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Abstract 9 

The escalating urban heat, driven by climate change and urbanization, poses significant threats to 10 

residents’ health and urban climate resilience. The coupled radiative-convective-conductive heat transfer 11 

across complex urban geometries makes it challenging to identify the primary causes of urban heat and 12 

develop mitigation strategies. To address this challenge, we develop a GPU-accelerated Urban Surface 13 

Temperature model (GUST) through CUDA architecture. To simulate the complex radiative exchanges 14 

and coupled heat transfer processes, we adopt Monte Carlo method, leveraging GPUs to overcome its 15 

computational intensity while retaining its high accuracy. Radiative exchanges are resolved using a 16 

reverse ray tracing algorithm, while the conduction-radiation-convection mechanism is addressed 17 

through a random walking algorithm. The validation is carried out using the Scaled Outdoor 18 

Measurement of Urban Climate and Health (SOMUCH) experiment, which features a wide range of 19 

urban densities and offers high spatial and temporal resolution. This model exhibits notable accuracy in 20 

simulating urban surface temperatures and their temporal variations across different building densities. 21 

Analysis of the surface energy balance reveals that longwave radiative exchanges between urban surfaces 22 

significantly influence model accuracy, whereas convective heat transfer has a lesser impact. To 23 

demonstrate the applicability of GUST, it is employed to model transient surface temperature 24 

distributions at complex geometries on a neighborhood scale. Leveraging the high computational 25 

efficiency of GPU, the simulation traces 10⁵ rays across 2.3×10⁴ surface elements in each time step, 26 

ensuring both accuracy and high-resolution results for urban surface temperature modeling.  27 
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1. Introduction 28 

Urban overheating has become a pressing issue due to the combination effects of global warming, 29 

heatwaves, and rapid urbanization (Feng et al., 2023). The Urban Heat Island (UHI) effect is 30 

characterized by higher surface and air temperatures in urban areas than in surrounding rural areas, which 31 

exacerbates the urban overheating (Manoli et al., 2019). It is estimated that more than 1.7 billion people 32 

and 13,000 cities are facing urban overheating problems (Tuholske et al., 2021). Exposure to extreme 33 

urban heat poses a significant threat to residents' health, contributing to increased mortality and morbidity  34 

(Ebi et al., 2021).  35 

To tackle urban overheating, a precise understanding of the factors driving excessive surface heat is 36 

essential, making accurate modeling of urban surface temperatures a critical step toward developing 37 

effective mitigation strategies. Identifying the main causes of hot urban surfaces is essential for 38 

developing effective strategies to mitigate urban overheating.Urban surface temperatures are commonly 39 

simulated with urban land surface schemes (LSMs). To capture the complex exchanges of energy and 40 

momentum within an urban environment, these schemes range from simplified approaches that represent 41 

the city as a single impervious slab to advanced frameworks that explicitly incorporate the three-42 

dimensional geometry of buildings with varying heights and material properties. The Urban-PLUMBER 43 

project has evaluated 32 such schemes (Grimmond et al., 2010; Grimmond et al., 2011), and classified 44 

them into ten categories based on the level of three-dimensional detail represented. The most detailed of 45 

these are the building-resolved schemes, which explicitly solve airflow and heat transfer while 46 

representing the full three-dimensional urban landscape.  47 

Building-resolved models, such as VTUF (Nice, 2016) and computational fluid dynamics (CFD) tools 48 

(Carmeliet and Derome, 2024), solve the governing physical processes at high spatial and temporal 49 

resolution. These models are powerful tools for examining the urban thermal balance and identifying the 50 

primary drivers of urban heat 51 

Physics-based models are powerful tools for uncovering the urban thermal balance and identifying the 52 

primary causes of urban heat (Carmeliet and Derome, 2024). They enable a quantitative evaluation of 53 

the contribution of each process, such as conduction, radiation, and convection, to the overall thermal 54 
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balance. This is particularly important for Asia cities, which are characterized by high-density, high-rise 55 

developments and complex urban geometry. Findings from the Scaled Outdoor Measurement of Urban 56 

Climate and Health (SOMUCH) project highlight the intricate influence of building morphology on the 57 

thermal environment, especially under super-high-density conditions (Hang and Chen, 2022). These 58 

effects arise from complex three-dimensional urban landscapes, including irregular building forms and 59 

intricate shading patterns. Accordingly, models representing high-density Asian cities need greater 60 

accuracy and flexibility to account for these features.  61 

Building-resolved Urban urban surface temperatures are determined by the coupled heat transfer 62 

processes of conduction, radiation, and convection (Krayenhoff and Voogt, 2007). These heat transfer 63 

processes in urban areas differ from those in rural areas. First, urban materials typically have a lower 64 

heat capacity, allowing them to heat up more quickly and reach higher temperatures (Wang et al., 2018). 65 

Secondly, the complex three-dimensional geometry of urban environments leads to multiple reflections, 66 

which reduce urban albedo reflected solar radiation and limit the longwave heat loss to sky (Yang and 67 

Li, 2015). Thirdly, the densely packed buildings weaken the urban wind and thus reduce the convective 68 

transfer and further limit the heat loss (Wang et al., 2021).  69 

A well-designed building-resolvedurban surface temperature model needs to accurately capture these 70 

heat transfer processes. Table 1 summarizes the models for urban surface temperatures and their schemes 71 

for conduction, radiation, and convection. For heat conduction, 1D models are commonly used due to 72 

the relatively thin walls of buildings in urban areas. For convective heat transfer, both parameterized 73 

convective coefficients and CFD (Computational Fluid Dynamics) simulations are commonly used. CFD 74 

simulations can better capture the spatial variations in air temperature in densely built urban areas, but 75 

the computational cost is much higher.   76 

The key distinction among these models lies in their radiation schemes, as radiation is the primary energy 77 

input into the thermal system of urban surfaces. Moreover, simulating complex urban radiative transfer 78 

requires significant computational resources, necessitating simplifications and parameterizations to make 79 

the simulation more applicable. For the radiative exchange between urban surfaces, the radiosity method 80 

is widely adopted. This approach first collects luminous energy from direct solar and diffuse sky sources 81 
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and then redistributes reflected energy according to view factors, which quantify the geometric 82 

relationships among surfaces. View factors can be determined analytically for simple geometries, 83 

estimated with the discrete transfer method (hemisphere discretization and ray counting), or calculated 84 

using Monte Carlo ray tracing (MCRT). However, the radiosity method assumes purely diffuse 85 

reflections and depends on precise view-factor calculations, making it less accurate for complex urban 86 

geometries and surfaces containing semi-transparent materials.  87 

 88 

In contrast, the MCRT approach offers greater flexibility and has been widely employed to model solar 89 

radiation on complex urban surfacesTable 1 shows that the radiosity method is widely used to solve the 90 

reflections. In the radiosity method, the net longwave and shortwave radiation are solved by two main 91 

steps: 1) collecting luminous energy from both the sun and the sky vault, and 2) distributing the reflected 92 

energy based on view factors. The luminous energy is influenced by the shading pattern, which is solved 93 

by two main approaches in these models: 1) Sunlit-shaded distributions method, which employs ray 94 

tracing to determine whether a surface is illuminated; and 2) Flux reduction coefficients: where shading 95 

is accounted for by reducing the irradiance at shaded points. The reflection and longwave exchange 96 

between urban surfaces are determined by view factors, which can be calculated using three approaches: 97 

the analytical method, the discrete transfer method, and the Monte Carlo ray tracing method.  98 

 The analytical method uses analytical solutions of view factors by assuming urban surfaces are 99 

composed of simple geometries.  100 

 The discrete transfer method (DTM) uses ray tracing method to calculate view factors. The ray 101 

direction is determined by dividing the hemisphere into equal segments. This method counts the 102 

number of rays intersecting other surfaces. 103 

 The Monte Carlo Ray Tracing (MCRT) is similar to DTM but differs by using rays that are directed 104 

randomly. This method is suitable for calculating view factors in complex geometries, but it requires 105 

a large number of rays.  106 

The HTRDR-Urban adopted a different approach, using backward MCRT, to calculate the solar radiation 107 

considering multiple reflections (Schoetter et al., 2023). The Monte Carlo method (MCM) has been 108 
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widely used to model solar radiation through the application of a ray tracing algorithm (Kondo et al., 109 

2001). More recently, its use has expanded beyond radiative transfer to encompass coupled conduction, 110 

convection, and radiation processesRecently, its application has been extended to address conduction, 111 

convection, and radiation problems (Villefranque et al., 2022). In backward MCRT, the energy of the 112 

incident light is divided into a large number of photons. By tracking the path of these photons and 113 

counting the number of photons absorbed, the net solar radiation reaching a given surface can be 114 

calculated. For example, Tthe HTRDR-Urban adopted a different approach, usingthe backward MCRT, 115 

to calculate the solar radiation considering multiple reflections (Schoetter et al., 2023).  Building on this 116 

concept, Tregan et al. (2023) proposed a theoretical framework to solve linearized transient conduction-117 

radiation problems with Robin's boundary condition in complex 3D urban geometry. Based on this that 118 

framework, Caliot et al. (2024) developed a probabilistic model to simulate urban surface temperatures, 119 

using ray-tracing, walk-on-sphere and double randomization techniques. Their model leverages 120 

advancements in computer graphics for image synthesis and the  Monte Carlo method (MCM), enabling 121 

it to effectively handle large and complex 3D geometries.  122 

The MCRT method has demonstrated strong capability for accurately modeling coupled heat and 123 

radiation processes in complex urban environments, but its high computational cost and low efficiency 124 

currently limit its application to real-world urban configurations. Although several models listed in Table 125 

1 have been validated against field measurements, others remain unverified and rely on various 126 

assumptions and parameterizations, which reduces confidence in their accuracy. Furthermore, the use of 127 

field measurement data for model validation faces persistent challenges:The advantage of MCM is its 128 

ability to handle complex geometries and albedos, while the disadvantage is its high computational cost. 129 

The low computational efficiency limits the application of MCM in real urban configurations. Although 130 

some models in Table 1 are validated against field measurements, others remain unvalidated. These 131 

models rely on various assumptions and parameterizations, and the lack of validation limits their accuracy. 132 

Additionally, using field measurement data to validate numerical models faces several challenges: 1) 133 

limited test points due to regulatory constraints and installation difficulties, 2) uncertainty in infrared 134 

imagery caused by varying view angles, and 3) heterogeneity in the optical and thermal properties of 135 

building materials.  136 
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This study aims to develop a GPU--acceleratedbased Urban Surface Temperature (GUST) model to 137 

enhance the computational speed of Monte Carlo Method. The model is designed to operate at the 138 

neighborhood scale and to capture microscale processes, including complex shading patterns, multiple 139 

reflections of solar radiation, and longwave radiative exchanges between building surfaces and the 140 

ground. The ultimate objective is to identify the physical drivers of extreme heat in high-density urban 141 

neighborhoods.  The absorption and reflection of longwave and shortwavesolar radiation on outdoor 142 

surfaces modeled using the reverse Monte Carlo ray tracing (rMCRT) algorithm. The resulting 143 

shortwavesolar and longwave radiation are then treated as heat flux boundary conditions for the 1D heat 144 

conduction model, which employs the Monte Carlo random walk method to calculate surface 145 

temperatures. High spatial-temporal resolution surface temperature data from a scaled measurement 146 

(SOMUCH) is employed to validate the parameterization and assumptions in this model.  147 

The paper is organized as follows. Sect. 2 outlines the model structure and describes the algorithms used 148 

for the submodels. Sect. 3 presents the validation and evaluation of the model by comparing it with 149 

experimental data. Sect. 4 includes an example demonstrating how the model can be applied to complex 150 

geometries. Sect. 5 discusses the applications, limitations, and future development of the model. Lastly, 151 

Sect. 6 provides the conclusions.  152 

  153 
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Table 1. Overview of building-resolved models for urban surface temperature. The view factors are 154 

solved by both DTM (Discrete transfer method), analytical model, and Monte Carlo ray tracing method.  155 

Model Solar 
Irradiation 

Reflections and 
longwave exchange 

Conduction Convection Validation 

HTRDR-Urban 

(Schoetter et al., 

2023) 

Backward 

Monte Carlo 

ray tracing 

Backward Monte 

Carlo ray tracing 

Monte Carlo 

random 

walking 

Parameterized  N.A. 

MUST (Yang 

and Li, 2013) 

Sunlit-shaded 

distributions 

Radiosity Method, 

DTM view factors  

1D heat 

conduction  

Parameterized  Thermal scanner and 

IRT (Voogt and 
Oke, 1998) 

TUF-3D  

(Krayenhoff 
and Voogt, 
2007) 

Sunlit-shaded 

distributions 

Radiosity Method, 

analytical view 

factors 

1D heat 

conduction  

Parameterized  Thermal scanner and 

IRT (Voogt and 
Oke, 1998) 

SOLENE 
Microclimat 

(Imbert et al., 
2018)  

Sunlit-shaded 

distributions. 

Radiosity Method, 

analytical view 

factors 

1D heat 

conduction  

Coupling CFD 

simulation 

Thermographies 

measurement 

(Hénon et al., 
2012) 

Envi-Met 

(Eingrüber et 
al., 2024) 

Flux reduction 

coefficients 

Radiosity Method, 

DTM view factors 

1D heat 

conduction  

Coupling CFD 

simulation 

Field measurements 

(Forouzandeh, 
2021) 

uDALES 

(Owens et al., 
2024) 

Sunlit-shaded 

distributions 

Radiosity Method, 

DTM view factors 

1D heat 

conduction  

Coupling CFD 

simulation 

N.A. 

PALM (Resler et 
al., 2017)  

Sunlit-shaded 

distributions 

Radiosity Method, 

Analytical and 

DTM view factors 

Empirical heat 

conductivity 

Coupling CFD 

simulation 

Field measurement  

(Resler et al., 
2017) 

MITRAS  

(Salim et al., 
2018) 

Meso-scale 

radiation 

scheme  

Meso-scale 

radiation scheme 

(METRAS) 

Force-restore 

method 

Coupling CFD 

simulation 

N.A. 

OpenFOAM  

(Rodriguez et 
al., 2024) 

Sunlit-shaded 

distributions 

Radiosity Method, 

DTM view factor 

1D heat-

moisture 

diffusion. 

Coupling CFD 

simulation 

N.A. 

FLUENT 

(Toparlar et al., 
2015) 

Sunlit-shaded 

distributions 

Radiosity Method, 

DTM view factor 

Shell 

conduction 

Coupling CFD 

simulation 

Field measurement 

(Toparlar et al., 
2015) 

  156 
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2. Model design 157 

GUST aims to resolve the urban surface temperature by a transient heat conduction model, as illustrated 158 

in Fig. 1. The convective and radiative heat transfer at urban surfaces is treated as boundary conditions 159 

for the 1D heat conduction model. For the outdoor side, the heat flux (𝑞௢௨௧) is the sum of radiative 160 

(longwave 𝑞௟ and solar 𝑞௦) and convective heat flux (𝑞௖,௢௨௧).  161 

𝑞௢௨௧ = 𝑞௟ + 𝑞௦ + 𝑞௖,௢௨௧ ሺ1ሻ 162 

The absorbed solar radiation, 𝑞௦ is the sum of direct solar irradiation (𝑞௦,௢) and diffuse solar irradiation 163 

(𝑞௦,௥), expressed by: 𝑞௦ = 𝑞௦,௢ + 𝑞௦,௥. The longwave radiation flux 𝑞௟ includes the radiation between 164 

urban surfaces (𝑞௟,௨௥௕௔௡) and between urban surfaces and the sky (𝑞௟,௦௞௬), represented as 𝑞௟ =  𝑞௟,௨௥௕௔௡ +165 𝑞௟,௦௞௬.  166 

167 
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 168 

Figure 1: The model design of GUST. In this model, 1D transient conductive heat transfer is considered for 169 

urban surfaces the system (e.g., walls, roofs, and ground). They are composed of multiple layers where the 170 

thermal properties are uniform and isotropic. All urban surfaces are assumed to be opaque in this study.  171 

In this model, all urban surfaces are represented as triangular facets in STL format, with each triangular 172 

facet treated as a single element. Ray tracing and heat-conduction calculations are performed at the 173 

centroid of each element. The spatial resolution of the simulation can be refined by using smaller 174 

triangular facets, thereby increasing the number of elements. Fig. 6 illustrates the triangulated 175 

representation of the urban surfaces.  176 

 177 

2.1. Conduction sub-model 178 

The Monte Carlo random walking method is used to solve the 1D heat conduction (Talebi et al., 2017). 179 

Compared to finite volume method, this approach is insensitivity to the complexity of urban geometry 180 

and boundary conditions (Villefranque et al., 2022; Caliot et al., 2024). In the present version, the heat 181 
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conduction along the wall span is neglected. The one-dimensional (1D) transient heat conduction 182 

equation is: 183 

𝜕𝜕𝑡 𝑇 =  𝛼 𝜕ଶ𝑇𝜕𝑥ଶ ሺ2ሻ 184 

where 𝛼 = ௞ఘ௖೛ is the solid thermal diffusivity and 𝑘 the thermal conductivity, 𝜌 the density, 𝑐௣ the 185 

specific heat capacity. The ground, walls and roofs are composed of multiple layers. In the Monte Carlo 186 

random walking method, the heat conduction equation is replaced by finite difference approximation as:  187 

𝑇ሺ𝑥, 𝑡 + ∆𝑡ሻ = 𝑃௧𝑇ሺ𝑥, 𝑡ሻ + 𝑃௫ି𝑇ሺ𝑥 − ∆𝑥, 𝑡 + ∆𝑡ሻ + 𝑃௫ା𝑇ሺ𝑥 + ∆𝑥, 𝑡 + ∆𝑡ሻ ሺ3ሻ 188 

where 𝑃௧ = ଵଵାଶி௢  is defined as probability of time step; 𝑃௫ି = 𝑃௫ା = ி௢ଵାଶி௢ . where 𝑃௫ି  and 𝑃௫ା 189 

respectively represent the probabilities of stepping to the points ሺ𝑥 − ∆𝑥, 𝑡ሻ  and ሺ𝑥 + ∆𝑥, 𝑡ሻ . Here, 190 𝐹𝑜 = ௞∆௧ఘ௖೛ሺ∆௫ሻమ These coefficients are nonnegative probabilistic values and  191 

𝑃௧ + 𝑃௫ି + 𝑃௫ା = 0 ሺ4ሻ 192 

The Monte Carlo random walking algorithm is schematically illustrated in Fig. 2. The core idea is that 193 

particles walk by following rules: 194 

1) Start a random walk at point x. 195 

2) Generating a random number (R) between 0 and 1. 196 

3) Determine walking direction by conditions 197 

ቐ0 < 𝑅 < 𝑃௫ି:                    𝑥 → ሺ𝑥 − ∆𝑥ሻ                                                𝑃௫ି < 𝑅 < ሺ𝑃௫ି + 𝑃௫ାሻ:𝑥 → ሺ𝑥 − ∆𝑥ሻ                                               ሺ𝑃௫ି + 𝑃௫ାሻ < 𝑅:             𝑥 → ሺ𝑥ሻ,𝑇ሺ𝑖ሻ = 𝑇ሺ𝑖ሻ + 𝑇ሺ𝑥, 𝑡 − ∆𝑡ሻ    ሺ5ሻ 198 

4) If the next point is not on the boundary repeat step 2 and 3 and if it is on the boundary, record 𝑇ሺ𝑖ሻ =199 𝑇ሺ𝑖ሻ + 𝑇 at the boundary and go to step 1. 200 

5) After N random walking, temperature at point x is calculated by  201 

𝑇ሺ𝑥ሻ = 𝑇ሺ𝑖ሻ𝑁 ሺ6ሻ 202 
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When a particle reaches a heat flux, convective or interface boundary, its movement follows the following 203 

rules.  204 

1) Heat flux boundary  205 

When the particle walks to the boundary of heat flux (q), it is bounced back and record the temperature 206 𝑇௛௙, which is calculate by 𝑇௛௙ = ௤∆௫௞ + ௤ଶ௞ ሺ∆𝑥ሻଶ.  207 

2) Convective boundary  208 

The heat flux of a convective boundary is calculated by 𝑞 = ℎሺ𝑇௪ − 𝑇௔ሻ, where h is the heat transfer 209 

coefficient and 𝑇௪ the wall temperature and 𝑇௔ the air temperature. The wall temperature is calculated 210 

by  211 

𝑇௪ = 11 + 𝐵𝑖 𝑇ሺ𝑥 − ∆𝑥ሻ + 𝐵𝑖1 + 𝐵𝑖 𝑇௔ ሺ7ሻ 212 

Where 𝑃௫ = ଵଵା஻௜ , 𝑃௔ = ஻௜ଵା஻௜ , 𝐵𝑖 = ௛∆௫௞  . When the particle reaches the convective boundary, a new 213 

random number R was generated and moves as follows: 214 

൜ 0 < 𝑅 < 𝑃௫ :           → bounced back                                           𝑃௫ < 𝑅 < 1:            → absorbed by air with Tሺiሻ = Tሺiሻ + 𝑇௔ ሺ8ሻ 215 

3) Interface between two layers 216 

The interface between layers is flux continuity, i.e. the conductive fluxes are equal on both sides of the 217 

interface. The heat conductivities on left and right sides of the interface are 𝑘஺ and 𝑘஻. The conductive 218 

heat fluxes on both sides are equal, i.e., −𝑘஺ ௗ்ௗ௫ = −𝑘஻ ௗ்ௗ௫. When a particle reaches the interface, it may 219 

be reflected or move to the next layer. A new random number 𝑅 is generated. The particle moves by 220 

following 221 

൜0 < 𝑅 < 𝑃௫ି :         → bounced back to layer A𝑃௫ି < 𝑅 < 1:          → move to layer B                ሺ9ሻ 222 
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 224 

Figure 2: Flowchart of the Monte Carlo random walking algorithm for 1D heat conduction. At each point, 225 

the particle movement stops after N random walks. Each walk stops when particle either reaches a fixed 226 

temperature boundary or remains stationary. Orange diamonds indicate decision points with two possible 227 

outcomes (Yes/No).  228 

2.2. Solar radiation sub-model 229 

The solar radiation 𝑞௦ is calculated on each triangular facet using the reverse Monte Carlo Ray Tracing 230 

(rMCRT) method, which inherently accounts for both shaded and sunlit areas. The reverse Monte Carlo 231 

Ray Tracing (rMCRT) method is used to calculate the solar radiation 𝑞௦ and longwave radiation 𝑞௟. In 232 

the rMCRT, The the ray starts from the target points, instead of starting from the sky or sun in the ray 233 

tracing method (Caliot et al., 2024). This method ensures that enough photons reach the target point to 234 
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obtain a statistical result.  235 

236 

 237 

Figure 3: Schematic illustration of the reverse MCM ray tracing method for calculating the directional and 238 

diffuse solar radiation.  239 
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The procedure of reverse MCM MCRT is schematically explained in Fig. 3. In total, 𝑁 photons leave 240 

the target point in random directions (𝑟), which is determined by the azimuth 𝜃௔ and incidence angle 241 𝜂௔. These angles are calculated by 𝜃௔ = 2𝜋𝑅ଵ  and 𝜂௔ = arccosሺ1 − 2𝑅ଶሻ , where 𝑅ଵ  and 𝑅ଶ  are 242 

random numbers between 0 and 1.  243 

When a photon reaches the surface, it can be absorbed or reflected via Lambert’s law. To determine 244 

whether this photon is absorbed, a random number 𝑅௔௕ (ranging from 0 ~ 1) is generated. When 𝑅௔௕ >245 𝛼௦ (surface albedo), the photon is absorbed by the surface. When 𝑅௔௕ < 𝛼௦, the photon is reflected. All 246 

surfaces are considered Lambertian and the direction of reflect solar beam is determined by the azimuth 247 𝜃௔  and incidence angle 𝜂௔  of that surface. At each reflection, 𝜃௔  and 𝜂௔  are recalculated by 248 

regenerating new random numbers.  249 

When the photon reaches the “sky” in the direction of 𝑟, its angle (𝜃௡௦) with the reverse solar direction 250 𝜔௦௨௡ሬሬሬሬሬሬሬሬሬ⃗  is calculated. When 𝜃௡௦ < ΔΩௗ, that photon is marked as reaching the “Sun”, otherwise, that 251 

photon is marked as reaching the “Sky”. The direct (𝑞௦,௢) and diffuse (𝑞௦,௥) solar radiation reaching the 252 

target point can then be statistically determined by:  253 

𝑞௦,௢ = 𝜋𝐼௦,௢ΔΩௗ𝑁 ෍ ቚ𝜔→௦௨௡ ⋅ 𝑛→ቚఏ೙ೞழ୼ஐ೏ ሺ10ሻ 254 

𝑞௦,௥ = ෍ 𝐼௦,௥𝑁ఏ೙வௗ୼ஐ೏ ሺ11ሻ 255 

where 𝐼௦,௢ and 𝐼௦,௥ is the downward direct normal irradiance direction and diffuse solar radiation. The 256 

ratio between the directional and diffuse solar radiation is calculated by the model proposed by (Reindl 257 

et al., 1990).  258 

The rMCRT requires a large number of rays to achieve statistically reliable results. To accelerate the 259 

simulation, the model is run in parallel on GPUs (Graphics Processing Units) using the CUDA® platform 260 

(Yoshida et al., 2024). The advantage of GPUs is that they have a large number of cores, which enables 261 

them to handle many parallel tasks simultaneously. GPUs are particularly well-suited for accelerating 262 

MCRT, since each ray tracing operation is independent.  263 

The GPU parallel computing is executed using two strategies, depending on the total number of elements. 264 
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based on the number of elements and points. As illustrated in Fig. 4, Strategy 1 calculates the radiative 265 

flux point by point, emitting 𝑛 photons for ray tracing simulation. Each photon is processed in a separate 266 

GPU core. Once the ray tracing process is complete, the results from the GPU cores are copied to the 267 

CPU, where radiative flux at each point is calculated. Strategy 2 calculates the radiative flux for all points 268 

simultaneously, with each GPU core computing the flux for a single point. The ray tracing of 𝑛 photons 269 

is performed iteratively on the GPU.  270 

The advantage of Strategy 1 is the efficient utilization of GPU cores when the number of points and 271 

elements is small. However, its disadvantage is that it requires a large amount of memory when the 272 

number of points is large. In contrast, Strategy 2 requires significantly less memory and only transfers 273 

data to the CPU once, making it highly efficient when the number of points and elements is large. 274 

275 
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 276 

Figure 4: Two strategies for GPU parallel computing. (a) The ray tracing is conducted point by point. For 277 

each point, 𝒏 photons are emitted. Each GPU core calculates one photon. (b) The ray tracing is conducted 278 

for all points at one time. Each GPU core calculates one point. The ray tracing of 𝒏 photons is performed 279 

iteratively within the GPU core. 280 

The space angle of the Sun (ΔΩௗ) and the number of photons (N) can significantly affect the accuracy of 281 

reverse MCM. To evaluate this influence, a series of test cases are conducted, in which the directional 282 

solar radiation at a ground point is calculated. The solar radiation on the open ground can be calculated 283 

theoretically, as there is no shading from buildings.  284 

Figure 5 shows the errors of simulations using different values of N and ΔΩௗ. The simulation time of 285 

each case is also indicated in that figure. When the number of photons is increased from 𝑁 = 10ହ to 286 𝑁 = 10଻ , the simulation time increases from 0.05s to 1.15s, which is an increase of 23 times. The 287 
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relatively slow increase in simulation time is a result of the parallel computing capabilities of the GPU. 288 

In each scenario, the model was run 20 times to observe the difference between each run.  289 

A small ΔΩௗ reduce the photon number reaching the Sun, thus increasing the error, where the ΔΩௗ is 290 

calculated from a 2D angle 𝜃 as ΔΩௗ = 2𝜋ሺ1 − cosሺ𝜃ሻሻ. For example, the error in cases with 𝜃 = 3° 291 

greater than that in cases with 𝜃 = 6°. A larger number of photons is needed to compensate for this error. 292 

For example, the case with 𝜃 = 3° and 𝑁 =  10଻ shows acceptable accuracy. However, the case with 293 𝜃 = 6° shows a comparable accuracy when 𝑁 =  10଺ and takes less simulation time.  294 

In the subsequent simulations, 𝜃 = 6° and 𝑁 =  10଺ are applied to balance accuracy and simulation 295 

time. 296 

297 
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 298 

Figure 5: Numerical errors of directional solar radiation estimation using Monte Carlo method. The simulated 299 

solar radiation (𝑰𝒐,𝒔𝒊𝒎) is normalized by the true value (𝑰𝒐,𝒕𝒓𝒖𝒆) and is expressed by (𝑰𝒐∗ = 𝑰𝒐,𝒔𝒊𝒎𝑰𝒐,𝒕𝒓𝒖𝒆), where 𝑰𝒐∗ =300 

𝟏.𝟎 represents an exact reproduction of the solar radiation. The test cases use different space angles of sun 301 𝚫𝛀𝒅 = 𝟐𝝅ሺ𝟏 − 𝐜𝐨𝐬ሺ𝜽ሻሻ and photon numbers (N). The red lines represent the true value, and dots represent 302 

the simulated data.  303 

2.3. Longwave radiation sub-model 304 

The view factors between the surfaces, as well as from the surfaces to the sky, are also calculated using 305 

the Monte Carlo ray tracing model, as illustrated in Fig. 6. The urban surfaces are divided into multiple 306 

triangular elements 𝑁௨௥. The view factor from element 𝑆௜ to element 𝑆௝, denoted as 𝐹௜,௝ , is calculated 307 
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by emitting 𝑁  photons from the centroid of element 𝑆௜ . The algorithm then counts the number of 308 

photons 𝑛௜,௝ that reach element 𝑆௝. Finally, the view factor 𝐹௜,௝ is calculated by 𝐹௜,௝ = 𝑛௜,௝/𝑁. The sky 309 

view factor is also determined in this approach by treating the sky as an urban surface. 310 

The longwave radiative heat exchange between the surfaces, as well as from the surfaces to the sky, is 311 

calculated by: 312 

𝑞௟ = 𝐹௜,௦௞௬𝜀ሺ𝑅௟.௜௡ − 𝜎𝑇௜ସሻ + 𝜀𝜎 ෍ 𝐹௜,௝൫𝑇௝ସ − 𝑇௜ସ൯௝ୀேೠೝ
௝ୀଵ ሺ12ሻ 313 

where ε is the material emissivity, 𝜎 is Stefan–Boltzmann constant (= 5.67 × 10-8) (W m-2 K-1), 𝑅௟.௜௡ is 314 

the downward longwave radiation from the sky, 𝐹௜,௦௞௬ is the sky view factor of element 𝑆௜. The surface 315 

temperature from the previous step (𝑇௜ and 𝑇௝) is used to calculate the longwave radiative heat exchange.  316 

 317 

Figure 6: Schematic illustration of how view factors are calculated between urban surface elements. 318 

2.4. Outdoor convective sub-model  319 

GUST does not calculate urban airflow; instead, it uses empirical formulas to calculate the outdoor 320 

convective heat flux as follows: 321 

𝑞௖,௢௨௧ = 𝑈௙ℎ௢௨௧൫𝑇௪,௢௨௧ − 𝑇௔,௢௨௧൯ ሺ13ሻ 322 

where 𝑇௔,௢௨௧ is the outdoor air temperature in the canopy layer, 𝑈௙ is the wind speed, and convective 323 

heat transfer coefficient ℎ௢௨௧ = 4.5 ቀ ௐ௦୫య୏ቁ is adopted.  324 

The wind speed above the urban canopy layer (UCL) is calculated by a logarithm wind profile: 325 
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𝑈ሺ𝑧ሻ = 𝑢∗𝜅 ln ൬𝑧 + 𝑧଴𝑧଴ ൰ ሺ14ሻ 326 

where 𝑧଴= 0.1H based on the estimation of (Grimmond and Oke, 1999).  327 

The wind speed within the UCL is assumed to be uniform and is calculated by the model by Bentham 328 

and Britter (Bentham and Britter, 2003). This model estimates the in-canopy velocity (𝑈௖) based on the 329 

frontal area density (𝜆௙) as follows: 330 

𝑈௖𝑢*
= ቆ 2𝜆௙ቇ଴.ହ ሺ16ሻ 331 

Here, the friction velocity (𝑢*) depends on the urban morphology and is estimated using the following 332 

functions (Yuan et al., 2019): 333 

ቊ𝑢* = 0.12𝑈ଶு ,                                                   for (𝜆௙ > 0.4)𝑢* = 6.7𝑈ଶுଷ − 6.4𝑈ଶுଶ + 1.7𝑈ଶு + 0.03,  for ൫𝜆௙ < 0.4൯ (17) 334 

where 𝑈ଶு is the wind speed at a height of 2H above the ground, and H is the building height.  335 

The air temperature in UCL is assumed to be uniform and calculated by the urban canopy model (Yuan 336 

et al., 2020). This model estimates the in-canopy temperature based on the exchange velocity 𝑈ா and 337 

sensible heat flux 𝑞௖,௢௨௧.  338 

𝑇௖ = 1𝐷௖ 𝑞௖,௢௨௧𝑈ଶு൫1− 𝜆௣൯൭1 − 0.12ቆ 2𝜆௙ቇ଴.ହ൱ + 𝑇௔,ଶு (18) 339 

where 𝐷௖ = 17.183, is a heat capacity constant of the air, 𝑇௔,ଶு is the air temperature above the roof 340 

level, 𝜆௣ is the plan area density. Bentham and Britter (Bentham and Britter, 2003) suggested that the 341 𝑈ா can be calculated by: 342 

𝑈ா𝑢*
= ൬𝑈ଶு − 𝑈௖𝑢*

൰ିଵ (19) 343 

The 𝑞௖,௢௨௧ is calculated by the temperature from previous time step.  344 

2.5. Indoor sub-model 345 

The indoor side uses a convective boundary condition given by 𝑞௜௡ = ℎ௜௡൫𝑇௪,௜௡ − 𝑇௔,௜௡൯, where 𝑇௔,௜௡ is 346 

the indoor air temperature, 𝑇௪,௜௡  is the wall temperature on indoor side. The indoor heat transfer 347 
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coefficient ℎ௜௡ = 13.5 ୛୫మ୏ accounts for both natural convection and longwave radiative heat flux.  348 

For air-conditioned rooms, the indoor air temperature is assumed to be constant at Ta,in = 26 °C. In 349 

contrast, for naturally ventilated rooms, the indoor air temperature is assumed to be equal to the in-canopy 350 

air temperature, represented as Ta,in = Tc.  351 

3. Model validation and assessment 352 

3.1. SOMUCH measurement 353 

The model is validated by cross-compare with the SOMUCH measurement, which is a scale outdoor 354 

field measurement conducted in Guangzhou, P.R. China (23°1′ N, 113°25′ E) (Hang and Chen, 2022; 355 

Hang et al., 2025; Wu et al., 2024). This measurement provides a quality database for evaluating urban 356 

climate models  (Hang et al., 2024; Chen et al., 2025). The campaign conducted from 29th Jan to 1st 357 

Feb 2021 is used. In that campaign, both surface and air temperatures were measured at high resolution, 358 

making it an ideal database for validating current models.  359 

The geometry of the building blocks and measurement points are plotted in Fig. 7. In that measurement, 360 

the urban buildings are modeled by hollow concrete blocks with a size of 0.5 m× 0.5 m× 1.2 m and a 361 

thick of 0.015 m. The blocks are arranged to form street canyons with four different aspect ratios, i.e., 362 

H/W = 1, 2, 3, 6. Each row consists of 24 blocks and has a length of L = 12 m. In the experiment, the 363 

surface and air temperatures are measured using thermocouples (Omega, TT-K-36-SLE, Φ0.127 mm and 364 

TT-K- 30-SLE, Φ0.255 mm). The wind speeds inside and above the street canyon are measured using 365 

sonic anemometers (Gill WindMaster). The incoming longwave and shortwavesolar radiation are 366 

measured using weather stations (RainWise PortLog). The thermal characteristics of the concrete and 367 

ground are listed in Table 1.  368 
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 370 

Figure 7: Photograph of the SOMUCH experiment (a). The geometry of concrete blocks and measurement 371 

points in SOMUCH (b). The thermocouples are used to measure the surface temperature and air temperature. 372 

The sonic anemometers are used to measure wind speed.  373 

  374 
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Table 2. Thermal properties of the building material. The emissivity is for the longwave radiation and albedo 375 

is for the shortwavesolar radiation.  376 

Material Density ρ 

(kg m−3) 

Conductivity k 

(W m−1 K−1) 

Specific Heat Capacity cp 

(J kg−1 K−1) 

Emissivity 

ε 

Albedo 

α 

Concrete 2420 2.073 618 0.87 0.24 

 377 

3.2. Cross comparison of the roof temperature 378 

The surface temperature model is validated by cross-comparing with SOMUCH measurement. Many 379 

factors affect the accuracy of the model, including the radiation, convective and conduction. To 380 

separately investigate these factors, the temperatures at roofs are first validated because the total radiative 381 

flux of roof is only influenced by the incoming longwave and shortwavesolar radiation. The shading 382 

effect of other blocks can be ignored as the block heights are uniform. Therefore, the accuracy of 383 

conductive and convective sub-models can be separately evaluated.  384 

The accuracy of this model is quantitatively evaluated by two statistical parameters, the root mean square 385 

error (RMSE), and coefficient of determination (R2). The RMSE and R2 of 𝑢௫∗  are calculated by: 386 

RMSE = ඩ1𝑛෍(𝑂௜ − 𝑃௜)ଶ௡
௜ୀଵ (21) 387 

Rଶ = 1 − ∑ (𝑂௜ − 𝑃௜)ଶ௡௜ୀଵ∑ ൫𝑂௜ − 𝑂௜൯ଶ௡௜ୀଵ (22) 388 

where 𝑂௜ represents the measured values, 𝑃௜ is the simulated values, 𝑂௜ is the mean of the measured 389 

values, and n is the number of data points. 390 

The wind speed at roof level is needed to calculate the outdoor convective flux of roofs. In SOMUCH 391 

measurement, the wind speed was measured above the roof and at a height of 2𝐻. The wind speed at 392 

roof level is estimated by a logarithm wind profile as: 393 
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𝑈(𝑧) = 𝑢∗𝜅 ln ൬𝑧 + 𝑧଴𝑧଴ ൰ (23) 394 

where 𝑧଴ =  0.1𝐻 based on the estimation of (Grimmond and Oke, 1999). The wind velocity at roof 395 

level ( 𝑧 =  𝐻 ) can be calculated by ௎ಹ௎మಹ =  0.787 . The outdoor air temperature, incoming 396 

shortwavesolar and longwave radiation, are from the weather station (𝑧 =  2𝐻).  397 

For the indoor side, the radiative flux between indoor surfaces is ignored in this model. Only the 398 

convective flux is modeled. The convective velocity is assumed to be 3 m/s and CHTC is assumed to be 399 

4.5 for indoor side. Data from the indoor measurement point at 𝐻 = 1.1 m is used. That point is the 400 

nearest measurement point to the roof.  401 

Figure 8(a) plotted the measurement data that was used to drive the model. During the measurements, 402 

the building model was enclosed, leading to the development of very high indoor temperatures. Therefore, 403 

the measured indoor air temperature was used as an input for the validation simulation. Fig. 8(b) shows 404 

the roof surface temperatures from measurement and simulation. Generally, the roof surface temperatures 405 

are well reproduced by the model, because the 𝑅ଶ is 0.99 and 𝑅𝑀𝑆𝐸 is 1.28. The large discrepancy is 406 

found around noon. The model slightly overestimates the roof temperature. The comparison of roof 407 

temperatures shows that the conductive and convective sub-models are reliable.  408 

 409 
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 410 

(a) (b) 

Figure 8: Weather data on the measurement date (29 January 2021) is shown in (a). Panel (b) compares roof 411 

surface temperatures from simulation and measurement, where points denote measured data and lines denote 412 

simulated data.The weather data on the measurement date (measured on 29th Jan 2021) is plotted in (a). 413 

Comparison of the roof surface temperatures from simulation and measurement (b). The points represent 414 

measured data and lines represent the simulated data. 415 

3.3. Cross comparison of the wall temperature 416 

The temperatures at walls are more complicated than those at the roof because the buildings change the 417 

radiative fluxes and wind speeds in street canyons. The radiative fluxes need to be accurately modelled 418 

as they are the main energy input and have a large impact on the surface temperature. To avoid the 419 

influence of air temperature and wind speed modeling, the canyon air temperature, wind speed, and 420 

indoor temperature are from the measurement. The air temperatures are measured from multiple heights. 421 

For the convective flux modelling, the nearest measured air temperatures are used. The wind speeds from 422 

the sonic anemometer in the street canyon (z = 0.3 m) are used to calculate the convective flux at outdoor 423 

side. The driving data are plotted in Appendix A.  424 

The east and west walls are defined by taking street canyon center as the origin point. The street direction 425 

is tilted from north toward east by 25°. Therefore, the west and east walls are roughly defined to 426 

distinguish them. The street orientation has been modeled in our model and will not cause additional 427 
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discrepancy.  428 

Figures 9 and 10 shows the comparison of wall temperatures from simulation and measurement. For each 429 

surface, multiple points are compared to avoid the influence of localized anomalies and to ensure that 430 

the evaluation reflects the overall wall-temperature behavior. The 𝑅ଶ  and RMSE are calculated and 431 

marked in each sub-figure. Generally, the wall temperatures are well reproduced, particularly their 432 

variation trend. The peak hours are well reproduced. For example, there are two temperature peaks for 433 

the west wall. The first one is around 10:00 and the second is around 16:00. Both simulation and 434 

measurement show the same occurring time.  435 

To quantify model performance, the coefficient of determination (𝑅ଶ)  and root‐mean‐square error 436 

(RMSE) were calculated and marked in each sub-figure. Except for the H/W = 6 case, the 𝑅ଶ values 437 

exceeded 0.9 for all walls, confirming a strong correlation between simulation and measurement. For 438 

H/W = 6, 𝑅ଶ is lower because of nighttime underestimation, although the RMSE remains within the 439 

same range as the other cases (1.6 °C to 2.2 °C). The main reason for this discrepancy is that wall 440 

temperatures in deep street canyons (H/W = 6) show only a slight increase compared to the air 441 

temperature, due to minimal sunlight penetration into the canyon. Under these conditions, wall 442 

temperatures become particularly sensitive to convective and longwave radiative fluxes, which amplifies 443 

the impact of small modeling uncertainties.In these cases, wall temperatures can be highly sensitive to 444 

convective and longwave radiative fluxes. 445 

The accuracy of wall temperature modeling varies from point to point. There are two main observations 446 

from the comparison of wall temperatures.  447 

a) Accuracy Difference Between Walls: The temperatures on the east wall are modeled more accurately 448 

than those on the west wall, as the model tends to underestimate the peak temperatures on the west wall. 449 

For H/W = 1, the R² values for west wall temperatures range from 0.95 to 0.98, while those for east wall 450 

temperatures range from 0.91 to 0.95. For H/W = 2, the R² values for the west and east wall temperatures 451 

show only a slight difference. However, the RMSE values for the west wall, which range from 0.69°C to 452 

1.85°C, are evidently lower than those for the east wall, which range from 0.82°C to 2.53°C. The R² and 453 

RMSE values for H/W = 3 are comparable to those for H/W = 2. 454 
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b) Accuracy Difference Between Points: The underestimation of west wall temperature particularly 455 

pronounced at higher levels (z = 90 cm and 110 cm). At lower levels (z = 10 cm and 30 cm), 456 

temperatures are underestimated at night. The largest discrepancies occur at these lower levels in H/W 457 

= 6, with a minimum R² of 0.51 and a maximum RMSE of 1.98°C. The R² values suggest that wall 458 

temperatures at these levels are estimated poorly; however, the RMSE values do not appear abnormally 459 

high, reaching 2.53 °C at z = 90 cm in H/W = 2. The main reason for this discrepancy is that wall 460 

temperatures in deep street canyons (H/W = 6) show only a slight increase compared to the air 461 

temperature, due to minimal sunlight penetration into the canyon. In these cases, wall temperatures can 462 

be highly sensitive to convective and longwave radiative fluxes.463 

 464 

 465 
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 467 

Figure 9: Wall temperature comparison between simulation and measurements for street canyons with aspect 468 

ratios of H/W = 1.0 and 2.0. Surface temperatures were measured on 29 January 2021. The root mean square 469 

error (RMSE) and coefficient of determination (R²) are calculated and shown. Symbols denote measurements, 470 

while lines indicate simulations. The left panel corresponds to west side walls and the right panel to east side 471 

walls.  Wall temperature comparison between the simulation and measurement results at street canyon 472 

aspect ratio of H/W = 1.0, 2.0, 3.0, and 6.0. Surface temperatures are measured on 29th Jan 2021. The root 473 

mean square error (RMSE), and coefficient of determination (R2) are calculate and plotted. The points 474 

represent measured data and lines represent the simulated data. 475 
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 476 

Figure 10: Wall temperature comparison between simulations and measurements, as in Figure 9, but for street 477 

canyons with aspect ratios of H/W = 3 and 6.  478 

3.4. Cross comparison of the ground temperature 479 

The surface temperatures of the ground are heavily influenced by heat storage. During the day, heat is 480 

conducted to deeper layers and stored there. At night, this stored heat is released. Therefore, the initial 481 

temperature field and boundary conditions are critical for accurately modeling surface temperatures. In 482 

this study, an adiabatic boundary condition is applied at a depth of 0.5 m below the ground surface. The 483 

soil material is divided into three layers with thicknesses of 0.2 m, 0.15 m, and 0.15 m. All three layers 484 

are assumed to be made of concrete. The thermal properties in Table 1 are used. The underground 485 



 

33 

 

temperatures are measured by thermocouples with three depths of 5 cm, 10 cm, and 20 cm, as plotted in 486 

Appendix A. In this study, we used only the measured underground temperatures at 0:00 to initialize the 487 

underground temperature field. It is important to note that the available soil temperatures were measured 488 

in open ground rather than under street canyons. This difference may lead to discrepancies in modeling 489 

ground surface temperatures. 490 

Figure 10 11 shows the ground surface temperatures from measurement and simulation. The ground 491 

surface temperatures are measured at four locations: g1, which is close to west wall; g4, which is close 492 

to east wall; and g2 and g3, which are situated in the middle of the streets. Generally, the temperature 493 

variations are well reproduced by the model. For example, peak temperatures occur sequentially from g1 494 

to g4 due to the movement of the building's shadow. This phenomenon is observed in both simulations 495 

and measurements.  496 

The accuracy of ground temperatures is lower than that of the wall temperatures in terms of R2. For 497 

example, in 𝐻/𝑊 =  2, the R² values for temperatures at the west wall range from 0.91 to 0.97, while 498 

those at the ground range from 0.64 67 to 0.9089. However, the ground temperatures can be considered 499 

better well modeled because the RMSE for ground temperatures is smaller than that for wall temperatures. 500 

Using H/W = 2 as an example, the RMSE values for the west wall range from 0.69 to 1.85 71 °C, while 501 

those for the ground range from 1.050.98 to 1.3724 °C. This difference between the R² and RMSE values 502 

is due to the ground temperature increase being much lower than that of the walls because of shading, 503 

particularly in deep street canyons.  504 

Uncertainties in the input data may also contribute to the discrepancies between simulation and 505 

measurement. First, the thermal properties of soil can differ significantly from those of concrete blocks. 506 

Secondly, the initial temperature is measured in surrounding area, rather than in street canyons. Thirdly, 507 

since the same initial temperature field is used for all four points, the model is unable to reproduce the 508 

differences between points at night.  509 
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 511 

Figure 1011: Ground temperature comparison between the simulation and measurement results at street 512 

canyon aspect ratio of H/W = 1.0, 2.0, 3.0, and 6.0. Surface temperatures are measured on 29th Jan 2021. The 513 

root mean square error (RMSE), and coefficient of determination (R2) are calculatecalculated and plotted. 514 

The points represent measured data and lines represent the simulated data.  515 

 516 

3.5. Surface energy balance analysis 517 

The surface temperature comparison indicates that model uncertainties arise from various factors. To 518 

identify the main factors impacting the model accuracy, the energy balance of wall surface is analyzed. 519 



 

36 

 

The heat fluxes of shortwavesolar (𝑄𝐾), longwave radiation (𝑄𝐿), convection (𝑄𝐻), and conduction (𝑄𝐺) 520 

of outer surface of walls satisfy the following equation:  521 

𝑄௄  +  𝑄௅  +  𝑄ீ  +  𝑄ு  =  0 (24) 522 

Here, the longwave heat flux 𝑄𝐿 is divided into two parts as the heat exchange between wall to sky 523 

(𝑄𝐿,𝑠𝑘𝑦) and to other urban surfaces (𝑄𝐿,𝑢𝑟𝑏𝑎𝑛), expressed as 𝑄𝐿 =  𝑄𝐿,𝑠𝑘𝑦 + 𝑄𝐿,𝑢𝑟𝑏𝑎𝑛. This analysis aims 524 

to determine whether it is necessary to model the longwave heat exchange between urban surfaces, which 525 

requires substantial computational resources.  526 

Figures 11 12 and 13 shows the heat fluxes of walls in the simulation. The heat fluxes of east and west 527 

walls are averaged from five measurement points on each. Our previous study has demonstrated that the 528 

Monte Carlo ray tracing method has good accuracy in predicting solar radiation(Mei et al., 2025). Our 529 

previous work (Mei et al., 2025) demonstrated that a Monte Carlo ray-tracing approach accurately 530 

predicts incident solar radiation. In that study, we compared the albedo of the urban canopy layer and of 531 

street canyons across a range of urban layouts with in-situ measurements, achieving excellent agreement. 532 

In all cases, longwave radiative heat exchange between urban surfaces plays an important role in the 533 

energy balance, particularly at high aspect ratios. The longwave radiative fluxes from sky only contribute 534 

a small amount of total longwave radiative flux in H/W = 6, as shown in Fig. 1012(d) and Fig. 13(d). The 535 

shading effect of buildings creates heterogeneous surface temperatures within the urban canopy layer. 536 

The large temperature differences between surface elements contribute a large portion of the total heat 537 

flux. This highlights the necessity for accurate modeling of longwave heat exchange between urban 538 

surfaces, even though it demands significant computational resources. 539 

The conductive heat flux also contributes a large portion of the total heat flux. It is negative in the 540 

morning and positive in the afternoon, meaning that heat is stored in the building block during the 541 

morning and released in the afternoon. In the reduced scale experiment, buildings were represented by 542 

airtight hollow concrete blocks. Due to the lack of ventilation, the indoor air temperature can rise to 40°543 

C under an outdoor air temperature of 20°C, as shown in Appendix A. This indicates that the indoor air 544 

can also absorb, store, and release a considerable amount of heat. Therefore, accurately modeling indoor 545 

air temperature is essential for effective surface temperature modeling. 546 
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The convective contributes a smaller amount of the total heat flux. In high aspect ratio cases (H/W = 3 547 

and 6), the convective heat fluxes are almost negligible. This is due to the weak wind in the deep street 548 

canyons. In this model, the surface convective heat flux is directly calculated from the wind speeds in 549 

street canyons. This assumption may underestimate the convective flux, especially since natural 550 

convection occurs under weak wind conditions (Fan et al., 2021).  551 

 552 

Figure 12: Diurnal heat fluxes at the east side walls from the simulation. The heat fluxes of solar (𝑸𝑲 ), 553 

longwave radiation (𝑸𝑳), convection (𝑸𝑯), and conduction (𝑸𝑮) are at the outer surface of walls.  554 
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 556 

Figure 13: Diurnal heat fluxes at the west side walls from the simulation. The heat fluxes of solar (𝑸𝑲 ), 557 

longwave radiation (𝑸𝑳), convection (𝑸𝑯), and conduction (𝑸𝑮) are at the outer surface of walls.  558 
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Figure 11: Diurnal heat fluxes from the simulation. The heat fluxes of shortwave (𝑸𝑲), longwave radiation 559 

(𝑸𝑳), convection (𝑸𝑯), and conduction (𝑸𝑮) are at the outer surface of walls.  560 

4. Application to real urban configuration 561 

To show how this model can be implemented in complex geometries, a neighborhood with 40 buildings 562 

is modeled. The building geometries are constructed by . 𝑠𝑡𝑙  files with 2.3 × 10ସ  triangular surface 563 

meshes. The surface temperatures are calculated on the grids. As a demonstration case, the complex 564 

albedo of urban surfaces is ignored. A uniform albedo of 0.24 is used for all urban surfaces. To 565 

demonstrate the model’s applicability to complex geometries, we simulated a neighborhood containing 566 

40 buildings within an area of 350 m × 200 m. Building geometries were imported as STL files 567 

comprising approximately 2.3× 104 triangular surface meshes. Surface temperatures were calculated on 568 

the triangular surface elements, as shown in Fig. 6, with shortwave fluxes resolved by a Monte Carlo 569 

ray-tracing scheme using 1×105 photons. The solar position is updated at 30-min intervals to capture both 570 

diurnal and shading variations. Transient heat conduction simulations were performed for 24 h with a 571 

10-min time step (600 s) on 29 January 2021, consistent with the validation case. Downward solar 572 

radiation, longwave radiation, wind speed, and air temperature were prescribed from the SOMUCH 573 

measurements.  574 

The simulation ran on a local workstation with an NVIDIA RTX 5090D GPU and completed in 26.6 h, 575 

comprising a view-factor calculation (4.2 h), solar-radiation computation (22.2 h), and coupled heat-576 

transfer analysis (0.2 h). 577 

For this demonstration, material-specific reflectance was neglected and a uniform albedo of 0.24 was 578 

applied to all urban surfaces. Walls and roofs were modeled as three concrete layers of 0.10 m each (total 579 

thickness = 0.30 m), while the ground comprised 0.35 m (0.15 m + 0.15 m + 0.05 m) with an adiabatic 580 

bottom boundary. For all layers, thermal properties were fixed to concrete values of thermal conductivity 581 𝑘 =  2.0 W mିଵKିଵ, density 𝜌 =  2420 kg mିଷ, and specific heat capacity 𝑐௣  =  618 𝐽 kgିଵKିଵ. All 582 

model inputs are consolidated into a single YAML configuration file, which specifies the simulation 583 

parameters, weather forcing, geometry paths, surface albedo, and material thermal properties for easy 584 

reproducibility. The walls, roofs, and ground are assumed to be constructed by three layers of concrete. 585 
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The layer thickness of walls and roofs is 10 cm. The total thickness of the ground is 35cm, with an 586 

adiabatic bottom boundary. The buildings are assumed to be naturally ventilated, with the indoor and 587 

outdoor air temperatures being the same. The thermal characteristics of concrete are assumed to be the 588 

same as in the SOMUCH experiment.  589 

The surface temperatures are calculated in three steps: 1) calculate the solar radiative flux of each point 590 

by rMCRT; 2) calculate the view factors between the elements using rMCRT; 3) calculate the surface 591 

temperatures using Monte Carlo random walking. All three steps are processed in parallel on GPU. The 592 

weather data measured on 29th Jan 2021 during the SOMUCH experiment is used as the driving input. 593 

The surface temperatures are calculated from 0:00 to 24:00, with a time step of 30 minutes.  594 

The simulation results were exported in vtk format and visualized using ParaView. Fig. 14 presents the 595 

surface temperature distributions at 09:00, 11:00, 13:00, 15:00, 17:00, and 19:00. The movement of 596 

building shadows and their influence on surface temperatures are clearly visible in these contours, 597 

illustrating the diurnal heating and cooling cycle. These visualizations demonstrate that the model can 598 

represent complex building geometries and can be applied to real urban environments. 599 

The energy balance analysis of the SOMUCH experiment indicates that convective heat transfer plays 600 

only a minor role. However, due to the experiment’s reduced scale and limited local wind speeds, it 601 

remains uncertain whether this conclusion holds at full scale or under higher wind speed conditions.  602 
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603 

 604 

Figure 1214: Radiation and temperature sSimulation results show the evolution of surface temperature for 605 

the complex building geometries at 09:00, 11:00, 13:00, 15:00, 17:00, and 19:00. These snapshots capture the 606 

diurnal heating and cooling cycle, highlighting morning warming, peak midday temperatures, and the 607 

evening decline.imulation results for complex building geometries. The direct shortwave radiation at 10:30 (a) 608 

and 14:30 (b). The surface temperatures at 10:30 (c) and 14:30 (d).  609 
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The simulation results are output in . 𝑣𝑡𝑘 format and visualized using ParaView. Fig. 12 shows the direct 610 

shortwave radiation and surface temperatures at 10:30 and 14:30. The movement of building shadows 611 

and their impact on surface temperatures are clearly observed in these contours. These contours 612 

demonstrate that this model can be applied to complex buildings in real urban areas.To further assess the 613 

role of the convective model, a wind sensitivity analysis was performed for the real urban configuration. 614 

The baseline wind speed (WF = 1.0) was measured on 29 January 2021, the same day used for the 615 

validation cases. Wind speeds were then systematically increased by factors of 2.0 and 5.0 relative to the 616 

baseline to evaluate their influence on urban surface temperatures. The resulting average surface 617 

temperatures of the ground, walls, and roof are shown on Fig. 15. The temperature evolution in Fig. 15 618 

(a)–(c) demonstrates that increasing the wind factor from WF = 1.0 to 5.0 progressively lowers surface 619 

temperatures across all urban elements. Fig. 15 (d) quantifies the temperature differences relative to the 620 

baseline scenario (WF = 1.0), revealing cooling effects of up to 6 °C, with the most pronounced 621 

reductions occurring during peak heating hours. Among the three surfaces, the roof exhibits the greatest 622 

sensitivity to wind variations, followed by the ground and then the walls.  623 

These results highlight that, at full scale and under high-wind conditions, convective processes can exert 624 

a much stronger influence on urban surface temperatures than indicated by the scaled SOMUCH 625 

experiment. Therefore, future studies are needed to better quantify and model convective effects across 626 

a broader range of wind speeds and length scales. Moreover, under weak-wind conditions, natural 627 

convection becomes especially important, particularly when the temperature difference between the wall 628 

and the atmosphere grows large (Fan et al., 2021; Mei and Yuan, 2021). However, this natural-convective 629 

effect may not be significant in the scaled SOMUCH experiment. 630 
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 631 

Figure 15. Wind-sensitivity analysis of urban surface temperatures showing (a) ground, (b) wall, and (c) roof 632 

temperature evolution under different wind factors (WF = 1.0, 2.0, 5.0), and (d) temperature differences 633 

relative to the baseline (WF = 1.0). The baseline wind speed was measured on 29 January 2021, the same day 634 

used for the model-validation cases. 635 

5. Limitations and future work 636 

This model is a building-resolved urban surface temperature model, focusing on detailed neighborhood-637 

scale processes. Therefore, its application to full city-scale simulations remains limited by computational 638 

cost and is currently best suited for neighborhood-scale. The first version focuses on the complex 639 

radiative exchange in densely built urban areas. The parameters and assumptions are validated against 640 

the idealized scaled outdoor experiment, which uses homogeneous building materials with consistent 641 

albedo and thermal characteristics. Glazing and green infrastructure are not included in this experiment. 642 

The SOMUCH project is currently measuring the impact of glass and green infrastructure. The next 643 

version will expand its capabilities to capture complex urban materials, such as urban trees, green walls, 644 
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and glass curtain walls, to better represent real urban configurations. Other limitations include:  645 

 All reflections are assumed to be Lambertian. While this assumption works well for the SOMUCH 646 

measurements, where concrete is used for all urban surfaces, it may not fully capture the reflective 647 

properties of other materials with different surface textures, such as glass or vegetation.  648 

 The high-resolution wall temperature simulation still requires a significant amount of time to 649 

complete, even with parallel computation on GPUs. This is due to the large number of rays (N = 650 

10⁶) required for accurate solar radiation modeling. For each point, the simulation takes about 1 651 

second to finish. However, as the number of test points increases, the overall computational time 652 

grows substantially.  653 

 The dynamic indoor air temperature is not included in this model. It assumes that the indoor air 654 

temperature is equal to the outdoor air temperature for a natural ventilated room. This assumption 655 

may lead to discrepancies, particularly in situations where indoor temperatures differ from outdoor 656 

conditions due to factors such as heat sources, insulation, or limited ventilation. 657 

 The participation of the urban atmosphere is ignored in this study. In the scaled measurements, 658 

longwave radiation travels much shorter distances to adjacent surfaces, which reduces the influence 659 

of atmospheric effects compared to real-world urban environments. 660 

6. Conclusions 661 

This study introduces a GPU-accelerated Urban Surface Temperature model (GUST), which solves the 662 

conduction-radiation-convection coupled heat transfer using Monte Carlo method. The GPU parallel 663 

computing is adopted to address the large computational demands of Monte Carlo method. This model 664 

is validated with a scaled outdoor experiment (SOMUCH), which has a high spatial and temporal 665 

resolution. This study introduces a GPU-accelerated Urban Surface Temperature model (GUST), which 666 

computes radiation using Monte Carlo ray tracing and solves heat conduction with a one-dimensional 667 

Monte Carlo random-walk approach. To meet the substantial computational demands of these Monte 668 

Carlo simulations, the model employs GPU-based parallel computing for efficient processing. GUST is 669 

validated against the high-resolution, scaled outdoor experiment SOMUCH, which provides detailed 670 

spatial and temporal measurements. 671 
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The radiative heat flux is simulated using a reverse Monte Carlo Ray Tracing method, which allows for 672 

the accurate reproduction of multiple reflections in high-density urban areas. The sensitivity test shows 673 

that 10ହ~10଺ rays are required for each point to accurately model the shortwavesolar radiation. This 674 

large amount of ray tracing can only be achieved using GPU parallel computing. The Monte Carlo 675 

method is also used to solve the couple heat transfer using random walking algorithms, which is suitable 676 

for GPU-based coding.  677 

The comparison with the SOMUCH experiment shows that the transient surface temperatures on roofs, 678 

walls and the ground are well reproduced. A relatively large discrepancy is observed in cases with high 679 

building density, where the wall temperatures are highly sensitive to convective and longwave radiative 680 

fluxes. The surface energy balance analysis shows that longwave radiation exchange between urban 681 

surfaces plays a critical role across all building densities. In contrast, convective heat flux only plays a 682 

significant role in high-density cases. In future versions, the simulation of convective heat flux could be 683 

improved by simulating urban airflow. 684 

Lastly, this model is implemented to solve the surface temperatures on complex urban buildings, which 685 

are composed of a total of 2.3 × 10ସ surface elements. The GPU allows simultaneous simulation of 686 

heat transfer and view factors across all elements, enabling high-fidelity simulations in real urban 687 

configurations with complex geometries. The current version focuses on the radiation-conduction-688 

convection coupled heat transfer coupled in complex geometries. Future developments will prioritize the 689 

integration of complex glazing systems and green infrastructure in urban environments. 690 

 691 

Code availability 692 

The SOMUCH measurement data is available upon request. The development of GUST, model validation, 693 

and visualization in this study were conducted using Python 3.8 with CUDA. The source code, supporting 694 

data, and simulation results presented in this paper are archived on Zenodo at 695 

https://doi.org/10.5281/zenodo.15074365 (Mei, 2025). Users are requested to contact the corresponding 696 

authors to obtain access to the code free of charge for research purposes under a collaboration agreement 697 

(meishj@mail.sysu.edu.cn). The SOMUCH measurement data are available upon request. The 698 
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development of GUST, model validation, and visualization in this study were conducted using Python 699 

3.8 with CUDA. The source code, supporting data, and simulation results presented in this paper are 700 

archived on Zenodo at https://doi.org/10.5281/zenodo.17138571 and are freely accessible for research 701 

purposes under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. 702 
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 717 

Appendix A. Indoor and outdoor air temperatures in SOMUCH measurement 718 

The indoor and outdoor air temperatures at different levels in the SOMUCH measurement are plotted in 719 

Fig. A1. These air temperatures serve as input data for the validation cases.  720 
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(a) H/W = 1 726 

 727 

(b) H/W = 2 728 
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 729 

(c) H/W = 3 730 

 731 

(d) H/W = 6 732 

Figure A1: Indoor, outdoor air temperatures, and wind speeds in street canyons that are measured on 29th 733 

Jan 2021. The wind speeds in the street canyon of H/W = 6 were not measured because the sonic anemometer 734 

cannot be installed in such a narrow street. The outdoor air temperatures measured at z = 60 cm in H/W = 2 735 

are unusual, due to an instrument failure. 736 
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Appendix B. Sensitivity test for other days 737 

To further validate the model, we also compared the simulated roof temperatures with measurements over three 738 

consecutive days, from 30 January to 1 February 2021, similar to the analysis presented in Fig. 8. The results are 739 

shown in Fig. A2, which demonstrates excellent agreement between simulated and observed roof temperatures. By 740 

using multiple consecutive days, this comparison minimizes potential bias arising from the single day’s weather 741 

conditions. 742 

(a) 30th Jan 2021 743 

 744 

(b) 31st Jan 2021 745 

 746 
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(c) 1st Feb 2021 747 

 748 

Figure A2: Weather data from 30 January to 1 February 2021 are shown in the left panels. The right panels 749 

compare roof-surface temperatures from simulation and measurement, with points representing observations 750 

and lines representing simulated values. 751 
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