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We would like to express our sincere gratitude to the Editor for keeping the discussion open upon request and to 

the Reviewers for recognizing the significance of our work. We are especially thankful for their constructive 

comments and valuable suggestions, which we have carefully addressed in the revised version. The comments were 

found to be very helpful in enhancing the clarity and overall quality of the manuscript.  

 

 
Reviewer #1:  

This paper is in the context of flash floods, loss estimation models, and flood preparedness. The paper introduces 

the FLEMOflash model, using data from past German flash floods; methodologically, it combines machine learning 

and Bayesian networks to estimate probabilistic losses and their uncertainties. In terms of topics, the paper is 

relevant for and aligned with NHESS. The paper is well-written and -organised. Comments are mostly minor (even 

typos).  

The authors would like to thank the reviewer for acknowledging significance and for providing us with the valuable 

feedback. The comments were found to be very helpful in improving the quality of the manuscript and will be 

acknowledged. We have responded (in black) to each comment (in blue). All references cited in our responses are 

listed at the end of this letter. 

 

The only major comment is about preparedness. From the paper, I do not understand what is meant by preparedness, 

and in specific what ‘high’ and ‘low’ preparedness mean.  

We thank the reviewer for this question. We have added the following text in Section 3.3.1 (P15/L323-330) to 

address the missing clarification.  

“Through feature selection and Bayesian Networks we identified emergency measures success (𝑚𝑠) and 

knowledge about emergency action (𝑘𝑒) for companies and private households respectively, as the significant 

variables (see Tables S2 and S3 for details on the questions and responses). Building on this, we conceptualised 

preparedness using these variables and categorized it into low, medium, and high levels. For companies, high 

preparedness was defined as having undertaken emergency measures that were perceived to be mostly or 

completely effective (𝑚𝑠 = 3) and low preparedness (𝑚𝑠 = 1) reflected low perceived effectiveness of such 

measures. For private households, high preparedness was defined as having a clear understanding of emergency 

actions based on official warnings (𝑘𝑒 ≥  5), and low preparedness reflected limited to no understanding of what 

to do (𝑘𝑒 ≤ 2).” 

What are the assumptions behind ‘preparedness’? e.g. that people with more knowledge of risk will act in a certain 

way (which way?)? At page 14, it is said: ‘…doesn’t knew what to do’. For high preparedness, what people know 

about what to do? 

Residents with high levels of preparedness are more likely to take effective emergency measures, thereby reducing 

the severity of flood loss. Despite its importance, the way preparedness is conceptualized in this study has certain 

limitations. Specifically, the variable does not capture which exact actions respondents undertook. Therefore, it 

would be misleading to speculate particular actions directly resulted in reduced losses. While the specific actions 

likely varied across respondents, empirical evidence indicates that having clear knowledge of emergency action 

generally contributes to better preparedness, consistent with previous findings. 

We will mention this limitation in the revised manuscript in P16/L361-367 as follows:  

“Residents with high levels of preparedness are more likely to take effective emergency measures, thereby reducing 

the severity of flood loss (Kreibich et al., 2005; Sairam et al., 2019). Despite its importance, the way preparedness 

is conceptualized in this study has certain limitations. Specifically, the variable does not capture which exact 

actions respondents undertook. Therefore, it would be misleading to speculate particular actions directly resulted 

in reduced losses. While the specific actions likely varied across respondents, empirical evidence indicates that 

having clear knowledge of emergency action generally contributes to better preparedness, consistent with previous 

findings (Kreibich et al., 2021).” 
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The model seems suited to derive the predictive density of losses, however I have doubt about the effect of 

preparedness. I would be very cautious to include this part in the paper. 

Thank you for this helpful feedback. We have revised the manuscript to clarify how predictive densities are 

summarized. The following text has been added in P15/L330–339:  

“While preparedness has been extensively studied in the context of fluvial or riverine floods (Lüdtke et al., 2019; 

Schoppa et al., 2020; Wagenaar et al., 2018), its role in flash floods has not yet been systematically investigated. 

To address this gap, we applied the FLEMOflash model to derive predictive densities of 𝑟𝑙𝑜𝑠𝑠. Results were 

summarized using the median and associated uncertainty (25th and 75th percentiles) for selected combinations of 

hazard, exposure, and vulnerability conditions, rather than displaying the full predictive densities (Figure 6). For 

clarity of interpretation, Figure A1 illustrates step by step how predictive densities are derived from the prior and 

posterior distributions using kernel density estimation based on 1,000 resampled values, while Figure A2 provides 

an overview of the posterior and predictive densities across varying levels of measure success (preparedness) 

under same conditions of water depth and number of employees.” 

 

 

Figure A1: Visualizations of the prior, posterior, and predictive distributions of rloss (a) Empirical kernel density estimate of the 

prior rloss based on collected data (b) Prior distribution of rloss represented as bin weights (inverse frequency) across discretized 

intervals (c) Posterior distribution of rloss conditioned on wd ∈ [1.85, 2.40) and emp ≥ 38 (d) Predictive distribution of rloss generated 

by resampling 1000 values using the prior bin weights and the posterior probabilities. The solid vertical line indicates the median 

(50th percentile), while the dotted vertical lines represent the 25th and 75th percentiles, representing the predictive uncertainty. 

Shaded area highlight the interquartile range. 



 

Figure A2: (a) Posterior distribution and (b) predictive density of relative loss (rloss) under condition of water depth (wd) ∈ [1.85, 

2.40) and number of employees (emp) ≥ 38. (c–h) Posterior and predictive distributions of rloss for varying levels of measure success 

(ms): Subplots c, e, g present posterior distributions of rloss under three ms conditions — not at all, only limited, and yes – 

completely/most part — with wd ∈ [1.85, 2.40) and emp ≥ 38. Subplots d, f, h shows corresponding predictive densities, estimated 

using kernel density estimation from resampled values (n = 1000). In each density plot, the solid vertical line marks the median (50th 

percentile), while dotted vertical lines indicate the 25th and 75th percentiles, with shaded regions representing the uncertainty. The 

sequence from top to bottom illustrates increasing levels of preparedness. 

A secondary comment is that I would add some background about the previous /traditional version of FLEMO (e.g. 

https://www.gfz.de/en/section/hydrology/ projects/4-flood-loss-model-flemo-for-residential-and-commercial-

sectors); there is none at the moment I think. 

Thank you for the helpful suggestion. In the revised manuscript (P2-3/L54-75), we have incorporated additional 

background.  

“Traditionally, flood loss estimation relied on univariate stage-damage functions (SDF) (Middelmann‐Fernandes, 

2010). To improve the description of complex damage processes, the Flood Loss Estimation MOdel (FLEMOps) 

for the private sector, was developed as rule-based, multivariate, deterministic model (Thieken et al., 2008). Merz 

et al. (2013) and Sieg et al. (2017) introduced decision tree-based damage models that explicitly quantify 

uncertainty associated with both data variability and model structure uncertainty through bootstrap aggregation. 

Subsequently, Bayesian Networks were used (BN-FLEMO), enabling the modelling of complex flood loss processes 

through conditional probability relationships (Lüdtke et al., 2019; Schoppa et al., 2020; Schröter et al., 2014; 

Vogel et al., 2018). 

In parallel, various machine learning approaches have also been developed for flood loss estimation, including 

neural networks (Salas et al., 2023), random forests (Ghaedi et al., 2022), Bayesian regression (Mohor et al., 

2021). Among these, Bayesian networks are particularly advantageous due to their probabilistic representation of 

conditional dependencies among multiple variables, handle missing data, and model transferability (Schröter et 

al., 2014). Bayesian models enhance the understanding of flood loss dynamics by quantifying uncertainty and 

offering probabilistic estimates. For instance, Wagenaar et al. (2018) developed a regional and temporal 

transferable BN-FLEMO for microscale residential applications, which was later upscaled to mesoscale by Lüdtke 



et al. (2019). In addition to the FLEMO typology, various synthetic, multivariate, rule-based flood loss models 

have been proposed for fluvial flood contexts (Amadio et al., 2019; Dottori et al., 2016; Nofal et al., 2020; Sairam 

et al., 2020). 

However, all these loss models were developed to simulate damage processes during fluvial floods. In this study, 

we present the first probabilistic flash flood loss model – Flood Loss Estimation Model affected by flash floods 

(FLEMOflash) using a BN-based approach and gain new knowledge about flash flood damage processes based on 

the conditional probabilities among multiple influencing variables. The study identifies the important variables 

and underlying processes that govern the flash flood losses. Additionally, we examine the predictive performance 

of FLEMOflash model and compare it with conventional SDF models. Finally, we illustrate the effect of preparedness 

in controlling the extent of loss reduction” 

Specific comments (P for page, L for line): 

Valid for all direct citations: coma is not needed before the year, e.g. Smith et al. (2000) - and not Smith et al., 

(2000) 

Thank you for pointing this out. We have corrected it.  

Valid for the whole paper: equation factors, such as rloss, need to be in italic in the main text of the manuscript 

Corrected. 

Valid for the whole paper: do not use contracted forms like ‘doesn’t’. L223: The direction of the arrow represents 

an association between two variables but doesn’t necessarily represent causality.   

We have corrected it in the revised manuscript. 

P2L42: double parenthesis in the citation 

Corrected. 

P2L50: double space before ‘significant’ 

Corrected. 

P4L101: double space before ‘The percentage’? 

Corrected. 

P7L146, P11L236: ‘This’ what? Add a noun, specify 

Thank you for pointing out this lack of clarity. The revised text now reads as follows:  

 

P7/L154-156: “Within the predicted bins of the discrete BN (𝑟𝑙𝑜𝑠𝑠 bins), we fit a continuous distribution by 

applying weighted sampling to the empirical loss data, resulting in a smoothed representation of the loss 

distribution (Schoppa et al., 2020).  For further details on the BN structure learning we refer to Text S1 and Figure 

A1.” 

 

P11/L241-243: “Examining the performance with optimal predictors while modifying the number of bins, revealed 

significant differences for companies but not for households, which could be attributed to the fact that the number 

of data points for companies is relatively limited and more heterogenous (Schoppa et al., 2020) compared to 

households.” 

 

P9L190: remove the dot before the parenthesis of Fig. 1d-e 

Corrected. We will carefully proofread the revised manuscript. 
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