used for non-business 

purposes 

4. Less than one floor in a building 

otherwise used for non-business 

purposes 

𝑜𝑤𝑛 Ownership 
Are the buildings or rooms owned by the 

company or rented? 

1. Owned 

2. Rented 

3. Partly owned / partly rented 

𝑒𝑚𝑝 
Number of 

employees 

How many people were employed in the 

previous month? 
Continuous variable 

𝑠𝑝 Size premise 
How large is the property on which your 

company is located? 
Continuous variable 

 

 

 
Table S2: Overview of the private household variables, including abbreviations, full variable names, survey 

questions, response options, coding, and index construction. 

Predictors Survey question Response  

𝑤𝑑 Water depth 

At the maximum water level: 

How high did the water stand 

approximately outside the 

building? 

Continuous variable 

𝑑 
Inundation 

duration 

For how many hours did the 

water remain inside the building 

in total? 

Continuous variable 

𝑣 Velocity scaled 

How strong was the water 

current in the immediate vicinity 

of your house? 

0. No flow 

1. Calm flowing 

2. . 

3. . 

4. . 

5. . 

6. Torrential flow 

ℎ𝑠 Human stability 

Do you think an average man 

could have stood upright in the 

flood near your house? 

1. Person can stand effortlessly in calm water,  

2. Should make effort to stand,  

3. Person would have been swept away,  

4. Too deep to stand 

𝑐𝑜𝑛 Contamination 

Was your affected property 

contaminated by the following 

substances? 

Response (with multiple options possible): 

• Oil/Gasoline 

• Chemicals 

• Sewage 

• No contamination 

Recoded categories (used in the analysis): 

0. No contamination 

1. Sewage or Chemicals only 

2. Oil/Gasoline only 

3. Oil/Gasoline + Sewage, or Oil/Gasoline + 

Chemicals 

4. Oil/Gasoline + Chemicals + Sewage 



𝑒𝑤 
Early warning 

received 

How did you become aware that 

the flood danger was becoming 

acute for you? 

0. No warning received 

1. Warning received 

𝑤𝑡 
Warning lead 

time 

How many hours before the 

onset of flooding did the warning 

reach you, or did you yourself 

become aware of the danger? 

Continuous variable 

𝑤𝑠 Warning source 

How did you become aware that 

the flood danger would become 

acute for you? 

0. No warning received 

1. Own observation  

2. Contacts  

3. Media 

4. Official warning through authorities 

𝑘𝑒 
Knowledge about 

emergency action 

Before the flood danger became 

acute: Did you know how you 

and your household could protect 

yourselves against flooding from 

heavy rainfall? 

1. It was completely unclear to me 

2. . 

3. . 

4. . 

5. . 

6. It was completely clear to me  

𝑚𝑒 

Emergency 

measures 

undertaken 

Did you – or someone else – take 

measures to reduce damages in 

your house? 

0. No 

1. Yes 

𝑚𝑢 

Number of 

emergency 

measures 

undertaken 

Did you – or someone else – take 

measures to reduce damages in 

your house? 

(Nominal: 0 = No, 1 = Yes) 

• Secured documents and valuables 

• Moved/secured furniture and movable 

items 

• Secured oil tanks or other containers 

• Pumped out or scooped water 

• Brought animals to safety 

• Moved vehicles to flood-safe place 

• Protected building against water intrusion 

• Redirected water flow on property 

• Received help from outside 

• Unplugged electronic devices 

• Dismantled fixed electrical installations 

• Shut off gas/electricity manually 

• Gas/electricity shut off centrally by 

authorities 

• No measure taken 

Score = documents + furniture + oil +
pump + pets + car + building + redirect +
help + unplugged + dismantled + gasself +
gasauthority  

• Minimum = 0 (No measure undertaken) 

• Maximum = 13 (All measures undertaken) 

𝑓𝑒 Flood experience 

Q1: How often were you 

personally affected by heavy 

rainfall or floods before the 

event? 

Number of previous floods:  

0. Never 

1. Once 

2. Twice 

3. Three times 

4. Four times 

5. More than four times 



Q2: When was the last time you 

were affected by a flood or heavy 

rainfall-related inundation? 

(Year) 

Time elapsed since the last flood: 

1. 25 years ago 

2. 10–25 years ago 

3. 5–10 years ago 

4. 2–5 years ago 

5. 0–2 years ago 

Flood experience was calculated 

from the number of previous 

floods (Q1) and the time elapsed 

since the last flood (Q2). 

• If only one value (Q1 or Q2) was available, 

that value was used. 

• If both values were available, the flood 

experience score was calculated as the 

mean of the two. 

𝑝𝑤 
Precaution 

indicator 

Measures included 

V1. I find out how to protect my 

house/flat against flooding.  

V2. I take out insurance against 

flood damage 

V3. I participate in 

neighborhood flood 

assistance.  

V4. I use flood-prone floors in a 

low-value way (adapted 

use).  

V5. I avoid valuable permanent 

fittings in flood-prone 

storeys and use water-

resistant/renewable 

materials (adapted 

furniture).  

V6. I relocate the heating 

system and/or electrical 

supply to higher floors.  

V7. I change the heating system 

or flood-protect the oil tank.  

V8. I improve the safety of the 

building (e.g. seal 

basements) 

V9. I install stationary or mobile 

water barriers. 

V10. I prepare for emergencies 

(e.g. water pumps, 

generator). 

Conversion: 

• Each measure was coded as 1 if 

implemented prior to the flood, 0 

otherwise. 

Weighting scheme: 

• Low impact (weight = 1): V1 to V4 

• Medium impact (weight = 5): V6 to V10 

• High impact (weight = 10): V4, V5 

Calculation of weighted score (𝑝): 

𝑝 = 𝑣1 + 𝑣2 + 𝑣3 + 𝑣4 + (5 × (𝑣6 + 𝑣7 +

𝑣8 + 𝑣9 + 𝑣10)) + (10 × (𝑣4 + 𝑣5))  

Precaution Indicator (𝑝𝑤): 

0. No/Low precaution (𝑝 < 7) 

1. Medium precaution (7 ≤ 𝑝 < 25) 

2. Very good precaution (𝑝 ≥ 25) 

𝑓𝑎 
Building 

footprint area 

What is your estimate of the 

building’s floor area? 
Continuous variable 

𝑏 Basement 
Does the building have a full or 

partial basement? 

0. No basement  

1. Partial basement 

2. Full basement 

𝑝𝑒𝑟 Household size 

How many people live 

permanently in your household, 

including yourself and all 

children? 

Continuous variable 

𝑐ℎ𝑖 
Number of 

children 

How many children under 14 

years of age live in your 

household? 

Continuous variable 



𝑒𝑙𝑑 Number of elders 
How many people in your 

household are older than 65? 
Continuous variable 

𝑖𝑛𝑐 
Monthly net 

income in classes 

What is the approximate total 

monthly net income of your 

household in euros? 

1. < 500 € 

2. 500-1000 

3. 1001-1500 

4. 1501-2000  

5. 2001-3000 

6. > 3000 € 

𝑠𝑜𝑐𝑝 

Socioeconomic 

status according 

to Plapp, (2003) 

What is your highest educational 

qualification? 

1. No school degree 

2. Lower secondary  

3. Secondary school  

4. Vocational or technical qualification  

5. Higher education  

Living condition: Derived from 

ownership structure and building 

type 

Ownership structure: 

1. Tenant 

2. Apartment owner 

3. House owner 

Building type: 

1. Single-family house 

2. Multi-family house 

3. Semi-detached house 

Ownership Building 

type 

Living 

condition 

1 (Tenant) 

2 (multiple) 1 

1 (single) 2 

3 (semi-

detached) 

2 

2 (Apartment 

owner) 

 3 

3 (House 

owner) 

 4 

 

What is the total usable living 

area of the house (all floors 

together, but without the 

basement)? 

𝑙𝑖𝑣𝑖𝑛𝑔 𝑠𝑝𝑎𝑐𝑒 =
𝑢𝑠𝑎𝑏𝑙𝑒 𝑎𝑟𝑒𝑎

ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑠𝑖𝑧𝑒
 

1. Less than 25% 

2. 25% to < 50% 

3. 50% to < 75% 

4. 75% or more 

𝑆𝑜𝑐𝑝

= 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛

+ 𝐿𝑖𝑣𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

+ 𝐿𝑖𝑣𝑖𝑛𝑔 𝑠𝑝𝑎𝑐𝑒 

• Minimum value: 3 (if all indicators are at 

their lowest) 

• Maximum value: 13 (if all indicators are at 

their highest) 

 

 

Line 102-104: “To maximise the amount of training data for model building, we employed the nearest neighbour 

technique to impute the missing data. We tested a range of k-neighbours for our datasets (k =1,3,5,7,9) and selected 

the value with best performance” → while this could be a good option for spatially correlated variables such as 

velocity and warning lead time (after verifying that the distance between points is limited), it may lead to misleading 

assumptions for other missing variables. For example, variables such as in, sp, and sec (for companies) or ke, fa, 

and b (for buildings) are not necessarily spatially correlated. It would be helpful if the authors could provide a more 

thorough discussion on this point, particularly addressing the potential limitations and implications of their 

imputation strategy for these types of variables. 



We thank the reviewer for this valuable comment. In our dataset, missing values occurred because not all 

respondents answered every survey question. To avoid significant data loss, we employed the k-nearest neighbours 

(kNN) imputation method. We emphasize that the imputation was based on similarity in feature space, rather than 

on spatial proximity. The kNN algorithm identified the most similar observations across all available variables to 

impute missing entries, regardless of their geographic locations. We acknowledge that this assumption may be 

more suitable for certain variables than for others that may not exhibit strong correlation with other features.  

While kNN imputation is effective for preserving data quantity and minimizing loss, it introduces certain 

assumptions and limitations. Primarily, it assumes that missing values can be reasonably predicted based on 

similarity to other observations in the dataset. Additionally, imputation can reduce the natural variability of the 

data, potentially leading to additional uncertainty in the modelling results. Despite these limitations, our analysis 

showed that the box plots and distributions remained stable after imputation (not shown for brevity). Nevertheless, 

we advise interpreting the results involving imputed variables with caution and recommend further validation using 

complete datasets in future studies. 

In the revised manuscript we added the following text to Section 3.2.2 (P11/L250–256): 

“The k-nearest neighbours (kNN) method of imputation assumes that the missing values can be inferred based on 

similarity of feature space. This may not hold equally well across variables, particularly for those with weak 

correlation to other features. To evaluate the robustness of imputation process, we compared the distribution of 

variables before and after imputation and found them to be largely consistent (not shown for brevity). Nevertheless, 

the imputation process may still introduce uncertainty or reduce natural variability in the data. Future studies 

could benefit from sensitivity testing using alternative imputation techniques and explore models that explicitly 

incorporate imputation uncertainty.” 

Section 3.1  

The meaning of two CPTs in the table (d-con, wd-hs) should also be discussed. Moreover, I think this section 

should be expanded discussing results for all damage components (i.e. companies BUI, EQU, GNS and household 

CON), even without reporting all the CPTs. 

We thank the reviewer for this valuable suggestion. We have provided a more comprehensive explanation of all 

the damage components as follows (P13-14/L288-313):  

“The loss processes described by FLEMOflash is illustrated using the predictive density of predicted losses under 

scenarios of hazard, exposure and vulnerability. For brevity, this section primarily focusses on the FLEMOflash 

model for household buildings (Fig 5), with a similar interpretation extended to other asset types (Fig S3-S6). The 

nodes of the model comprise of water depth, human stability, inundation duration, contamination, knowledge about 

emergency action, and relative losses, each with 7, 4, 7, 5, 6, and 8 classes, respectively. The Conditional 

Probability Table (CPT) was populated with joint probabilities to find the predictive density of loss given the 

condition of other nodes.  

The conditional probability of 𝑟𝑙𝑜𝑠𝑠 based only on water depth indicates a monotonic relationship. Shallow 

inundations are associated with very low losses, while deeper water substantially increases the probability of 

severe losses (Fig 5e). The highest probabilities are concentrated along the diagonal, confirming this trend. For 

instance, depths <0.28 m are most likely associated with very low losses (<0.017), whereas depths ≥2.3 m are 

strongly associated with high losses (> 0.42). Similar patterns of increasing loss probability with greater water 

depth are observed across all asset types (Fig. S3–S6). Water depth also influences human stability: while shallow 

flooding results in low instability, extreme depths markedly increase the probability of instability (0.54) (Fig. 5b, 

Fig. S6a).  

Contamination emerges as another important driver of losses. In uncontaminated conditions (class 0), the 

probability of very low losses (<0.01) is high (0.82). Conversely, under severe contamination (class 4), the 

probability of very high losses (>0.427) increases to 0.30 (Fig. 5c), reflecting the destructive impact of oils, 

chemicals, and sewage entering buildings (Kreibich et al., 2005; Laudan et al., 2020). Households exposed to 

inundation lasting [13–50) hours showed a high probability of experiencing moderate contamination levels 

(classes 1–2). Knowledge about emergency action shows a strong mitigating effect. The CPT (Fig. 5d) 

demonstrates that households with low awareness (Ke ≤ 2) face a high probability of severe losses, whereas 



households with very good knowledge (Ke ≥ 5) display a substantially higher probability of reduced losses. 

Comparable findings are observed for household contents (Fig. S6c). This agrees with Kreibich et al. (2021), who 

also reported that clear awareness of emergency actions substantially reduces damages. Importantly, 

socioeconomic status indirectly shapes vulnerability, as higher-income groups are more likely to report very clear 

knowledge of emergency actions after receiving warnings (Fig. S6b).  

For companies (Figs. S3–S5), the CPT results reveal consistent patterns across buildings, equipment, and goods 

& stock. Smaller companies (with fewer employees or smaller premises) show higher probabilities of severe losses, 

whereas larger firms and premises are more strongly associated with lower loss outcomes (Figs. S3b, S4d, S5c). 

Across all asset types, the success of emergency measures emerges as a dominant factor, as unsuccessful measures 

are strongly associated with a high probability of severe losses (Figs. S3d, S4b, S5a). Contamination further 

amplifies losses, with severe categories linked to markedly higher probabilities of loss. Together, these results 

emphasize that hazard intensity (water depth, velocity, contamination), exposure (number of employees, size 

premises) and vulnerability factors (effectiveness of emergency measures) interactively determine relative losses 

for companies.” 

Figure 5 → I think that results explanation will be supported if each CPT is identified with a letter 

In the revised manuscript, we labeled each subplot in Figure 5 and Figures S3-S6.   

   

  

 

 

Figure 3. Conditional probability table (CPT) of the Bayesian network for the residential building. Each heatmap illustrates the 

conditional probabilities of a child node given its parent node. Parent node states are shown along the x-axis, and child node states 

along the y-axis. Darker shades of blue indicate higher probability values. Numerical values are displayed in each cell, with an 

accompanying colorbar showing the probability scale. (a) Inundation duration given contamination (b) Water depth given human 

stability (c) Contamination given relative loss (d) Knowledge about emergency action given relative loss (e) Relative loss given water 

depth. 

Line 289- 296 “The integration of knowledge about emergency action into the FLEMOflash model alongside water 

depth and contamination provides a comprehensive understanding of how preparedness can mitigate loss during 

flash floods. Knowledge about emergency action is categorized into six classes, ranging from 1 (low knowledge) 

to 6 (high knowledge). The CPT clearly illustrates that a high level of emergency action knowledge can significantly 

reduce loss (Fig 5e). Specifically, when households doesn’t knew what to do (1), there is a high likelihood of 

incurring higher loss. Conversely, when households with good preparedness (> 4), the incurred loss significantly 

decreases. Residents with high levels of preparedness are more likely to take effective emergency measures, thereby 

reducing the severity of flood loss” → Knowing what to do does not necessarily imply that individuals will take 

action. Do the authors have any insight into why this variable appears to be significant in the model, potentially 

even more so than the actual implementation of protective measures (me, mu)? 



We thank the reviewer for raising this important question. Residents with high levels of preparedness are more 

likely to take effective emergency measures, thereby reducing the severity of flood loss. Despite its importance, 

the way preparedness is conceptualized in this study has certain limitations. Specifically, the variable does not 

capture which exact actions respondents undertook. Therefore, it would be misleading to speculate particular 

actions directly resulted in reduced losses. While the specific actions likely varied across respondents, empirical 

evidence indicates that having clear knowledge of emergency action generally contributes to better preparedness, 

consistent with previous findings. 

We will mention this limitation in the revised manuscript in P16/L361-367 as follows:  

“Residents with high levels of preparedness are more likely to take effective emergency measures, thereby reducing 

the severity of flood loss (Kreibich et al., 2005; Sairam et al., 2019). Despite its importance, the way preparedness 

is conceptualized in this study has certain limitations. Specifically, the variable does not capture which exact 

actions respondents undertook. Therefore, it would be misleading to speculate particular actions directly resulted 

in reduced losses. While the specific actions likely varied across respondents, empirical evidence indicates that 

having clear knowledge of emergency action generally contributes to better preparedness, consistent with previous 

findings (Kreibich et al., 2021).” 

 

Minor comments  

Line 58-59: The conventional multivariate flood loss estimation models often employ decision tree-based 

approaches to assess the role of different variables in influencing flood loss → Multivariate synthetic models 

also exist  

 

Thank you for the suggestion. We will revise the introduction to include mention of existing multivariate 

synthetic models as follows (P2-3/L54-75): 

“Traditionally, flood loss estimation relied on univariate stage-damage functions (SDF) (Middelmann‐Fernandes, 

2010). To improve the description of complex damage processes, the Flood Loss Estimation MOdel (FLEMOps) 

for the private sector, was developed as rule-based, multivariate, deterministic model (Thieken et al., 2008). Merz 

et al. (2013) and Sieg et al. (2017) introduced decision tree-based damage models that explicitly quantify 

uncertainty associated with both data variability and model structure uncertainty through bootstrap aggregation. 

Subsequently, Bayesian Networks were used (BN-FLEMO), enabling the modelling of complex flood loss processes 

through conditional probability relationships (Lüdtke et al., 2019; Schoppa et al., 2020; Schröter et al., 2014; 

Vogel et al., 2018). 

In parallel, various machine learning approaches have also been developed for flood loss estimation, including 

neural networks (Salas et al., 2023), random forests (Ghaedi et al., 2022), Bayesian regression (Mohor et al., 

2021). Among these, Bayesian networks are particularly advantageous due to their probabilistic representation of 

conditional dependencies among multiple variables, handle missing data, and model transferability (Schröter et 

al., 2014). Bayesian models enhance the understanding of flood loss dynamics by quantifying uncertainty and 

offering probabilistic estimates. For instance, Wagenaar et al. (2018) developed a regional and temporal 

transferable BN-FLEMO for microscale residential applications, which was later upscaled to mesoscale by Lüdtke 

et al. (2019). In addition to the FLEMO typology, various synthetic, multivariate, rule-based flood loss models 

have been proposed for fluvial flood contexts (Amadio et al., 2019; Dottori et al., 2016; Nofal et al., 2020; Sairam 

et al., 2020). 

However, all these loss models were developed to simulate damage processes during fluvial floods. In this study, 

we present the first probabilistic flash flood loss model – Flood Loss Estimation Model affected by flash floods 

(FLEMOflash) using a BN-based approach and gain new knowledge about flash flood damage processes based on 

the conditional probabilities among multiple influencing variables. The study identifies the important variables 

and underlying processes that govern the flash flood losses. Additionally, we examine the predictive performance 

of FLEMOflash model and compare it with conventional SDF models. Finally, we illustrate the effect of preparedness 

in controlling the extent of loss reduction” 



Line 72: The objective of this study is to build a novel Flood Loss Estimation MOdel affected by flash floods 

(FLEMOflash) → check grammar 

The above line has been removed in the revised manuscript and has been replaced with: 

P3/L70-73: “In this study, we present the first probabilistic flash flood loss model – Flood Loss Estimation Model 

affected by flash floods (FLEMOflash) using a BN-based approach and gain new knowledge about flash flood 

damage processes based on the conditional probabilities among multiple influencing variables.” 

 
Line 254: The FLEMOflash model with the best performance, identified in Fig 3 → Which one is it? i.e., To which 

combinations of predictors, bins and neighbours correspond? 

We have revised the figure caption and mention the best-performing configurations as follows: 

Figure 4. Model sensitivity of FLEMOflash to the number of predictors (f1–f5), bins (b3–b8), and number of 
neighbours used for data imputation (k1–k9), evaluated using mean absolute error (MAE), continuous ranked 
probability score (CRPS), and mean bias error (MBE) for the five asset types (x-axis). Each boxplot summarizes 
100 repetitions of fivefold cross-validation (companies) and tenfold cross-validation (households) with 
randomized data partitioning. Best-performing configurations were identified through a sequential tuning 
process: first selecting the number of predictors based on the first panel, then optimizing bin count in the second 
panel with predictors fixed, and finally selecting the number of neighbours in the third panel with both previous 
parameters fixed. Best-performing configurations are:  Companies – Buildings (C:BUI) f5, b6, k7; Companies – 
Equipment (C:EQU) f5, b6, k5; Companies – Goods and Stock (C:GNS) f5, b6, k9; Private Households – Buildings 
(P:BUI) f5, b8, k1; Private Households – Contents (P:CON) f5, b8, k3. 

Line 256: C-GUI → Do authors mean C-BUI?  

Corrected. We meant C:GNS.  

Line 256-257  

“For households (P:BUI and P:CON), the losses are significantly underestimated by the SDF-P” → I cannot 

appreciate that  

We thank the reviewer for this observation. The corresponding statement has been removed in the revised 
manuscript.    

Line 276 -278: “The CPT suggests that low water depths 275 (< 0.28 m) are most likely associated with low loss 

(< 0.05), while high water depths (> 0.15m) with high loss (> 0.24)” → I would replace 0.05 with 0.17 and 0.15 

with 1.5  

 

Thank you for pointing out this typo-error. We have revised the statement as follows: 

 

P13/L290-292: “The highest probabilities are concentrated along the diagonal, confirming this trend. For 
instance, depths <0.28 m are most likely associated with very low losses (<0.017), whereas depths ≥2.3 m are 
strongly associated with high losses (> 0.42).” 

 
Line 284-288: “The CPT clearly indicates that contamination significantly amplifies the likelihood of 

experiencing higher loss (Fig 5). Specifically, when there is no contamination (class 0), the probability of 

experiencing loss is low (< 0.01). Conversely, if there is high contamination (class 4), the probability of 

experiencing loss is high (> 0.24), reflecting the impact of oils, chemicals, and sewage entering the building 

(Kreibich et al., 2005; Laudan et al., 2020)” → it seems numbers are incorrect, please check or explain better  

Thank you for pointing this out. We have revised the explanation as follows (P13/L295-299):  

“Contamination emerges as another important driver of losses. In uncontaminated conditions (class 0), the 
probability of very low losses (<0.01) is high (0.82). Conversely, under severe contamination (class 4), the 
probability of very high losses (>0.427) increases to 0.30 (Fig. 5c), reflecting the destructive impact of oils, 
chemicals, and sewage entering buildings (Kreibich et al., 2005; Laudan et al., 2020).” 



Line 292 → which is Figure 5e? see comment above 

We have revised the figure where each subplot is indicated by a letter. 
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