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Abstract 9 

The escalating urban heat, driven by climate change and urbanization, poses significant threats to 10 

residents’ health and urban climate resilience. The coupled radiative-convective-conductive heat transfer 11 

across complex urban geometries makes it challenging to identify the primary causes of urban heat and 12 

develop mitigation strategies. To address this challenge, we develop a GPU-accelerated Urban Surface 13 

Temperature model (GUST) through CUDA architecture. To simulate the complex radiative exchanges 14 

and coupled heat transfer processes, we adopt Monte Carlo method, leveraging GPUs to overcome its 15 

computational intensity while retaining its high accuracy. Radiative exchanges are resolved using a 16 

reverse ray tracing algorithm, while the conduction-radiation-convection mechanism is addressed 17 

through a random walking algorithm. The validation is carried out using the Scaled Outdoor 18 

Measurement of Urban Climate and Health (SOMUCH) experiment, which features a wide range of 19 

urban densities and offers high spatial and temporal resolution. This model exhibits notable accuracy in 20 

simulating urban surface temperatures and their temporal variations across different building densities. 21 

Analysis of the surface energy balance reveals that longwave radiative exchanges between urban surfaces 22 

significantly influence model accuracy, whereas convective heat transfer has a lesser impact. To 23 

demonstrate the applicability of GUST, it is employed to model transient surface temperature 24 

distributions at complex geometries on a neighborhood scale. Leveraging the high computational 25 

efficiency of GPU, the simulation traces 10⁵ rays across 2.3×10⁴ surface elements in each time step, 26 

ensuring both accuracy and high-resolution results for urban surface temperature modeling.  27 
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1. Introduction 28 

Urban overheating has become a pressing issue due to the combination effects of global warming, 29 

heatwaves, and rapid urbanization (Feng et al., 2023). The Urban Heat Island (UHI) effect is 30 

characterized by higher surface and air temperatures in urban areas than in surrounding rural areas, which 31 

exacerbates the urban overheating (Manoli et al., 2019). It is estimated that more than 1.7 billion people 32 

and 13,000 cities are facing urban overheating problems (Tuholske et al., 2021). Exposure to extreme 33 

urban heat poses a significant threat to residents' health, contributing to increased mortality and morbidity  34 

(Ebi et al., 2021).  35 

To tackle urban overheating, a precise understanding of the factors driving excessive surface heat is 36 

essential, making accurate modeling of urban surface temperatures a critical step toward developing 37 

effective mitigation strategies. Urban surface temperatures are commonly simulated with urban land 38 

surface schemes (LSMs). To capture the complex exchanges of energy and momentum within an urban 39 

environment, these schemes range from simplified approaches that represent the city as a single 40 

impervious slab to advanced frameworks that explicitly incorporate the three-dimensional geometry of 41 

buildings with varying heights and material properties. The Urban-PLUMBER project has evaluated 32 42 

such schemes (Grimmond et al., 2010; Grimmond et al., 2011), and classified them into ten categories 43 

based on the level of three-dimensional detail represented. The most detailed of these are the building-44 

resolved schemes, which explicitly solve airflow and heat transfer while representing the full three-45 

dimensional urban landscape.  46 

Building-resolved models, such as VTUF (Nice, 2016) and computational fluid dynamics (CFD) tools 47 

(Carmeliet and Derome, 2024), solve the governing physical processes at high spatial and temporal 48 

resolution. These models are powerful tools for examining the urban thermal balance and identifying the 49 

primary drivers of urban heat (Carmeliet and Derome, 2024). They enable a quantitative evaluation of 50 

the contribution of each process, such as conduction, radiation, and convection, to the overall thermal 51 

balance. This is particularly important for Asian cities, which are characterized by high-density, high-52 

rise developments and complex urban geometry. Findings from the Scaled Outdoor Measurement of 53 

Urban Climate and Health (SOMUCH) project highlight the intricate influence of building morphology 54 
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on the thermal environment, especially under super-high-density conditions (Hang and Chen, 2022). 55 

These effects arise from complex three-dimensional urban landscapes, including irregular building forms 56 

and intricate shading patterns. Accordingly, models representing high-density Asian cities need greater 57 

accuracy and flexibility to account for these features.  58 

Building-resolved urban surface temperatures are determined by the coupled heat transfer processes of 59 

conduction, radiation, and convection (Krayenhoff and Voogt, 2007). These heat transfer processes in 60 

urban areas differ from those in rural areas. First, urban materials typically have a lower heat capacity, 61 

allowing them to heat up more quickly and reach higher temperatures (Wang et al., 2018). Secondly, the 62 

complex three-dimensional geometry of urban environments leads to multiple reflections, which enhance 63 

the absorption of solar radiation by surfaces and reduce the net reflected radiation escaping to the 64 

atmospherethe complex three-dimensional geometry of urban environments leads to multiple reflections, 65 

which reduce reflected solar radiation and limit the longwave heat loss to sky (Yang and Li, 2015). 66 

Thirdly, the densely packed buildings weaken the urban wind and thus reduce the convective transfer 67 

and further limit the heat loss (Wang et al., 2021).  68 

A well-designed building-resolved model needs to accurately capture these heat transfer processes. Table 69 

1 summarizes the models for urban surface temperatures and their schemes for conduction, radiation, 70 

and convection. For heat conduction, 1D models are commonly used due to the relatively thin walls of 71 

buildings in urban areas. For convective heat transfer, both parameterized convective coefficients and 72 

CFD simulations are commonly used. CFD simulations can better capture the spatial variations in air 73 

temperature in densely built urban areas, but the computational cost is much higher.  74 

The key distinction among these models lies in their radiation schemes, as radiation is the primary energy 75 

input into the thermal system of urban surfaces. Moreover, simulating complex urban radiative transfer 76 

requires significant computational resources, necessitating simplifications and parameterizations to make 77 

the simulation more applicable. For the radiative exchange between urban surfaces, the radiosity method 78 

is widely adopted. This approach first collects luminous energy from direct solar and diffuse sky sources 79 

and then redistributes reflected energy according to view factors, which quantify the geometric 80 

relationships among surfaces. View factors can be determined analytically for simple geometries, 81 
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estimated with the discrete transfer method (hemisphere discretization and ray counting), or calculated 82 

using Monte Carlo ray tracing (MCRT). However, the radiosity method assumes purely diffuse 83 

reflections and depends on precise view-factor calculations, making it less accurate for complex urban 84 

geometries and surfaces containing semi-transparent materials.  85 

In contrast, the MCRT approach offers greater flexibility and has been widely employed to model solar 86 

radiation on complex urban surfaces (Kondo et al., 2001). More recently, its use has expanded beyond 87 

radiative transfer to encompass coupled conduction, convection, and radiation processes (Villefranque et 88 

al., 2022). In backward MCRT, the energy of the incident light is divided into a large number of photons. 89 

By tracking the path of these photons and counting the number of photons absorbed, the net solar 90 

radiation reaching a given surface can be calculated. For example, the HTRDR-Urban adopted the 91 

backward MCRT, to calculate the solar radiation considering multiple reflections (Schoetter et al., 2023). 92 

Building on this concept, Tregan et al. (2023) proposed a theoretical framework to solve linearized 93 

transient conduction-radiation problems with Robin's boundary condition in complex 3D urban geometry. 94 

Based on that framework, Caliot et al. (2024) developed a probabilistic model to simulate urban surface 95 

temperatures, using ray-tracing, walk-on-sphere and double randomization techniques. Their model 96 

leverages advancements in computer graphics for image synthesis and the MCM, enabling it to 97 

effectively handle large and complex 3D geometries.  98 

The MCRT method has demonstrated strong capability for accurately modeling coupled heat and 99 

radiation processes in complex urban environments, but its high computational cost and low efficiency 100 

currently limit its application to real-world urban configurations. Although several models listed in Table 101 

1 have been validated against field measurements, others remain unverified and rely on various 102 

assumptions and parameterizations, which reduces confidence in their accuracy. Furthermore, the use of 103 

field measurement data for model validation faces persistent challenges: 1) limited test points due to 104 

regulatory constraints and installation difficulties, 2) uncertainty in infrared imagery caused by varying 105 

view angles, and 3) heterogeneity in the optical and thermal properties of building materials.  106 

This study aims to develop a GPU-accelerated Urban Surface Temperature (GUST) model to enhance 107 

the computational speed of Monte Carlo Method. The model is designed to operate at the neighborhood 108 
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scale and to capture microscale processes, including complex shading patterns, multiple reflections of 109 

solar radiation, and longwave radiative exchanges between building surfaces and the ground. The 110 

ultimate objective is to identify the physical drivers of extreme heat in high-density urban neighborhoods. 111 

The absorption and reflection of longwave and solar radiation on outdoor surfaces modeled using the 112 

reverse Monte Carlo ray tracing (rMCRT) algorithm. The resulting solar and longwave radiation are then 113 

treated as heat flux boundary conditions for the 1D heat conduction model, which employs the Monte 114 

Carlo random walk method to calculate surface temperatures. High spatial-temporal resolution surface 115 

temperature data from a scaled measurement (SOMUCH) is employed to validate the parameterization 116 

and assumptions in this model.  117 

The paper is organized as follows. Sect. 2 outlines the model structure and describes the algorithms used 118 

for the submodels. Sect. 3 presents the validation and evaluation of the model by comparing it with 119 

experimental data. Sect. 4 includes an example demonstrating how the model can be applied to complex 120 

geometries. Sect. 5 discusses the applications, limitations, and future development of the model. Lastly, 121 

Sect. 6 provides the conclusions.  122 

  123 



 

6 

 

Table 1. Overview of building-resolved models for urban surface temperature. The view factors are 124 

solved by both DTM (Discrete transfer method), analytical model, and Monte Carlo ray tracing method.  125 

Model Solar 

Irradiation 

Reflections and 

longwave exchange 

Conduction Convection Validation 

HTRDR-Urban 

(Schoetter et al., 

2023) 

Backward 

Monte Carlo 

ray tracing 

Backward Monte 

Carlo ray tracing 

Monte Carlo 

random 

walking 

Parameterized  N.A. 

MUST (Yang 

and Li, 2013) 

Sunlit-shaded 

distributions 

Radiosity Method, 

DTM view factors  

1D heat 

conduction  

Parameterized  Thermal scanner and 

IRT (Voogt and 

Oke, 1998) 

TUF-3D  

(Krayenhoff 

and Voogt, 

2007) 

Sunlit-shaded 

distributions 

Radiosity Method, 

analytical view 

factors 

1D heat 

conduction  

Parameterized  Thermal scanner and 

IRT (Voogt and 

Oke, 1998) 

SOLENE 

Microclimat 

(Imbert et al., 

2018)  

Sunlit-shaded 

distributions. 

Radiosity Method, 

analytical view 

factors 

1D heat 

conduction  

Coupling CFD 

simulation 

Thermographies 

measurement 

(Hénon et al., 

2012) 

Envi-Met 

(Eingrüber et 

al., 2024) 

Flux reduction 

coefficients 

Radiosity Method, 

DTM view factors 

1D heat 

conduction  

Coupling CFD 

simulation 

Field measurements 

(Forouzandeh, 

2021) 

uDALES 

(Owens et al., 

2024) 

Sunlit-shaded 

distributions 

Radiosity Method, 

DTM view factors 

1D heat 

conduction  

Coupling CFD 

simulation 

N.A. 

PALM (Resler et 

al., 2017)  

Sunlit-shaded 

distributions 

Radiosity Method, 

Analytical and 

DTM view factors 

Empirical heat 

conductivity 

Coupling CFD 

simulation 

Field measurement  

(Resler et al., 

2017) 

MITRAS  

(Salim et al., 

2018) 

Meso-scale 

radiation 

scheme  

Meso-scale 

radiation scheme 

(METRAS) 

Force-restore 

method 

Coupling CFD 

simulation 

N.A. 

OpenFOAM  

(Rodriguez et 

al., 2024) 

Sunlit-shaded 

distributions 

Radiosity Method, 

DTM view factor 

1D heat-

moisture 

diffusion. 

Coupling CFD 

simulation 

N.A. 

FLUENT 

(Toparlar et al., 

2015) 

Sunlit-shaded 

distributions 

Radiosity Method, 

DTM view factor 

Shell 

conduction 

Coupling CFD 

simulation 

Field measurement 

(Toparlar et al., 

2015) 

  126 
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2. Model design 127 

The main objective of GUST is to resolve the coupled radiative–convective–conductive heat transfer 128 

processes occurring across complex urban geometries. These coupled processes represent one of the core 129 

physical mechanisms driving the urban heat island effects (Manoli et al., 2019). The model is developed 130 

based on reduced-scale outdoor measurements conducted within a simplified urban environment (Hang 131 

and Chen, 2022). In this experimental setup, complex glazing systems and green infrastructure are 132 

intentionally excluded to isolate and validate the core radiative–convective–conductive heat transfer 133 

mechanisms. GUST uses a time-dependent heat conduction model to couple radiative, convective, and 134 

conductive heat transfer processes,GUST aims to resolve the urban surface temperature by a transient 135 

heat conduction model, as illustrated in Fig. 1.  136 

The convective and radiative heat transfer at urban surfaces is treated as boundary conditions for the 1D 137 

heat conduction model. For the outdoor side, the heat flux (𝑞௢௨௧) is the sum of radiative (longwave 𝑞௟ 138 

and solar 𝑞௦) and convective heat flux (𝑞௖,௢௨௧).  139 

𝑞௢௨௧ ൌ 𝑞௟ ൅ 𝑞௦ ൅ 𝑞௖,௢௨௧ ሺ1ሻ 140 

The absorbed solar radiation, 𝑞௦ is the sum of direct solar irradiation (𝑞௦,௢) and diffuse solar irradiation 141 

(𝑞௦,௥), expressed by: 𝑞௦ ൌ 𝑞௦,௢ ൅ 𝑞௦,௥. The longwave radiation flux 𝑞௟ includes the radiation between 142 

urban surfaces (𝑞௟,௨௥௕௔௡) and between urban surfaces and the sky (𝑞௟,௦௞௬), represented as 𝑞௟ ൌ  𝑞௟,௨௥௕௔௡ ൅143 

𝑞௟,௦௞௬.  144 
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 145 

Figure 1: The model design of GUST. In this model, 1D transient conductive heat transfer is considered for 146 

urban surfaces the system (e.g., walls, roofs, and ground). They are composed of multiple layers where the 147 

thermal properties are uniform and isotropic. All urban surfaces are assumed to be opaque in this study.  148 

In this model, all urban surfaces are represented as triangular facets in STL format, with each triangular 149 

facet treated as a single element. Ray tracing and heat-conduction calculations are performed at the 150 

centroid of each element. The spatial resolution of the simulation can be refined by using smaller 151 

triangular facets, thereby increasing the number of elements. Fig. 6 illustrates the triangulated 152 

representation of the urban surfaces.  153 

2.1. Conduction sub-model 154 

The Monte Carlo random walking method is used to solve the 1D heat conduction (Talebi et al., 2017). 155 

Compared to finite volume method, this approach is insensitiveity to the complexity of urban geometry 156 

and boundary conditions (Villefranque et al., 2022; Caliot et al., 2024). In the present version, the heat 157 

conduction along the wall span is neglected. The one-dimensional (1D) transient heat conduction 158 

equation is: 159 
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𝜕
𝜕𝑡
𝑇 ൌ  𝛼

𝜕ଶ𝑇
𝜕𝑥ଶ

ሺ2ሻ 160 

where 𝛼 ൌ
௞

ఘ௖೛
 is the solid thermal diffusivity and 𝑘 the thermal conductivity, 𝜌 the density, 𝑐௣ the 161 

specific heat capacity. The ground, walls and roofs are composed of multiple layers. In the Monte Carlo 162 

random walking method, the heat conduction equation is replaced by finite difference approximation as:  163 

𝑇ሺ𝑥, 𝑡 ൅ ∆𝑡ሻ ൌ 𝑃௧𝑇ሺ𝑥, 𝑡ሻ ൅ 𝑃௫ି𝑇ሺ𝑥 െ ∆𝑥, 𝑡 ൅ ∆𝑡ሻ ൅ 𝑃௫ା𝑇ሺ𝑥 ൅ ∆𝑥, 𝑡 ൅ ∆𝑡ሻ ሺ3ሻ 164 

where 𝑃௧ ൌ
ଵ

ଵାଶி௢
  is defined as probability of time step; 𝑃௫ି ൌ 𝑃௫ା ൌ

ி௢

ଵାଶி௢
 . where 𝑃௫ି  and 𝑃௫ା 165 

respectively represent the probabilities of stepping to the points ሺ𝑥 െ ∆𝑥, 𝑡ሻ  and ሺ𝑥 ൅ ∆𝑥, 𝑡ሻ . Here, 166 

𝐹𝑜 ൌ
௞∆௧

ఘ௖೛ሺ∆௫ሻమ
 These coefficients are nonnegative probabilistic values and  167 

𝑃௧ ൅ 𝑃௫ି ൅ 𝑃௫ା ൌ 0 ሺ4ሻ 168 

The Monte Carlo random walking algorithm is schematically illustrated in Fig. 2. The core idea is that 169 

particles walk by following rules: 170 

1) Start a random walk at point x. 171 

2) Generating a random number (R) between 0 and 1. 172 

3) Determine walking direction by conditions 173 

ቐ
0 ൏ 𝑅 ൏ 𝑃௫ି:                    𝑥 → ሺ𝑥 െ ∆𝑥ሻ                                                
𝑃௫ି ൏ 𝑅 ൏ ሺ𝑃௫ି ൅ 𝑃௫ାሻ: 𝑥 → ሺ𝑥 െ ∆𝑥ሻ                                               
ሺ𝑃௫ି ൅ 𝑃௫ାሻ ൏ 𝑅:             𝑥 → ሺ𝑥ሻ,𝑇ሺ𝑖ሻ ൌ 𝑇ሺ𝑖ሻ ൅ 𝑇ሺ𝑥, 𝑡 െ ∆𝑡ሻ    

ሺ5ሻ 174 

4) If the next point is not on the boundary repeat step 2 and 3 and if it is on the boundary, record 𝑇ሺ𝑖ሻ ൌ175 

𝑇ሺ𝑖ሻ ൅ 𝑇 at the boundary and go to step 1. 176 

5) After N random walking, temperature at point x is calculated by  177 

𝑇ሺ𝑥ሻ ൌ
𝑇ሺ𝑖ሻ

𝑁
ሺ6ሻ 178 

When a particle reaches a heat flux, convective or interface boundary, its movement follows the following 179 

rules.  180 
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1) Heat flux boundary  181 

When the particle walks to the boundary of heat flux (q), it is bounced back and record the temperature 182 

𝑇௛௙, which is calculate by 𝑇௛௙ ൌ
௤∆௫

௞
൅

௤

ଶ௞
ሺ∆𝑥ሻଶ.  183 

2) Convective boundary  184 

The heat flux of a convective boundary is calculated by 𝑞 ൌ ℎሺ𝑇௪ െ 𝑇௔ሻ, where h is the heat transfer 185 

coefficient and 𝑇௪ the wall temperature and 𝑇௔ the air temperature. The wall temperature is calculated 186 

by  187 

𝑇௪ ൌ
1

1 ൅ 𝐵𝑖
𝑇ሺ𝑥 െ ∆𝑥ሻ ൅

𝐵𝑖
1 ൅ 𝐵𝑖

𝑇௔ ሺ7ሻ 188 

Where 𝑃௫ ൌ
ଵ

ଵା஻௜
 , 𝑃௔ ൌ

஻௜

ଵା஻௜
 , 𝐵𝑖 ൌ

௛∆௫

௞
 . When the particle reaches the convective boundary, a new 189 

random number R was generated and moves as follows: 190 

൜
0 ൏ 𝑅 ൏ 𝑃௫ :           → bounced back                                           
𝑃௫ ൏ 𝑅 ൏ 1:            → absorbed by air with Tሺiሻ ൌ Tሺiሻ ൅ 𝑇௔

ሺ8ሻ 191 

3) Interface between two layers 192 

The interface between layers is flux continuity, i.e. the conductive fluxes are equal on both sides of the 193 

interface. The heat conductivities on left and right sides of the interface are 𝑘஺ and 𝑘஻. The conductive 194 

heat fluxes on both sides are equal, i.e., െ𝑘஺
ௗ்

ௗ௫
ൌ െ𝑘஻

ௗ்

ௗ௫
. When a particle reaches the interface, it may 195 

be reflected or move to the next layer. A new random number 𝑅 is generated. The particle moves by 196 

following 197 

൜
0 ൏ 𝑅 ൏ 𝑃௫ି :         → bounced back to layer A
𝑃௫ି ൏ 𝑅 ൏ 1:          → move to layer B                

ሺ9ሻ 198 
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 199 

Figure 2: Flowchart of the Monte Carlo random walking algorithm for 1D heat conduction. At each point, 200 

the particle movement stops after N random walks. Each walk stops when particle either reaches a fixed 201 

temperature boundary or remains stationary. Orange diamonds indicate decision points with two possible 202 

outcomes (Yes/No).  203 

2.2. Solar radiation sub-model 204 

The solar radiation 𝑞௦ is calculated on each triangular facet using the reverse Monte Carlo Ray Tracing 205 

(rMCRT) method, which inherently accounts for both shaded and sunlit areas. In the rMCRT, the ray 206 

starts from the target points, instead of starting from the sky or sun in the ray tracing method (Caliot et 207 

al., 2024). This method ensures that enough photons reach the target point to obtain a statistical result.  208 
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 209 

Figure 3: Schematic illustration of the reverse MCM ray tracing method for calculating the direct and diffuse 210 

solar radiation.  211 

The procedure of reverse MCRT is schematically explained in Fig. 3. In total, 𝑁 photons leave the target 212 

point in random directions (𝑟), which is determined by the azimuth 𝜃௔ and incidence angle 𝜂௔. These 213 

angles are calculated by 𝜃௔ ൌ 2𝜋𝑅ଵ  and 𝜂௔ ൌ arccosሺ1 െ 2𝑅ଶሻ , where 𝑅ଵ  and 𝑅ଶ  are random 214 

numbers between 0 and 1.  215 

When a photon reaches the surface, it can be absorbed or reflected via Lambert’s law. To determine 216 

whether this photon is absorbed, a random number 𝑅௔௕ (ranging from 0 ~ 1) is generated. When 𝑅௔௕ ൐217 

𝛼௦ (surface albedo), the photon is absorbed by the surface. When 𝑅௔௕ ൏ 𝛼௦, the photon is reflected. All 218 

surfaces are considered Lambertian and the direction of reflect solar beam is determined by the azimuth 219 

𝜃௔  and incidence angle 𝜂௔  of that surface. At each reflection, 𝜃௔  and 𝜂௔  are recalculated by 220 

regenerating new random numbers.  221 

When the photon reaches the “sky” in the direction of 𝑟, its angle (𝜃௡௦) with the reverse solar direction 222 

𝜔௦௨௡ሬሬሬሬሬሬሬሬሬ⃗  is calculated. When 𝜃௡௦ < ΔΩௗ, that photon is marked as reaching the “Sun”, otherwise, that 223 

photon is marked as reaching the “Sky”. The direct (𝑞௦,௢) and diffuse (𝑞௦,௥) solar radiation reaching the 224 
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target point can then be statistically determined by:  225 

𝑞௦,௢ ൌ
𝜋𝐼௦,௢

ΔΩௗ𝑁
෍ ቚ𝜔

→
௦௨௡ ⋅ 𝑛

→
ቚ

ఏ೙ೞழ୼ஐ೏

ሺ10ሻ 226 

𝑞௦,௥ ൌ ෍
𝐼௦,௥

𝑁
ఏ೙வௗ୼ஐ೏

ሺ11ሻ 227 

where 𝐼௦,௢ and 𝐼௦,௥ is the direct normal irradiance and diffuse solar radiation. The ratio between the 228 

direct and diffuse solar radiation is calculated by the model proposed by (Reindl et al., 1990).  229 

The rMCRT requires a large number of rays to achieve statistically reliable results. To accelerate the 230 

simulation, the model is run in parallel on GPUs (Graphics Processing Units) using the CUDA® platform 231 

(Yoshida et al., 2024). The advantage of GPUs is that they have a large number of cores, which enables 232 

them to handle many parallel tasks simultaneously. GPUs are particularly well-suited for accelerating 233 

MCRT, since each ray tracing operation is independent.  234 

The GPU parallel computing is executed using two strategies, depending on the total number of elements. 235 

As illustrated in Fig. 4, Strategy 1 calculates the radiative flux point by point, emitting 𝑛 photons for 236 

ray tracing simulation. Each photon is processed in a separate GPU core. Once the ray tracing process is 237 

complete, the results from the GPU cores are copied to the CPU, where radiative flux at each point is 238 

calculated. Strategy 2 calculates the radiative flux for all points simultaneously, with each GPU core 239 

computing the flux for a single point. The ray tracing of 𝑛 photons is performed iteratively on the GPU.  240 

The advantage of Strategy 1 is the efficient utilization of GPU cores when the number of points and 241 

elements is small. However, its disadvantage is that it requires a large amount of memory when the 242 

number of points is large. In contrast, Strategy 2 requires significantly less memory and only transfers 243 

data to the CPU once, making it highly efficient when the number of points and elements is large. 244 
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 245 

Figure 4: Two strategies for GPU parallel computing. (a) The ray tracing is conducted point by point. For 246 

each point, 𝒏 photons are emitted. Each GPU core calculates one photon. (b) The ray tracing is conducted 247 

for all points at one time. Each GPU core calculates one point. The ray tracing of 𝒏 photons is performed 248 

iteratively within the GPU core. 249 

The space angle of the Sun (ΔΩௗ) and the number of photons (N) can significantly affect the accuracy of 250 

reverse MCM. To evaluate this influence, a series of test cases are conducted, in which the direct solar 251 

radiation at a ground point is calculated. The solar radiation on the open ground can be calculated 252 

theoretically, as there is no shading from buildings.  253 

Figure 5 shows the errors of simulations using different values of N and ΔΩௗ. The simulation time of 254 

each case is also indicated in that figure. When the number of photons is increased from 𝑁 ൌ 10ହ to 255 

𝑁 ൌ 10଻ , the simulation time increases from 0.05s to 1.15s, which is an increase of 23 times. The 256 
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relatively slow increase in simulation time is a result of the parallel computing capabilities of the GPU. 257 

In each scenario, the model was run 20 times to observe the difference between each run.  258 

A small ΔΩௗ reduce the photon number reaching the Sun, thus increasing the error, where the ΔΩௗ is 259 

calculated from a 2D angle 𝜃 as ΔΩௗ ൌ 2𝜋ሺ1 െ cosሺ𝜃ሻሻ. For example, the error in cases with 𝜃 ൌ 3° 260 

greater than that in cases with 𝜃 ൌ 6°. A larger number of photons is needed to compensate for this error. 261 

For example, the case with 𝜃 ൌ 3° and 𝑁 ൌ  10଻ shows acceptable accuracy. However, the case with 262 

𝜃 ൌ 6° shows a comparable accuracy when 𝑁 ൌ  10଺ and takes less simulation time.  263 

In the subsequent simulations, 𝜃 ൌ 6° and 𝑁 ൌ  10଺ are applied to balance accuracy and simulation 264 

time. 265 

 266 
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Figure 5: Numerical errors of direct solar radiation estimation using Monte Carlo method. The simulated 267 

solar radiation (𝑰𝒐,𝒔𝒊𝒎) is normalized by the true value (𝑰𝒐,𝒕𝒓𝒖𝒆) and is expressed by (𝑰𝒐∗ ൌ
𝑰𝒐,𝒔𝒊𝒎

𝑰𝒐,𝒕𝒓𝒖𝒆
), where 𝑰𝒐∗ ൌ268 

𝟏.𝟎 represents an exact reproduction of the solar radiation. The test cases use different space angles of sun 269 

𝚫𝛀𝒅 ൌ 𝟐𝝅ሺ𝟏 െ 𝐜𝐨𝐬ሺ𝜽ሻሻ and photon numbers (N). The red lines represent the true value, and dots represent 270 

the simulated data.  271 

2.3. Longwave radiation sub-model 272 

The view factors between the surfaces, as well as from the surfaces to the sky, are also calculated using 273 

the Monte Carlo ray tracing model, as illustrated in Fig. 6. The urban surfaces are divided into multiple 274 

triangular elements 𝑁௨௥. The view factor from element 𝑆௜ to element 𝑆௝, denoted as 𝐹௜,௝ , is calculated 275 

by emitting 𝑁  photons from the centroid of element 𝑆௜ . The algorithm then counts the number of 276 

photons 𝑛௜,௝ that reach element 𝑆௝. Finally, the view factor 𝐹௜,௝ is calculated by 𝐹௜,௝ ൌ 𝑛௜,௝/𝑁. The sky 277 

view factor is also determined in this approach by treating the sky as an urban surface. 278 

The longwave radiative heat exchange between the surfaces, as well as from the surfaces to the sky, is 279 

calculated by: 280 

𝑞௟ ൌ 𝐹௜,௦௞௬𝜀ሺ𝑅௟.௜௡ െ 𝜎𝑇௜
ସሻ ൅ 𝜀𝜎 ෍ 𝐹௜,௝൫𝑇௝

ସ െ 𝑇௜
ସ൯

௝ୀேೠೝ

௝ୀଵ

ሺ12ሻ 281 

where ε is the material emissivity, 𝜎 is Stefan–Boltzmann constant (= 5.67 × 10-8) (W m-2 K-1), 𝑅௟.௜௡ is 282 

the downward longwave radiation from the sky, 𝐹௜,௦௞௬ is the sky view factor of element 𝑆௜. The surface 283 

temperature from the previous step (𝑇௜ and 𝑇௝) is used to calculate the longwave radiative heat exchange.  284 

 285 

Figure 6: Schematic illustration of how view factors are calculated between urban surface elements. 286 
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2.4. Outdoor convective sub-model  287 

GUST does not calculate urban airflow; instead, it uses empirical formulas to calculate the outdoor 288 

convective heat flux as follows: 289 

𝑞௖,௢௨௧ ൌ 𝑈௙ℎ௢௨௧൫𝑇௪,௢௨௧ െ 𝑇௔,௢௨௧൯ ሺ13ሻ 290 

where 𝑇௔,௢௨௧ is the outdoor air temperature in the canopy layer, 𝑈௙ is the wind speed, and convective 291 

heat transfer coefficient ℎ௢௨௧ ൌ 4.5 ቀ
ௐ௦

୫య୏
ቁ is adopted.  292 

The wind speed above the urban canopy layer (UCL) is calculated by a logarithm wind profile: 293 

𝑈ሺ𝑧ሻ ൌ
𝑢∗
𝜅

ln ൬
𝑧 ൅ 𝑧଴
𝑧଴

൰ ሺ14ሻ 294 

where 𝑧଴= 0.1H based on the estimation of (Grimmond and Oke, 1999).  295 

The wind speed within the UCL is assumed to be uniform and is calculated by the model by Bentham 296 

and Britter (Bentham and Britter, 2003). This model estimates the in-canopy velocity (𝑈௖) based on the 297 

frontal area density (𝜆௙) as follows: 298 

𝑈௖
𝑢*

ൌ ቆ
2
𝜆௙
ቇ
଴.ହ

ሺ16ሻ 299 

Here, the friction velocity (𝑢*) depends on the urban morphology and is estimated using the following 300 

functions (Yuan et al., 2019): 301 

ቊ
𝑢* ൌ 0.12𝑈ଶு,                                                   for ሺ𝜆௙ ൐ 0.4ሻ

𝑢* ൌ 6.7𝑈ଶு
ଷ െ 6.4𝑈ଶு

ଶ ൅ 1.7𝑈ଶு ൅ 0.03,  for ൫𝜆௙ ൏ 0.4൯
ሺ17ሻ 302 

where 𝑈ଶு is the wind speed at a height of 2H above the ground, and H is the building height.  303 

The air temperature in UCL is assumed to be uniform and calculated by the urban canopy model (Yuan 304 

et al., 2020). This model estimates the in-canopy temperature based on the exchange velocity 𝑈ா and 305 

sensible heat flux 𝑞௖,௢௨௧.  306 

𝑇௖ ൌ
1
𝐷௖

𝑞௖,௢௨௧

𝑈ଶு൫1 െ 𝜆௣൯
൭1 െ 0.12ቆ

2
𝜆௙
ቇ
଴.ହ

൱ ൅ 𝑇௔,ଶு ሺ18ሻ 307 
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where 𝐷௖ = 17.183, is a heat capacity constant of the air, 𝑇௔,ଶு is the air temperature above the roof 308 

level, 𝜆௣ is the plan area density. Bentham and Britter (Bentham and Britter, 2003) suggested that the 309 

𝑈ா can be calculated by: 310 

𝑈ா
𝑢*

ൌ ൬
𝑈ଶு െ 𝑈௖

𝑢*
൰
ିଵ

ሺ19ሻ 311 

The 𝑞௖,௢௨௧ is calculated by the temperature from previous time step.  312 

2.5. Indoor sub-model 313 

The indoor side uses a convective boundary condition given by 𝑞௜௡ ൌ ℎ௜௡൫𝑇௪,௜௡ െ 𝑇௔,௜௡൯, where 𝑇௔,௜௡ is 314 

the indoor air temperature, 𝑇௪,௜௡  is the wall temperature on indoor side. The indoor heat transfer 315 

coefficient ℎ௜௡ ൌ 13.5
୛

୫మ୏
 accounts for both natural convection and longwave radiative heat flux.  316 

For air-conditioned rooms, the indoor air temperature is assumed to be constant at Ta,in = 26 °C. In 317 

contrast, for naturally ventilated rooms, the indoor air temperature is assumed to be equal to the in-canopy 318 

air temperature, represented as Ta,in = Tc.  319 

3. Model validation and assessment 320 

3.1. SOMUCH measurement 321 

The model is validated by cross-compare with the SOMUCH measurement, which is a scale outdoor 322 

field measurement conducted in Guangzhou, P.R. China (23°1′ N, 113°25′ E) (Hang and Chen, 2022; 323 

Hang et al., 2025; Wu et al., 2024). This measurement provides a quality database for evaluating urban 324 

climate models  (Hang et al., 2024; Chen et al., 2025). The campaign conducted from 29th Jan to 1st 325 

Feb 2021 is used. In that campaign, both surface and air temperatures were measured at high resolution, 326 

making it an ideal database for validating current models.  327 

The geometry of the building blocks and measurement points are plotted in Fig. 7. In that measurement, 328 

the urban buildings are modeled by hollow concrete blocks with a size of 0.5 m× 0.5 m× 1.2 m and a 329 

thick of 0.015 m. The blocks are arranged to form street canyons with four different aspect ratios, i.e., 330 

H/W = 1, 2, 3, 6. Each row consists of 24 blocks and has a length of L = 12 m. In the experiment, the 331 

surface and air temperatures are measured using thermocouples (Omega, TT-K-36-SLE, Φ0.127 mm and 332 
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TT-K- 30-SLE, Φ0.255 mm). The wind speeds inside and above the street canyon are measured using 333 

sonic anemometers (Gill WindMaster). The incoming longwave and solar radiation are measured using 334 

weather stations (RainWise PortLog). The thermal characteristics of the concrete and ground are listed 335 

in Table 1.  336 

 337 

Figure 7: Photograph of the SOMUCH experiment (a). The geometry of concrete blocks and measurement 338 

points in SOMUCH (b). The thermocouples are used to measure the surface temperature and air temperature. 339 

The sonic anemometers are used to measure wind speed.  340 

  341 
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Table 2. Thermal properties of the building material. The emissivity is for the longwave radiation and albedo 342 

is for the solar radiation.  343 

Material Density ρ 

(kg m−3) 

Conductivity k 

(W m−1 K−1) 

Specific Heat Capacity cp 

(J kg−1 K−1) 

Emissivity 

ε 

Albedo 

α 

Concrete 2420 2.073 618 0.87 0.24 

 344 

3.2. Cross comparison of the roof temperature 345 

The surface temperature model is validated by cross-comparing with SOMUCH measurement. Many 346 

factors affect the accuracy of the model, including the radiation, convective and conduction. To 347 

separately investigate these factors, the temperatures at roofs are first validated because the total radiative 348 

flux of roof is only influenced by the incoming longwave and solar radiation. The shading effect of other 349 

blocks can be ignored as the block heights are uniform. Therefore, the accuracy of conductive and 350 

convective sub-models can be separately evaluated.  351 

The accuracy of this model is quantitatively evaluated by two statistical parameters, the root mean square 352 

error (RMSE), and coefficient of determination (R2). The RMSE and R2 of 𝑢௫∗  are calculated by: 353 

RMSE ൌ ඩ
1
𝑛
෍ሺ𝑂௜ െ 𝑃௜ሻଶ
௡

௜ୀଵ

ሺ21ሻ 354 

Rଶ ൌ 1 െ
∑ ሺ𝑂௜ െ 𝑃௜ሻଶ
௡
௜ୀଵ

∑ ൫𝑂௜ െ 𝑂௜൯
ଶ௡

௜ୀଵ

ሺ22ሻ 355 

where 𝑂௜ represents the measured values, 𝑃௜ is the simulated values, 𝑂௜ is the mean of the measured 356 

values, and n is the number of data points. 357 

The wind speed at roof level is needed to calculate the outdoor convective flux of roofs. In SOMUCH 358 

measurement, the wind speed was measured above the roof and at a height of 2𝐻. The wind speed at 359 

roof level is estimated by a logarithm wind profile as: 360 
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𝑈ሺ𝑧ሻ ൌ
𝑢∗
𝜅

ln ൬
𝑧 ൅ 𝑧଴
𝑧଴

൰ ሺ23ሻ 361 

where 𝑧଴ ൌ  0.1𝐻 based on the estimation of (Grimmond and Oke, 1999). The wind velocity at roof 362 

level (𝑧 ൌ  𝐻 ) can be calculated by 
௎ಹ
௎మಹ

ൌ  0.787 . The outdoor air temperature, incoming solar and 363 

longwave radiation, are from the weather station (𝑧 ൌ  2𝐻).  364 

For the indoor side, the radiative flux between indoor surfaces is ignored in this model. Only the 365 

convective flux is modeled. The convective velocity is assumed to be 3 m/s and CHTC is assumed to be 366 

4.5 for indoor side. Data from the indoor measurement point at 𝐻 = 1.1 m is used. That point is the 367 

nearest measurement point to the roof.  368 

Figure 8(a) plotted shows the measurement data that was used to drive the model. During the 369 

measurements, the building model was enclosed, leading to the development of very high indoor 370 

temperatures. Therefore, the measured indoor air temperature was used as an input for the validation 371 

simulation. Fig. 8(b) shows the roof surface temperatures from measurement and simulation. Generally, 372 

the roof surface temperatures are well reproduced by the model, because the 𝑅ଶ is 0.99 and 𝑅𝑀𝑆𝐸 is 373 

1.28. The large discrepancy is found around noon. The model slightly overestimates the roof temperature. 374 

The comparison of roof temperatures shows that the conductive and convective sub-models are reliable.  375 

 376 

Figure 8: Weather data on the measurement date (29 January 2021) is shown in (a). Panel (b) compares roof 377 

surface temperatures from simulation and measurement, where points denote measured data and lines denote 378 
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simulated data. 379 

3.3. Cross comparison of the wall temperature 380 

The temperatures at walls are more complicated than those at the roof because the buildings change the 381 

radiative fluxes and wind speeds in street canyons. The radiative fluxes need to be accurately modelled 382 

as they are the main energy input and have a large impact on the surface temperature. To avoid the 383 

influence of air temperature and wind speed modeling, the canyon air temperature, wind speed, and 384 

indoor temperature are from the measurement. The air temperatures are measured from multiple heights. 385 

For the convective flux modelling, the nearest measured air temperatures are used. The wind speeds from 386 

the sonic anemometer in the street canyon (z = 0.3 m) are used to calculate the convective flux at outdoor 387 

side. The driving data are plotted in Appendix A.  388 

The east and west walls are defined by taking street canyon center as the origin point. The street direction 389 

is tilted from north toward east by 25°. Therefore, the west and east walls are roughly defined to 390 

distinguish them. The street orientation has been modeled in our model and will not cause additional 391 

discrepancy.  392 

Figures 9 and 10 show the comparison of wall temperatures from simulation and measurement. For each 393 

surface, multiple points are compared to avoid the influence of localized anomalies and to ensure that 394 

the evaluation reflects the overall wall-temperature behavior. Generally, the wall temperatures are well 395 

reproduced, particularly their variation trend. The peak hours are well reproduced. For example, there 396 

are two temperature peaks for the west wall. The first one is around 10:00 and the second is around 16:00. 397 

Both simulation and measurement show the same occurring time.  398 

To quantify model performance, the coefficient of determination (𝑅ଶሻ  and root‐mean‐square error 399 

(RMSE) were calculated and marked in each sub-figure. Except for the H/W = 6 case, the 𝑅ଶ values 400 

exceeded 0.9 for all walls, confirming a strong correlation between simulation and measurement. For 401 

H/W = 6, 𝑅ଶ is lower because of nighttime underestimation, although the RMSE remains within the 402 

same range as the other cases (1.6 °C to 2.2 °C). The main reason for this discrepancy is that wall 403 

temperatures in deep street canyons (H/W = 6) show only a slight increase compared to the air 404 

temperature, due to minimal sunlight penetration into the canyon. Under these conditions, wall 405 
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temperatures become particularly sensitive to convective and longwave radiative fluxes, which amplifies 406 

the impact of small modeling uncertainties. 407 

 408 

Figure 9: Wall temperature comparison between simulation and measurements for street canyons with aspect 409 

ratios of H/W = 1.0 and 2.0. Surface temperatures were measured on 29 January 2021. The root mean square 410 

error (RMSE) and coefficient of determination (R²) are calculated and shown. Symbols denote measurements, 411 

while lines indicate simulations. The left panel corresponds to west side walls and the right panel to east side 412 

walls.  413 
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 414 

Figure 10: Wall temperature comparison between simulations and measurements, as in Figure 9, but for street 415 

canyons with aspect ratios of H/W = 3 and 6.  416 

3.4. Cross comparison of the ground temperature 417 

The surface temperatures of the ground are heavily influenced by heat storage. During the day, heat is 418 

conducted to deeper layers and stored there. At night, this stored heat is released. Therefore, the initial 419 

temperature field and boundary conditions are critical for accurately modeling surface temperatures. In 420 

this study, an adiabatic boundary condition is applied at a depth of 0.5 m below the ground surface. The 421 

soil material is divided into three layers with thicknesses of 0.2 m, 0.15 m, and 0.15 m. All three layers 422 

are assumed to be made of concrete. The thermal properties in Table 1 are used. The underground 423 
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temperatures are measured by thermocouples with three depths of 5 cm, 10 cm, and 20 cm, as plotted in 424 

Appendix A. In this study, we used only the measured underground temperatures at 0:00 to initialize the 425 

underground temperature field. It is important to note that the available soil temperatures were measured 426 

in open ground rather than under street canyons. This difference may lead to discrepancies in modeling 427 

ground surface temperatures. 428 

Figure 11 shows the ground surface temperatures from measurement and simulation. The ground surface 429 

temperatures are measured at four locations: g1, which is close to west wall; g4, which is close to east 430 

wall; and g2 and g3, which are situated in the middle of the streets. Generally, the temperature variations 431 

are well reproduced by the model. For example, peak temperatures occur sequentially from g1 to g4 due 432 

to the movement of the building's shadow. This phenomenon is observed in both simulations and 433 

measurements.  434 

The accuracy of ground temperatures is lower than that of the wall temperatures in terms of R2. For 435 

example, in 𝐻/𝑊 ൌ  2, the R² values for temperatures at the west wall range from 0.91 to 0.97, while 436 

those at the ground range from 0.67 to 0.90. However, the ground temperatures can be considered well 437 

modeled because the RMSE for ground temperatures is smaller than that for wall temperatures. Using 438 

H/W = 2 as an example, the RMSE values for the west wall range from 0.69 to 1.71 °C, while those for 439 

the ground range from 0.98 to 1.37 °C. This difference between the R² and RMSE values is due to the 440 

ground temperature increase being much lower than that of the walls because of shading, particularly in 441 

deep street canyons.  442 

Uncertainties in the input data may also contribute to the discrepancies between simulation and 443 

measurement. First, the thermal properties of soil can differ significantly from those of concrete blocks. 444 

Secondly, the initial temperature is measured in surrounding area, rather than in street canyons. Thirdly, 445 

since the same initial temperature field is used for all four points, the model is unable to reproduce the 446 

differences between points at night.  447 
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 448 

Figure 11: Ground temperature comparison between the simulation and measurement results at street canyon 449 

aspect ratio of H/W = 1.0, 2.0, 3.0, and 6.0. Surface temperatures are measured on 29th Jan 2021. The root 450 

mean square error (RMSE), and coefficient of determination (R2) are calculated and plotted. The points 451 

represent measured data and lines represent the simulated data.  452 

 453 

3.5. Surface energy balance analysis 454 

The surface temperature comparison indicates that model uncertainties arise from various factors. To 455 

identify the main factors impacting the model accuracy, the energy balance of wall surface is analyzed. 456 
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The heat fluxes of solar (𝑄𝐾), longwave radiation (𝑄𝐿), convection (𝑄𝐻), and conduction (𝑄𝐺) of outer 457 

surface of walls satisfy the following equation:  458 

𝑄௄  ൅  𝑄௅  ൅  𝑄ீ  ൅  𝑄ு  ൌ  0 ሺ24ሻ 459 

Here, the longwave heat flux 𝑄𝐿 is divided into two parts as the heat exchange between wall to sky 460 

(𝑄𝐿,𝑠𝑘𝑦) and to other urban surfaces (𝑄𝐿,𝑢𝑟𝑏𝑎𝑛), expressed as 𝑄𝐿 ൌ  𝑄𝐿,𝑠𝑘𝑦 ൅ 𝑄𝐿,𝑢𝑟𝑏𝑎𝑛. This analysis aims 461 

to determine whether it is necessary to model the longwave heat exchange between urban surfaces, which 462 

requires substantial computational resources.  463 

Figures 12 and 13 show the heat fluxes of walls in the simulation. The heat fluxes of east and west walls 464 

are averaged from five measurement points on each. Our previous work (Mei et al., 2025) demonstrated 465 

that the MCRT can accurately predict solar radiation in high-density urban configurations, while also 466 

achieving high computational efficiency through GPU-based acceleration. demonstrated that a Monte 467 

Carlo ray-tracing approach accurately predicts incident solar radiation. In that study, we compared the 468 

albedo of the urban canopy layer and of street canyons across a range of urban layouts with in-situ 469 

measurements, achieving excellent agreement. The previous study also serves as an independent 470 

validation of the ray-tracing component within the modeling framework. Although the ray-tracing 471 

procedure in the present study differs from that in our previous work, the core computational framework 472 

remains the same. In the previous study, solar rays were emitted directly from the sun and sky, whereas 473 

in this study, we adopted a reverse ray-tracing technique, in which rays are emitted from building surfaces 474 

toward the surrounding environment.  475 

In all cases, longwave radiative heat exchange between urban surfaces plays an important role in the 476 

energy balance, particularly at high aspect ratios. The longwave radiative fluxes from sky only contribute 477 

a small amount of total longwave radiative flux in H/W = 6, as shown in Fig. 12(d) and Fig. 13(d). The 478 

shading effect of buildings creates heterogeneous surface temperatures within the urban canopy layer. 479 

The large temperature differences between surface elements contribute a large portion of the total heat 480 

flux. This highlights the necessity for accurate modeling of longwave heat exchange between urban 481 

surfaces, even though it demands significant computational resources. 482 

The conductive heat flux also contributes a large portion of the total heat flux. It is negative in the 483 
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morning and positive in the afternoon, meaning that heat is stored in the building block during the 484 

morning and released in the afternoon. In the reduced scale experiment, buildings were represented by 485 

airtight hollow concrete blocks. Due to the lack of ventilation, the indoor air temperature can rise to 40°486 

C under an outdoor air temperature of 20°C, as shown in Appendix A. This indicates that the indoor air 487 

can also absorb, store, and release a considerable amount of heat. Therefore, accurately modeling indoor 488 

air temperature is essential for effective surface temperature modeling. 489 

The convective heat flux contributes a smaller amount of the total heat flux. In high aspect ratio cases 490 

(H/W = 3 and 6), the convective heat fluxes are almost negligible. This is due to the weak wind in the 491 

deep street canyons. In this model, the surface convective heat flux is directly calculated from the wind 492 

speeds in street canyons. This assumption may underestimate the convective flux, especially since natural 493 

convection occurs under weak wind conditions (Fan et al., 2021).  494 



 

29 

 

 495 

Figure 12: Diurnal heat fluxes at the east side walls from the simulation. The heat fluxes of solar (𝑸𝑲 ), 496 

longwave radiation (𝑸𝑳), convection (𝑸𝑯), and conduction (𝑸𝑮) are at the outer surface of walls.  497 
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 498 

Figure 13: Diurnal heat fluxes at the west side walls from the simulation. The heat fluxes of solar (𝑸𝑲 ), 499 

longwave radiation (𝑸𝑳), convection (𝑸𝑯), and conduction (𝑸𝑮) are at the outer surface of walls.  500 

4. Application to real urban configuration 501 

To demonstrate the model’s applicability to complex geometries, we simulated a neighborhood 502 

containing 40 buildings within an area of 350 m × 200 m. Building geometries were imported as STL 503 

files comprising approximately 2.3× 104 triangular surface meshes. Surface temperatures were calculated 504 

on the triangular surface elements, as shown in Fig. 6, with shortwave fluxes resolved by a Monte Carlo 505 

ray-tracing scheme using 1×105 photons. The solar position is updated at 30-min intervals to capture both 506 

diurnal and shading variations. Transient heat conduction simulations were performed for 24 h with a 507 
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10-min time step (600 s) on 29 January 2021, consistent with the validation case. Downward solar 508 

radiation, longwave radiation, wind speed, and air temperature were prescribed from the SOMUCH 509 

measurements.  510 

The simulation ran on a local workstation with an NVIDIA RTX 5090D GPU and completed in 26.6 h, 511 

comprising a view-factor calculation (4.2 h), solar-radiation computation (22.2 h), and coupled heat-512 

transfer analysis (0.2 h). 513 

For this demonstration, material-specific reflectance was neglected and a uniform albedo of 0.24 was 514 

applied to all urban surfaces. Walls and roofs were modeled as three concrete layers of 0.10 m each (total 515 

thickness = 0.30 m), while the ground comprised 0.35 m (0.15 m + 0.15 m + 0.05 m) with an adiabatic 516 

bottom boundary. For all layers, thermal properties were fixed to concrete values of thermal conductivity 517 

𝑘 ൌ  2.0 W mିଵKିଵ, density 𝜌 ൌ  2420 kg mିଷ, and specific heat capacity 𝑐௣  ൌ  618 𝐽 kgିଵKିଵ. All 518 

model inputs are consolidated into a single YAML configuration file, which specifies the simulation 519 

parameters, weather forcing, geometry paths, surface albedo, and material thermal properties for easy 520 

reproducibility. The buildings are assumed to be naturally ventilated, with the indoor and outdoor air 521 

temperatures being the same. The thermal characteristics of concrete are assumed to be the same as in 522 

the SOMUCH experiment.  523 

The surface temperatures are calculated in three steps: 1) calculate the solar radiative flux of each point 524 

by rMCRT; 2) calculate the view factors between the elements using rMCRT; 3) calculate the surface 525 

temperatures using Monte Carlo random walking. All three steps are processed in parallel on GPU. The 526 

weather data measured on 29th Jan 2021 during the SOMUCH experiment is used as the driving input. 527 

The surface temperatures are calculated from 0:00 to 24:00, with a time step of 30 minutes.  528 

The simulation results were exported in vtk format and visualized using ParaView. Fig. 14 presents the 529 

surface temperature distributions at 09:00, 11:00, 13:00, 15:00, 17:00, and 19:00. The movement of 530 

building shadows and their influence on surface temperatures are clearly visible in these contours, 531 

illustrating the diurnal heating and cooling cycle. These visualizations demonstrate that the model can 532 

represent complex building geometries and can be applied to real urban environments. 533 

The energy balance analysis of the SOMUCH experiment indicates that convective heat transfer plays 534 
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only a minor role. However, due to the experiment’s reduced scale and limited local wind speeds, it 535 

remains uncertain whether this conclusion holds at full scale or under higher wind speed conditions.  536 

 537 

Figure 14: Simulation results show the evolution of surface temperature for the complex building geometries 538 

at 09:00, 11:00, 13:00, 15:00, 17:00, and 19:00. These snapshots capture the diurnal heating and cooling cycle, 539 

highlighting morning warming, peak midday temperatures, and the evening decline.  540 

To further assess the role of the convective model, a wind sensitivity analysis was performed for the real 541 

urban configuration. The baseline wind speed (WF = 1.0) was measured on 29 January 2021, the same 542 

day used for the validation cases. Wind speeds were then systematically increased by factors of 2.0 and 543 

5.0 relative to the baseline to evaluate their influence on urban surface temperatures. The resulting 544 

average surface temperatures of the ground, walls, and roof are shown on Fig. 15. The temperature 545 

evolution in Fig. 15 (a)–(c) demonstrates that increasing the wind factor from WF = 1.0 to 5.0 546 

progressively lowers surface temperatures across all urban elements. Fig. 15 (d) quantifies the 547 

temperature differences relative to the baseline scenario (WF = 1.0), revealing cooling effects of up to 548 

6 °C, with the most pronounced reductions occurring during peak heating hours. Among the three 549 

surfaces, the roof exhibits the greatest sensitivity to wind variations, followed by the ground and then the 550 

walls.  551 
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These results highlight that, at full scale and under high-wind conditions, convective processes can exert 552 

a much stronger influence on urban surface temperatures than indicated by the scaled SOMUCH 553 

experiment. Therefore, future studies are needed to better quantify and model convective effects across 554 

a broader range of wind speeds and length scales. Moreover, under weak-wind conditions, natural 555 

convection becomes especially important, particularly when the temperature difference between the wall 556 

and the atmosphere grows large (Fan et al., 2021; Mei and Yuan, 2021). However, this natural-convective 557 

effect may not be significant in the scaled SOMUCH experiment. 558 

 559 

Figure 15. Wind-sensitivity analysis of urban surface temperatures showing (a) ground, (b) wall, and (c) roof 560 

temperature evolution under different wind factors (WF = 1.0, 2.0, 5.0), and (d) temperature differences 561 

relative to the baseline (WF = 1.0). The baseline wind speed was measured on 29 January 2021, the same day 562 

used for the model-validation cases. 563 
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5. Limitations and future work 564 

This model is a building-resolved urban surface temperature model, focusing on detailed neighborhood-565 

scale processes. Therefore, its application to full city-scale simulations remains limited by computational 566 

cost and is currently best suited for neighborhood-scale. The first version focuses on the complex 567 

radiative exchange in densely built urban areas. The parameters and assumptions are validated against 568 

the idealized scaled outdoor experiment, which uses homogeneous building materials with consistent 569 

albedo and thermal characteristics. Glazing and green infrastructure are not included in this experiment. 570 

The SOMUCH project is currently measuring the impact of glass and green infrastructure. The next 571 

version will expand its capabilities to capture complex urban materials, such as urban trees, green walls, 572 

and glass curtain walls, to better represent real urban configurations. Other limitations include:  573 

 All reflections are assumed to be Lambertian. While this assumption works well for the SOMUCH 574 

measurements, where concrete is used for all urban surfaces, it may not fully capture the reflective 575 

properties of other materials with different surface textures, such as glass or vegetation.  576 

 The high-resolution wall temperature simulation still requires a significant amount of time to 577 

complete, even with parallel computation on GPUs. This is due to the large number of rays (N = 578 

10⁶) required for accurate solar radiation modeling. For each point, the simulation takes about 1 579 

second to finish. However, as the number of test points increases, the overall computational time 580 

grows substantially.  581 

 The dynamic indoor air temperature is not included in this model. It assumes that the indoor air 582 

temperature is equal to the outdoor air temperature for a natural ventilated room. This assumption 583 

may lead to discrepancies, particularly in situations where indoor temperatures differ from outdoor 584 

conditions due to factors such as heat sources, insulation, or limited ventilation. 585 

 The participation of the urban atmosphere is ignored in this study. In the scaled measurements, 586 

longwave radiation travels much shorter distances to adjacent surfaces, which reduces the influence 587 

of atmospheric effects compared to real-world urban environments. 588 

 Although many additional features will be incorporated into the GUST model in future 589 

developments, this does not imply that the current version lacks applicability to real-world scenarios. 590 
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First, by focusing on the coupled radiative–convective–conductive heat transfer processes, GUST 591 

effectively identifies the key physical mechanisms responsible for high urban surface temperatures. 592 

Second, it provides high-quality building surface temperature predictions, which can be directly utilized 593 

for building energy consumption analyses. Third, the inclusion of longwave radiative exchange between 594 

urban surfaces enables GUST to be applied in the parameterization of longwave heat fluxes within 595 

mesoscale urban climate models. 596 

6. Conclusions 597 

This study introduces a GPU-accelerated Urban Surface Temperature model (GUST), which computes 598 

radiation using Monte Carlo ray tracing and solves heat conduction with a one-dimensional Monte Carlo 599 

random-walk approach. To meet the substantial computational demands of these Monte Carlo 600 

simulations, the model employs GPU-based parallel computing for efficient processing. GUST is 601 

validated against the high-resolution, scaled outdoor experiment SOMUCH, which provides detailed 602 

spatial and temporal measurements.  603 

To accurately reproduce multiple reflections in high-density urban areas, the radiative heat flux is 604 

simulated usingThe radiative heat flux is simulated using a reverse Monte Carlo Ray Tracing method, 605 

which allows for the accurate reproduction of multiple reflections in high-density urban areas. Sensitivity 606 

testsThe sensitivity test shows that 10ହ~10଺ rays are required for each point to accurately model the 607 

solar radiation. This large computational demand for ray tracing is addressed using GPU-based parallel 608 

computing.This large amount of ray tracing can only be achieved using GPU parallel computing. In 609 

addition, the GPU is utilized to parallelize both the transient heat conduction, which is solved through 610 

random-walk algorithms, and the longwave radiative exchange, which is also computed via ray tracing. 611 

This integrated GPU-accelerated framework substantially improves the computational efficiency and 612 

scalability of the GUST model.The Monte Carlo method is also used to solve the couple heat transfer 613 

using random walking algorithms, which is suitable for GPU-based coding.  614 

The comparison with the SOMUCH experiment shows that the transient surface temperatures on roofs, 615 

walls and the ground are well reproduced. This comprehensive validation demonstrates the model’s 616 

ability to accurately capture the fine-scale radiative–convective–conductive heat transfer processes 617 
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within complex urban configurations.  By conducting a surface energy balance analysis, this study 618 

demonstrates that longwave radiative exchange between urban surfaces plays a critical role across all 619 

building density levels. In contrast, convective heat flux becomes significant only in high-density 620 

configurations.A relatively large discrepancy is observed in cases with high building density, where the 621 

wall temperatures are highly sensitive to convective and longwave radiative fluxes. The surface energy 622 

balance analysis shows that longwave radiation exchange between urban surfaces plays a critical role 623 

across all building densities. In contrast, convective heat flux only plays a significant role in high-density 624 

cases. In future versions, the simulation of convective heat flux could be improved by simulating urban 625 

airflow. 626 

Lastly, this model is implemented to solve the surface temperatures on complex urban buildings, which 627 

are composed of a total of 2.3 ൈ 10ସ surface elements. The GPU allows simultaneous simulation of 628 

heat transfer and view factors across all elements, enabling high-fidelity simulations in real urban 629 

configurations with complex geometries. The current version focuses on the radiation-conduction-630 

convection coupled heat transfer coupled in complex geometries. Future developments will prioritize the 631 

integration of complex glazing systems and green infrastructure in urban environments. 632 
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 654 

Appendix A. Indoor and outdoor air temperatures in SOMUCH measurement 655 

The indoor and outdoor air temperatures at different levels in the SOMUCH measurement are plotted in 656 

Fig. A1. These air temperatures serve as input data for the validation cases.  657 

 658 
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 661 

Figure A1: Indoor, outdoor air temperatures, and wind speeds in street canyons that are measured on 29th 662 

Jan 2021. The wind speeds in the street canyon of H/W = 6 were not measured because the sonic anemometer 663 

cannot be installed in such a narrow street. The outdoor air temperatures measured at z = 60 cm in H/W = 2 664 

are unusual, due to an instrument failure. 665 

Appendix B. Sensitivity test for other days 666 

To further validate the model, we also compared the simulated roof temperatures with measurements over three 667 

consecutive days, from 30 January to 1 February 2021, similar to the analysis presented in Fig. 8. The results are 668 

shown in Fig. A2, which demonstrates excellent agreement between simulated and observed roof temperatures. By 669 

using multiple consecutive days, this comparison minimizes potential bias arising from the single day’s weather 670 

conditions. 671 

(a) 30th Jan 2021 672 
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 673 

(b) 31st Jan 2021 674 

 675 

(c) 1st Feb 2021 676 
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 677 

Figure A2: Weather data from 30 January to 1 February 2021 are shown in the left panels. The right panels 678 

compare roof-surface temperatures from simulation and measurement, with points representing observations 679 

and lines representing simulated values. 680 
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