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Abstract 9 

The escalating urban heat, driven by climate change and urbanization, poses significant threats to 10 

residents’ health and urban climate resilience. The coupled radiative-convective-conductive heat transfer 11 

across complex urban geometries makes it challenging to identify the primary causes of urban heat and 12 

develop mitigation strategies. To address this challenge, we develop a GPU-accelerated Urban Surface 13 

Temperature model (GUST) through CUDA architecture. To simulate the complex radiative exchanges 14 

and coupled heat transfer processes, we adopt Monte Carlo method, leveraging GPUs to overcome its 15 

computational intensity while retaining its high accuracy. Radiative exchanges are resolved using a 16 

reverse ray tracing algorithm, while the conduction-radiation-convection mechanism is addressed 17 

through a random walking algorithm. The validation is carried out using the Scaled Outdoor 18 

Measurement of Urban Climate and Health (SOMUCH) experiment, which features a wide range of 19 

urban densities and offers high spatial and temporal resolution. This model exhibits notable accuracy in 20 

simulating urban surface temperatures and their temporal variations across different building densities. 21 

Analysis of the surface energy balance reveals that longwave radiative exchanges between urban surfaces 22 

significantly influence model accuracy, whereas convective heat transfer has a lesser impact. To 23 

demonstrate the applicability of GUST, it is employed to model transient surface temperature 24 

distributions at complex geometries on a neighborhood scale. Leveraging the high computational 25 

efficiency of GPU, the simulation traces 10⁵ rays across 2.3×10⁴ surface elements in each time step, 26 

ensuring both accuracy and high-resolution results for urban surface temperature modeling.  27 
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1. Introduction 28 

Urban overheating has become a pressing issue due to the combination effects of global warming, 29 

heatwaves, and rapid urbanization (Feng et al., 2023). The Urban Heat Island (UHI) effect is 30 

characterized by higher surface and air temperatures in urban areas than in surrounding rural areas, which 31 

exacerbates the urban overheating (Manoli et al., 2019). It is estimated that more than 1.7 billion people 32 

and 13,000 cities are facing urban overheating problems (Tuholske et al., 2021). Exposure to extreme 33 

urban heat poses a significant threat to residents' health, contributing to increased mortality and morbidity  34 

(Ebi et al., 2021).  35 

To tackle urban overheating, a precise understanding of the factors driving excessive surface heat is 36 

essential, making accurate modeling of urban surface temperatures a critical step toward developing 37 

effective mitigation strategies. Urban surface temperatures are commonly simulated with urban land 38 

surface schemes (LSMs). To capture the complex exchanges of energy and momentum within an urban 39 

environment, these schemes range from simplified approaches that represent the city as a single 40 

impervious slab to advanced frameworks that explicitly incorporate the three-dimensional geometry of 41 

buildings with varying heights and material properties. The Urban-PLUMBER project has evaluated 32 42 

such schemes (Grimmond et al., 2010; Grimmond et al., 2011), and classified them into ten categories 43 

based on the level of three-dimensional detail represented. The most detailed of these are the building-44 

resolved schemes, which explicitly solve airflow and heat transfer while representing the full three-45 

dimensional urban landscape.  46 

Building-resolved models, such as VTUF (Nice, 2016) and computational fluid dynamics (CFD) tools 47 

(Carmeliet and Derome, 2024), solve the governing physical processes at high spatial and temporal 48 

resolution. These models are powerful tools for examining the urban thermal balance and identifying the 49 

primary drivers of urban heat (Carmeliet and Derome, 2024). They enable a quantitative evaluation of 50 

the contribution of each process, such as conduction, radiation, and convection, to the overall thermal 51 

balance. This is particularly important for Asia cities, which are characterized by high-density, high-rise 52 

developments and complex urban geometry. Findings from the Scaled Outdoor Measurement of Urban 53 

Climate and Health (SOMUCH) project highlight the intricate influence of building morphology on the 54 



 

3 

 

thermal environment, especially under super-high-density conditions (Hang and Chen, 2022). These 55 

effects arise from complex three-dimensional urban landscapes, including irregular building forms and 56 

intricate shading patterns. Accordingly, models representing high-density Asian cities need greater 57 

accuracy and flexibility to account for these features.  58 

Building-resolved urban surface temperatures are determined by the coupled heat transfer processes of 59 

conduction, radiation, and convection (Krayenhoff and Voogt, 2007). These heat transfer processes in 60 

urban areas differ from those in rural areas. First, urban materials typically have a lower heat capacity, 61 

allowing them to heat up more quickly and reach higher temperatures (Wang et al., 2018). Secondly, the 62 

complex three-dimensional geometry of urban environments leads to multiple reflections, which reduce 63 

reflected solar radiation and limit the longwave heat loss to sky (Yang and Li, 2015). Thirdly, the densely 64 

packed buildings weaken the urban wind and thus reduce the convective transfer and further limit the 65 

heat loss (Wang et al., 2021).  66 

A well-designed building-resolved model needs to accurately capture these heat transfer processes. Table 67 

1 summarizes the models for urban surface temperatures and their schemes for conduction, radiation, 68 

and convection. For heat conduction, 1D models are commonly used due to the relatively thin walls of 69 

buildings in urban areas. For convective heat transfer, both parameterized convective coefficients and 70 

CFD simulations are commonly used. CFD simulations can better capture the spatial variations in air 71 

temperature in densely built urban areas, but the computational cost is much higher.  72 

The key distinction among these models lies in their radiation schemes, as radiation is the primary energy 73 

input into the thermal system of urban surfaces. Moreover, simulating complex urban radiative transfer 74 

requires significant computational resources, necessitating simplifications and parameterizations to make 75 

the simulation more applicable. For the radiative exchange between urban surfaces, the radiosity method 76 

is widely adopted. This approach first collects luminous energy from direct solar and diffuse sky sources 77 

and then redistributes reflected energy according to view factors, which quantify the geometric 78 

relationships among surfaces. View factors can be determined analytically for simple geometries, 79 

estimated with the discrete transfer method (hemisphere discretization and ray counting), or calculated 80 

using Monte Carlo ray tracing (MCRT). However, the radiosity method assumes purely diffuse 81 
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reflections and depends on precise view-factor calculations, making it less accurate for complex urban 82 

geometries and surfaces containing semi-transparent materials.  83 

In contrast, the MCRT approach offers greater flexibility and has been widely employed to model solar 84 

radiation on complex urban surfaces (Kondo et al., 2001). More recently, its use has expanded beyond 85 

radiative transfer to encompass coupled conduction, convection, and radiation processes (Villefranque et 86 

al., 2022). In backward MCRT, the energy of the incident light is divided into a large number of photons. 87 

By tracking the path of these photons and counting the number of photons absorbed, the net solar 88 

radiation reaching a given surface can be calculated. For example, the HTRDR-Urban adopted the 89 

backward MCRT, to calculate the solar radiation considering multiple reflections (Schoetter et al., 2023). 90 

Building on this concept, Tregan et al. (2023) proposed a theoretical framework to solve linearized 91 

transient conduction-radiation problems with Robin's boundary condition in complex 3D urban geometry. 92 

Based on that framework, Caliot et al. (2024) developed a probabilistic model to simulate urban surface 93 

temperatures, using ray-tracing, walk-on-sphere and double randomization techniques. Their model 94 

leverages advancements in computer graphics for image synthesis and the MCM, enabling it to 95 

effectively handle large and complex 3D geometries.  96 

The MCRT method has demonstrated strong capability for accurately modeling coupled heat and 97 

radiation processes in complex urban environments, but its high computational cost and low efficiency 98 

currently limit its application to real-world urban configurations. Although several models listed in Table 99 

1 have been validated against field measurements, others remain unverified and rely on various 100 

assumptions and parameterizations, which reduces confidence in their accuracy. Furthermore, the use of 101 

field measurement data for model validation faces persistent challenges: 1) limited test points due to 102 

regulatory constraints and installation difficulties, 2) uncertainty in infrared imagery caused by varying 103 

view angles, and 3) heterogeneity in the optical and thermal properties of building materials.  104 

This study aims to develop a GPU-accelerated Urban Surface Temperature (GUST) model to enhance 105 

the computational speed of Monte Carlo Method. The model is designed to operate at the neighborhood 106 

scale and to capture microscale processes, including complex shading patterns, multiple reflections of 107 

solar radiation, and longwave radiative exchanges between building surfaces and the ground. The 108 
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ultimate objective is to identify the physical drivers of extreme heat in high-density urban neighborhoods. 109 

The absorption and reflection of longwave and solar radiation on outdoor surfaces modeled using the 110 

reverse Monte Carlo ray tracing (rMCRT) algorithm. The resulting solar and longwave radiation are then 111 

treated as heat flux boundary conditions for the 1D heat conduction model, which employs the Monte 112 

Carlo random walk method to calculate surface temperatures. High spatial-temporal resolution surface 113 

temperature data from a scaled measurement (SOMUCH) is employed to validate the parameterization 114 

and assumptions in this model.  115 

The paper is organized as follows. Sect. 2 outlines the model structure and describes the algorithms used 116 

for the submodels. Sect. 3 presents the validation and evaluation of the model by comparing it with 117 

experimental data. Sect. 4 includes an example demonstrating how the model can be applied to complex 118 

geometries. Sect. 5 discusses the applications, limitations, and future development of the model. Lastly, 119 

Sect. 6 provides the conclusions.  120 

  121 
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Table 1. Overview of building-resolved models for urban surface temperature. The view factors are 122 

solved by both DTM (Discrete transfer method), analytical model, and Monte Carlo ray tracing method.  123 

Model Solar 
Irradiation 

Reflections and 
longwave exchange 

Conduction Convection Validation 

HTRDR-Urban 

(Schoetter et al., 

2023) 

Backward 

Monte Carlo 

ray tracing 

Backward Monte 

Carlo ray tracing 

Monte Carlo 

random 

walking 

Parameterized  N.A. 

MUST (Yang 

and Li, 2013) 

Sunlit-shaded 

distributions 

Radiosity Method, 

DTM view factors  

1D heat 

conduction  

Parameterized  Thermal scanner and 

IRT (Voogt and 
Oke, 1998) 

TUF-3D  

(Krayenhoff 
and Voogt, 
2007) 

Sunlit-shaded 

distributions 

Radiosity Method, 

analytical view 

factors 

1D heat 

conduction  

Parameterized  Thermal scanner and 

IRT (Voogt and 
Oke, 1998) 

SOLENE 
Microclimat 

(Imbert et al., 
2018)  

Sunlit-shaded 

distributions. 

Radiosity Method, 

analytical view 

factors 

1D heat 

conduction  

Coupling CFD 

simulation 

Thermographies 

measurement 

(Hénon et al., 
2012) 

Envi-Met 

(Eingrüber et 
al., 2024) 

Flux reduction 

coefficients 

Radiosity Method, 

DTM view factors 

1D heat 

conduction  

Coupling CFD 

simulation 

Field measurements 

(Forouzandeh, 
2021) 

uDALES 

(Owens et al., 
2024) 

Sunlit-shaded 

distributions 

Radiosity Method, 

DTM view factors 

1D heat 

conduction  

Coupling CFD 

simulation 

N.A. 

PALM (Resler et 
al., 2017)  

Sunlit-shaded 

distributions 

Radiosity Method, 

Analytical and 

DTM view factors 

Empirical heat 

conductivity 

Coupling CFD 

simulation 

Field measurement  

(Resler et al., 
2017) 

MITRAS  

(Salim et al., 
2018) 

Meso-scale 

radiation 

scheme  

Meso-scale 

radiation scheme 

(METRAS) 

Force-restore 

method 

Coupling CFD 

simulation 

N.A. 

OpenFOAM  

(Rodriguez et 
al., 2024) 

Sunlit-shaded 

distributions 

Radiosity Method, 

DTM view factor 

1D heat-

moisture 

diffusion. 

Coupling CFD 

simulation 

N.A. 

FLUENT 

(Toparlar et al., 
2015) 

Sunlit-shaded 

distributions 

Radiosity Method, 

DTM view factor 

Shell 

conduction 

Coupling CFD 

simulation 

Field measurement 

(Toparlar et al., 
2015) 

  124 



 

7 

 

2. Model design 125 

GUST aims to resolve the urban surface temperature by a transient heat conduction model, as illustrated 126 

in Fig. 1. The convective and radiative heat transfer at urban surfaces is treated as boundary conditions 127 

for the 1D heat conduction model. For the outdoor side, the heat flux (𝑞௢௨௧) is the sum of radiative 128 

(longwave 𝑞௟ and solar 𝑞௦) and convective heat flux (𝑞௖,௢௨௧).  129 

𝑞௢௨௧ = 𝑞௟ + 𝑞௦ + 𝑞௖,௢௨௧ ሺ1ሻ 130 

The absorbed solar radiation, 𝑞௦ is the sum of direct solar irradiation (𝑞௦,௢) and diffuse solar irradiation 131 

(𝑞௦,௥), expressed by: 𝑞௦ = 𝑞௦,௢ + 𝑞௦,௥. The longwave radiation flux 𝑞௟ includes the radiation between 132 

urban surfaces (𝑞௟,௨௥௕௔௡) and between urban surfaces and the sky (𝑞௟,௦௞௬), represented as 𝑞௟ =  𝑞௟,௨௥௕௔௡ +133 𝑞௟,௦௞௬.  134 

 135 

Figure 1: The model design of GUST. In this model, 1D transient conductive heat transfer is considered for 136 

urban surfaces the system (e.g., walls, roofs, and ground). They are composed of multiple layers where the 137 

thermal properties are uniform and isotropic. All urban surfaces are assumed to be opaque in this study.  138 
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In this model, all urban surfaces are represented as triangular facets in STL format, with each triangular 139 

facet treated as a single element. Ray tracing and heat-conduction calculations are performed at the 140 

centroid of each element. The spatial resolution of the simulation can be refined by using smaller 141 

triangular facets, thereby increasing the number of elements. Fig. 6 illustrates the triangulated 142 

representation of the urban surfaces.  143 

2.1. Conduction sub-model 144 

The Monte Carlo random walking method is used to solve the 1D heat conduction (Talebi et al., 2017). 145 

Compared to finite volume method, this approach is insensitivity to the complexity of urban geometry 146 

and boundary conditions (Villefranque et al., 2022; Caliot et al., 2024). In the present version, the heat 147 

conduction along the wall span is neglected. The one-dimensional (1D) transient heat conduction 148 

equation is: 149 

𝜕𝜕𝑡 𝑇 =  𝛼 𝜕ଶ𝑇𝜕𝑥ଶ ሺ2ሻ 150 

where 𝛼 = ௞ఘ௖೛ is the solid thermal diffusivity and 𝑘 the thermal conductivity, 𝜌 the density, 𝑐௣ the 151 

specific heat capacity. The ground, walls and roofs are composed of multiple layers. In the Monte Carlo 152 

random walking method, the heat conduction equation is replaced by finite difference approximation as:  153 

𝑇ሺ𝑥, 𝑡 + ∆𝑡ሻ = 𝑃௧𝑇ሺ𝑥, 𝑡ሻ + 𝑃௫ି𝑇ሺ𝑥 − ∆𝑥, 𝑡 + ∆𝑡ሻ + 𝑃௫ା𝑇ሺ𝑥 + ∆𝑥, 𝑡 + ∆𝑡ሻ ሺ3ሻ 154 

where 𝑃௧ = ଵଵାଶி௢  is defined as probability of time step; 𝑃௫ି = 𝑃௫ା = ி௢ଵାଶி௢ . where 𝑃௫ି  and 𝑃௫ା 155 

respectively represent the probabilities of stepping to the points ሺ𝑥 − ∆𝑥, 𝑡ሻ  and ሺ𝑥 + ∆𝑥, 𝑡ሻ . Here, 156 𝐹𝑜 = ௞∆௧ఘ௖೛ሺ∆௫ሻమ These coefficients are nonnegative probabilistic values and  157 

𝑃௧ + 𝑃௫ି + 𝑃௫ା = 0 ሺ4ሻ 158 

The Monte Carlo random walking algorithm is schematically illustrated in Fig. 2. The core idea is that 159 

particles walk by following rules: 160 

1) Start a random walk at point x. 161 

2) Generating a random number (R) between 0 and 1. 162 



 

9 

 

3) Determine walking direction by conditions 163 

ቐ0 < 𝑅 < 𝑃௫ି:                    𝑥 → ሺ𝑥 − ∆𝑥ሻ                                                𝑃௫ି < 𝑅 < ሺ𝑃௫ି + 𝑃௫ାሻ:𝑥 → ሺ𝑥 − ∆𝑥ሻ                                               ሺ𝑃௫ି + 𝑃௫ାሻ < 𝑅:             𝑥 → ሺ𝑥ሻ,𝑇ሺ𝑖ሻ = 𝑇ሺ𝑖ሻ + 𝑇ሺ𝑥, 𝑡 − ∆𝑡ሻ    ሺ5ሻ 164 

4) If the next point is not on the boundary repeat step 2 and 3 and if it is on the boundary, record 𝑇ሺ𝑖ሻ =165 𝑇ሺ𝑖ሻ + 𝑇 at the boundary and go to step 1. 166 

5) After N random walking, temperature at point x is calculated by  167 

𝑇ሺ𝑥ሻ = 𝑇ሺ𝑖ሻ𝑁 ሺ6ሻ 168 

When a particle reaches a heat flux, convective or interface boundary, its movement follows the following 169 

rules.  170 

1) Heat flux boundary  171 

When the particle walks to the boundary of heat flux (q), it is bounced back and record the temperature 172 𝑇௛௙, which is calculate by 𝑇௛௙ = ௤∆௫௞ + ௤ଶ௞ ሺ∆𝑥ሻଶ.  173 

2) Convective boundary  174 

The heat flux of a convective boundary is calculated by 𝑞 = ℎሺ𝑇௪ − 𝑇௔ሻ, where h is the heat transfer 175 

coefficient and 𝑇௪ the wall temperature and 𝑇௔ the air temperature. The wall temperature is calculated 176 

by  177 

𝑇௪ = 11 + 𝐵𝑖 𝑇ሺ𝑥 − ∆𝑥ሻ + 𝐵𝑖1 + 𝐵𝑖 𝑇௔ ሺ7ሻ 178 

Where 𝑃௫ = ଵଵା஻௜ , 𝑃௔ = ஻௜ଵା஻௜ , 𝐵𝑖 = ௛∆௫௞  . When the particle reaches the convective boundary, a new 179 

random number R was generated and moves as follows: 180 

൜ 0 < 𝑅 < 𝑃௫ :           → bounced back                                           𝑃௫ < 𝑅 < 1:            → absorbed by air with Tሺiሻ = Tሺiሻ + 𝑇௔ ሺ8ሻ 181 

3) Interface between two layers 182 

The interface between layers is flux continuity, i.e. the conductive fluxes are equal on both sides of the 183 
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interface. The heat conductivities on left and right sides of the interface are 𝑘஺ and 𝑘஻. The conductive 184 

heat fluxes on both sides are equal, i.e., −𝑘஺ ௗ்ௗ௫ = −𝑘஻ ௗ்ௗ௫. When a particle reaches the interface, it may 185 

be reflected or move to the next layer. A new random number 𝑅 is generated. The particle moves by 186 

following 187 

൜0 < 𝑅 < 𝑃௫ି :         → bounced back to layer A𝑃௫ି < 𝑅 < 1:          → move to layer B                ሺ9ሻ 188 

 189 

Figure 2: Flowchart of the Monte Carlo random walking algorithm for 1D heat conduction. At each point, 190 

the particle movement stops after N random walks. Each walk stops when particle either reaches a fixed 191 

temperature boundary or remains stationary. Orange diamonds indicate decision points with two possible 192 

outcomes (Yes/No).  193 
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2.2. Solar radiation sub-model 194 

The solar radiation 𝑞௦ is calculated on each triangular facet using the reverse Monte Carlo Ray Tracing 195 

(rMCRT) method, which inherently accounts for both shaded and sunlit areas. In the rMCRT, the ray 196 

starts from the target points, instead of starting from the sky or sun in the ray tracing method (Caliot et 197 

al., 2024). This method ensures that enough photons reach the target point to obtain a statistical result.  198 

 199 

Figure 3: Schematic illustration of the reverse MCM ray tracing method for calculating the direct and diffuse 200 

solar radiation.  201 

The procedure of reverse MCRT is schematically explained in Fig. 3. In total, 𝑁 photons leave the target 202 

point in random directions (𝑟), which is determined by the azimuth 𝜃௔ and incidence angle 𝜂௔. These 203 

angles are calculated by 𝜃௔ = 2𝜋𝑅ଵ  and 𝜂௔ = arccosሺ1 − 2𝑅ଶሻ , where 𝑅ଵ  and 𝑅ଶ  are random 204 

numbers between 0 and 1.  205 

When a photon reaches the surface, it can be absorbed or reflected via Lambert’s law. To determine 206 

whether this photon is absorbed, a random number 𝑅௔௕ (ranging from 0 ~ 1) is generated. When 𝑅௔௕ >207 𝛼௦ (surface albedo), the photon is absorbed by the surface. When 𝑅௔௕ < 𝛼௦, the photon is reflected. All 208 

surfaces are considered Lambertian and the direction of reflect solar beam is determined by the azimuth 209 
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𝜃௔  and incidence angle 𝜂௔  of that surface. At each reflection, 𝜃௔  and 𝜂௔  are recalculated by 210 

regenerating new random numbers.  211 

When the photon reaches the “sky” in the direction of 𝑟, its angle (𝜃௡௦) with the reverse solar direction 212 𝜔௦௨௡ሬሬሬሬሬሬሬሬሬ⃗  is calculated. When 𝜃௡௦ < ΔΩௗ, that photon is marked as reaching the “Sun”, otherwise, that 213 

photon is marked as reaching the “Sky”. The direct (𝑞௦,௢) and diffuse (𝑞௦,௥) solar radiation reaching the 214 

target point can then be statistically determined by:  215 

𝑞௦,௢ = 𝜋𝐼௦,௢ΔΩௗ𝑁 ෍ ቚ𝜔→௦௨௡ ⋅ 𝑛→ቚఏ೙ೞழ୼ஐ೏ ሺ10ሻ 216 

𝑞௦,௥ = ෍ 𝐼௦,௥𝑁ఏ೙வௗ୼ஐ೏ ሺ11ሻ 217 

where 𝐼௦,௢ and 𝐼௦,௥ is the direct normal irradiance and diffuse solar radiation. The ratio between the 218 

direct and diffuse solar radiation is calculated by the model proposed by (Reindl et al., 1990).  219 

The rMCRT requires a large number of rays to achieve statistically reliable results. To accelerate the 220 

simulation, the model is run in parallel on GPUs (Graphics Processing Units) using the CUDA® platform 221 

(Yoshida et al., 2024). The advantage of GPUs is that they have a large number of cores, which enables 222 

them to handle many parallel tasks simultaneously. GPUs are particularly well-suited for accelerating 223 

MCRT, since each ray tracing operation is independent.  224 

The GPU parallel computing is executed using two strategies, depending on the total number of elements. 225 

As illustrated in Fig. 4, Strategy 1 calculates the radiative flux point by point, emitting 𝑛 photons for 226 

ray tracing simulation. Each photon is processed in a separate GPU core. Once the ray tracing process is 227 

complete, the results from the GPU cores are copied to the CPU, where radiative flux at each point is 228 

calculated. Strategy 2 calculates the radiative flux for all points simultaneously, with each GPU core 229 

computing the flux for a single point. The ray tracing of 𝑛 photons is performed iteratively on the GPU.  230 

The advantage of Strategy 1 is the efficient utilization of GPU cores when the number of points and 231 

elements is small. However, its disadvantage is that it requires a large amount of memory when the 232 

number of points is large. In contrast, Strategy 2 requires significantly less memory and only transfers 233 

data to the CPU once, making it highly efficient when the number of points and elements is large. 234 
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 235 

Figure 4: Two strategies for GPU parallel computing. (a) The ray tracing is conducted point by point. For 236 

each point, 𝒏 photons are emitted. Each GPU core calculates one photon. (b) The ray tracing is conducted 237 

for all points at one time. Each GPU core calculates one point. The ray tracing of 𝒏 photons is performed 238 

iteratively within the GPU core. 239 

The space angle of the Sun (ΔΩௗ) and the number of photons (N) can significantly affect the accuracy of 240 

reverse MCM. To evaluate this influence, a series of test cases are conducted, in which the direct solar 241 

radiation at a ground point is calculated. The solar radiation on the open ground can be calculated 242 

theoretically, as there is no shading from buildings.  243 

Figure 5 shows the errors of simulations using different values of N and ΔΩௗ. The simulation time of 244 

each case is also indicated in that figure. When the number of photons is increased from 𝑁 = 10ହ to 245 𝑁 = 10଻ , the simulation time increases from 0.05s to 1.15s, which is an increase of 23 times. The 246 
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relatively slow increase in simulation time is a result of the parallel computing capabilities of the GPU. 247 

In each scenario, the model was run 20 times to observe the difference between each run.  248 

A small ΔΩௗ reduce the photon number reaching the Sun, thus increasing the error, where the ΔΩௗ is 249 

calculated from a 2D angle 𝜃 as ΔΩௗ = 2𝜋ሺ1 − cosሺ𝜃ሻሻ. For example, the error in cases with 𝜃 = 3° 250 

greater than that in cases with 𝜃 = 6°. A larger number of photons is needed to compensate for this error. 251 

For example, the case with 𝜃 = 3° and 𝑁 =  10଻ shows acceptable accuracy. However, the case with 252 𝜃 = 6° shows a comparable accuracy when 𝑁 =  10଺ and takes less simulation time.  253 

In the subsequent simulations, 𝜃 = 6° and 𝑁 =  10଺ are applied to balance accuracy and simulation 254 

time. 255 

 256 
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Figure 5: Numerical errors of direct solar radiation estimation using Monte Carlo method. The simulated 257 

solar radiation (𝑰𝒐,𝒔𝒊𝒎) is normalized by the true value (𝑰𝒐,𝒕𝒓𝒖𝒆) and is expressed by (𝑰𝒐∗ = 𝑰𝒐,𝒔𝒊𝒎𝑰𝒐,𝒕𝒓𝒖𝒆), where 𝑰𝒐∗ =258 

𝟏.𝟎 represents an exact reproduction of the solar radiation. The test cases use different space angles of sun 259 𝚫𝛀𝒅 = 𝟐𝝅ሺ𝟏 − 𝐜𝐨𝐬ሺ𝜽ሻሻ and photon numbers (N). The red lines represent the true value, and dots represent 260 

the simulated data.  261 

2.3. Longwave radiation sub-model 262 

The view factors between the surfaces, as well as from the surfaces to the sky, are also calculated using 263 

the Monte Carlo ray tracing model, as illustrated in Fig. 6. The urban surfaces are divided into multiple 264 

triangular elements 𝑁௨௥. The view factor from element 𝑆௜ to element 𝑆௝, denoted as 𝐹௜,௝ , is calculated 265 

by emitting 𝑁  photons from the centroid of element 𝑆௜ . The algorithm then counts the number of 266 

photons 𝑛௜,௝ that reach element 𝑆௝. Finally, the view factor 𝐹௜,௝ is calculated by 𝐹௜,௝ = 𝑛௜,௝/𝑁. The sky 267 

view factor is also determined in this approach by treating the sky as an urban surface. 268 

The longwave radiative heat exchange between the surfaces, as well as from the surfaces to the sky, is 269 

calculated by: 270 

𝑞௟ = 𝐹௜,௦௞௬𝜀ሺ𝑅௟.௜௡ − 𝜎𝑇௜ସሻ + 𝜀𝜎 ෍ 𝐹௜,௝൫𝑇௝ସ − 𝑇௜ସ൯௝ୀேೠೝ
௝ୀଵ ሺ12ሻ 271 

where ε is the material emissivity, 𝜎 is Stefan–Boltzmann constant (= 5.67 × 10-8) (W m-2 K-1), 𝑅௟.௜௡ is 272 

the downward longwave radiation from the sky, 𝐹௜,௦௞௬ is the sky view factor of element 𝑆௜. The surface 273 

temperature from the previous step (𝑇௜ and 𝑇௝) is used to calculate the longwave radiative heat exchange.  274 

 275 

Figure 6: Schematic illustration of how view factors are calculated between urban surface elements. 276 
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2.4. Outdoor convective sub-model  277 

GUST does not calculate urban airflow; instead, it uses empirical formulas to calculate the outdoor 278 

convective heat flux as follows: 279 

𝑞௖,௢௨௧ = 𝑈௙ℎ௢௨௧൫𝑇௪,௢௨௧ − 𝑇௔,௢௨௧൯ ሺ13ሻ 280 

where 𝑇௔,௢௨௧ is the outdoor air temperature in the canopy layer, 𝑈௙ is the wind speed, and convective 281 

heat transfer coefficient ℎ௢௨௧ = 4.5 ቀ ௐ௦୫య୏ቁ is adopted.  282 

The wind speed above the urban canopy layer (UCL) is calculated by a logarithm wind profile: 283 

𝑈ሺ𝑧ሻ = 𝑢∗𝜅 ln ൬𝑧 + 𝑧଴𝑧଴ ൰ ሺ14ሻ 284 

where 𝑧଴= 0.1H based on the estimation of (Grimmond and Oke, 1999).  285 

The wind speed within the UCL is assumed to be uniform and is calculated by the model by Bentham 286 

and Britter (Bentham and Britter, 2003). This model estimates the in-canopy velocity (𝑈௖) based on the 287 

frontal area density (𝜆௙) as follows: 288 

𝑈௖𝑢*
= ቆ 2𝜆௙ቇ଴.ହ ሺ16ሻ 289 

Here, the friction velocity (𝑢*) depends on the urban morphology and is estimated using the following 290 

functions (Yuan et al., 2019): 291 

ቊ𝑢* = 0.12𝑈ଶு ,                                                   for (𝜆௙ > 0.4)𝑢* = 6.7𝑈ଶுଷ − 6.4𝑈ଶுଶ + 1.7𝑈ଶு + 0.03,  for ൫𝜆௙ < 0.4൯ (17) 292 

where 𝑈ଶு is the wind speed at a height of 2H above the ground, and H is the building height.  293 

The air temperature in UCL is assumed to be uniform and calculated by the urban canopy model (Yuan 294 

et al., 2020). This model estimates the in-canopy temperature based on the exchange velocity 𝑈ா and 295 

sensible heat flux 𝑞௖,௢௨௧.  296 

𝑇௖ = 1𝐷௖ 𝑞௖,௢௨௧𝑈ଶு൫1− 𝜆௣൯൭1 − 0.12ቆ 2𝜆௙ቇ଴.ହ൱ + 𝑇௔,ଶு (18) 297 
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where 𝐷௖ = 17.183, is a heat capacity constant of the air, 𝑇௔,ଶு is the air temperature above the roof 298 

level, 𝜆௣ is the plan area density. Bentham and Britter (Bentham and Britter, 2003) suggested that the 299 𝑈ா can be calculated by: 300 

𝑈ா𝑢*
= ൬𝑈ଶு − 𝑈௖𝑢*

൰ିଵ (19) 301 

The 𝑞௖,௢௨௧ is calculated by the temperature from previous time step.  302 

2.5. Indoor sub-model 303 

The indoor side uses a convective boundary condition given by 𝑞௜௡ = ℎ௜௡൫𝑇௪,௜௡ − 𝑇௔,௜௡൯, where 𝑇௔,௜௡ is 304 

the indoor air temperature, 𝑇௪,௜௡  is the wall temperature on indoor side. The indoor heat transfer 305 

coefficient ℎ௜௡ = 13.5 ୛୫మ୏ accounts for both natural convection and longwave radiative heat flux.  306 

For air-conditioned rooms, the indoor air temperature is assumed to be constant at Ta,in = 26 °C. In 307 

contrast, for naturally ventilated rooms, the indoor air temperature is assumed to be equal to the in-canopy 308 

air temperature, represented as Ta,in = Tc.  309 

3. Model validation and assessment 310 

3.1. SOMUCH measurement 311 

The model is validated by cross-compare with the SOMUCH measurement, which is a scale outdoor 312 

field measurement conducted in Guangzhou, P.R. China (23°1′ N, 113°25′ E) (Hang and Chen, 2022; 313 

Hang et al., 2025; Wu et al., 2024). This measurement provides a quality database for evaluating urban 314 

climate models  (Hang et al., 2024; Chen et al., 2025). The campaign conducted from 29th Jan to 1st 315 

Feb 2021 is used. In that campaign, both surface and air temperatures were measured at high resolution, 316 

making it an ideal database for validating current models.  317 

The geometry of the building blocks and measurement points are plotted in Fig. 7. In that measurement, 318 

the urban buildings are modeled by hollow concrete blocks with a size of 0.5 m× 0.5 m× 1.2 m and a 319 

thick of 0.015 m. The blocks are arranged to form street canyons with four different aspect ratios, i.e., 320 

H/W = 1, 2, 3, 6. Each row consists of 24 blocks and has a length of L = 12 m. In the experiment, the 321 

surface and air temperatures are measured using thermocouples (Omega, TT-K-36-SLE, Φ0.127 mm and 322 
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TT-K- 30-SLE, Φ0.255 mm). The wind speeds inside and above the street canyon are measured using 323 

sonic anemometers (Gill WindMaster). The incoming longwave and solar radiation are measured using 324 

weather stations (RainWise PortLog). The thermal characteristics of the concrete and ground are listed 325 

in Table 1.  326 

 327 

Figure 7: Photograph of the SOMUCH experiment (a). The geometry of concrete blocks and measurement 328 

points in SOMUCH (b). The thermocouples are used to measure the surface temperature and air temperature. 329 

The sonic anemometers are used to measure wind speed.  330 

  331 
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Table 2. Thermal properties of the building material. The emissivity is for the longwave radiation and albedo 332 

is for the solar radiation.  333 

Material Density ρ 

(kg m−3) 

Conductivity k 

(W m−1 K−1) 

Specific Heat Capacity cp 

(J kg−1 K−1) 

Emissivity 

ε 

Albedo 

α 

Concrete 2420 2.073 618 0.87 0.24 

 334 

3.2. Cross comparison of the roof temperature 335 

The surface temperature model is validated by cross-comparing with SOMUCH measurement. Many 336 

factors affect the accuracy of the model, including the radiation, convective and conduction. To 337 

separately investigate these factors, the temperatures at roofs are first validated because the total radiative 338 

flux of roof is only influenced by the incoming longwave and solar radiation. The shading effect of other 339 

blocks can be ignored as the block heights are uniform. Therefore, the accuracy of conductive and 340 

convective sub-models can be separately evaluated.  341 

The accuracy of this model is quantitatively evaluated by two statistical parameters, the root mean square 342 

error (RMSE), and coefficient of determination (R2). The RMSE and R2 of 𝑢௫∗  are calculated by: 343 

RMSE = ඩ1𝑛෍(𝑂௜ − 𝑃௜)ଶ௡
௜ୀଵ (21) 344 

Rଶ = 1 − ∑ (𝑂௜ − 𝑃௜)ଶ௡௜ୀଵ∑ ൫𝑂௜ − 𝑂௜൯ଶ௡௜ୀଵ (22) 345 

where 𝑂௜ represents the measured values, 𝑃௜ is the simulated values, 𝑂௜ is the mean of the measured 346 

values, and n is the number of data points. 347 

The wind speed at roof level is needed to calculate the outdoor convective flux of roofs. In SOMUCH 348 

measurement, the wind speed was measured above the roof and at a height of 2𝐻. The wind speed at 349 

roof level is estimated by a logarithm wind profile as: 350 
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𝑈(𝑧) = 𝑢∗𝜅 ln ൬𝑧 + 𝑧଴𝑧଴ ൰ (23) 351 

where 𝑧଴ =  0.1𝐻 based on the estimation of (Grimmond and Oke, 1999). The wind velocity at roof 352 

level (𝑧 =  𝐻 ) can be calculated by ௎ಹ௎మಹ =  0.787 . The outdoor air temperature, incoming solar and 353 

longwave radiation, are from the weather station (𝑧 =  2𝐻).  354 

For the indoor side, the radiative flux between indoor surfaces is ignored in this model. Only the 355 

convective flux is modeled. The convective velocity is assumed to be 3 m/s and CHTC is assumed to be 356 

4.5 for indoor side. Data from the indoor measurement point at 𝐻 = 1.1 m is used. That point is the 357 

nearest measurement point to the roof.  358 

Figure 8(a) plotted the measurement data that was used to drive the model. During the measurements, 359 

the building model was enclosed, leading to the development of very high indoor temperatures. Therefore, 360 

the measured indoor air temperature was used as an input for the validation simulation. Fig. 8(b) shows 361 

the roof surface temperatures from measurement and simulation. Generally, the roof surface temperatures 362 

are well reproduced by the model, because the 𝑅ଶ is 0.99 and 𝑅𝑀𝑆𝐸 is 1.28. The large discrepancy is 363 

found around noon. The model slightly overestimates the roof temperature. The comparison of roof 364 

temperatures shows that the conductive and convective sub-models are reliable.  365 

 366 

Figure 8: Weather data on the measurement date (29 January 2021) is shown in (a). Panel (b) compares roof 367 

surface temperatures from simulation and measurement, where points denote measured data and lines denote 368 
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simulated data. 369 

3.3. Cross comparison of the wall temperature 370 

The temperatures at walls are more complicated than those at the roof because the buildings change the 371 

radiative fluxes and wind speeds in street canyons. The radiative fluxes need to be accurately modelled 372 

as they are the main energy input and have a large impact on the surface temperature. To avoid the 373 

influence of air temperature and wind speed modeling, the canyon air temperature, wind speed, and 374 

indoor temperature are from the measurement. The air temperatures are measured from multiple heights. 375 

For the convective flux modelling, the nearest measured air temperatures are used. The wind speeds from 376 

the sonic anemometer in the street canyon (z = 0.3 m) are used to calculate the convective flux at outdoor 377 

side. The driving data are plotted in Appendix A.  378 

The east and west walls are defined by taking street canyon center as the origin point. The street direction 379 

is tilted from north toward east by 25°. Therefore, the west and east walls are roughly defined to 380 

distinguish them. The street orientation has been modeled in our model and will not cause additional 381 

discrepancy.  382 

Figures 9 and 10 show the comparison of wall temperatures from simulation and measurement. For each 383 

surface, multiple points are compared to avoid the influence of localized anomalies and to ensure that 384 

the evaluation reflects the overall wall-temperature behavior. Generally, the wall temperatures are well 385 

reproduced, particularly their variation trend. The peak hours are well reproduced. For example, there 386 

are two temperature peaks for the west wall. The first one is around 10:00 and the second is around 16:00. 387 

Both simulation and measurement show the same occurring time.  388 

To quantify model performance, the coefficient of determination (𝑅ଶ)  and root‐mean‐square error 389 

(RMSE) were calculated and marked in each sub-figure. Except for the H/W = 6 case, the 𝑅ଶ values 390 

exceeded 0.9 for all walls, confirming a strong correlation between simulation and measurement. For 391 

H/W = 6, 𝑅ଶ is lower because of nighttime underestimation, although the RMSE remains within the 392 

same range as the other cases (1.6 °C to 2.2 °C). The main reason for this discrepancy is that wall 393 

temperatures in deep street canyons (H/W = 6) show only a slight increase compared to the air 394 

temperature, due to minimal sunlight penetration into the canyon. Under these conditions, wall 395 
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temperatures become particularly sensitive to convective and longwave radiative fluxes, which amplifies 396 

the impact of small modeling uncertainties. 397 

 398 

Figure 9: Wall temperature comparison between simulation and measurements for street canyons with aspect 399 

ratios of H/W = 1.0 and 2.0. Surface temperatures were measured on 29 January 2021. The root mean square 400 

error (RMSE) and coefficient of determination (R²) are calculated and shown. Symbols denote measurements, 401 

while lines indicate simulations. The left panel corresponds to west side walls and the right panel to east side 402 

walls.  403 
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 404 

Figure 10: Wall temperature comparison between simulations and measurements, as in Figure 9, but for street 405 

canyons with aspect ratios of H/W = 3 and 6.  406 

3.4. Cross comparison of the ground temperature 407 

The surface temperatures of the ground are heavily influenced by heat storage. During the day, heat is 408 

conducted to deeper layers and stored there. At night, this stored heat is released. Therefore, the initial 409 

temperature field and boundary conditions are critical for accurately modeling surface temperatures. In 410 

this study, an adiabatic boundary condition is applied at a depth of 0.5 m below the ground surface. The 411 

soil material is divided into three layers with thicknesses of 0.2 m, 0.15 m, and 0.15 m. All three layers 412 

are assumed to be made of concrete. The thermal properties in Table 1 are used. The underground 413 
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temperatures are measured by thermocouples with three depths of 5 cm, 10 cm, and 20 cm, as plotted in 414 

Appendix A. In this study, we used only the measured underground temperatures at 0:00 to initialize the 415 

underground temperature field. It is important to note that the available soil temperatures were measured 416 

in open ground rather than under street canyons. This difference may lead to discrepancies in modeling 417 

ground surface temperatures. 418 

Figure 11 shows the ground surface temperatures from measurement and simulation. The ground surface 419 

temperatures are measured at four locations: g1, which is close to west wall; g4, which is close to east 420 

wall; and g2 and g3, which are situated in the middle of the streets. Generally, the temperature variations 421 

are well reproduced by the model. For example, peak temperatures occur sequentially from g1 to g4 due 422 

to the movement of the building's shadow. This phenomenon is observed in both simulations and 423 

measurements.  424 

The accuracy of ground temperatures is lower than that of the wall temperatures in terms of R2. For 425 

example, in 𝐻/𝑊 =  2, the R² values for temperatures at the west wall range from 0.91 to 0.97, while 426 

those at the ground range from 0.67 to 0.90. However, the ground temperatures can be considered well 427 

modeled because the RMSE for ground temperatures is smaller than that for wall temperatures. Using 428 

H/W = 2 as an example, the RMSE values for the west wall range from 0.69 to 1.71 °C, while those for 429 

the ground range from 0.98 to 1.37 °C. This difference between the R² and RMSE values is due to the 430 

ground temperature increase being much lower than that of the walls because of shading, particularly in 431 

deep street canyons.  432 

Uncertainties in the input data may also contribute to the discrepancies between simulation and 433 

measurement. First, the thermal properties of soil can differ significantly from those of concrete blocks. 434 

Secondly, the initial temperature is measured in surrounding area, rather than in street canyons. Thirdly, 435 

since the same initial temperature field is used for all four points, the model is unable to reproduce the 436 

differences between points at night.  437 
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 438 

Figure 11: Ground temperature comparison between the simulation and measurement results at street canyon 439 

aspect ratio of H/W = 1.0, 2.0, 3.0, and 6.0. Surface temperatures are measured on 29th Jan 2021. The root 440 

mean square error (RMSE), and coefficient of determination (R2) are calculated and plotted. The points 441 

represent measured data and lines represent the simulated data.  442 

 443 

3.5. Surface energy balance analysis 444 

The surface temperature comparison indicates that model uncertainties arise from various factors. To 445 

identify the main factors impacting the model accuracy, the energy balance of wall surface is analyzed. 446 
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The heat fluxes of solar (𝑄𝐾), longwave radiation (𝑄𝐿), convection (𝑄𝐻), and conduction (𝑄𝐺) of outer 447 

surface of walls satisfy the following equation:  448 

𝑄௄  +  𝑄௅  +  𝑄ீ  +  𝑄ு  =  0 (24) 449 

Here, the longwave heat flux 𝑄𝐿 is divided into two parts as the heat exchange between wall to sky 450 

(𝑄𝐿,𝑠𝑘𝑦) and to other urban surfaces (𝑄𝐿,𝑢𝑟𝑏𝑎𝑛), expressed as 𝑄𝐿 =  𝑄𝐿,𝑠𝑘𝑦 + 𝑄𝐿,𝑢𝑟𝑏𝑎𝑛. This analysis aims 451 

to determine whether it is necessary to model the longwave heat exchange between urban surfaces, which 452 

requires substantial computational resources.  453 

Figures 12 and 13 show the heat fluxes of walls in the simulation. The heat fluxes of east and west walls 454 

are averaged from five measurement points on each. Our previous work (Mei et al., 2025) demonstrated 455 

that a Monte Carlo ray-tracing approach accurately predicts incident solar radiation. In that study, we 456 

compared the albedo of the urban canopy layer and of street canyons across a range of urban layouts with 457 

in-situ measurements, achieving excellent agreement. 458 

In all cases, longwave radiative heat exchange between urban surfaces plays an important role in the 459 

energy balance, particularly at high aspect ratios. The longwave radiative fluxes from sky only contribute 460 

a small amount of total longwave radiative flux in H/W = 6, as shown in Fig. 12(d) and Fig. 13(d). The 461 

shading effect of buildings creates heterogeneous surface temperatures within the urban canopy layer. 462 

The large temperature differences between surface elements contribute a large portion of the total heat 463 

flux. This highlights the necessity for accurate modeling of longwave heat exchange between urban 464 

surfaces, even though it demands significant computational resources. 465 

The conductive heat flux also contributes a large portion of the total heat flux. It is negative in the 466 

morning and positive in the afternoon, meaning that heat is stored in the building block during the 467 

morning and released in the afternoon. In the reduced scale experiment, buildings were represented by 468 

airtight hollow concrete blocks. Due to the lack of ventilation, the indoor air temperature can rise to 40°469 

C under an outdoor air temperature of 20°C, as shown in Appendix A. This indicates that the indoor air 470 

can also absorb, store, and release a considerable amount of heat. Therefore, accurately modeling indoor 471 

air temperature is essential for effective surface temperature modeling. 472 
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The convective contributes a smaller amount of the total heat flux. In high aspect ratio cases (H/W = 3 473 

and 6), the convective heat fluxes are almost negligible. This is due to the weak wind in the deep street 474 

canyons. In this model, the surface convective heat flux is directly calculated from the wind speeds in 475 

street canyons. This assumption may underestimate the convective flux, especially since natural 476 

convection occurs under weak wind conditions (Fan et al., 2021).  477 

 478 

Figure 12: Diurnal heat fluxes at the east side walls from the simulation. The heat fluxes of solar (𝑸𝑲 ), 479 

longwave radiation (𝑸𝑳), convection (𝑸𝑯), and conduction (𝑸𝑮) are at the outer surface of walls.  480 
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 481 

Figure 13: Diurnal heat fluxes at the west side walls from the simulation. The heat fluxes of solar (𝑸𝑲 ), 482 

longwave radiation (𝑸𝑳), convection (𝑸𝑯), and conduction (𝑸𝑮) are at the outer surface of walls.  483 

4. Application to real urban configuration 484 

To demonstrate the model’s applicability to complex geometries, we simulated a neighborhood 485 

containing 40 buildings within an area of 350 m × 200 m. Building geometries were imported as STL 486 

files comprising approximately 2.3× 104 triangular surface meshes. Surface temperatures were calculated 487 

on the triangular surface elements, as shown in Fig. 6, with shortwave fluxes resolved by a Monte Carlo 488 

ray-tracing scheme using 1×105 photons. The solar position is updated at 30-min intervals to capture both 489 

diurnal and shading variations. Transient heat conduction simulations were performed for 24 h with a 490 
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10-min time step (600 s) on 29 January 2021, consistent with the validation case. Downward solar 491 

radiation, longwave radiation, wind speed, and air temperature were prescribed from the SOMUCH 492 

measurements.  493 

The simulation ran on a local workstation with an NVIDIA RTX 5090D GPU and completed in 26.6 h, 494 

comprising a view-factor calculation (4.2 h), solar-radiation computation (22.2 h), and coupled heat-495 

transfer analysis (0.2 h). 496 

For this demonstration, material-specific reflectance was neglected and a uniform albedo of 0.24 was 497 

applied to all urban surfaces. Walls and roofs were modeled as three concrete layers of 0.10 m each (total 498 

thickness = 0.30 m), while the ground comprised 0.35 m (0.15 m + 0.15 m + 0.05 m) with an adiabatic 499 

bottom boundary. For all layers, thermal properties were fixed to concrete values of thermal conductivity 500 𝑘 =  2.0 W mିଵKିଵ, density 𝜌 =  2420 kg mିଷ, and specific heat capacity 𝑐௣  =  618 𝐽 kgିଵKିଵ. All 501 

model inputs are consolidated into a single YAML configuration file, which specifies the simulation 502 

parameters, weather forcing, geometry paths, surface albedo, and material thermal properties for easy 503 

reproducibility. The buildings are assumed to be naturally ventilated, with the indoor and outdoor air 504 

temperatures being the same. The thermal characteristics of concrete are assumed to be the same as in 505 

the SOMUCH experiment.  506 

The surface temperatures are calculated in three steps: 1) calculate the solar radiative flux of each point 507 

by rMCRT; 2) calculate the view factors between the elements using rMCRT; 3) calculate the surface 508 

temperatures using Monte Carlo random walking. All three steps are processed in parallel on GPU. The 509 

weather data measured on 29th Jan 2021 during the SOMUCH experiment is used as the driving input. 510 

The surface temperatures are calculated from 0:00 to 24:00, with a time step of 30 minutes.  511 

The simulation results were exported in vtk format and visualized using ParaView. Fig. 14 presents the 512 

surface temperature distributions at 09:00, 11:00, 13:00, 15:00, 17:00, and 19:00. The movement of 513 

building shadows and their influence on surface temperatures are clearly visible in these contours, 514 

illustrating the diurnal heating and cooling cycle. These visualizations demonstrate that the model can 515 

represent complex building geometries and can be applied to real urban environments. 516 

The energy balance analysis of the SOMUCH experiment indicates that convective heat transfer plays 517 



 

30 

 

only a minor role. However, due to the experiment’s reduced scale and limited local wind speeds, it 518 

remains uncertain whether this conclusion holds at full scale or under higher wind speed conditions.  519 

 520 

Figure 14: Simulation results show the evolution of surface temperature for the complex building geometries 521 

at 09:00, 11:00, 13:00, 15:00, 17:00, and 19:00. These snapshots capture the diurnal heating and cooling cycle, 522 

highlighting morning warming, peak midday temperatures, and the evening decline.  523 

To further assess the role of the convective model, a wind sensitivity analysis was performed for the real 524 

urban configuration. The baseline wind speed (WF = 1.0) was measured on 29 January 2021, the same 525 

day used for the validation cases. Wind speeds were then systematically increased by factors of 2.0 and 526 

5.0 relative to the baseline to evaluate their influence on urban surface temperatures. The resulting 527 

average surface temperatures of the ground, walls, and roof are shown on Fig. 15. The temperature 528 

evolution in Fig. 15 (a)–(c) demonstrates that increasing the wind factor from WF = 1.0 to 5.0 529 

progressively lowers surface temperatures across all urban elements. Fig. 15 (d) quantifies the 530 

temperature differences relative to the baseline scenario (WF = 1.0), revealing cooling effects of up to 531 

6 °C, with the most pronounced reductions occurring during peak heating hours. Among the three 532 

surfaces, the roof exhibits the greatest sensitivity to wind variations, followed by the ground and then the 533 

walls.  534 
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These results highlight that, at full scale and under high-wind conditions, convective processes can exert 535 

a much stronger influence on urban surface temperatures than indicated by the scaled SOMUCH 536 

experiment. Therefore, future studies are needed to better quantify and model convective effects across 537 

a broader range of wind speeds and length scales. Moreover, under weak-wind conditions, natural 538 

convection becomes especially important, particularly when the temperature difference between the wall 539 

and the atmosphere grows large (Fan et al., 2021; Mei and Yuan, 2021). However, this natural-convective 540 

effect may not be significant in the scaled SOMUCH experiment. 541 

 542 

Figure 15. Wind-sensitivity analysis of urban surface temperatures showing (a) ground, (b) wall, and (c) roof 543 

temperature evolution under different wind factors (WF = 1.0, 2.0, 5.0), and (d) temperature differences 544 

relative to the baseline (WF = 1.0). The baseline wind speed was measured on 29 January 2021, the same day 545 

used for the model-validation cases. 546 
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5. Limitations and future work 547 

This model is a building-resolved urban surface temperature model, focusing on detailed neighborhood-548 

scale processes. Therefore, its application to full city-scale simulations remains limited by computational 549 

cost and is currently best suited for neighborhood-scale. The first version focuses on the complex 550 

radiative exchange in densely built urban areas. The parameters and assumptions are validated against 551 

the idealized scaled outdoor experiment, which uses homogeneous building materials with consistent 552 

albedo and thermal characteristics. Glazing and green infrastructure are not included in this experiment. 553 

The SOMUCH project is currently measuring the impact of glass and green infrastructure. The next 554 

version will expand its capabilities to capture complex urban materials, such as urban trees, green walls, 555 

and glass curtain walls, to better represent real urban configurations. Other limitations include:  556 

 All reflections are assumed to be Lambertian. While this assumption works well for the SOMUCH 557 

measurements, where concrete is used for all urban surfaces, it may not fully capture the reflective 558 

properties of other materials with different surface textures, such as glass or vegetation.  559 

 The high-resolution wall temperature simulation still requires a significant amount of time to 560 

complete, even with parallel computation on GPUs. This is due to the large number of rays (N = 561 

10⁶) required for accurate solar radiation modeling. For each point, the simulation takes about 1 562 

second to finish. However, as the number of test points increases, the overall computational time 563 

grows substantially.  564 

 The dynamic indoor air temperature is not included in this model. It assumes that the indoor air 565 

temperature is equal to the outdoor air temperature for a natural ventilated room. This assumption 566 

may lead to discrepancies, particularly in situations where indoor temperatures differ from outdoor 567 

conditions due to factors such as heat sources, insulation, or limited ventilation. 568 

 The participation of the urban atmosphere is ignored in this study. In the scaled measurements, 569 

longwave radiation travels much shorter distances to adjacent surfaces, which reduces the influence 570 

of atmospheric effects compared to real-world urban environments. 571 

6. Conclusions 572 

This study introduces a GPU-accelerated Urban Surface Temperature model (GUST), which computes 573 
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radiation using Monte Carlo ray tracing and solves heat conduction with a one-dimensional Monte Carlo 574 

random-walk approach. To meet the substantial computational demands of these Monte Carlo 575 

simulations, the model employs GPU-based parallel computing for efficient processing. GUST is 576 

validated against the high-resolution, scaled outdoor experiment SOMUCH, which provides detailed 577 

spatial and temporal measurements. 578 

The radiative heat flux is simulated using a reverse Monte Carlo Ray Tracing method, which allows for 579 

the accurate reproduction of multiple reflections in high-density urban areas. The sensitivity test shows 580 

that 10ହ~10଺ rays are required for each point to accurately model the solar radiation. This large amount 581 

of ray tracing can only be achieved using GPU parallel computing. The Monte Carlo method is also used 582 

to solve the couple heat transfer using random walking algorithms, which is suitable for GPU-based 583 

coding.  584 

The comparison with the SOMUCH experiment shows that the transient surface temperatures on roofs, 585 

walls and the ground are well reproduced. A relatively large discrepancy is observed in cases with high 586 

building density, where the wall temperatures are highly sensitive to convective and longwave radiative 587 

fluxes. The surface energy balance analysis shows that longwave radiation exchange between urban 588 

surfaces plays a critical role across all building densities. In contrast, convective heat flux only plays a 589 

significant role in high-density cases. In future versions, the simulation of convective heat flux could be 590 

improved by simulating urban airflow. 591 

Lastly, this model is implemented to solve the surface temperatures on complex urban buildings, which 592 

are composed of a total of 2.3 × 10ସ surface elements. The GPU allows simultaneous simulation of 593 

heat transfer and view factors across all elements, enabling high-fidelity simulations in real urban 594 

configurations with complex geometries. The current version focuses on the radiation-conduction-595 

convection coupled heat transfer coupled in complex geometries. Future developments will prioritize the 596 

integration of complex glazing systems and green infrastructure in urban environments. 597 

 598 
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Code availability 599 

The SOMUCH measurement data are available upon request. The development of GUST, model 600 

validation, and visualization in this study were conducted using Python 3.8 with CUDA. The source code, 601 

supporting data, and simulation results presented in this paper are archived on Zenodo at 602 

https://doi.org/10.5281/zenodo.17138571 and are freely accessible for research purposes under the 603 

Creative Commons Attribution 4.0 International (CC BY 4.0) license. 604 
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 619 

Appendix A. Indoor and outdoor air temperatures in SOMUCH measurement 620 

The indoor and outdoor air temperatures at different levels in the SOMUCH measurement are plotted in 621 

Fig. A1. These air temperatures serve as input data for the validation cases.  622 
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 625 

 626 

Figure A1: Indoor, outdoor air temperatures, and wind speeds in street canyons that are measured on 29th 627 

Jan 2021. The wind speeds in the street canyon of H/W = 6 were not measured because the sonic anemometer 628 

cannot be installed in such a narrow street. The outdoor air temperatures measured at z = 60 cm in H/W = 2 629 

are unusual, due to an instrument failure. 630 
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Appendix B. Sensitivity test for other days 631 

To further validate the model, we also compared the simulated roof temperatures with measurements over three 632 

consecutive days, from 30 January to 1 February 2021, similar to the analysis presented in Fig. 8. The results are 633 

shown in Fig. A2, which demonstrates excellent agreement between simulated and observed roof temperatures. By 634 

using multiple consecutive days, this comparison minimizes potential bias arising from the single day’s weather 635 

conditions. 636 

(a) 30th Jan 2021 637 

 638 

(b) 31st Jan 2021 639 

 640 

(c) 1st Feb 2021 641 
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 642 

Figure A2: Weather data from 30 January to 1 February 2021 are shown in the left panels. The right panels 643 

compare roof-surface temperatures from simulation and measurement, with points representing observations 644 

and lines representing simulated values. 645 
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