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Abstract. Flash droughts, which intensify on subseasonal-to-seasonal (S2S) timescales (2 weeks–2 months), cause severe and

sudden impacts on agriculture, ecosystems and economies. To evaluate and improve S2S forecasts of flash drought, we need

to understand the land-atmosphere coupling processes that are critical to flash drought development, specifically the feedbacks

between soil moisture and evapotranspiration. Previous investigations of flash droughts have either focused on specific regions

or relied on global reanalysis datasets, which have known shortcomings in their representation of land-atmosphere interactions.5

Here, we use a variety of global long-term products of daily satellite observations to explore the evolution of the surface energy

balance during flash droughts over the period 2000–2020. We investigate the differences between flash droughts with stronger

and weaker land-atmosphere coupling, and assess feedbacks from the land surface to near-surface air temperatures during the

events. Events with stronger evaporative stress are associated with perturbations in the surface energy budget for 4 months

both before and after drought onset, indicating the importance of precursor land conditions for S2S predictability. For three10

semi-arid regions in Africa, we show that increased sensible heat flux feeds back to increase peak air temperatures during flash

droughts. We also use Vegetation Optical Depth (VOD), a proxy for vegetation water content, to demonstrate that lower VOD

1–2 months before flash drought onset is linked to increased air temperatures during the peak of the drought in some regions.

For example, in West African summer, 12% of flash droughts with precursor VOD anomalies in the highest quartile experience

a peak air temperature anomaly > 1.5σ, whereas this increases to 27% for events with precursor VOD anomalies in the lowest15

quartile. This shows that globally-observable land surface conditions could provide useful information to S2S forecasts and

motivates further assessment of land-atmosphere interactions in these forecasting models using observational datasets at the

global scale.

1 Introduction

Flash droughts are events in which drought conditions develop rapidly, on the subseasonal-to-seasonal (S2S: 2 weeks–220

months) timescale. These events have severe impacts on vegetation (O and Park, 2024), including reductions in crop yields

(Otkin et al., 2016; Nguyen et al., 2019; Hunt et al., 2021). Flash droughts result in increased wildfire risk (Bondur, 2011; Hoell
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et al., 2020) and economic losses (Liu et al., 2024). They can also be coupled to heatwaves via land-atmosphere interactions

(Christian et al., 2020; Fu and Wang, 2023). Flash droughts are increasing in frequency across many regions (Christian et al.,

2021; Neelam and Hain, 2024) and are predicted to increase further under future climate scenarios (Sreeparvathy and Srinivas,25

2022; Christian et al., 2023; Black, 2024).

Improving the prediction of flash droughts has therefore been highlighted as a key challenge for S2S forecasting (Pendergrass

et al., 2020). Current S2S forecasting models under-predict the occurrence of flash droughts, with highly variable skill between

models, and thus require further development before they can form the basis for useful early warning systems (Deangelis

et al., 2020; Lesinger et al., 2024). For example, Ma and Yuan (2023) found that the models in the S2S Prediction Project30

(Vitart et al., 2017) from both the European Centre for Medium-Range Weather Forecasts (ECMWF) and National Centers

for Environmental Prediction (NCEP) predicted fewer than 30% of flash droughts across China at a 1-week lead time. To

effectively evaluate and improve these models, it is essential to understand the physical processes involved in flash drought

development, as a precursor to determining how well these processes are represented in the models.

It is well established that land-atmosphere coupling processes are key to the evolution of flash droughts through soil moisture-35

evapotranspiration feedbacks (Qing et al., 2022; Wang and Yuan, 2022; Mahto and Mishra, 2023; Fu and Wang, 2023). If

a precipitation deficit occurs concurrently with atmospheric conditions such that evaporative demand is high (e.g. high air

temperature, low vapour pressure deficit), then evaporation can dry out the soil to the point where evaporation becomes limited

(Otkin et al., 2018). This results in an increased sensible heat flux, which heats the near-surface air and may accelerate the

drying, resulting in rapid drought development. This feedback to the atmosphere can also cause the drought to propagate40

downwind (Christian et al., 2020).

However, the processes involved in this land-atmosphere coupling are difficult to observe. Evaporation, for example, cannot

be observed directly at large scales (Wang and Dickinson, 2012), which inhibits our understanding of how soil moisture-

evaporation feedbacks influence drought intensification and propagation (Miralles et al., 2019). Such issues have prevented an

observational analysis of flash drought land-atmosphere interactions at the global scale. Some studies have investigated flash45

drought land-atmosphere interactions by focusing on sites or regions where particular in situ observations (e.g. evapotranspira-

tion, air temperature or vapour pressure) are available (Mo and Lettenmaier, 2015, 2016; Nguyen et al., 2019; Noguera et al.,

2020; Zhang and Yuan, 2020). However, this results in a lack of knowledge in regions where droughts have severe impacts but

ground observations are sparse, which includes large parts of the tropics.

Studies which take a global view of flash droughts typically rely heavily on reanalysis data (Christian et al., 2021; Lovino50

et al., 2024; Neelam and Hain, 2024). While reanalyses provide global gap-free data, the models used to produce these datasets

have known biases in their land-atmosphere interactions. For example, the models tend to overestimate the correlation between

soil moisture and latent heat flux (Dirmeyer et al., 2018). This overestimation is lessened by the assimilation of observations

into the reanalysis, but the number of available observations varies by region. The ECMWF reanalysis v5 (ERA5: Hersbach

et al., 2020) has been shown to overestimate the latent heat flux over land (Martens et al., 2020), with only a small improvement55

in this bias seen in ERA5-Land (Muñoz-Sabater et al., 2021). The land surface models used in the production of reanalyses

typically do not incorporate dynamic vegetation, meaning that coupled energy and water variability at the land surface cannot
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be adequately represented (van Oorschot et al., 2023). It should therefore not be assumed that investigations of flash drought

land-atmosphere interactions based solely upon reanalysis data are able to present a fully accurate picture of the surface energy

balance. Deficiencies in the representation of land-atmosphere interactions may then also impact the statistics of flash drought60

intensity and frequency obtained from the reanalysis, since the processes are so key to their development.

In this paper, we explore how global satellite-based land surface temperature (LST) observations can provide a new perspec-

tive on these land-atmosphere interactions by investigating the evolution of the surface sensible heat flux during flash droughts.

LST observations have been proven useful for monitoring flash droughts using the Evaporative Stress Index (ESI: Anderson

et al., 2011, 2012, 2013; Otkin et al., 2016, 2019), but this method requires geostationary observations in order to resolve the65

diurnal cycle of LST, so it is difficult to exploit globally. Here, we build on previous work showing that LST observations

can be used in conjunction with 2m air temperature (T2m) from reanalysis to capture changes in soil moisture regimes during

drydowns (Folwell et al., 2016; Gallego-Elvira et al., 2016), which is based on the concept that anomalies in the difference

LST-T2m, hereafter referred to as ∆T , are proportional to anomalies in the surface sensible heat flux. A more detailed ex-

planation of this approach, along with details of the procedure by which we identify flash droughts, is included in Section70

2.

We apply the ∆T method to the context of flash droughts to understand how sensible heat flux evolves during the events.

We also investigate the net surface radiation and latent heat flux, to assess whether different global observational products give

a consistent picture of the evolution of the surface energy budget during flash droughts. Using the magnitude of ∆T perturba-

tions as a metric for the strength of land-atmosphere feedbacks, we compare the development and impacts of flash droughts75

between events with weaker and stronger land-atmosphere coupling, with a particular focus on whether observable differences

in land surface precursor conditions between these events could provide useful information to S2S forecasting systems. We also

determine the locations in which vegetation and near-surface air temperature are most sensitive to the decline in soil moisture

during flash drought. Finally, we focus on three regions across Africa, where strong land-atmosphere coupling is known to

exist but its role in flash drought development has previously received little attention, to establish whether observations of land80

surface conditions prior to flash drought onset provide information on the likelihood of heat extremes during the events. Over-

all, this work aims to understand how satellite observations can be exploited to understand land-atmosphere coupling during

flash droughts globally, and to ascertain which variables contain useful information on the timescales relevant to S2S forecasts

whilst also being relatively convenient to observe.

2 Data and Methods85

2.1 Identification of flash droughts

To obtain a catalogue of flash drought events over which to study land-atmosphere interactions, we use the European Space

Agency Climate Change Initiative (ESA CCI) Soil Moisture combined active/passive microwave product v08.1 (Dorigo et al.,

2017; Gruber et al., 2019; Preimesberger et al., 2021), henceforth referred to as ESA CCI SM. The microwave measurements

used in ESA CCI SM measure surface soil moisture (SSM) at a depth of approximately 2–5 cm (Ulaby et al., 1982). While90
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many previous studies have chosen metrics based on root-zone soil moisture (RZSM: e.g. Ford and Labosier, 2017; Qing et al.,

2022; Wang and Yuan, 2022; Neelam and Hain, 2024; Lovino et al., 2024) or evaporative stress (Otkin et al., 2016; Nguyen

et al., 2019; Christian et al., 2020, 2021) to identify flash droughts, we choose SSM here because it can be observed from

satellites (other than beneath very dense vegetation). This enables a global observational analysis, rather than relying on in

situ measurements or introducing dependence on a model. Surface soil moisture is also directly relevant to the surface fluxes95

that mediate land-atmosphere interactions during flash droughts. ESA CCI SM has previously been shown to be suitable for

drought monitoring (Cammalleri et al., 2017; Nicolai-Shaw et al., 2017; Hirschi et al., 2025). The data is available at daily

resolution, allowing it to capture rapid drought development, with a horizontal resolution of 0.25°.

Flash droughts are identified from 2000–2020 based on daily standardised anomalies in ESA CCI SM, zSM, using a 7-

day rolling window for the calculation of the climatological mean and standard deviation. This standardisation enables a fair100

comparison between locations. Events are computed independently for each 0.25° pixel. A flash drought event is defined to

occur on day x when the mean of zSM in the 30 days preceding x is greater than −0.25 (i.e. conditions near to or wetter than

climatology), and the rolling 5-day mean of zSM drops below −1 (i.e. unusually dry conditions) in the 20 days following x.

The mean in the 30 preceding days must be based on at least 5 observations, and the rolling 5-day mean must be based on

at least 2 observations. The first day on which this rolling 5-day mean drops below the −1 threshold is labelled as the flash105

drought onset day. The flash drought event is defined as ongoing until the rolling 5-day mean of zSM exceeds −1 again. An

example of an event identified using this method is illustrated in Figure 1a. Flash droughts with onset dates in all months are

considered. Events which overlap in time are merged into one event with a single onset date. Any events that last for fewer than

15 days are then discarded, to exclude short-lived drydowns that would be unlikely to cause notable impacts. Events occurring

during low temperatures, when soil may freeze, are also removed. These are defined as events during which the running pentad110

mean of ERA5 daily maximum 2m air temperature drops below 5°C during the 30 days either side of onset. These thresholds

and timescales are similar to those previously used when identifying flash droughts using root zone soil moisture (Ford and

Labosier, 2017; Yuan et al., 2019).

Flash droughts are categorised according to land cover class based on the annual land cover maps produced by ESA CCI

and the Copernicus Climate Change Service (C3S, 2019a). Land cover maps are aggregated from 300m to 0.25° by taking the115

modal class.

Figure 1b shows the total number of flash droughts identified for each 0.25° pixel between 2000 and 2020. Notable hotspots

for flash droughts include south-eastern South America, India, the central USA and large parts of Europe. These are also

regions highlighted by the study of agricultural flash drought based on ERA5 root-zone soil moisture by Lovino et al. (2024).

The distribution of events is broadly consistent with flash drought prevalence as defined by evaporative stress from various120

reanalysis datasets (Christian et al., 2021), with the major exception that flash droughts in tropical forests have not been

detected here due to the absence of surface soil moisture observations.
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Figure 1. (a) Example of flash drought identification using ESA CCI Soil Moisture. The horizontal grey lines mark the standardised anomaly

thresholds of -0.25 and -1 respectively. The red shading indicates the days on which the pixel is considered to be in flash drought conditions.

(b) Total number of flash drought events identified over the period 2000—2020 for each 0.25° pixel. Grey areas indicate where no soil

moisture observations are available.

2.2 Land-atmosphere data composites

To explore the evolution of land-atmosphere coupling during flash droughts, we composite standardised anomalies of a se-

lection of land and near-surface atmospheric variables around the flash drought onset dates identified in Section 2.1. We use125

satellite observations whenever possible in order to minimise the effects of deficiencies in modelled land-atmosphere coupling

on our results, combining these observations with other datasets where necessary.

The surface energy balance is:

Rn =H +λE+G, (1)

where Rn is the net radiation at the surface, H is the surface sensible heat flux, and λE the surface latent heat flux, computed130

as the product of the latent heat of vaporization of water λ and evaporation E. In this study we neglect the ground heat flux G

due to the lack of a global gridded dataset.

We note that since all variables in our analysis are considered in terms of their standardised anomaly, which is not a linear

function, this analysis is not suitable for assessing the closure of the surface energy balance across datasets. However, the

standardisation is useful for comparing different locations and observations with different timings.135

As an observational estimate of Rn, we use the daily synoptic product from NASA’s Clouds and the Earth’s Radiant Energy

System (CERES: Rutan et al., 2015). Rn is computed as the sum of net downward shortwave radiation and net downward

longwave radiation. We compute latent heat flux using the daily evaporation dataset produced by the Global Land Evaporation

Amsterdam Model (GLEAM) v4.2a, which uses satellite observations (including assimilation of ESA CCI SM) to drive a

model of evaporation (Miralles et al., 2011; Martens et al., 2017; Miralles et al., 2025).140
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We follow the method used by Folwell et al. (2016) and Gallego-Elvira et al. (2016) to evaluate changes in the surface

sensible heat flux, by investigating the difference between Land Surface Temperature (LST or Ts) and 2m air temperature

(T2m or Ta). Surface sensible surface heat flux H is defined by

H =
ρacp
ra

(Ts −Ta) , (2)

where ρa is the density of moist air, cp the specific heat capacity of air, and ra the aerodynamic resistance between the land145

surface and the atmosphere. Since ρa and cp are approximately constant, if we assume that—for a given pixel—ra is constant

in time, then the standardised anomaly of H is proportional to the standardised anomaly of ∆T = Ts −Ta.

We therefore use standardised anomalies of the difference between LST and T2m, ∆T , as a proxy for surface sensible

heat flux anomalies. Two daily products from the ESA CCI Land Surface Temperature project are compared: the All-weather

MicroWave Land Surface Temperature (MW-LST) v2.33 (Jimenez and Prigent, 2023), which has a horizontal resolution of150

0.25°, and the L3C Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua product v4.00 at 0.01° (Ghent et al.,

2019). For both products we use observations from the ascending node only. For MODIS Aqua, this gives an overpass time

of approximately 1330 local solar time, which is ideal for investigating land-atmosphere interactions because the coupling is

strongest around this time. However, observations are only available for cloud-free conditions. Flash droughts are typically

associated with clear sky conditions, but cloud-free observations may be more limited for monitoring the period before onset155

begins. The microwave product provides LST even under cloudy conditions, but the observations are at 1800 local solar time,

which is not ideal for studying land-atmosphere interactions, particularly in the mid-latitudes in winter where the observation

may be after sunset.

T2m data at 0.25° resolution is taken from ERA5 reanalysis (Hersbach et al., 2020), and linearly interpolated to the overpass

times of the LST observations. To enable the computation of ∆T using the 0.01° MODIS Aqua LST, the ERA5 T2m data is160

also bilinearly interpolated to the location of each 0.01° pixel. Gallego-Elvira et al. (2016) showed that drydown surface energy

regimes were not sensitive to the choice of reanalysis T2m dataset used to compute ∆T .

For the MODIS Aqua LST, which is provided at 0.01° resolution, standardised anomalies of ∆T are computed at the

0.01° scale before aggregating to 0.25°, to prevent biases due to the location of cloud-free observations within a 0.25° pixel.

LST observations at 0.01° are only included if the satellite view angle is less than 55° and LST>5°C. When compositing the165

standardised anomalies, the anomaly is weighted by n, the number of valid 0.01° observations feeding into that 0.25° pixel.

Pixels are only retained for further analysis at times when at least 20% of the potential 625 observations at the 0.01° scale are

present, to ensure that the anomalies reasonably represent conditions at the 0.25° grid box scale.

We note that the assumption that the standardised anomaly of H is proportional to the standardised anomaly of ∆T relies

on the assumption that near-surface wind speed is constant (since the aerodynamic resistance ra is dependent on wind speed).170

Gallego-Elvira et al. (2016) found that this condition holds during surface drydowns. We tested ERA5 10m wind speed during

our flash drought composites and found that the wind speed was either near-constant or that the changes acted to further

enhance sensible heat flux anomalies, rather than counteracting the effect of changes in ∆T .
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In addition to the variables involved in the surface energy balance, we assess a selection of other relevant quantities. From

the products already mentioned above, we also use the CERES synoptic product surface downwelling shortwave radiation, and175

GLEAM 1m RZSM. Precipitation data is taken from Integrated Multi-satellitE Retrievals for GPM (IMERG) V06 (Huffman

et al., 2019). All of these products are used at daily resolution.

We investigate feedbacks from flash droughts to atmospheric temperatures using composites of ERA5 daily maximum

2m air temperature (T2m). Hourly ERA5 data is processed to compute the daily maximum between 1200–1800 local solar

time, since this is when land-atmosphere coupling is expected to be strongest. The Standardised Evaporative Stress Ratio180

(SESR, e.g. Christian et al., 2019) is also calculated, as the standardised anomaly of the ratio between the daily mean ERA5

evapotranspiration (ET) and potential evapotranspiration (PET).

As a measure of vegetation water stress during flash droughts, we use the combined CXKu-band Vegetation Optical Depth

(VOD) dataset from the Vegetation Optical Depth Climate Archive (VODCA) v2 (Zotta et al., 2024a). VOD is a proxy for

total vegetation water content, derived from passive microwave observations (Attema and Ulaby, 1978; Ulaby et al., 1982;185

Jones et al., 2011). This provides information on both the quantity of aboveground biomass and the relative water content of

this biomass (Konings et al., 2021). VODCA v2 data is available daily, based on night-time retrievals only. We additionally

investigate vegetation responses using Solar Induced Fluorescence (SIF), which provides information on photosynthetic activ-

ity (Guanter et al., 2007; Porcar-Castell et al., 2014). We use the 8-daily downscaled GOME-2 SIF observations provided by

Duveiller et al. (2020). Data obtained from two methods of SIF retrieval are available: we test both the retrieval method by190

Joiner et al. (2013), henceforth labelled SIF-JJ, and Köhler et al. (2015), labelled SIF-PK. SIF shows an approximate linear cor-

relation with Gross Primary Productivity (GPP: Frankenberg et al., 2011), and has been suggested to provide S2S predictability

for flash droughts (Mohammadi et al., 2022; Parazoo et al., 2024).

All datasets, other than the 0.01° MODIS LST data, are regridded using a land-area weighting to match the 0.25° resolution

of ESA CCI SM. Data are used over the full period 2000–2020, except where unavailable: CERES begins in March 2000,195

IMERG in June 2000, MODIS Aqua LST in July 2002, and GOME-2 SIF is available for 2007–2018 only. A summary of the

datasets is included in Table S1.

In addition to compositing over all flash droughts occurring in a given land cover class, we also compare the evolution of

events with differing strengths of land-atmosphere coupling. This is done by stratifying the events based on their maximum

value of ∆T during the drought. Events in which the land surface becomes more highly water-stressed will exhibit a larger200

standardised anomaly of ∆T at the peak of the drought, due to the surface energy balance becoming partitioned more towards

sensible heat flux than latent heat flux. For each flash drought event, we take the time series of the standardised anomaly

in ∆T (computed using MODIS Aqua LST) around the onset date, apply a 5-day rolling mean smoothing, then find the

maximum value of this anomaly in days 0–20 after onset, (∆T )max. The flash droughts are then separated into quartiles based

on (∆T )max, so that quartile 1 (Q1) contains the weakest (least evaporatively stressed, i.e. smallest (∆T )max) flash droughts,205

and Q4 the strongest (most evaporatively stressed, i.e. largest (∆T )max).

Additionally, we obtain a global, spatially-varying picture of the sensitivity of variables to the decrease in soil moisture

associated with flash droughts. This is done using events computed at the 0.25° scale as before, but compositing around all
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events in each 2.5° grid box globally. This resolution is sufficiently coarse to obtain a reasonable sample of events in each grid

box, while still fine enough to be able to explore spatial variation in sensitivity. Once composites of standardised anomalies210

have been obtained at the 2.5° scale, we compute the sensitivity of any given variable x to flash drought as follows. The values

of SSM and x before the drought are defined as the mean composite standardised anomaly from day -60 to day -30 (relative to

drought onset). We also stipulate that there must be a total of at least 100 observations contributing to the composite over this

period. The minimum value of SSM after drought onset (SSMafter) is defined by computing the 5-day rolling mean of the SSM

standardised anomaly composite and taking the minimum value between 0 and 60 days after the onset date. Only days which215

have at least 100 observations contributing to the composite during the 5-day rolling window are considered when selecting

the minimum. The peak value of x after onset is calculated analogously; depending on the impact of drought on the variable,

this may be a minimum (for VOD) or a maximum (for T2m). The sensitivity of x to flash drought, sx, is then

sx =− xafter −xbefore

SSMafter − SSMbefore
, (3)

which is defined such that a positive value of sensitivity indicates that x increases during flash drought.220

3 Results

3.1 Surface energy balance during flash drought evolution

Standardised anomalies for the components of the surface energy balance described in Equation 1 are shown in Figure 2,

composited across all flash droughts occurring in a particular land cover. Results are shown for the four land covers with the

highest numbers of observed events n. A map showing the geographical distribution of these land covers is included in Figure225

S1.

As expected, the net radiation at the surface Rn increases during drought development (day -15 to day 0). This is associated

with negative precipitation anomalies and increased surface downwelling shortwave radiation (see Figure S2). In all four land

covers, we also see an increase in ∆T during this time, indicating an increased sensible heat flux. However, the behaviour of

the latent heat flux varies. In rainfed cropland, latent heat flux is slightly elevated from day -15 to 0, with an approximately230

constant standardised anomaly. In the other three land covers, the latent heat flux is initially elevated but then decreases. This is

particularly noticeable in shrubland, where the latent heat flux anomaly is already negative several days before drought onset.

This is indicative of a lack of available soil moisture to drive increased evaporation, suggesting that shrubland tends to reach

water limitation earlier in the drought life cycle than the other land covers. Note that differences in the surface energy budget

between land cover classes are expected despite the soil moisture composites being similar, due to geographical variation in235

the critical soil moisture threshold.

Once drought conditions have been reached (i.e., at day 0), Rn peaks and begins to decline. This is associated with a con-

current decrease in surface downwelling shortwave radiation (Figure S2), which indicates that relatively cloud-free conditions

associated with high Rn and downwelling shortwave radiation are necessary for the rapid development of the flash droughts,

but once the drought is established, some events experience an increase in cloud cover before there is sufficient precipitation to240
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Figure 2. Observed surface energy balance composited over all flash droughts during the period 2000–2020, for the four land cover classes

with the highest numbers of events. The annotation max(n) indicates the maximum number of ESA CCI SM observations used to create the

surface soil moisture composite for any given number of days since onset.

relieve the drought conditions. However, despite the decrease in Rn, ∆T continues to increase. This is a result of the surface

energy balance (Equation 1) becoming partitioned more towards sensible heat flux, because the land has entered a water-limited

regime, so the radiation drives less evaporation. This is consistent with the decline in latent heat flux shown by GLEAM at this

stage. This water limitation can be seen to cause a persistent anomaly in the partitioning of the surface energy budget: sensible

heat flux remains high, and latent heat flux low, weeks after Rn returns to normal or below-normal levels, since the soil remains245

drier than usual.

We see good agreement in the timing of the ∆T response calculated using MODIS Aqua LST and microwave LST. This

suggests that the results are not particularly sensitive to the differences between sensors, the cloud cover or the precise time of

day of observations. Using MODIS Aqua LST results in a larger amplitude of ∆T increase during flash droughts in grassland

and shrubland, likely due to the 1330 overpass being able to capture stronger land-atmosphere coupling. For broadleaf decid-250

uous tree cover, the increase in ∆T during drought development is delayed and more sudden when considering MODIS Aqua

LST. The increase is concurrent with a rapid rise in Rn, so it is possible that cloud cover effects are influencing the results here.

The observational estimates used here yield a consistent interpretation of the surface energy balance as the soil enters

water-stressed conditions, which matches our physical expectations. Obtaining this coherent picture using observational prod-

ucts from different sources increases confidence that the products are providing useful physically-based information on land-255

atmosphere interactions during flash droughts.
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Figure 3. Evolution of land-atmosphere variables during flash droughts, composited over all events in rainfed cropland during the period

2000–2020. Each panel splits the events into quartiles based on the maximum ∆T anomaly (computed with MODIS Aqua LST) 0–20 days

after onset. All composites have been smoothed with a 10-day running mean. Abbreviated variable names are: Land Surface Temperature

(LST), 2m air temperature (T2m), latent heat flux (LHF), net radiation at the surface (Rn), downwelling shortwave radiation at the surface

(downwelling SW), surface soil moisture (SM), root-zone soil moisture (RZSM), Standardised Evaporative Stress Ratio (SESR), Vegetation

Optical Depth (VOD), and Solar Induced Fluorescence (SIF).

3.2 Land-atmosphere interactions stratified by strength of surface flux response

We now explore how the evolution of land-atmosphere variables during flash droughts varies depending on the strength of the

surface flux response, as quantified by (∆T )max. Here, we focus on flash droughts during all months in rainfed cropland. The

additional three land cover classes analysed in Section 3.1 will be discussed briefly at the end of the section.260
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In Figure 3, a selection of land-atmosphere variables are composited for each (∆T )max quartile. Additional panels, for

example testing different data products for a given variable, are included in Figure S3. The ∆T composites for the quartiles

are shown in Figure 3a. Higher values of (∆T )max are mostly related to higher anomalies in LST (Figure 3b) rather than

differences in air temperature (Figure 3c). The stronger flash droughts show a larger decrease in latent heat flux during the

event (Figure 3d), providing reassurance that the (∆T )max metric is representing evaporative stress. There is no obvious265

correspondence between larger (∆T )max and larger peak anomalies in downwelling shortwave radiation or Rn (Figure 3e, f),

so the strength of the events is not being driven by differences in radiation during the event. Differences in (∆T )max are also

not associated with differences in SSM (Figure 3g). This is likely due to the fact that SSM is used to identify the droughts,

which places constraints on the SSM composites. There may also be limited variability between SSM composites at the peak

of the flash droughts due to moisture in the surface layer having already become depleted earlier in the event, so that there is270

no remaining sensitivity to atmospheric conditions. However, stronger events are related to drier conditions in the root zone,

according to GLEAM (Figure 3h). They are also associated with stronger negative anomalies in evaporative stress as shown by

the SESR (computed from ERA5 data, Figure 3i).

It is notable that events with larger (∆T )max exhibit elevated ∆T and suppressed latent heat flux for a long time both before

and after drought onset. In a composite sense, the partitioning of the surface energy budget is perturbed at least 4 months275

before the onset of drought conditions. Similarly, RZSM is below average out to 4 months before onset. This highlights the

influence of moisture limitation prior to the large precipitation deficit that ultimately leads to the flash drought, suggesting

that correctly representing the condition of the land surface prior to the drought is important for a skilful S2S forecast. Events

occurring in water-limited precursor conditions show a smaller maximum anomaly in latent heat flux as the drought develops,

leading to larger sensible heat flux anomalies. The least evaporatively stressed events (Q1) show a strong positive anomaly in280

latent heat flux arising shortly before drought onset, indicative of increased evaporation accelerating the loss of soil moisture.

However, for the other quartiles, this positive anomaly is less pronounced, as evaporation is constrained by the soil already

being water-stressed.

Vegetation is more severely impacted by the stronger flash droughts, in terms of both VOD (Figure 3j) and SIF (Figure 3k).

As the drought develops over days -15 to 0, VOD and SIF increase above normal levels for the weaker events—likely driven285

by elevated radiation and air temperatures providing favourable growth conditions—but remain below normal throughout

the development of the strongest flash droughts. The stratification of SIF by (∆T )max ends at approximately 60 days after

onset, whereas VOD continues to exhibit stratification out to day 120. This suggests that the effects of increased evaporative

stress during flash drought have a more prolonged effect on VOD, due to resulting in a continued deficit in RZSM, than

on photosynthetic activity. We note that there is no apparent difference in the minimum precipitation standardised anomaly290

between quartiles at the peak of the drought (Figure 3l), indicating that the divergent impacts on vegetation after drought

onset arise as a result of the events experiencing different evolutions into the water-limited soil regime, rather than due to

precipitation being more suppressed during the drought itself. As seen for ∆T , latent heat flux, and RZSM, both SIF and

VOD differ between (∆T )max quartiles prior to the rapid decrease in SSM. This is likely to be because they are reflecting
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soil moisture in the root zone. The possible utility of precursor vegetation conditions for predicting maximum air temperatures295

during flash drought will be explored in Section 3.4.

The differences in land-atmosphere coupling between stronger and weaker events are largely the same across the four land

cover classes shown in Figure 2 (see Figures S4–S9). All four classes show less of an increase in latent heat flux for the stronger

events, along with worse impacts on vegetation. Differences between the quartiles at the peak of the drought are larger in pixels

with broadleaved deciduous land cover (this is particularly noticeable in the atmospheric conditions, e.g. T2m). This suggests300

that for the weaker events (Q1 and Q2), the trees are able to buffer against the surface soil moisture deficit by accessing

deeper soil moisture (Nicolai-Shaw et al., 2017), resulting in milder impacts on—for example—latent heat flux and subsequent

feedbacks to air temperature, when compared with the same quartiles in other land covers, where short vegetation cannot access

deeper soil moisture. Once the drought becomes severe enough, this buffer is no longer sufficient to mitigate the evaporative

stress and the impacts of the drought become as intense as in the other land covers. All four land cover classes show stratification305

in vegetation and the surface energy budget for months before and after onset, demonstrating that the subseasonal-to-seasonal

persistence is a common feature, and that precursor land surface conditions play a role in the evolution of land-atmosphere

coupling for each class.

3.3 Regional impacts on vegetation and air temperatures during flash drought

In the previous sections, flash drought behaviour has been composited within land cover classes. However, this combines310

events from varying climate regimes, and we cannot draw conclusions about particular geographical regions. We now explore

the spatial variation in flash drought impacts globally, by investigating the sensitivity of vegetation (in terms of VOD) and

2m air temperature to the decrease in surface soil moisture during flash droughts, as defined in Equation 3. We also test the

sensitivity of the maximum latent heat flux during flash droughts, in order to understand the spatial variation in how soil water

limitation constrains evaporation, as seen in Figure 3d.315

Figure 4a shows the sensitivity of VOD, representing the impact of flash drought on vegetation condition, and Figure 4b

shows the sensitivity of T2m, indicating where flash droughts are associated with the strongest near-surface air temperature

anomalies. The largest decreases in VOD anomalies and the largest increases in T2m anomalies both tend to occur in semi-arid

regions. This is indicative of generally water-limited conditions, which lead to greater stress on vegetation and are conducive

to land-atmosphere coupling. The vegetation sensitivity presented in Figure 4a has a similar spatial pattern to the response of320

vegetation to droughts found by Vicente-Serrano et al. (2013) based on Standardised Precipitation Evapotranspiration Index

(SPEI) and monthly NDVI data, suggesting that these sensitivities are common across drought onset timescales. Figure 4c

shows that the regions with the strongest VOD and T2m sensitivities—such as north-eastern Brazil, southern Africa and the

western USA—also do not exhibit an elevated latent heat flux anomaly after flash drought onset (compared to the average

anomaly 30–60 days before onset), whereas less water-limited regions do, consistent with the results seen in Section 3.2.325
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Figure 4. Sensitivity of (a) VOD, (b) T2m, and (c) maximum latent heat flux to the change in SSM during flash drought, as defined in

Equation 3. Grey pixels had an insufficient number of observations during flash drought events to compute the sensitivity.

3.4 Regional influence of land surface precursor conditions on peak air temperatures

Section 3.3 showed that VOD and T2m are generally most sensitive to flash drought in semi-arid regions, and suggested that the

water-limited conditions in these areas promote land-atmosphere feedbacks that are responsible for the larger increases in T2m

standardised anomalies. Positive anomalies in T2m are associated with increased evaporative demand. This accelerates the loss

of soil moisture via evaporation until water limitation is reached, at which point the sensible heat flux increases, resulting in a330

positive feedback to T2m. In Section 3.2, we also established that indicators of the degree of water limitation could be observed

in the months prior to flash drought onset. In this section, we focus on three semi-arid regions of Africa during seasons in which

land-atmosphere interactions are known to be active (Dirmeyer, 2011). The regions and their respective seasons are shown in

Figure 5a. In addition to having strong land-atmosphere coupling, we choose to focus on these regions as case studies because

they have sparse in situ observations of land surface and meteorological variables (Albergel et al., 2012; Dezfuli et al., 2017;335

Balsamo et al., 2018), so it is particularly important to understand how satellite remote sensing data could inform drought

monitoring or prediction. We test whether land-atmosphere feedbacks via the sensible heat flux affect the maximum T2m
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Figure 5. (a) Regions and seasons for which feedbacks from flash droughts to air temperature are studied. (b-d) For each region shown in (a),

probability distributions of maximum T2m standardised anomalies during flash droughts, stratified by quartiles of maximum sensible heat

flux standardised anomaly over the same period (computed as ∆T = MODIS Aqua LST - ERA5 T2m). Red distributions indicate events

with higher sensible heat flux anomalies and blue distributions indicate events with lower sensible heat flux anomalies. The number of 0.25°

flash drought events in each region/season for which both ∆T and T2m data are available is denoted by n.

anomalies experienced during flash drought events in these regions, and whether observations of VOD 1–2 months prior to

drought onset can provide useful information on the peak temperature experienced during the event.

Figures 5b–d are kernel density estimate plots showing the probability distribution of maximum T2m standardised anoma-340

lies during flash droughts in each region. The distributions are split by quartiles in the maximum ∆T standardised anomaly

(computed using MODIS Aqua LST), as in section 3.2. These maximum anomalies are defined for each event as the maximum

value of the standardised anomaly 0–20 days after onset, after applying a 5-day running mean smoother. For events with a

higher peak anomaly in ∆T , the distribution of peak T2m anomalies is shifted to the right: a higher sensible heat flux during

the drought is feeding back to the atmosphere to warm near-surface temperatures. For example, in West Africa in JJA, 9% of the345

events with ∆T in the lowest quartile exceed a 1.5σ anomaly in T2m, whereas for events in the highest ∆T quartile this figure

is 27%. In order to statistically test whether T2m peak anomalies are higher for Q4 ∆T than Q1, we use the Mann-Whitney

U test, a non-parametric ranking-based procedure, which assesses whether one random variable is stochastically larger than

another (Mann and Whitney, 1947). We apply a cluster bootstrapping method to account for the fact that some of the events

defined at 0.25° are part of the same flash drought occurring over a larger spatial scale and are therefore not independent from350
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Figure 6. Probability distributions of maximum T2m standardised anomalies during flash droughts, stratified by quartiles of precursor

standardised anomalies in VOD (30–60 days before drought onset), for each region shown in Figure 5a. Green distributions indicate events

with higher VOD anomalies prior to onset and brown distributions indicate events with lower VOD anomalies. The number of 0.25° flash

drought events in each region/season for which both VOD and T2m data are available is denoted by n.

one another (see Figure S10 and accompanying text for further information). All three regions are found to have warmer T2m

when sensible heat flux is highest (∆T Q4) than when it is lowest (∆T Q1), with p < 0.05 using a one-tailed test.

In Section 3.2, we concluded that precursor conditions indicating moisture limitation before flash droughts are linked to the

peak sensible heat flux during the event (Figure 3). The results of Figure 5 establish that the peak sensible heat flux feeds back

to air temperature in our focus regions. We therefore now investigate whether precursor conditions in these regions are useful355

for predicting the maximum air temperature anomaly. This is important for understanding how much S2S predictability of flash

drought heat extremes might be captured by correctly representing the initial conditions of pre-event moisture limitation.

We use the mean standardised anomaly of VOD from 60 to 30 days before onset as the metric for monitoring precursor

conditions. VOD is chosen for the metric because it has a high temporal resolution and is observable through cloud cover, and

can provide a proxy for root-zone soil moisture. Other potential precursor variables, such as latent heat flux or RZSM, showed360

a clearer link to the peak sensible heat flux in Figure 5, but these require some additional level of modelling to compute,

whereas VOD is directly retrieved from passive microwave observations and may therefore be a more convenient candidate for

monitoring land surface conditions.

Figure 6 shows probability distributions of the maximum T2m standardised anomaly during flash droughts (0–20 days after

onset, as in Figure 5), split by the anomaly in precursor VOD (from -60 to -30 days). Again applying a cluster-bootstrapped365

Mann-Whitney U test, we find that in both West Africa and East Africa, events with low precursor VOD (Q1) have warmer

T2m anomalies during the event itself than events with high (Q4) precursor VOD (significant with p < 0.05 for a one-tailed

test). In West Africa, a flash drought with precursor VOD in the highest quartile has a 12% chance of being associated with

a peak air temperature anomaly greater than 1.5σ; if the precursor VOD is in the lowest quartile, this chance is elevated to

27%. Lower VOD in the months leading up to flash drought is an indicator that water-limited conditions are likely to result370

in a stronger sensible heat flux during the drought, which will make atmospheric temperature extremes more likely. Southern
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Africa did not show a significant difference between the T2m anomaly distributions for Q1 and Q4 precursor VOD (Figure

S11). Precursor VOD may still have some influence on T2m anomalies in this region. A distinction between the VOD precursor

quartiles is evident at higher T2m anomalies (2σ) in Figure 6, with low precursor VOD being more likely to be associated with

these extreme temperatures. However, the overall relationship in this region is not robust once the non-independence of pixels375

is accounted for. This indicates that particular observations providing information on the likely strength of land-atmosphere

interactions may not be equally useful everywhere, and that the approaches used to derive predictability for flash droughts

need to be assessed on a per-region basis. We note that despite Figure 3 showing a clear stratification in ∆T for months

prior to onset, we found that using precursor ∆T to predict peak T2m was less successful than using VOD, with none of the

three regions showing a significant relationship (Figures S12 and S13). However, the clear influence of precursor VOD on380

peak air temperatures in both West and East Africa, with a lead time of 1–2 months, provides a proof of concept that satellite

observations of the land surface can provide information on potential flash drought impacts at timescales relevant for S2S

forecasting.

4 Discussion and conclusions

We have shown that global observational products can be used to examine the surface energy budget during flash droughts385

and that independent sources of observational information provide a physically consistent representation of its evolution.

During the onset of flash drought, net radiation at the surface increases, as does the surface sensible heat flux. In some cases

this is also accompanied by an elevated latent heat flux. Previous work has found strong positive standardised anomalies in

evapotranspiration around flash drought onset dates in agricultural regions, which accelerates the loss of soil moisture and

allows the drought to develop so rapidly (Lovino et al., 2024). However, we find that in the more general global context, there390

is large variation between events in the magnitude of these evapotranspiration anomalies, with water-limited environments

unable to support large increases around onset. In particular, semi-arid regions tend to exhibit lower maximum latent heat flux

after drought onset compared with the baseline value 30–60 days prior to onset.

Once drought onset has occurred, sensible heat flux continues to increase even as net surface radiation decreases, indicating

a water-limited soil regime. This is corroborated by a concurrent decrease in latent heat flux. This provides some reassurance395

that despite the difficulty of observing many of the processes involved in flash drought development, current observational

products are providing consistent evidence for the physical mechanisms underlying land-atmosphere interactions during the

events.

There are still limitations to this observational approach. We have been unable to include any events in densely forested

areas in this work due to the lack of satellite surface soil moisture observations. Some useful observations, such as LST, are400

affected by cloud cover. Although skies are generally clear during peak drought conditions, clouds could impede monitoring of

the lead-up to onset. The extent to which the datasets are truly observational also varies. Reanalysis T2m was used to compute

∆T , and to quantify peak air temperatures in Section 3.4. Latent heat fluxes from GLEAM are the result of a model of the

surface energy budget driven by satellite observations and reanalysis. However, by assessing a variety of products and using
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observations where possible, we have aimed to reduce the effects of uncertainties in simulating soil moisture-evapotranspiration405

dynamics.

Using the peak anomaly in ∆T = LST-T2m as a metric for the magnitude of the perturbation to the surface energy budget,

we find that for events with similar standardised anomalies in downwelling shortwave radiation, anomalies in the surface energy

budget during the drought are larger if the soil is water-stressed prior to onset, and these events are the ones associated with

larger decreases in vegetation water content and solar-induced fluorescence. Differences in the surface energy budget are seen410

to persist, at least in the composite sense, for months prior to and following drought onset. Semi-arid regions tend to show the

highest sensitivity of VOD to the change in SSM during flash droughts, since the soil is more likely to be in a water-limited

regime prior to flash drought onset. These regions are also associated with a higher sensitivity of near-surface air temperature

to the drought, since the water-limited conditions are conducive to stronger land-atmosphere feedbacks.

We note that we have chosen to define flash droughts in terms of surface soil moisture, due to the availability of global415

daily satellite observations, whereas the majority of studies employ metrics based on RZSM or evaporative stress (Lisonbee

et al., 2022). It is therefore useful to discuss our results in the context of these alternative definitions. Section 3.2 showed that

events with higher peak ∆T also exhibit stronger negative anomalies in the Standardised Evaporative Stress Ratio (SESR)

and RZSM. This demonstrates that the combined investigation of SSM and ∆T is providing similar information to the picture

that has previously been obtained using other definitions, in terms of the severity of these events. The weakest events defined420

using SSM do not drop below anomalies of −1σ in RZSM or SESR and might therefore not be termed “flash droughts” in

other studies with definitions based on these variables. However, these events are still subseasonal drydowns associated with

an increase in evaporative stress, higher than usual atmospheric temperatures, and negative impacts on vegetation, so we find

it both relevant and useful to include them here. Including events with a range of amplitudes and varying land-atmosphere

coupling strengths is helpful to understand the differences in development between scenarios that result in only moderate425

impacts and those that are more severe.

In some regions and seasons, land surface precursor conditions can provide meaningful information on the likelihood of

severe impacts if a flash drought occurs. We showed that during the onset of rainy seasons in West Africa (JJA) and East

Africa (MAM), high near-surface temperature anomalies during a flash drought are more likely when VOD is low 1–2 months

before drought onset. In areas where vegetation is water-limited, VOD is strongly related to RZSM, whilst being more easily430

observable over large scales. The dryness of vegetation shows persistence over the months until drought onset, and corresponds

to more water-limited soil conditions that lead to stronger land-atmosphere coupling during the drought, with this feedback

causing higher air temperature anomalies. The persistence of these vegetation effects means that satellite observations of

vegetation can provide subseasonal predictability for flash drought impacts, so it is beneficial to monitor vegetation condition

in addition to surface soil moisture. However, the utility of observed variables may vary between regions; for example, the435

effect of precursor VOD on temperature anomalies was less clear in southern Africa than in West or East Africa, despite the

presence of land-atmosphere feedbacks in all three regions.

This work highlights the importance of correctly representing the land surface and its feedbacks to the atmosphere in S2S

forecasting models to enable the prediction of flash drought impacts. Since we have shown that drier land precursor conditions
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are associated with stronger flash droughts and a higher risk of heat extremes, via their effect on the surface energy balance,440

shortcomings in the initialisation of these precursors and the modelling of the surface energy balance are likely to be major

reasons for the current poor performance of dynamical S2S forecasts. This is consistent with the findings of (Deangelis et al.,

2020), who showed that correct soil moisture initialisation during dry conditions is a key contributor to the predictability of

flash droughts in S2S models.

Deficiencies in the representation of the surface energy budget frequently occur in S2S models when soil moisture is not445

initialised on the correct side of critical land-atmosphere coupling thresholds, leading to a poor simulation of the link between

dry soil moisture and temperature extremes (Benson and Dirmeyer, 2023). This is a crucial issue for flash drought forecasting:

we found that for stronger flash droughts, the soil is closer to water limitation, or already water-limited, when the major

precipitation deficit occurs. If the soil moisture is poorly initialised in a model, or the representation of the water limitation

threshold is erroneous, then the modelled evolution towards water limitation will inaccurately predict the strength of the flash450

drought, with corresponding errors in the impacts on vegetation and air temperature. Depending on the anomaly magnitudes

involved for a particular event, this could also affect whether an event reaches the required threshold to qualify as a flash

drought. Poor simulation of the surface energy budget is also likely to be caused by the lack of interactive vegetation in most

currently operational S2S forecast models, which will impact forecasts of evapotranspiration and soil moisture.

Our results therefore motivate further development and evaluation of land-atmosphere coupling in dynamical S2S forecasts,455

including the introduction of dynamic vegetation models and assessment of critical soil moisture thresholds, to understand how

changes to model parameterisations can improve flash drought prediction skill. Further investigation into the assimilation of

land surface data into models would also be valuable: Ahmad et al. (2022) showed that assimilation of soil moisture and Leaf

Area Index improved the ability of a land surface model to capture the impacts of flash droughts, but did not investigate the

consequences for S2S predictability.460

Clearly, land surface information cannot by itself be sufficient to predict flash drought onset, since deficits in precipitation

must also be correctly forecast, the challenges of which have not been addressed in this study. However, we have shown how

global observational products can be used to provide a baseline for the assessment of the surface energy balance of flash

droughts in S2S (or other) models, and demonstrated the relevance of observable land surface properties to flash drought

impacts months ahead, which indicates their potential to provide a source of S2S predictability.465

Code and data availability. All the datasets used in this paper are publicly available for download as follows. ESA CCI Soil Moisture

COMBINED v08.1: https://catalogue.ceda.ac.uk/uuid/6f99cdb86a9e4d3da2d47c79612c00a2 (Dorigo et al., 2023). CERES SYN1deg-Day

Edition 4A: https://doi.org/10.5067/Terra/CERES/SYN1degDay_L3.004A (NASA/LARC/SD/ASDC, 2017a) and https://doi.org/10.5067/

Terra+Aqua/CERES/SYN1degDay_L3.004A (NASA/LARC/SD/ASDC, 2017b). GLEAM v4.2a: https://www.gleam.eu (accessed 4 Febru-

ary 2025). ESA CCI All-weather MicroWave Land Surface Temperature (MW-LST) global data record v2.33: https://doi.org/10.5285/470

a7e811fe11d34df5abac6f18c920bbeb (Jimenez and Prigent, 2023). The ESA CCI MODIS Aqua L3C land surface temperature product

v4.00 was provided by the LST_cci project at https://gws-access.jasmin.ac.uk/public/esacci_lst/AQUA_MODIS_L3C_0.01/4.00/ (accessed

31 October 2024): official versions of this dataset are available via the ESA Open Data Portal (https://climate.esa.int/en/odp/#/dashboard).
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ERA5: https://doi.org/10.24381/cds.adbb2d47 (C3S, 2019b). VODCA v2: https://doi.org/10.48436/t74ty-tcx62 (Zotta et al., 2024b). IMERG

v06: https://doi.org/10.5067/GPM/IMERGDF/DAY/06 (Huffman et al., 2019). Downscaled GOME-2 SIF:475

http://data.europa.eu/89h/21935ffc-b797-4bee-94da-8fec85b3f9e1 (Duveiller et al., 2019). ESA CCI Land Cover version 2.0.7 (for 2000–

2015) and version 2.1.1 (for 2016–2020): https://doi.org/10.24381/cds.006f2c9a (C3S, 2019a). The code used to generate the results and

figures in this paper is available at https://doi.org/10.5281/zenodo.16876864.
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