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Abstract 12 

We have developed an intermediate size (906 L) aerosol processing chamber, and this work 13 

reports on the design and initial characterization of dry aerosol experiments. Specifically, we are 14 

determining wall-loss and coagulation correction factors using the observed size distribution 15 

measurements for surrogates of common aerosol classes: sodium chloride, sucrose, and biomass 16 

burning aerosol smoke. Results show that, on average, sodium chloride, sucrose, and smoke 17 

wall-loss rates converge to similar values on relatively short time scales (<1 hour). The fitted 18 

coagulation correction factor, W𝐶𝐶
−1, for smoke particles (1.23 ± 0.312), indicates that on average 19 

they adhere to each other more than sodium chloride (0.969 ± 0.524) and sucrose (1.16 ± 1.38). 20 

The relative uncertainty is high for the coagulation correction, but it is consistent with our Monte 21 

Carlo error analysis. This study lays the foundation for future experiments at elevated humidity 22 
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and supersaturation conditions to characterize the influence of particle shape on coagulation and 23 

cloud parameters.   24 

1 Introduction 25 

Aerosol-cloud interactions remain one of the largest sources of uncertainty in the Earth’s 26 

radiation budget. By directly scattering, absorbing solar radiation and indirectly influencing 27 

cloud formation, aerosols affect longwave and shortwave radiation in the Earth’s atmosphere 28 

(IPCC, 2023). Despite sustained research efforts, these impacts still pose significant challenges 29 

to our understanding of the aerosol cooling effect, estimated at -0.86 ± 0.56 W/m2, and the 30 

effective anthropogenic radiative forcing of Earth’s climate (estimated at -1.25 ± 0.85 W/m2) 31 

(IPCC, 2023). The complexity of aerosol sources, properties, and processing continues to hinder 32 

precise quantification of these forcing estimates. 33 

A critical source of aerosols is wildfire smoke, which can influence radiative budgets up 34 

to a year depending on the transport and evolution of plumes (D’Angelo et al., 2022; Guimond et 35 

al., 2023; Yu et al., 2019). Under extreme burning conditions, wildfires can generate 36 

pyrocumulonimbus clouds, lofting large concentrations of aerosol into the upper troposphere and 37 

lower stratosphere (Leach and Gibson, 2021; Rodriguez et al., 2020; Yu et al., 2019). These 38 

smoke particles can exert prolonged effects on climate through chemical and physical processes 39 

such as condensation and coagulation (Fromm et al., 2022; Gorkowski et al., 2024; Reisner et al., 40 

2023). The fractal nature of soot particles further complicates our understanding of their indirect 41 

effects on cloud formation and radiative properties (Cotton and Anthes, 2010; Das et al., 2021; 42 

June et al., 2022). For instance, during the Amazon biomass burning season, Koren et. al. (2004) 43 

reported a dramatic reduction in cumulus cloud cover—from 38% under cleaner conditions to 44 

0% during heavy smoke. However, Kaufman & Koren et. al. (2006) observed an increased cloud 45 
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cover in regions with higher column aerosol concentrations. These discrepancies underscore the 46 

complexity of aerosol-cloud interactions, which depend on various factors such as aerosol 47 

composition, hygroscopicity, size distribution, supersaturation, and the prevailing atmospheric 48 

stability (Feingold et al., 2001). As wildfires increase in frequency and intensity due to climate 49 

change (Cunningham et al., 2024), refining our knowledge of how these aerosols evolve and 50 

ultimately affect cloud development is crucial for improving climate models and future 51 

predictions.  52 

Beyond large-scale aerosol effects, aging aerosols undergo microphysical transformations 53 

that can drastically alter their role in cloud processes. Condensation of organics and the mixing 54 

of sulfate with black carbon (BC) have both been shown to influence cloud dynamics (Ching et 55 

al., 2018). Recent work indicates that larger BC agglomerates may form preferentially at cloud 56 

tops, while the thickly-coated BC particles are most likely to be scavenged by cloud droplets 57 

(Taylor et al., 2014; Zanatta et al., 2023). Modeling these highly dynamic processes remains 58 

challenging, as it requires accurately representing particle growth, mixing states, and cloud 59 

interactions (Ching et al., 2016; Riemer et al., 2009; Yang et al., 2023; Yao et al., 2021; Zaveri et 60 

al., 2010). 61 

Aerosol chambers are used to understand these chemical and microphysical 62 

transformation in controlled conditions (Becker, 2006; Doussin et al., 2023). Many were built for 63 

gas-phase and secondary organic aerosol experiments and feature large volumes with Teflon 64 

walls to reduce wall losses (Hynes et al., 2005; Shao et al., 2022b). Others are optimized for 65 

specific aerosol processes, like bioaerosols (Massabo, 2018).  Cloud chambers are a class of 66 

chambers for investigating cloud microphysical mechanisms under well-controlled conditions 67 

(Chang et al., 2016; Khlystou et al., 1996; Niedermeier et al., 2020; Shao et al., 2022). Existing 68 
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cloud chambers are their own institutional facility in the case of CLOUD at CERN (The Cloud 69 

Collaboration, 2001), AIDA Chamber EUROCHAMP (Wagner et al., 2006), and PI-chamber at 70 

MTU (Chang et al., 2016). These types of facilities are critical for advancing science but are 71 

often oversubscribed and require significant support to operate.   72 

As outlined in many of the papers cited in the previous paragraph, all chambers however, 73 

come with artifacts—most notably, the loss of particles to chamber walls through gravity, 74 

diffusion, convection, and electrostatic forces (Corner and Pendlebury, 1951; Fotou and Pratsinis, 75 

1993; Mahfouz and Donahue, 2020a; Wang et al., 2018). Previous studies have highlighted the 76 

importance of accounting for both size-dependent and time-dependent wall losses (Crump et al., 77 

1982; Crump and Seinfeld, 1981).  78 

In this paper, we introduce the development of a Los Alamos National Laboratory 79 

(LANL) aerosol processing chamber, which we use to investigate coagulation processes under 80 

simulated conditions. We present data from experiments where aerosols were injected in a dry 81 

environment to quantify losses to chamber walls, dilution, and coagulation effects. Different 82 

types of aerosols were examined to validate known aerosol behaviors and characterize 83 

coagulation. We further demonstrate the use of a python based aerosol package, Particula 84 

(Particula, 2025), to model coagulation and wall-loss rates. Through this study, we aim to 85 

characterize the behavior of aerosol in the dry chamber (influence of particle composition and 86 

shape) and determine conditions suitable for future studies at elevated humidity including 87 

supersaturation.  In addition, we perform an uncertainty analysis on the coagulation correction 88 

retrieval to determine the range of aerosol concentrations that reduce uncertainty in coagulation 89 

corrections. 90 

 91 
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2 Chamber Development and Methods 92 

2.1 Setup of chamber and experiments 93 

The LANL chamber is in the first phase of development with control of both temperature 94 

and humidity to be added in future work. The 906 L (0.906 m3, internal volume) chamber is 95 

made of 6 stainless steel walls which are inert and reduce the effects of electrostatic charge. The 96 

rectangular body and dimensions are shown in Figure 1.  The chamber has an internal surface 97 

area of 6 m2 with surface-to-volume ratio of 6.6 m−1. The chamber’s joints are sealed with a fast 98 

cure marine adhesive caulk (Sika, Sikaflex 291) and the outside junctions where the walls 99 

intersect are sealed using ZIP SystemTM Strech Tape (Huber Engineered Woods). Portholes were 100 

made for the top and bottom plates where wires and probes be placed for measurements in the 101 

chamber and for aerosols to flow in and out of the chamber. Unused portholes are sealed with 102 

Swagelok caps and those used for probes and wires are sealed with a rubber gasket or a Teflon 103 

ferrule. A leak test was performed by pressurizing the chamber by feeding clean air in and 104 

sealing every outlet then seal any leak detected. The chamber is designed to operate at ambient 105 

pressure.  106 

Copper tubing lines (3/8”) are used to supply aerosols to the chamber and deliver outflow 107 

sampling to instrumentation. Zero-air generators (T701 Teledyne Inc., USA) provide clean dry 108 

air to push aerosol to the chamber and additional dilution air using Teflon tubing (1/4”).  Push 109 

flow enters at the bottom of the chamber, creating an upwards direction of flow. Aerosols are 110 

sampled from an outlet at the top of the chamber.  A dilution flow is connected to the outlet line 111 

(88.9 mm from the outlet) to control aerosol concentrations and prevent overwhelming the 112 

sampling instruments. A minimum sampling flow rate of 1.5 L/min was needed to supply the 113 

instruments and we used a 1:5 ratio of push to dilution for the experiments presented here. This 114 
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infers a residence timescale within the chamber of 604 minutes (10 hours) and half-life of 418 115 

minutes (6.9 hours). The flow rates are controlled with mass flow controllers (MFC; Alicat). 116 

Prior to each experiment the chamber was flushed by pushing clean air with a flow of ~10 L/min 117 

for at least 3 hours to reach background (~0-10 cm-3). 118 

 119 

 120 
Figure 1. Schematic of LANL’s 906 L chamber. The chamber has external dimensions of 121 
1.66 m in height, 0.739 m in width, and 0.744 m in depth. The design includes 56 portholes 122 
with diameters ranging from 11.11 mm to 20.24 mm, shown across the top and mirrored on 123 
the bottom. 124 
 125 
2.2 Aerosol Generation and Instrumentation 126 

Two aqueous solutions and controlled combustion of dried biomaterial were used as the 127 

sources of aerosols. Sodium chloride (NaCl; Sigma-Aldrich) was chosen because it is a well-128 

understood compound in aerosol studies. Sucrose (Sigma-Aldrich) was used to act as a 129 

secondary organic aerosol surrogate, and it is also a well-studied aerosol. Each were dissolved in 130 

deionized water (Milli-Q, 18.2 MΩ) in separate solutions and were put on an Atomizer Aerosol 131 
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Generator (3079, TSI Inc., USA). The particles coming out of the atomizer passed through a 132 

silica gel diffusion drier at a generation flow rate of ~2.4 L/min.  The duration of aerosol 133 

injection varied based on the desired number concentration. To generate smoke, 0.1 – 0.5 g 134 

samples of dried biomaterial Poa pratensis (Kentucky bluegrass) were weighed out, placed on a 135 

quartz boat and into a quartz-tube furnace (Carbolite Gero, TS1-1200, Verder Scientific, UK) 136 

that was set to 1000°C for a flaming combustion condition. This identical setup was used in 137 

Benedict et al. (2024) which showed that at 1000°C burn the black carbon mass fraction 138 

averaged 17% for biomass fuels with a single scattering albedo of 0.35 (at 523 nm). We expect a 139 

similar smoke profile for the experiments presented here thus the smoke injected is a 140 

combination of soot, inorganic, and organic mass along with volatile vapors. Smoke particles 141 

were pushed to the chamber by zero-air at 4 L/min for 5 minutes, a time window used to ensure 142 

complete combustion of the sample.  143 

Aerosol size and number distributions downstream of the chamber were measured with a 144 

scanning mobility particle sizer (SMPS) that consists of a Differential Mobility Analyzer (3081 145 

DMA, TSI Inc., USA) and a Condensation Particle Counter (3752, TSI Inc., USA). Measurement 146 

settings were set to continuously scan for 3 minutes/scan; 160 seconds recording with 20 seconds 147 

of purging, measuring sizes 15.7 – 764.5 nm. Our experimental matrix consisted of 5 repeats of 148 

NaCl, 4 repeats of sucrose and 6 smoke experiments with varying biomaterial mass, they are 149 

outlined in Supplement Information Table 1. In all experiments the first 6 hours of data were 150 

used to analyze results.  151 
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152 
Figure 2. Schematic of experimental setup showing how aerosols are injected and sampled 153 
from the chamber. 154 
 155 

3 Theory on Chamber Processes 156 

The processing of data from the LANL chamber experiments involved two key steps to analyze 157 

the underlying aerosol processes of coagulation, wall loss, and dilution (chamber push line). 158 

First, we determined the observed size-dependent particle rates: 𝑑𝑑𝑑𝑑(𝐷𝐷𝑝𝑝)/𝑑𝑑𝑑𝑑. The measured size 159 

distributions were fitted to a two-mode lognormal distribution. The lognormal distribution 160 

parameters were optimized using the Python library SciPy's optimization routines, with the mean 161 

squared error as the cost function. We used multiple minimization methods and selected the best 162 

fit for each timestep based on the highest Pearson R-squared value with a minimum threshold of 163 

0.85. The methods included Nelder-Mead (Simplex algorithm), Powell’s method (Powell’s 164 

conjugate direction method), L-BFGS-B (Limited-memory Broyden-Fletcher-Goldfarb-Shanno 165 

with Box constraints), TNC (Truncated Newton Conjugate-Gradient method), SLSQP 166 

(Sequential Least Squares Programming), and trust-constr (Trust Region Constrained method).  167 
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We took this approach since the best fit varied with concentration and shape of the distribution.  168 

L-BFGS-B was typically the best for a lognormal distribution, but as the mode became broader 169 

(lower concentrations) then TNC, SLSQP or trust-constr would have a higher Pearson R-squared 170 

value. The transition of when this would occur was not an obvious concentration threshold. 171 

Therefore, we used all optimization routines for each lognormal distribution and selected the best 172 

fit based on the highest Pearson R-squared value.   173 

Second, we fitted these observed rates to theoretical rates calculated from Particula 174 

(Particula, 2025), a python-based aerosol microphysics package. The first step was to generate a 175 

new time series at a higher size resolution (log-spaced 250 bins), starting at 20 nm and 176 

extrapolating the 746 nm SMPS upper limit to 4 µm. The size-dependent particle rate was then 177 

computed as the linear slope of 21 point moving window (10 before and 10 after). The time 178 

window (60 min) was chosen through iteration, as shorter than 20 min had too much noise to 179 

have self-consistent results and longer than 90 min had increasing fit residuals. Our 60 min 180 

window results in a smoothed time evolution, which Mahfouz and Donahue (2020a) showed to 181 

be effective in coagulation analysis. Our moving window approach is different from smog 182 

chamber wall-loss experiments where the full 5 hours of the wall-loss experiment would be used 183 

to fit an apparent size-dependent, time-invariant wall-loss correction (Wang et al., 2018). 184 

The resulting size-dependent rate was subsequently used to fit the underlying aerosol 185 

processes in Equation 1 where 𝑁𝑁�𝐷𝐷𝑝𝑝� represents the number concentration of particles of 186 

diameter, 𝐷𝐷𝑝𝑝,  𝐾𝐾12 is the coagulation kernel, 𝑊𝑊𝐶𝐶
−1 is the coagulation correction factor, 𝑁𝑁1  and  187 

𝑁𝑁2 are the concentrations of particles in the bins for 𝐾𝐾12, 𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the chamber flow coefficient, 188 

and 𝛽𝛽 is the wall-loss rate. 189 
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𝑑𝑑𝑑𝑑�𝐷𝐷𝑝𝑝�
𝑑𝑑𝑑𝑑

= 𝑊𝑊𝐶𝐶
−1 𝐾𝐾12 𝑁𝑁1𝑁𝑁2 − 𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑁𝑁(𝐷𝐷𝐷𝐷) −  𝛽𝛽𝛽𝛽(𝐷𝐷𝐷𝐷)                    Equation 1 190 

The coagulation term is governed by a Brownian Coagulation kernel, 𝐾𝐾12, that captures 191 

the collision frequency between bin number concentrations (𝑁𝑁1 and 𝑁𝑁2). This kernel is described 192 

in Seinfeld and Pandis (Seinfeld and Pandis, 2016; Section 13 - Fuchs form with alpha efficiency 193 

13.56), and calculated with Particula. Since 𝐾𝐾12 does not account for other interactions (e.g. 194 

Coulomb interactions) that may lead to coagulation, 𝑊𝑊𝐶𝐶
−1, the coagulation correction factor, was 195 

determined. In our analysis, 𝑊𝑊𝐶𝐶
−1 is a free fit parameter to allow for un-modeled behaviors to be 196 

represented. The chamber flow coefficient, 𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑄𝑄/𝑉𝑉, characterizes how the clean air flow 197 

rate (𝑄𝑄) is used to push sample flow out of the chamber volume (𝑉𝑉). Finally, the wall-loss term, 198 

βN(Dp), accounts for the size-dependent removal of particles to the chamber walls. 199 

𝛽𝛽 =  
1

𝐿𝐿𝐿𝐿𝐿𝐿
�

4𝐻𝐻 (𝐿𝐿 + 𝑊𝑊) �𝑘𝑘𝑒𝑒𝐷𝐷
𝜋𝜋

+ 𝑣𝑣𝑝𝑝 𝐿𝐿𝐿𝐿 × 𝑐𝑐𝑐𝑐𝑐𝑐ℎ �
𝜋𝜋𝑣𝑣𝑝𝑝

4�𝑘𝑘𝑒𝑒𝐷𝐷
��                  Equation 2 200 

Equation 2 shows the wall-loss rate (𝛽𝛽) varies with particle size, derived from a rectangular-201 

chamber formulation adapted from Crump and Seinfeld (1981) and Crump (1982). It 202 

incorporates both diffusion-driven transport and gravitational settling. In this formulation, 𝐿𝐿, 𝑊𝑊, 203 

and 𝐻𝐻 denote the chamber’s length, width, and height, respectively; 𝑘𝑘𝑒𝑒 is the eddy wall 204 

diffusivity (a free fit parameter); 𝐷𝐷 is the particle diffusion coefficient; and 𝑣𝑣𝑝𝑝 is the particle 205 

gravitational settling velocity. This physics-based wall-loss coefficient is different from Wang et 206 

al.’s (2018) method of apparent size-dependent wall-loss fit. In the apparent size-dependent wall-207 

loss fit the rate equation is a two-term first-order rate equation, where there are no physical terms 208 

for the size of the chamber or particle settling velocity, in contrast to what we use in Equation 2.  209 

The apparent size-dependent wall-loss approach is common for smog chamber experiments 210 
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(Doussin et al., 2023; Keywood et al., 2004; Loza et al., 2012; Nah et al., 2017; Ng et al., 2007) 211 

but would not work here since one of our goals is to specifically determine coagulation. In our 212 

case, we need a physics-based wall-loss rate equation, so we can determine if there are any 213 

coagulation corrections that could be applied. If we had used the apparent size-dependent wall-214 

loss fit, then there would be little to no residuals for a coagulation correction analysis. 215 

3.1 Volume Conservation Analysis 216 

If the corrected aerosol volumes remain consistent, within the noise measurement, we can 217 

infer that the processes described in Equation 1 accurately represent chamber behavior. 218 

Measured volume concentrations in our experiments were corrected by accounting for volume 219 

losses due to both wall loss and chamber flow. We calculated the cumulative lost volume and 220 

added it back to the measured values at each time point. In smog chamber experiments involving 221 

secondary organic aerosol formation, this volume conservation analysis provides a constraint on 222 

organic aerosol yields. Supplemental Figure S8 shows an example of our volume conservation 223 

plot from a smoke injection experiment. From this analysis, we conclude that volume is 224 

conserved and that no measurable condensation of biomass burning organic vapors occurs under 225 

our experimental conditions. 226 

4 Results and Discussion 227 

4.1 Example Analysis 228 

We show, in Figure 3, the L-BFGS-B optimization routine that was used on Equation 1 229 

for experimental data from the smoke aerosol generated by combusting Kentucky bluegrass. 230 

Figure 3a shows the lognormal-fitted size distribution for the entire experiment, where particle 231 

growth is evident as the mode diameter shifts to larger sizes over the six-hour period. Figure 3b 232 
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breaks down the observed rates after 1.5 hours into three calculated, time-varying, size-233 

dependent components: coagulation, dilution, and wall-loss. At that time, coagulation dominates, 234 

reducing particles around 100 nm (~0.16 cm⁻³ s⁻¹) and forming larger particles around 200 nm. 235 

From these fits we are specifically interested in the kernel correction factor to better understand 236 

the importance of agglomeration of freshly emitted BC fractal-like particles and how it changes 237 

in time. 238 

 239 

240 
Figure 3. a) Time series of the lognormal-fitted size distribution and concentration for a 241 
smoke experiment. The dashed line marks a time slice at approximately 1.5 hours. b) At 242 
this time slice, particle loss rates are calculated, revealing both loss and gain of particles 243 
due to coagulation. (The time series of rates for individual aerosol species are provided in 244 
the Supplement Figures S2-S4) In this panel, the dashed gray line represents the measured 245 
rate with uncertainty (shaded gray), while the blue, yellow, and pink lines correspond to 246 
the coagulation process, dilution, and wall loss, respectively. 247 
 248 

4.2 Wall-loss Comparison 249 

In Figure 4a we show the average wall-loss rates for our three different aerosol types 250 

based on 4–8 experiments each. Only results with valid optimizations and an R-squared above 251 

0.85 were included. In the sucrose experiments, this filter led to data gaps during the later time 252 

periods (2–6 hours) for inclusion in the analysis. To better compare with smoke, we conducted 253 



13 

 

additional NaCl experiments to have a more complete time series for one of the comparisons. 254 

The wall-loss rates during the first hour (< 1 hour) follow a similar trend apart from NaCl 255 

starting at a low wall-loss rate then rising close to a rate of 2 s-1. These initial wall-loss rates are 256 

consistent with the general observation in chamber studies that early mixing processes and 257 

injection conditions can dominate particle loss. Typical ranges reported in smog chamber 258 

experiments span from < 1 s⁻¹ to tens of s⁻¹ depending on injection flow and the use of a fan 259 

(Zong et al., 2023), particle species (Li et al., 2017; Wang et al., 2011), and chamber geometry 260 

(Wang et al., 2011). Over longer times (>1 hours), all three aerosol types converge toward similar 261 

wall-loss rates (0.1 s-1), in agreement with the literature indicating that chamber turbulence 262 

diminishes over time as mixing subsides. 263 

Figure 4b shows the statistical distribution of the wall-loss rates for each aerosol type 264 

during the first hour and the subsequent five hours. NaCl and sucrose do not exhibit a large 265 

variance in diffusivity for the first hour compared to smoke which is 1.12 ± 1.55 s-1. NaCl, 266 

sucrose, and smoke show mean wall-loss rates of 0.562 ± 0.975 s⁻¹, 0.233 ± 0.286 s⁻¹, and 0.201 267 

± 0.267 s⁻¹, respectively. This convergence to relatively similar values is consistent with past 268 

observations in smog chamber experiments, where turbulent mixing dissipates, and the system 269 

approaches a quasi-steady loss rate such as the CMU Teflon chamber (Mahfouz and Donahue, 270 

2020b; Wang et al., 2018), the CESAM chamber (Wang et al., 2011), and the AIR chamber 271 

(Zong et al., 2023). However, NaCl and sucrose experiments display greater variability than 272 

smoke, likely due to residual chamber turbulence stemming from their distinct generation 273 

methods (aerosolization vs. combustion). 274 
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 275 

Figure 4. a) Average time series of the calculated wall eddy diffusivity for NaCl (blue), 276 
sucrose (green), and smoke (red). Only fits with valid optimizations and r-squared greater 277 
than 0.85 are included.  b) Violin plots showing the mean (..), median (white bar) and 278 
overall distribution range of wall eddy diffusivity values for each aerosol type in two-time 279 
bins (<1 hour and 1–6 hours). The width of each colored region represents the relative 280 
density of data points at that value.  281 
 282 

4.3 Coagulation Corrections 283 

To investigate the influence of interparticle forces on aerosol coagulation, we fitted a 284 

coagulation correction factor that would account for van der Waals forces, shape, and/or 285 

Coulomb interactions in the coagulation rate. When WC
–1 = 1, collisions are effectively “elastic,” 286 

with no net enhancement or inhibition. In contrast, WC
–1 > 1 indicates that coagulation is 287 

enhanced (e.g. due to attractive forces, favorable particle morphology, or turbulence), whereas 288 

WC
–1 < 1 implies reduced coagulation (e.g. electrostatic repulsion or other inhibiting effects).  289 

In figure 5a., the smoke experiments show an initial period where WC
–1 > 1, which may 290 

be explained by the fractal nature of soot aggregates that can promote sticking or chain formation 291 

upon collision. By the third hour in all experiments, accounting for the variation the average 292 

coagulation corrections extend above and below 1. During this later phase, particle 293 

concentrations (< 104 cm⁻³) no longer sustain significant coagulation losses, consistent with prior 294 
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studies showing that coagulation becomes negligible under lower concentration conditions 295 

(Hussein et al., 2009; Mahfouz and Donahue, 2020b; Yu et al., 2022). 296 

Figure 5b shows the distribution of coagulation corrections for these time periods. All 297 

three aerosols show a mean WC
–1 value around 1 (0.969 ± 0.524 for NaCl, 1.16 ± 1.38 for 298 

sucrose, and 1.23 ± 0.312 for smoke), suggesting a slight repulsion or negligible net sticking 299 

among particles. However, the standard deviations do encompass WC
–1 = 1. Smoke exhibits a 300 

slightly higher coagulation corrections initially followed by reduced values (0.941 ± 0.307) in 301 

later periods. These observations align with the notion that both particle morphology (e.g., fractal 302 

soot structures) and injection-induced turbulence can transiently enhance coagulation, but the 303 

effect diminishes as particles coagulate. 304 

 305 

Figure 5. a) Average time series of the calculated coagulation correction for NaCl (blue), 306 
sucrose (green), and smoke (red). Only fits with valid optimizations and r-squared greater 307 
than 0.85 are included. b) Violin plots showing the mean (..), median (white bar) and range 308 
of the calculated coagulation correction for each aerosol type averaged across replicate 309 
experiments for the indicated time bins (similar to Figure 4b).  310 



16 

 

4.4 Monte Carlo Error Analysis 311 

To understand the large standard deviations that emerged from our fits of wall loss and 312 

coagulation correction, we performed a Monte Carlo error analysis. We began by constructing 313 

three number-size distributions, each formed by the sum of two log-normal modes with equal 314 

particle numbers. In the first case both modes were centered at 100 nm but differed in geometric 315 

standard deviation (GSD), i.e., the distribution is summation of a 100 nm mode with a GSD of 316 

1.4 plus a 100 nm mode with a GSD of 1.8. The resulting distribution reflects the broad 317 

distributions we observe in our measurements. The second case repeated this structure at 200 nm. 318 

The third case was a hypothetical experiment that combined narrow 100 nm and 300 nm modes 319 

(both GSD = 1.2) to test the response to a bimodal aerosol distribution. 320 

For every distribution we calculated Equation 1 assuming a wall-eddy diffusivity of 0.1 321 

s⁻¹ and a coagulation correction factor (WC⁻¹) of 1.0. This is a null case in which no additional 322 

correction to the Brownian coagulation kernel is required. We then superimposed random noise 323 

of ±20% on both the size spectrum and the rate. This noise mirrors uncertainties reported in 324 

instrument intercomparisons of ±10 % error between 20 nm and 200 nm and up to ±30 % above 325 

200 nm (Wiedensohler et al., 2012). Thus, ±20 % is a middle point across the range we 326 

measured. Applying the same noise to the rate represents the best-case scenario for our analysis 327 

pipeline. 328 

With these noisy data sets created, we refit the wall-eddy diffusivity and coagulation 329 

correction 80 times at each total number concentration shown in Figure 6. From the ensemble of 330 

fits we calculated the percent error in each retrieved parameter and averaged the results (Figure 331 

6). The results in Figure 6 reveal a clear trend percent error. When total number concentration 332 

exceeds roughly 10⁴ cm⁻³, the uncertainty in the coagulation correction begins to fall. This is 333 
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consistent with the fact that Brownian coagulation scales with particle number squared and can 334 

be distinguished from measurement noise only at higher concentrations. Conversely, the error in 335 

the wall-eddy diffusivity grows with concentration. Once coagulation dominates the particle loss 336 

budget, the data contains too little information to constrain the comparatively low wall loss sink, 337 

increasing the relative uncertainty. In other words, when coagulation governs the system 338 

dynamics, the wall-loss term becomes a minor, poorly resolved correction.  339 

The three analyzed distributions exhibit similar percent errors in the coagulation 340 

correction. The slightly lower error for the 100 nm mode compared to the 200 nm mode is 341 

consistent with the behavior of the Brownian coagulation kernel, where smaller particles have 342 

higher coagulation coefficients and therefore undergo more frequent collisions. This leads to a 343 

greater rate of change in the distribution for a given number concentration, resulting in better 344 

signal-to-noise. The hypothetical bimodal distribution generally shows the lowest uncertainty 345 

among the three cases (in our experimental range), although the improvement is modest. 346 

Annotations in Figure 6 mark the concentration ranges for the three chamber campaigns, 347 

sucrose, NaCl, and smoke aerosols. They also indicate the measured coefficient of variation in 348 

the mean coagulation correction for each case. The agreement between these annotated 349 

uncertainties and the Monte Carlo error analysis confirms that the observed variability is 350 

consistent with the measurement noise. 351 
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 352 

Figure 6: Percent error in fitting of coagulation correction (solid line) and wall eddy 353 
diffusivity (dashed line) as a function of number concentration. Lines represent mean 354 
errors for size distributions with different modal diameters: 100 nm (gray), 200 nm (black), 355 
and a bimodal 100 & 300 nm distribution (red). Annotated markers indicate representative 356 
number concentration ranges for Sucrose, NaCl, and Smoke experiments, along with the 357 
coefficient of variation (standard deviation divided by the mean) in the coagulation 358 
correction, reflecting relative uncertainty rather than bias. 359 

5 Discussion 360 

Our experiments in this new chamber focused on dry conditions and a set of aerosols to 361 

quantify how particles evolve in the absence of humidity (<10% relative humidity). Despite the 362 

relatively simple setup—no temperature or humidity control—two key insights will be used in 363 

future humidified experiments. First, the wall-loss rates converged to similar values across all 364 

aerosol types after the first hour, indicating that early differences largely arose from injection 365 

flow conditions and subsequent turbulence. Over time, these chamber conditions stabilized, 366 

reinforcing the well-documented notion that particle wall losses approach a quasi-steady state as 367 

mixing subsides. 368 

A second important finding is that coagulation within the chamber is most pronounced 369 

during the initial phase of each experiment. Though this is more uncertain due to larger relative 370 

errors. Smoke showed signs of coagulation enhancement, potentially attributable to its fractal 371 
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structure. Once total number concentrations fell below a few thousand particles per cubic 372 

centimeter, coagulation slowed considerably, consistent with the literature. Collectively, these 373 

observations highlight the dynamic interplay between wall loss, particle morphology, and 374 

injection protocols in shaping the early stages of aerosol evolution in chamber studies. 375 

Our results also shed light on the influence of particle composition and shape. While 376 

aerosols like NaCl and sucrose exhibited expected behavior—average collision enhancements 377 

near unity—smoke displayed additional complexity. Early-time coagulation factors for smoke 378 

were moderately elevated, suggesting that soot-fractal aggregates within smoke can have an 379 

increased collisional radius. Over longer times, the coagulation rates for all three aerosols 380 

converged to near unity or below, indicating negligible net enhancement under steady-state 381 

conditions. These observations set the stage for more detailed investigations of fractal-like 382 

particles under high humidity environments (>90% relative humidity). 383 

Although these initial experiments focused on low humidities, the chamber design allows 384 

for temperature and humidity control to be integrated in future work. The Monte Carlo error 385 

analysis points to using number concentrations above 106 cm-3 for reducing the percent error in 386 

future coagulation correction experiments. Extending to more complex atmospherically relevant 387 

aerosol mixtures—such as smoke mixed with organic vapors or inorganic salts—will further 388 

elucidate aerosol coagulation interactions. Additionally, the use of more advanced aerosol 389 

instrumentation will improve the characterization of particle morphologies and mixing states that 390 

evolve during cloud processing. 391 

 392 
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6 Conclusion 393 

The custom-built 906 L stainless-steel chamber provided reproducible measurements of 394 

particle size distributions under dry conditions, confirming its suitability for controlled aerosol 395 

research. Although initial turbulence drove high wall-loss rates, these converged to stable values 396 

across NaCl, sucrose, and smoke. This underscores that injection protocols and mixing strongly 397 

influence early aerosol behavior. The chamber’s intermediate size and flexible design for future 398 

temperature and humidity controls make it a useful platform to investigate aerosol-cloud 399 

interactions more comprehensively. Integrating additional measurements of particle shape, 400 

chemical composition, and mixing state will further clarify the complexities of aerosol aging and 401 

cloud formation. Building on these dry experiments, upcoming work at higher humidity will 402 

reveal how aerosol coagulation and phase changes affect cloud processes such as droplet 403 

activation and scavenging. By disentangling coagulation, dilution, and wall-loss mechanisms, 404 

this chamber ultimately enables rigorous study of aerosol transformations, particularly for 405 

smoke, in cloud-relevant environments, helping advance both scientific understanding and 406 

climate prediction. 407 
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