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Abstract. This paper describes an algorithm for above-cloud aerosol (ACA) retrievals from PARASOL (Polarisation and
Anisotropy of Reflectances for Atmospheric Science coupled with Observations from a Lidar) Multi-Angle Polarimetric mea-
surements. The algorithm, based on neural networks (NNs), has been trained on synthetic measurements and has been applied
to the processing of one-year PARASOL data. The algorithm makes use of three subsequent NNs: 1) for the detection of liquid
clouds, 2) for the retrieval of aerosol properties for ACA cases, and 3) an NN forward model to evaluate the goodness-of-fit
of the retrieval. The NN’s theoretical capability of retrieval is investigated by several synthetic data studies. It is shown that
the NN-is-able-to-retrieve-ACAOTNNS retrieve ACAOT55¢ (above cloud aerosol optical thickness, at 550 nm), AE(Angstrom
exponentyqaro (Angstrom exponent, between 440 nm and 670 nm), and SSAs (single scattering albedoy-yielding-, at 550
nm) with an RMSE (root mean squared error) of ~ 0.1 on ACAOT}j50, ~ 0.4 on AE44q_g7g and ~ 0.04 on SSAj55 in synthetic
experiments. Finally, comparison between the NN retrievals and adjacent PARASOL-RemoTAP elearsky-clear-sky retrieval
in 2008 shows good agreement within the range thatis-expected from the synthetic study.

1 Introduction

Knowledge about above-cloud aerosol (ACA) is important for understanding aerosol’s impact on Earth’s energy balance and
climate dynamics (Li et al., 2022). From a perspective of aerosol-radiation interaction, it leads to large regional variations in
the aerosol direct radiative effect (DRE; Lacagnina et al. (2017); de Graaf et al. (2020); Wilcox (2012)). The sign of the abeve
cloud-aerosol-directradiative-effee ACA’s DRE may differ from that of a clear-sky situation (de Graaf et al., 2023), which
depends on a number of factors including the cloud albedo, the aerosol type and its level of absorption (Lenoble et al., 1982;
Keil and Haywood, 2003; Peers et al., 2015; Kacenelenbogen et al., 2019). Furthermore, when absorbing aerosols are located
above stratocumulus clouds, warming of the layers above the clouds stabilizes the boundary layer, reducing entrainment rates
and fostering a moister boundary layer. This may ultimately result in an increased liquid water content and the preservation of
cloud cover (Johnson et al., 2004; Brioude et al., 2009). However, uncertainties arise when aerosol and cloud properties are not

adequately known, impacting ACA’s DRE estimation (de Graaf et al., 2020) and our understanding of aerosol-cloud interaction
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(Arola et al., 2022). Therefore, obtaining better-retrieved properties for aerosols and clouds in ACA scenarios is important for
a comprehensive understanding of the ACA’s effect on both radiation and clouds.

Satellite-based remote sensing plays a crucial role in quantifying the aerosol direct effect (Myhre et al., 2009; Lacagnina
etal.,2015,2017; Chen et al., 2022) and indirect effect {Gryspe
Gryspeerdt et al., 2017; Hasekamp et al., 2019b; Quaas et al., 2020; Gr
. For passive sensors, the largest information content on aerosols is available from multi-angle, multiwavelength measurements

of both radiance and polarization (Mishchenko and Travis, 1997; Hasekamp and Landgraf, 2007; Dubovik et al., 2019). This

type of instrument is referred to as a Multi-Angle Polarimeter (MAP) in this study. Three versions of the POLarization and
Directionality of Earth Reflectances (POLDER) instrument have flown since 1995. Only POLDER-3 on PARASOL has pro-
vided a multi-year data set between 2004 to 2013. The instrument 3MI (Fougnie et al., 2018), which is an improved version of
POLDER, is scheduled to launch in 2025 on the Metop SG-A satellite. The NASA PACE mission (Werdell et al., 2019), which
launched in February 2024, significantly improves aerosol and cloud retrieval capabilities through advanced MAP measure-
ments, in terms of accuracy as well as spectral and angular sampling. PACE includes two polarimeters: SPEXone (Hasekamp
et al., 2019a; Fu et al., 2025), providing hyperspectral measurements at five viewing angles, and HARP-2, providing hyper-
angular measurements at four discrete spectral bands. PACE is the first mission in over a decade to deliver advanced MAP data
products for aerosols and clouds.

Currently, measurements from satellite-borne MAP instruments can be used to retrieve abeve-cloud-aeresel-ACA properties,
as the abeve-cloud-aeresel- ACA can significantly affect the reflected polarized radiance at-in a certain range of scattering an-

gles (Knobelspiesse et al., 2015)

3 3 o 3 o—by—Initially, Waquet et al. (2009, 2013a)
developed a method that retrieves above-cloud aerosol optical thickness (ACAOT) and Angstrédm exponent (AE) exclusivel
from polarization measurements. This was achieved using a look-up table (LUT) approach combined with a decision tree

strategy. The method was then improved by including additional total radiance measurements (Peers et al., 2015) to simultaneousl

retrieve the ACA single scattering albedo and the cloud optical thickness (COT) of the cloud layer. Besides MAP instruments.
several ACA characterization approaches have been developed for passive and active remote sensing instrument like CALIOP
(Cloud-Aerosol Lidar with Orthogonal Polarization), MODIS (Moderate Resolution Imaging Spectroradiometer) and OMI
mmm%mmwmx@mm and clouds atso
backscatter at 532 and 1064 nm, where extinction and aerosol optical thickness (AQT) is derived from, and depolarization at 532

nm, which helps distinguish particle shape, aiding aerosol classification (Winker et al., 2010; Omar et al., 2009; Hunt et al., 2009

speerdt et al., 2023; Rosenfeld et al., 2024: Jia et al., 2024



Torres et al., 2012; Jethva et al., 2013). Several studies have shown inter-comparisons between the above data products (Jethva et al., 2014

60 The use of Neural Networks (NNs) provides a promising alternative for physics-based and took-tup-table(E5+)-LUT
retrievals because of the efficiency in computation and the possibility to take into account the effect on the measured signal of
different parameters (e.g., surface reflection) without explicitly retrieving them (e.g., Yuan et al. (2024)). NNs have been used
successfully in polarimetric remote sensing of aerosols by e.g. Di Noia et al. (2017), Gao et al. (2021a), Segal-Rozenhaimer
et al. (2018), and Gao et al. (2021b), as well as for polarimetric remote sensing of cloud microphysical properties by Di Noia

65 etal. (2019). This work aims at developing an abeve-cloud-aeroso-ACA detection and retrieval scheme for MAP instruments,
and focuses on the POLDER-3/PARASOL instrument (hereafter simply referred to as PARASOL) because it is the only MAP
with a long-term data set.

The paper is organized as follows: Section 2 introduces the data used in the study, Section 3 describes the Neural-Network
NN configurations and the datasets used for the training, Section 4 investigates the performance of the Neural-Netwoerk-NN on
70 different synthetic datasets, Section 5 shows the data processing of one year (2008) PARASOL measurements and comparison

with adjacent PARASOL-RemoTAP clear-sky aerosol retrievals. Finally, Section 6 summarizes and concludes this paper.

2 Data description
2.1 PARASOL

PARASOL (Fougnie et al., 2007) provided multi-angle observations (up to 16 viewing angles per ground pixel) in 9 spectral
75 Dbands (443, 490, 565, 670, 763, 765, 865, 910, 1020 nm) for intensity and 3 spectral bands for Stokes parameters Q and U (490,
670, 865 nm). The mission was operational in the period 2004-2013 (until 2009 as part of the NASA A-Train satellite con-

stellation). The level 1 data are provide on-acommon sinusoidally-eridof-approximately with-ground-pixels of-approximately

65 6-km?provided on ~ 6 x 6 km* sinusoidally grid. This study uses PARASOL measurements from 6 spectral bands (443,
490, 565, 670, 865, 1020 nm) within latitude ranges from 60° S to 60° N and with at least 14 available viewing angles, as the

80 majority of PARASOL observations contain exactly 14 angles. For measurements with more than 14 available angles, a subset
of 14 is selected.

2.2 PARASOL RemoTAP aerosol retrievals

In this study, PARASOL RemoTAP (Remote Sensing of Trace Gas and Aerosol Products) aerosol retrievals provide some of the
aerosol and surface properties in the training set and are also used for evaluation of the NN ACA retrievals on real PARASOL
85 measurements. The RemoTAP PARASOL retrievals herein (Hasekamp et al., 2024) are based on a parametric 3-mode aerosol
description characterized by three log-normal size distribution modes (Nyodes = 3): one fine mode and two coarse modes (dust

and soluble). A detailed overview of RemoTAP can be found in Hasekamp et al. (2024) and Lu et al. (2022).
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2.3 Cloud phase from MODIS-Aqua cloud product

The MODIS cloud phase product used in this work is generated at 1-km (at nadir) spatial resolutions from MODIS-Aqua L2
data product (MYDO06_L2, Platnick et al. (2015)). Five different cloud flags are categorized in the product: liquid cloud, ice
cloud, mixed cloud, uncertain and clear. Here-in-In this work, a pixel is marked as liquid phase cloud only when the fraction of
liquid-cloud-flagged 1-km-resolution MODIS pixels within a 6ka—<-6kam-6 km x 6 km PARASOL grid cell is larger than 80%.

2.4 AERO-AC above cloud aerosol retrievals

AERO-AC (Waquet et al., 2020) is a global ACA data product from PARASOL measurement, and it is used to compare with
the PARASOL-NN ACA retrievals in this paper. In AERO-AC, the ACA properties are only retrieved in case of homogeneous
optically thick (COT > 3) liquid water clouds. The algorithm proceeds to search for the best-fitting aerosol model among all
available models, including six fine modes plus a bimodal non-spherical mineral dust particle model. Pixels with partial cloud
coverage and cloud edges are removed. Cirrus above liquid water clouds are also filtered and different quality criteria are
applied to improve the products.

3 Methodology

3.1 General settings of the forward simulation

The neuralnetwork(INN--NN training in this study utilizes the-synthetic measurements of top-of-atemosphere-intensity-veetor
Teonsisting-Stokes—parameters4-Q top-of-atmosphere radiance and degree of linear polarization (DoLP), as a function

of wavelength and viewing-solar geometries. The synthetic measurements are generated by the RemoTAP forward model
(Hasekamp and Landgraf, 2002, 2005; Schepers et al., 2014), which is a linearized radiative transfer model employed in the
RemoTAP retrieval algorithm (Hasekamp et al., 2011; Fu and Hasekamp, 2018; Fu et al., 2020; Lu et al., 2022; Fu et al,,
2025). In the calculation of the synthetic measurements, liquid clouds are represented by spherical particles with a Gamma
size distribution (Hansen and Travis, 1974), and the refractive index of water is taken from Hess et al. (1998). For ice clouds,
hexagonal crystals with varying aspect ratios and surface distortions are used as proxies for variable-complex-shaped ice
crystals (van Diedenhoven et al., 2020). The aerosol size distribution follows three log-normal modes, as described in Lu et al.

(2022), where each mode is described by the effective radius (r¢), effective variance (v.g), complex refractive index (dependent
on wavelength), aeresel-eptical-thickness(AOTat550-0mAQT 55, fraction of spherical particles ( fsp) and aerosol layer height
the central altitude of the Gaussian distributed aerosol profile, FWHM, full width at half maximum, fixed at 2000 m). Here

we should note that the forward simulation of ACA scenes includes only fine and dust mode aerosols, while the simulation of

elearsky—clear-sky scenes considers also a soluble coarse mode. The spectrally dependent refractive index m(X) per mode is
parameteried parameterized by

m(A) zz:akmk(/\), (1)
k=1
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where m¥(\) are prescribed functions of wavelength, for which we use standard refractive index spectra for different aerosol
components, i.e., dust (Torres et al., 2007), inerganies-and-water-soluble, black carbon (d’Almeida et al., 1991), and organic
carbon (Kirchstetter et al., 2004). The Mie- and T-matrix-improved geometrical optics database (Dubovik et al., 2006) are-used
iris used for the computation from aerosol microphysical properties to optical properties. The spheroid-aspeetratio-distribution
propesed-in-the-database-is-utilized-to alate-optical-propertiesfor-the-spheroid-sphere-mixture-The-ocean reflection proper-
ties are parameterized based on wind speed as described in Cox and Munk (1954), and chlorophyll-a concentration as outlined
in Fan et al. (2019). For land surface simulations, the bidirectional reflectance distribution function (BRDF) is parameterized
using the Ross-Li model (Wanner et al., 1995), while the bidirectional polarization distribution function (BPDF) is parameter-
ized as in Maignan et al. (2009).

The surface (land and ocean) properties for the NN training are from randomly picked pixels of RemoTAP global retrieval
for the year 2008. The cloud properties are generated randomly. The aerosol properties are randomly generated values or
randomly picked from RemoTAP global retrieval in 2008, depending on the task of different reural-networksNNs (the details
are in Appendix Al, A2 and A3). The geometry combination (solar zenith angle, SZA, viewing zenith angle, VZA and relative
azimuth angle, RAA) are from—randomlypicked-randomly picked from real PARASOL solar-viewing geometries in 2008.
Only the measurements with a minimum of 14 angles are considered (see above) for the NN training, in order to evade from a

variable-sized input vector to the NN or, as an alternative, an input vector with missing data.
3.2 Neural Network training

This work focuses on retrieving the properties of aerosols which are located above a liquid cloud layer, and the retrieval process
is depicted in Figure 1. Three NNs are used in the process: 1) NN cloud mask, to select pixels covered by a liquid cloud, 2) NN

for aerosol retrieval and 3) NN surrogate radiative transfer model (hereafter referred to as NN forward model). The NN forward

tve-used to efficiently compute the goodness-of-fit
is essential for identifying cases where the 1D radiative transfer model breaks down—particularly in scenes with low cloud
heterogeneity. Under such conditions, the plane-parallel assumption introduces a positive bias in ACAOT retrievals due to
errors in polarized radiance modeling in the cloud bow region (Cornet et al., 2018). These angular inconsistencies are revealed
through discrepancies in the fit between forward model and real measurements (Stap et al,, 2015, 2016). Additionally, MODIS
cloud phase flags are used to mask cases with thin cirrus above liquid cloud (see above).

The first NN (liquid-cloud mask) takes intensity, degree-of-linear-polarization(BoEP)DoLP, and viewing geometries (SZA,

VZA, RAA and scattering angle) as input and outputs liquid cloud fraction and ice cloud fraction separately. The independent

model is #m

pixel approximation (IPA) is used to generate partly cloudy cases in the training set, as described in Yuan et al. (2024). The
training set consists of 8 million samples including 20% cloud-free pixels, 10% fully covered by liquid cloud, 10% fully
covered by ice cloud, and the other 60% partly covered by a mix of liquid cloud and ice cloud. The total cloud fraction is

uniformly distributed in a square space (probability density function: f(z) = x?) with more cloud fractions close to +in-erder

to-acquire-better-sensitivity-1. This setting reduces the cloud mask’s ability when CF< 0.8 but makes it more sensitive at almost
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Figure 1. A flowchart of the NN ACA retrieval process. Three NNs (in the purple rectangles) are used in the process: NN for cloud mask,
NN for ACA retrievals and NN forward model. MODIS cloud phase data are used to screen out the residual thin cirrus above liquid clouds.
The aerosol retrieval will be discarded if any of the following situations happen: 1) NN liquid cloud fraction < 0.8, 2) NN ice cloud fraction

> 0.2, 3) MODIS suggests the cloud phase is not liquid, or 4) the goodness-of-fit (x?) > 5.
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fully cloudy cases (cases of interest). The radiative contribution of aerosol and surface properties is also taken into account, as
described by Yuan et al. (2024). In the training set of this cloud mask NN, 20% of the samples represent the situation where the
aerosol layer is located above the cloud top, in order to improve NN’s ability to produce liquid and ice cloud fractions in areas
of interest for this study. A pixel will be further processed, if this NN outputs a liquid cloud fraction > 0.8 and an ice cloud
fraction < 0.2, and the MODIS cloud flag also indieate-indicates this pixel is covered by liquid cloud. Here, the MODIS cloud
flag is used-important to screen out cases where a thin cirrus is above liquid clouds, which are challenging to be identified by
PARASOL measurements alone.

The aerosol retrieval NN takes the input of MAP measurements (i.e., radiance and DoLP), together with the observation
geometry. It produces both fine mode and dust mode aerosol properties and underlying liquid cloud properties. Here we use a
bi-modal aerosol description, where the size distribution is characterized by two log-normal modes, comprising one fine mode
and one coarse mode representing dust. The state vector of the fine mode includes the-effeetive raditis{r ) effeetive-varianee L,
ver)rspheriealfraction, fopn), aerosol column number (IVy), spheriealfraction{fm-and refractive index coefficients (ezay,),

which correspond to the standard refractive index spectra of inorganic aerosol (real part), black carbon (imaginary part) --and
organic carbon (imaginary part);-and-water. The state vector of the dust mode (consisting of non-spherical dust) includes 7,
Veff, Naer and a coefficient for the imaginary part of the dust refractive index. The parameter fyp is fixed to 0 and ey, of the
dust refractive index real part is fixed to 1. The liquid cloud properties included in the state vector are eloud-optical-thickness
{€OTFCOAT, cloud layer height (CLH), and the liquid droplet effeeti adius Cogpr) -+ Tecti artanee {1 and ver). To
better represent the real situations, the fine-mode fraction (fraction of fine mode AOT55q over the total AOT55q) is randomly
taken from PARASOL-RemoTAP clear-sky retrievals, while the total ACAOTj5s5 is randomly generated by a log-uniform
distribution between 0 and 2. It should be noted that the coarse soluble mode is not considered in this step as it is usually low-in
the-atmosphere-and-hence-below the cloud layer. An overview of the distribution for the different state vector elements for-of
the training set are given in Table A2. The intensity and DoLP, as a function of wavelength and viewing angle, are compressed

using a principal component analysis (PCA) before the training. A total of 25 principal components are retained for radiance

which contains 99.99% explained variance) and 33 for DoLP (which comprise 99.14% explained variance). Different from

the training set of the cloud mask NN, the training set of aerosol retrieval NN only contains ACA samples.
The NN for forward calculation is designed to reproduce the MAP measurements from the viewing geometries and the

retrieved properties, including aerosol properties of both fine mode and coarse mode and the liquid cloud properties. To make
the forward model flexible in viewing geometries, it is trained separately per viewing direction and with the uniformly random-
generated SZA, VZA and RAA. For each aerosol retrieval, the NN should be applied 14 times to simulate a MAP measurement
at 14 viewing angles. The goodness-of-fit criterion is calculated as:

1~ (v —Fi)?
2 7 7
= — 2
XT=- E P 2
where n is the total channel of measurements, and y;, F; respectively stands for the satellite measurements and the NN
reproduced measurements at the i-th channel. For the PARASOL measurements in this study, a total of 126 channels are used

including 6 wavelengths for intensity and 3 wavelengths for DoLP with 14 viewing angles per wavelength. The noise o, is the
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Figure 2. Scatter plot of intensity and DoLP at 565 nm from NN forward model. The bias of both intensity and DoLP is close to zero. The

rstd of intensity is 0.7% and the std of DoLP is 0.0025. Both of them are below the instrument measurement noise, which suggests the NN

forward model is good enough to replace the full physical model (RemoTAP) in estimating goodness-of-fit.

estimated absolute noise of each channel. Here we use a relative noise of 0.02 for the intensity and an absolute noise of 0.012
for DoLP.

It should be noted that the NN forward model is not a complete forward model. It only works for pixels fully covered by
a liquid cloud without any radiative contribution from the surface and is designed only for the purpose of goodness-of-fit

assessment for abeve-cloud-aeroselretrievals—ACA retrievals. The performance of NN forward model on holdout set is shown

in Figure 2. The bias of both intensity and DoLP is close to zero. The rstd (relative standard deviation) of intensity is 0.7% and
the std (standard deviation) of DoLP is 0.0025. Both of them are below the instrument measurement noise, which suggests the
NN forward model is good enough to replace the full physical model (RemoTAP) in estimating goodness-of-fit.

To increase numerical efficiency and reduce memory usage during the training process, we choose the "neural network

ensemble" approach (Hansen-and-Salamen;1990);+where-(Hansen and Salamon, 1990; Ganaie et al., 2022). In our approach

the whole training set is equally and randomly divided into several parts (further separated into training set, 90% samples, and
holdout set, 10% samples), and an individual NN is trained on each part of the training set. The final output is the average of the

outputs from all the ensembles. Here, three ensembles are used for liquid cloud mask NN, 16 ensembles for the aerosol retrieval

NN, and six ensembles for the NN forward model. The number and size of ensembles is determined by the performance on

synthetic validation sets.
For the cloud mask and retrieval NN, we add measurement noise to the training set as a form of regularization (Bishop,

1995). The measurement noise is modeled as a Gaussian random number with a zero mean and a standard deviation of 1 %-3

% relative noise for intensity and 0.012 absolute noise for DoLP.
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In this study, Pytorch (version 1.11.0, https://pytorch.org/, last accessed: 11 October 2021) is used to implement the NN,
which are structured as multi-layer perceptrons (MLPs). The training process employs the backpropagation (BP) algorithm
(Rumelhart et al., 1986) and batch training with a batch size of 12,000. The performance of NNs in this paper shows little
sensitivity to batch size. so a larger batch size is chosen for larger convergence rate (De et al., 2017). The Adam optimizer
(Kingma and Ba, 2014) is used to minimize the mean-rootroot mean square error (RMSE) loss function. The architecture of the
neuralnetwork NN used in this work consists of three hidden layers. We used the settings (
suggested by Kingma and Ba (2014), where 7 is the initial learning rate. For computational efficiency, ReLU is chosen to be
the activation function. The liquid cloud mask NN has 64 neurons in each layer, the aerosol retrieval NN has 128 neurons and
the NN forward model has 192 neurons. The detailed statistical distribution of the training sets can be found in the appendix

Al, A2 and A3.

4 Synthetic experiments

To test the compatibility of the algorithm for different aerosol conditions, we apply the NN to three datasets: 1) based on a
uniform distribution of the fine-mode fraction between 0 and 1, as a baseline, 2) fine mode dominated cases only (fine-mode
fraction > 0.7), and 3) dust mode dominated cases only (fine-mode fraction < 0.3). Details on the statistical distribution of the
datasets can be found at Appendix B1. Figure 3 shows the scatter plot of ACAOT;-Angstrom-Expenent(AE)s50, AE440_670,
and SSAj5 on the three datasets. The AE is calculated using ACAOT {+)-at-440nm-and-670nmat 440 nm and 670 nm.

The retrievals are filtered by a retrieved liquid cloud fraction > 0.8, ice cloud fraction < 0.2, and the goodness-of-fit x2 of the
retrieval < 5, all of which can be obtained from the NN for cloud mask and the NN forward model. For AEand-SSAy40_g79 and
SSAs50, an additional mask of retrieved ACAOT 55 > 0.2 is applied. The RMSE is 0.11 for ACAOT 550, 0.42 for AE440_¢70-
and 0.05 for SSAjs5¢ in the mixed dataset. In the fine-dominated dataset, it is 0.11 for ACAOT, 0.55 for AE, and 0.05 for SSA.
For the dust-dominated dataset, the RMSE is 0.12 for ACAOTj559, 0.40 for AE440_g70, and 0.03 for SSA55q. Potentially, the

NN could be improved by adding more extreme cases to the training set, and this will be a subject of future work.

41 Sensitivi Isis-of 6 terlvine-clotd-ontieal thiel

Retrieval-Additionally, retrieval simulations have been performed on five fully liquid-cloud-covered datasets to investigate the

retrieval-sensitivity-ef-the-dependence of the retrieval capability on the optical thickness of the underlying liquid cloud. The

datasets have the same set of aerosol, cloud, and surface properties buttiquid-cloud-opticat-thickness-are-varied-(varied within
each dataset) but each set has a different (constant) liquid COT between 3 and 40. Each dataset has a total of 10000 samples

for both land and ocean. Details on the statistical distribution of the datasets can be found at Appendix B2.
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Figure 3. Scatter plots of ACAOT55¢ (a, d, g), AE449_670 (b, €, h), and SSAs5q (c, f, i) on three synthetic datasets, where one contains both
fine-mode-aerosol-dominated cases and dust-mode-aerosol-dominated cases (a, b, ¢) while others contain only fine-mode-aerosol-dominated
cases (d, e, f) or dust-mode-aerosol-dominated cases (g, h, i). The x-axis is the truth of the property and the y-axis is the NN retrieval.
The color of each scatter point stands for the number of retrievals (density) on the point. The mean absolute error (MAE), bias, number of

retrievals (npix), correlation coefficient (corr) and coefficient of determination (R?) are also given in the plots.
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235 Figure 4 shows the RMSE -and-number-of remainingpixels-(over the 10000 retrievals for each COT value), and fraction of

successful retrievals as a function of the liquid COT. The retrievals are always-masked by a retrieved liquid cloud fraction larger
than 0.8, an ice cloud fraction smaller than 0.2 (both of which are from the NN cloud mask at original 6 x 6 km” resolution) and
a goodness-of-fit mask from the NN forward model. The AEand-SSA—40_g70 and SSAssq retrievals are additionally masked
by ACAOT>06-2ACAQT 559 > 0.2. For samples with COT < 5, 80% ocean pixels and almost all land pixels are screened by
240 the cloud mask and goodness-of-fit mask. When the COT is larger than 10 over ocean and 20 over land, the percentage-of-the
good-fraction of successful retrievals (that can pass the cloud mask and goodness-of-fit mask) is larger than 80%. For retrievals
over land, we see that the RMSE decreases with increasing COT when COT < 20 and then stays constant. This behavior can be
explained by the fact that for COT < 20 the measurement is still affected to some extend by the underlying surface which causes
a large RMSE. Over ocean, we-see-an opposite effect is observed (except for very small COT), because the contribution from

245 the ocean is relatively small and a smaller COT would even-enhance the relative contribution of the aerosol signal compared to

the cloud signal.
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(a, d), AE449_670 (b, €) and SSA550 (c, f). The dashed lines are the result of pixels over ocean and the solid lines are over land. The result

are both screened by the cloud mask and the goodness-of-fit 2 < 5 mask. The retrieval errors on the datasets are dominated by standard
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5 Application on PARASOL data

5.1 Comparison between PARASOL-NN above cloud aerosol retrievals and adjacent RemoTAP clear-sky aerosol

retrievals

The ACA retrievals are evaluated with nearby RemoTAP clear-sky aerosol retrievals in 2008 (Hasekamp et al., 2024) within
the same 1° x 1° grid cell. If a grid cell contains at least 3 above-cloud-ACA retrievals and at least 3 clear-sky aerosol re-
trievals, then the comparisons are made by taking the average of the retrieved aerosol properties for both abeve-eloud-ACA

and clear-sky aerosol retrievals, respectively. Fhe-Figure 5 shows the PARASOL-NN ACA and RemoTAP clear-sky aerosol
retrievals in mid-Africa, 4 Aug 2008. In general, it shows larce ACAOT ~ 1) of strongly-absorbing (SSAs5q < 0.85)

_a70.> 1.5), which is t

because part of the aerosols are located below the clouds. The ACA seems to be slightly smaller in size (larger AE440_g7
and more absorbing (lower SSAss0) than the nearby clear-sky retrievals. This is expected, because the total column aerosol (as
retrieved in the clear-sky case) is more influenced by non-absorbing coarse sea salt particles, which are mostly located below.

the cloud.

fine-mode-dominated aerosols (AE ical in this region, as is also observed in Waquet et al. (2013a)

The whole year global comparison between the ACA retrievals and the matching clear-sky retrievals is shown in Figure 6.
For AOTsg5, there is a root-mean-square difference (RMSD) between the above-cloud-ACA and clear-sky aerosol retrievals
of 0.155. This is larger than the RMSE for the synthetic experiment (~ 0.10) but we should keep in mind that the clear-sky
RemoTAP retrievals do not provide an exact reference. In the first place, the retrieval error in the RemoTAP clear-sky retrievals
(based on AERONET validation) is ~ 0.10 over land and ~ 0.05 over ocean (Hasekamp et al., 2024). Second, we will in
general expect a lower abeve-eloud-AOT-ACAOT 55 than the adjacent clear-sky AOTs5, because part of the aerosol may be
located below the cloud, which explains the negative bias in the aboeve-cloud-AGTACAOT559. However, we also find cases
where the abeve-eloud-AGT-ACAQT 55 is higher than the adjacent clear-sky AOT550, which suggests the abeve-eloud-ACA
retrievals may still be contaminated by cirrus, despite the NN cloud mask and the MODIS cloud phase mask. For-AEIt can

also be noticed that the RMSD of fine mode AOT550 is smaller than the total AOT55q, and there is less overestimated pixels

as well. This may be explained by the fact that coarse sea-salt, that has largest concentrations below the cloud, are excluded
in the fine mode comparison. For AE440_g7q, the RMSE (0.429) in Figure 6 is similar to the RMSE found in the synthetic

experiment (Figure 3), despite the fact that the AE49_g7q error on the clear-sky retrievals is ~ 0.37 over land and ~ 0.25
over ocean (Hasekamp et al., 2024). For SSA55, the RMSD (0.0586) is somewhat larger than in the synthetic experiment, but
in general, the results suggest that the intrinsic aerosol properties (AE and SSA) are more comparable for above-cloud-ACA

and adjacent clear-sky aerosol retrievals than the AOT, although the correlation of SSAs5q is low (0.37). To demonstrate the
necessity of the goodness-of-fit mask, the comparison without goodness-of-fit mask is shown in figure 4 of the SI, it can be
seen the performance of ACAOT 550, AE440—670 and SSAxsq become substantially worse.
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f, 1) is the clear-sky aerosol retrievals. In this case, the ACA (mostly smoke) has a larger AE4

clear-sky aerosols (smoke and sea salt).
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Figure 6. Comparisons of above-cloud-aerosel-ACA retrievals and clear-sky aerosol retrievals in the same 1° x 1° grid. RMSD of total

AOT550 (panel a) is 0.155, AE-fine mode AQT55 anel b) is 0.119, AE449_g70 (panel ¢) is 0.429 and SSAjz5q (epanel d) is 0.0586.
Generally we see a lower above-elondAGT-ACAQT 550 than the adjacent clear-sky AOTj5¢, as part of aerosols are below the cloud. In some

cases there is the abeve-eloud-AOT-ACAQT55( larger than that in clear-sky, and this may be due to contamination of cirrus. The intrinsic
aerosol properties (AE and SSA) are more comparable than the AOT.
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5.2 Comparison between PARASOL-NN and AERO-AC above cloud aerosol retrievals

Figure 7 depicts the comparison of ACAOTgzq and AE between PARASOL-NN and AERO-AC at 1° x 1° grid for the whole
year 2008. The RMSD on ACAQT is 0.094. which is close to 0.107 from synthetic experiments. However, the correlation
coefficient on ACAOT is relatively low (~ 0.5), and especially at large ACAOTgzq values from AERO-AC, PARASOL NN
algorithm retrieves much lower values. The RMSD on AE is 0.8, which is much greater than in synthetic experiments (~0.4)
and the comparison to adjacent clear-sky retrievals (-~ 0.6). For large AE (> 1.5, as predicted by PARASOL-NN), the two data
products agree well, but for smaller AE (< 1.5 predicted by PARASOL-NN) the overall agreement is poor. Specifically, there is
a group of pixels where AERO-AC predicts values close to ~ 1.7). This group of pixels can be explained by a low ACAOTgg5.
(0.1, retrieved by AERO-AC), where the AERO-AC algorithm assumes only fine-mode acrosols in the retrieval. Panel ¢ of
Figure 7 shows a comparison where we filter out cases with AERO-AC ACAOTsgs < 0.1 (in addition to the filter ACAOQT 550 <
0.2 already applied for both AERO-AC and PARASOL-NN). For this comparison, the RMSD is reduced from 0.8 to 0.5 and the
correlation coefficient improved from 0.5 to 0.75. Also, clearly the lower limit of ~0.4 in the AERO-AC AE is visible. Besides
the reasons mentioned above, the discrepancy may also be caused by the fact that the AE from PARASOL-NN is calculated
between 440 and 670 nm while that from AERO-AC is between 670 and 865 nm. To further interpret the differences between
our PARASOL-NN algorithm and AERO-AC, we also compared AERO-AC to nearby RemoTAP clear-sky retrievals (see ST
Fig 8). From this comparison it follows that the ACOATg7o from AERO-AC is in general larger than the nearby clear-sky
AOQOTg70, with some very large ACAOTg7q values (>2) when the clear-sky AOTg7g is < 0.5. This seems to suggest a tendenc

in AERO-AC to overestimate ACAOT¢zq, given that the ACAOT cannot be larger than the total column AOT. The comparison
for the AERO-AC AE to clear-sky retrievals shows a similar pattern as the comparison with the above-cloud AE from the
PARASOL-NN, although at larger AE the latter agreement is better than the agreement with clear-sky AE. The relatively
large AE differences between AERO-AC and NN ACA retrievals (as well as the large AE differences between AERO-AC
and PARASOL-RemoTAP clear-sky retrievals) may be related to differences in aerosol model assumptions. AERO-AC relies
more on specific aerosol model assumptions under certain conditions, whereas PARASOL-NN and PARASOL-RemoTAP use
the same continuous range of aerosol properties for all retrievals. On the other hand, the PARASOL-NN seems to slightly.
underestimate AE in fine mode dominated cases, based on the synthetic experiments (Figure 3). Moreover, it should be kept in
mind that the different wavelength pairs are used for the AE calculation, which may cause discrepancies in the AE value (see

5.3 Distribution of the ACA events’ frequency and the ACA properties in 2008

Figure 8 shows the global seasonal average of ACAOT55q and the number of ACA events in spring (Mar—-May), summer
(Jun—Aug), autumn (Sep-Nov) and winter (Dec, Jan and Feb) on the 1° x 1° grid. The average of ACAOT355 is calculated
only when at least 25 valid PARASOL retrievals are found in the grid cell. The number of ACA events in a cell is defined as
the total number of "good" retrievals where ACAQT is larger than 0.1.
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Figure 7. Comparison of ACAOTg anel a) and AE (panel b) between PARASOL-NN and AERO-AC. AE from both PARASOL-NN and
AERO-AC is filtered with ACAOT550 > 0.2 (ACAOT550 from AERO-AC is calculated with unfiltered AE and ACAOTg70). Panel ¢ shows
the AE comparison with an additional filter: ACAOTgg5 > 0.1 (from AERO-AC). Note the AE given by PARASOL-NN is between 440 nm
and 670 nm while that by AERO-AC is between 670 nm and 865 nm.

The results in Figure 8 agree well with the major ACA regions from previous studies (2Jethva-et-al52048)(Waquet et al., 2013b; Jethva e
, which include: 1) Tropical Southeast Atlantic, primarily consisting of biomass burning aerosols. 2) North Pacific, mainly con-
taining industrial pollutants. 3) "Dust Belt" (5-40°N), where mineral dust particles are commonly detected above clouds in this
latitudinal band.

315 The spatial occurrence of ACA events varies largely among each season. In the western coast of mid-Africa, the ACA events
occur more in summer and autumn, while in spring and winter, not many events are observed. In the western coast of North
America, although the events are detected for all the seasons, fewer events occurred in autumn and winter compared with the
other seasons. The events in southeastern China can also be observed for almost all the seasons with somewhat less events in
summer and autumn.

320 When looking into the global seasonal average of ACAOT 355, we can find two regions with significantly heavy above-cloud
aerosolACA load: the western coast of mid-Africa (mainly summer and autumn, ACAOT55q > 0.5), western coast of Morocco
in north Africa (during summer, ACAOTj559 > 0.5) and northeastern China (during spring, ACAOT~-0-255¢ ~ 0.2), and these
regions are also observed to have a large number of ACA events. In contrast, for some regions with frequent ACA events, such
as the western coast of North America, the seasonal average ACAOT is relatively low (ACAOT ~ 0.1). This agrees well with

325 the analyses by >-Wagquet et al. (2013b) in the same year 2008.

We also investigated the annual average of AE and SSA, as is shown in Figure 9. The AE and SSA are calculated where
ACAOT550 > 0.2. Compared with ACA events in other areas, events around the western coast of mid-Africa exhibit a different
characteristic: aerosols have a high AE (indicating smaller particles) and a low SSA (indicating more absorbing components).
The high AE and low SSA is an expected feature of the smoke in mid-Africa (Mallet et al., 2024). We have to remark that

330 our AE in regions between 45° — 60°N and 45° — 60°S is ~ 0.8, which differs largely from ~ 1.8 in ?Wagquet et al. (2013b),
despite the good agreement of our above cloud AE with the adjacent clear-sky AE in these latitudes. This is because in regions
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is defined when a PARASOL retrieval has passed the cloud mask and goodness-of-fit mask and produces an ACAOT (at 550 nm) larger than
0.1.
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Figure 9. Annual AE440_g70 (panel a) and SSA550 (panel b) average on each 1° x 1° grid in 2008. The AE and SSA are calculated where
ACAOTg50 > 0.2. The ACA events in the western coast of mid-Africa have a distinctive feature than others, that the aerosols have a large

AE (smaller particles) and a smaller SSA (more absorbing).

between 45°—60°N and 45°—60°S, the ACAOTg¢5 retrieved by the AERO-AC algorithm are likely too low to support reliable
aerosol type identification, and only fine-mode ACAOT and AE retrievals are performed.

6 Conclusion

This paper presents an NN-based approach to detect and retrieve properties of aerosol located above a uniform liquid cloud
layer from multi-angle, multi-wavelength polarimetric measurements. The proposed approach is based on a cascade of three
nevral-networks-NNs trained on synthetic measurements. Separate NNs have been trained for the subtasks of liquid cloud
detection, abeve-cloud-aerosel-ACA retrieval, and forward modeling for goodness-of-fit calculation. The-aerosolretrievals-are
only-performed-on-fully liquid-eloud-covered-pixels This approach is designed to perform aerosol retrievals for pixels with

We evaluated the approach on different synthetic datasets. The experiment on three datasets (containing both fine- and
dust-mode-dominated aerosol, only fine-mode-dominated aerosol and only dust-mode-dominated aerosol) indicates the NNs
have the ability to retrieve AOT -AE-and SSA from both fine- and dust-mode-dominated aerosol, as well as mixed scenes
with an RMSE between 0.10-0.12 for AOT;-0:46-0-55-for-AE;—559 and 0.03-0.05 for SSAs59. The NNs are also capable to
retrieve ABq40 670 With an accuracy that allows separation between fine-mode and dust dominated cases (with an RMSE
between 0.40-0.55). The experiments on synthetic data sets with different liquid cloud optical thickness analyze the theoretical
sensitivity of the ACA retrieval. Over land, RMSE decreases as COT increases up to 20, then remains constant, likely due to
surface influence at lower COT. Over ocean, RMSE shows the opposite trend (except at very low COT), as the relatively small
contribution of the ocean surface makes aerosol signals more prominent compared to cloud signals at low COT.

The NN-based approach has been applied to a year of PARASOL data. The retrieved aerosol properties (AOT:-AE550,
AE440—_¢70, and SSAj50) are compared with adjacent clear-sky RemoTAP-PARASOL aerosol retrievals in the same 1° x 1°
grid with-yielding an RMSD of 0.155 for AOT55q, 0.429 for AE449_g70 and 0.0586 for SSAz5q. The PARASOL-NN ACA

retrievals are also compared with the AERO-AC data product (Waquet et al., 2020) and demonstrate reasonably consistent
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other hand, the PARASOL NN seems to slightly underestimate AE in fine mode dominated cases, based on the synthetic
experiments. The seasonal global average of the retrieved ACAOTj559 and the number of ACA events are also analyzed, and

the results show frequent ACA events and a larger mean ACAOT in mid-Africa and North Africa on the western coast in
summer and autumn months, while frequent events in other regions are also observed (e.g., southeastern China in autumn)
with a relatively small averaged ACAOT, which agrees well with the analyses-by—2-analysis by Waquet et al. (2013b) in the
same year 2008. We also observed a distinctively larger AE and a smaller SSA on the western coast of mid-Africa, as a result
of the smoke there. However, it has to be noted that our AE in regions between 45° — 60°N and 45° — 60°S is smaller than that
from the previous research (2)(Waquet et al., 2013b), although the AE of the above-cloud-aeresol- ACA in these regions agrees
well with the AE of the adjacent clear-sky aerosol AE.

Based on the experiments above, it can be concluded that NNs with input of measurements from satellite-borne multi-angular
polarimetric instruments are able to retrieve above-clond-aerosob ACA information, and the NN-based surrogate forward model,
just like the full-physical model, can provide goodness-of-fit mask to filter unphysical retrievals ;—which-may—(e.g. due to
imperfect cloud mask or seme-challenging aerosol/cloud/surface eombinationcombinations). The proposed approach could be
applied for analyzing data from newly developed multi-angle polarimeters. By modifying instrument-specific parameters, such
as the number of viewing angles, spectral channels, and noise configurations during reural-network-NN training, it can be
tailored for existing on-orbit instruments like SPEXone (Hasekamp et al., 2019a; Fu et al., 2025) and HARP2 aboard NASA’s
PACE satellite (Werdell et al., 2019). It can also be adapted for future instruments, e.g., the 3MI (Fougnie et al., 2018) on the
ESA/EUMETSAT Metop SG-A satellite and the Multi-Angle Polarimeter (MAP) on the Copernicus CO2M mission (Spilling
and Thales, 2021), both scheduled for launch in the coming years.

6.0.1 Data availability

The MODIS MYD_06 is from https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MYDO06_L2/ (Platnick et al., 2015).
The PARASOL level-1 data can be downloaded from http://www.icare.univ-lille1.fr/parasol/products (CNES/ICARE, 2018).
The RemoTAP aerosol retrieval results used in the article can be found at {Hasekamp-et-al;2024)https://public.spider.surfsara.
nl/project/spexone/others/PARASOL/DATA/POLDER_0.1x0.1_NPge2/ (Hasekamp et al., 2024). The AERO-AC data can be
found at https://www.icare.univ-lille.fr/aero-ac/ (Waquet et al., 2020).
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Table A1l. Details of the statistical distributions of the aerosol and cloud parameters used to generate the training datasets for cloud mask

NN. Distribution of "RemoTAP" means properties are randomly taken from 2008 PARASOL-RemoTAP L2 database.

parameter min max mean distribution
wind speed (m/s) 0.1 87 7.52 RemoTAP
chl-a concentration 0.001 10 1.92 RemoTAP
Li-sparse 0 0.35 0.14 RemoTAP
Ross-thick 0 1.4 0.41 RemoTAP
Maignan bpdf 0.2 10 3.02 RemoTAP
brdf scaling coefficient (443nm) 0 0.40 0.06 RemoTAP
brdf scaling coefficient (490nm) 0 0.45 0.10 RemoTAP
brdf scaling coefficient (565nm) 0 0.50 0.17 RemoTAP
brdf scaling coefficient (670nm) 0 0.65 0.23 RemoTAP
brdf scaling coefficient (865nm) 0 0.80 0.33 RemoTAP
brdf scaling coefficient (1020nm) 0 0.90 0.37 RemoTAP
effective radius of liquid cloud (ym) 3 25 14 uniform
effective variance of liquid cloud 0.03 0.35 0.19 uniform
cloud optical thickness of liquid cloud 1 40 10.6  log-uniform
cloud layer height of liquid cloud (km) 1 8 5.5 uniform
effective radius of ice cloud (pm) 10 60 30 uniform
cloud optical thickness of ice cloud 1 100 21.5  log-uniform
cloud layer height of ice cloud (km) 8 17 9.5 uniform
aspect ratio of ice cloud crystals 0.179 5592 1.57 log-uniform
distortion of ice cloud crystals 0.1 0.7 0.4 uniform
aerosol effective radius of fine mode 0.02 0.57 0.14 RemoTAP
aerosol effective variance of fine mode 0.01 0.8 0.20 RemoTAP
aerosol optical thickness of fine mode 0 4.58 0.67  log-uniform
aerosol effective radius of dust mode 0.7 6.12 1.89 RemoTAP

aerosol effective variance of dust mode 0.01 0.8 0.58 RemoTAP
aerosol optical thickness of dust mode 0 3.95 0.60  log-uniform
aerosol effective radius of soluble mode 0.7 6.12 3.24 RemoTAP
aerosol effective variance of soluble mode  0.01 0.8 0.59 RemoTAP

aerosol optical thickness of soluble mode 0 3.95 0.60  log-uniform
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Table A2. Details of the statistical distributions of the aerosol and cloud parameters used to generate the training datasets for NN ACA

retrieval. Distribution of "RemoTAP" means properties are randomly taken from 2008 PARASOL-RemoTAP L2 database.

parameter min max mean distribution
effective radius of liquid cloud (xm) 3 25 14 uniform
effective variance of liquid cloud 0.03 035 0.19 uniform
cloud optical thickness of liquid cloud 3 40 143  log-uniform
cloud layer height of liquid cloud (km) 0.4 4 2.2 uniform
aerosol effective radius of fine mode 0.02 057 0.14 RemoTAP
aerosol effective variance of fine mode 0.01 0.8 0.20 RemoTAP
above cloud aerosol optical thickness of fine mode 0 2 0.26  log-uniform
aerosol effective radius of dust mode 0.7 612 1.89 RemoTAP
aerosol effective variance of dust mode 001 0.8 0.58 RemoTAP
above cloud aerosol optical thickness of dust mode 0 2 0.26  log-uniform

Table A3. Details of the statistical distributions of the aerosol and cloud parameters used to generate the training datasets for NN forward

model. The range of aerosol effective radius and effective variance for both fine mode and dust mode is smaller than that for the retrieval,

because here it takes no extreme cases into account, which is relatively rare.

parameter min max mean distribution
effective radius of liquid cloud (um) 3 25 14 uniform
effective variance of liquid cloud 0.03 035 0.19 uniform

cloud optical thickness of liquid cloud 3 40 14.3  log-uniform
cloud layer height of liquid cloud (km) 0.4 4 22 uniform
aerosol effective radius of fine mode 003 03 0.15 uniform
aerosol effective variance of fine mode 0.1 0.3 0.20 uniform

above cloud aerosol optical thickness of fine mode 0 2 0.26  log-uniform
aerosol effective radius of dust mode 0.8 3.0 1.9 uniform
aerosol effective variance of dust mode 0.4 0.8 0.6 uniform

above cloud aerosol optical thickness of dust mode 0 2 0.26  log-uniform
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Appendix B: Statistical distributions of the synthetic datasets for testing

Table B1. Details of the statistical distributions of the aerosol and cloud parameters used to generate the datasets for experiment of fine
mode, dust mode seperate and together. Distribution of "RemoTAP" means properties are randomly taken from 2008 PARASOL-RemoTAP
L2 database.

parameter min max mean distribution
effective radius of liquid cloud (ym) 3 25 14 uniform
effective variance of liquid cloud 0.03 035 0.19 uniform
cloud optical thickness of liquid cloud 3 40 143 log-uniform
cloud layer height of liquid cloud (km) 0.4 4 2.2 uniform
aerosol effective radius of fine mode 0.02 057 0.14 RemoTAP
aerosol effective variance of fine mode 0.01 0.8 0.20 RemoTAP
above cloud aerosol optical thickness of fine mode (if exists) 0 2 0.26  log-uniform
aerosol effective radius of dust mode 07 612 1.89 RemoTAP
aerosol effective variance of dust mode 0.01 0.8 0.58 RemoTAP
above cloud aerosol optical thickness of dust mode (if exists) 0 2 0.26  log-uniform
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Table B2. Details of the statistical distributions of the aerosol and cloud parameters used to generate the datasets for sensitivity analysis of
underlying liquid cloud optical thickness. Distribution of "RemoTAP" means properties are randomly taken from 2008 PARASOL-RemoTAP

L2 database. COT of liquid cloud (distribution "special”) is constant in each experiment for sensitivity tests.

parameter min max mean distribution
wind speed (m/s) 0.1 87 7.52 RemoTAP
chl-a concentration 0.001 10 1.92 RemoTAP
Li-sparse 0 035 0.14 RemoTAP
Ross-thick 0 1.4 041 RemoTAP
Maignan bpdf 0.2 10 3.02 RemoTAP
brdf scaling coefficient (443nm) 0 0.40 0.06 RemoTAP
brdf scaling coefficient (490nm) 0 045 0.10 RemoTAP
brdf scaling coefficient (565nm) 0 0.50 0.17 RemoTAP
brdf scaling coefficient (670nm) 0 0.65 0.23 RemoTAP
brdf scaling coefficient (865nm) 0 0.80 0.33 RemoTAP
brdf scaling coefficient (1020nm) 0 090 0.37 RemoTAP
effective radius of liquid cloud (um) 3 25 14 uniform
effective variance of liquid cloud 0.03 035 0.19 uniform
cloud optical thickness of liquid cloud 3 40 N/A special
cloud layer height of liquid cloud (km) 0.4 4 2.2 uniform
aerosol effective radius of fine mode 0.02 057 0.14 RemoTAP
aerosol effective variance of fine mode 0.01 0.8 0.20 RemoTAP
above cloud aerosol optical thickness of fine mode 0 2 0.26  log-uniform
aerosol effective radius of dust mode 0.7 6.12  1.89 RemoTAP
aerosol effective variance of dust mode 0.01 0.8 0.58 RemoTAP
above cloud aerosol optical thickness of dust mode 0 2 0.26  log-uniform
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