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Abstract  26 

The accurate prediction of cloud condensation nuclei (CCN) number 27 

concentration (NCCN) on a large spatiotemporal scale is challenging but critical to 28 

evaluate the aerosol cloud interaction (ACI) effect. Combining multi-source dataset and 29 

the NCCN simulated by the Weather Research and Forecasting coupled with Chemistry 30 

(WRF-Chem) model, we have developed a new machine learning-based model which 31 

predicts well both regional and hourly-to-yearly scale NCCN at typical supersaturations 32 

in the North China Plain (NCP). We show that the prediction bias of NCCN compared to 33 

observations is reduced from -39% with the WRF-Chem model to approximately -8% 34 

with the new model. The greatest improvement is seen in polluted cases. The new model 35 

captures well the spatial variation and better describes long-term trends of NCCN than 36 

the WRF-Chem. More importantly, the study reveals a significant long-term decreasing 37 

trend of NCCN in NCP due to a rapid reduction in aerosol concentrations from 2014 to 38 

2018, during which a series of strict emission reduction measures were implemented 39 

by the Chinese government. This reflects the climate benefit of pollution control. Our 40 

study further illustrates that the new model reduces the uncertainty in simulating cloud 41 

radiative forcing from an overestimation of 1.07±0.76 W m-2 to only 0.18±0.65 W m-2, 42 

illustrating the high sensitivity of climate forcing to changes in NCCN. This work offers 43 

a new modeling framework that has the potential to greatly improve the assessment of 44 

the ACI effect in current models, and guides the way to simulate CCN in other regions 45 

around the world.   46 
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1. Introduction 47 

Aerosol indirect radiative effects caused by aerosol-cloud interactions (ACI) are 48 

the largest source of uncertainty when assessing climate change (IPCC 2021). A major 49 

issue is the lack of an accurate characterization of cloud condensation nuclei (CCN, or 50 

cloud nuclei) number concentrations (NCCN) in global climate models (Sotiropoulou et 51 

al., 2007; Fanourgakis et al., 2019). This is largely due to the nonlinear interactions 52 

between the aerosol physical and chemical properties and CCN, making the 53 

quantification of the NCCN remain highly uncertain. Current models tend to 54 

underestimate CCN number concentrations by 20–40% on average, based on 55 

comparisons between results from 14 models and observations at sites distributed 56 

globally (Fanourgakis et al., 2019). Biases were greater in the Northern Hemisphere 57 

due to intensive human activities (Sotiropoulou et al., 2007). It has been proposed that 58 

~10–30% changes in cloud droplet concentrations might be associated with the 59 

uncertainties in cloud radiative forcing by ~0.1–2 W m-2 (Charlson et al., 1987; 60 

Sotiropoulou et al., 2007; Yu et al., 2022). Towards improving estimates of the ACI 61 

effect in modeling, it is critical to obtain accurate spatiotemporal distributions of CCN.  62 

Predicting NCCN remains challenging because aerosol CCN activity varies greatly 63 

in time and space and involves microphysical and chemical processes. Previous studies 64 

have underscored that the main uncertainties in simulating NCCN at regional and global 65 

scales are the simplified representations of particle size distribution (Menon & Rotstayn, 66 

2006), as well as the lack of detailed treatment of the microphysical and chemical 67 
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processes in current models (Sha et al., 2019; Yu et al., 2020). Therefore, a considerable 68 

number of CCN closure studies have been carried out to predict NCCN in different 69 

environments (Moore et al., 2012; Zhang et al., 2014, 2016, 2017, 2019; Xu et al., 2021; 70 

Ren et al., 2018, 2023). Although extensive CCN observations and closure studies 71 

might help to reconcile this uncertainty, field measurements are relatively sparse and 72 

have only been collected during a few campaigns at a few sites (Schmale et al., 2018; 73 

Rose et al., 2021) due to the limitations of techniques and cost. Closure studies, however, 74 

have mostly focused on investigating the relative importance of the aerosol physical 75 

and chemical properties to CCN prediction and have not yet provided a CCN 76 

parameterization scheme that is applicable to different regions over the globe. Some 77 

studies have attempted to develop a correlation between aerosol optical properties and 78 

CCN number concentrations (Rosenfeld et al., 2016). Compared with the measurement 79 

of CCN at ground sites, satellite retrieval methods offer global coverage with high 80 

spatial and temporal resolutions (Rosenfeld et al., 2016; Liu et al., 2020). However, 81 

they are limited to clear-sky conditions. Due to the aerosol swelling effect (Liu et al., 82 

2018), there are typically large deviations of -30% to +90% in the estimation accuracy 83 

of NCCN in different environments (Shen et al., 2019). 84 

In recent years, machine learning (ML) has been used for the inversion of 85 

atmospheric environmental parameters such as tropospheric ozone and particulate 86 

matter with a diameter of 2.5 µm or smaller (PM2.5) (Grange et al., 2018; Geng et al., 87 

2021; Wei et al., 2023). To our knowledge, ML-based prediction of CCN properties is 88 

few and far between, with studies only focused on analyzing the importance of different 89 
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variables to estimating CCN spectra at a single field site (Liang et al., 2022) or were 90 

conducted in relative clean regions (Nair et al., 2020, 2021). It would be a step forward 91 

to use an ML-based method to predict NCCN in polluted areas because it would help to 92 

verify the applicability of the method in different regions, but most importantly, it 93 

would improve model simulations of the ACI effect in polluted regions where errors in 94 

predicting NCCN are greater than in clean regions.  95 

In this study, we have developed a new ML-based model for predicting NCCN on 96 

hourly-to-yearly scale in the heavily polluted North China Plain (NCP) by using a 97 

multi-source dataset of atmospheric variables and CCN concentration outputs from the 98 

Weather Research and Forecasting coupled with online chemistry (WRF-Chem) model. 99 

The diagram of the model construction and the NCCN prediction is shown in Figure 1. 100 

We have presented and analyzed the relative importance of the different parameters to 101 

CCN prediction; Moreover, we have verified the performance of the new model in 102 

predicting the NCCN over different temporal and spatial scales in the NCP. Finally, by 103 

incorporating the NCCN prediction biases into the evaluation of cloud parameters and 104 

radiative forcing, we investigate the sensitivity of aerosols indirect climate forcing to 105 

CCN concentrations changes.  106 

2. Data collection and model construction 107 

In this study, we develop the ML-based model by employing the Random Forest 108 

Regression method (RFRM) and outputs of NCCN from the WRF-Chem model. A region 109 

within 32°-40°N and 114°-121°E in the NCP is chosen as the study area (Fig. S1 and 110 
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Section 1 in the online supplemental Information SI). In the WRF-Chem modeling 111 

system, the sectional Model for Simulating Aerosol Interactions and Chemistry 112 

(MOSAIC) is used here (see Section 2 in the SI). The simulation in WRF-Chem is 113 

conducted from 1 January 2014 to 31 December 2018 with an hourly resolution. The 114 

Morrison two-moment scheme (Morrison et al., 2009) and the Carbon Bond 115 

Mechanism Z photochemical mechanism (Zaveri et al., 1999) are employed in the 116 

WRF-Chem model. SI gives more details about the other parameterizations used. The 117 

simulated NCCN is as one of the input parameters of the RFRM model which has been 118 

trained and validated with field observational dataset obtained at the sites in this region.   119 

Other input parameters include the chemical components of PM2.5 from the 120 

Tsinghua University Tracking Air Pollution in China dataset (Geng et al., 2021) and gas 121 

and particulate pollutants (nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon 122 

monoxide (CO), ozone (O3) and PM2.5) collected from the China National 123 

Environmental Monitoring Centre network. Meteorological parameters are from the 124 

European Centre for Medium-range Weather Forecasts Reanalysis version 5 (ERA-5) 125 

and include temperature, relative humidity (RH), total precipitation (TP), wind speed 126 

(WS), wind direction (WD), planetary boundary layer height (BLH), surface pressure 127 

(SP) and surface net solar radiation (SNSR). Cartesian coordinates were also added as 128 

input due to the spatiotemporal nature of the input data (Yang et al., 2022). Table S1 129 

and Section 3 of SI provide more details about the input parameters. Cross-validation 130 

(Nair et al., 2020) is also applied to select the hyperparameters during the data 131 

preprocessing (Fig. S2).  132 
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Ground measurements of atmospheric gaseous precursors, fine particles chemical 133 

compositions, and CCN number concentration (at supersaturations of 0.2% and 0.4%) 134 

were collected during six field campaigns at three sites in the NCP (Fig. 3), used to 135 

assess the performance of the developed ML-based model in predicting NCCN. More 136 

details about the ground-based NCCN measurements and instrumentation can be found 137 

in Section 5 of SI.  138 

3. Results 139 

3.1 The relative importance of the input parameters to the prediction of NCCN 140 

The relative importance of the input parameters in predicting NCCN is quantified in 141 

Fig. 2. The permutation score of the importance of each individual parameter is 142 

calculated by randomly permuting values of the parameters and establishing the 143 

association with RFRM-predicted NCCN. Nitrate (NO3
-) emerges as the most crucial 144 

indicator with the highest permutation score (~0.48–0.74) and correlation (~0.54). This 145 

is likely due to the increment increase in the proportion of nitrate aerosols in PM2.5 in 146 

recent years (Li et al., 2020; Liang et al., 2022), which are highly hygroscopic, so 147 

dominates changes in particle hygroscopicity and CCN activity. The important role of 148 

NO3
- can also be indicated by the good consistency of temporal variations of the field 149 

measured NO3
- and NCCN (Fig. S3).  150 

The importance of PM2.5 mass concentration, which is associated with the changes 151 

in particle size and composition (Zhang et al., 2019), is secondary to NO3
- particles in 152 

the summer seasons, normally an increase of PM2.5 corresponding to enhanced CCN 153 
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activity. During the winter, changes in BLH contribute more to CCN predictions than 154 

PM2.5 (Fig. 2b) and more to the model’s output (Fig. 2c). This is a season when the 155 

planetary boundary layer strongly influences the evolution of haze and the 156 

accumulation of particles in the lower atmosphere. Such effects are not as important in 157 

summer (Zhang et al., 2019; Song et al., 2022). As reported in Guo et al. (2016), the 158 

BLH would decrease significantly with the increase of the aerosol mass concentration. 159 

Clearly, CCN predictions highly depend on the time and seasons. In addition, compared 160 

to winter, the black carbon (BC) mass concentration plays a more important role in the 161 

summer half year when the rapid aging processes of BC occurred and thus enhanced 162 

the CCN activity (Ren et al., 2023). Note that the impact of sulfate aerosols on NCCN 163 

prediction is much less important in both summer and winter seasons compared to 164 

nitrate particles, with a permutation score ranging from ~0.02 to 0.03, largely due to its 165 

decreased proportion in PM2.5 in recent years (Liang et al., 2022; Li et al., 2020). 166 

The results also show the important role of the ambient temperature in the winter 167 

half year, which is mainly reflected in the promotion of nucleation growth and 168 

secondary generation of particles (Song et al., 2022). While in the summer half year, 169 

the RH has a higher importance score in NCCN prediction, which is conducive to the 170 

hygroscopic activation of particles (Chen et al., 2022). By comparison, the permutation 171 

score of other meteorological factors (eg., WS, WD, TP, SP and SNSR) are relatively 172 

low (< 0.06) both in summer and winter half year in the NCP.  173 

In addition, among the gaseous pollutants, the NO2 is found to be the most 174 

important factor when predicting NCCN, which may be due to the production of nitrate 175 
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(Li et al., 2020). However, different from previous reports by Nair and Yu (2020), other 176 

gas precursors are less important with low permutation score values. In summary, the 177 

critical important parameters for predicting NCCN include the PM2.5, chemical 178 

components (nitrate, organics and BC), meteorological factors (RH, BLH, and TEM), 179 

and gaseous precursors (NO2). However, the importance of each input parameters in 180 

predicting CCN varies with time such as seasons. 181 

3.2 Performance of the new model in predicting NCCN at field sites in the NCP 182 

To examine the performance of the newly developed model in predicting NCCN, we 183 

compare the predicted NCCN with both the simulations by WRF-Chem and the 184 

observations from six field campaigns in NCP (Fig. 3). The six campaigns, named as 185 

BJ2014_WIN, BJ2015_AUT, BJ2016_WIN, BJ2017_SUM, XT2016_SUM, and 186 

GC2018_WIN, were conducted in different seasons at three sites in the NCP (Fig. 3a). 187 

The observed NCCN varies from a few hundred to tens of thousands at these sites, and 188 

the campaign mean mass concentration of PM2.5 ranges from 35.6 to 160 μg m-3 (Fig. 189 

3b), indicating that the observations can represent various atmospheric conditions, 190 

spanning from clean to polluted in the region. Fig. 3a shows NCCN at a supersaturation 191 

of 0.2% (the typical range of supersaturations in clouds). It shows that, for all the six 192 

campaigns, the time series of NCCN predicted by the new model agrees better with the 193 

observed NCCN compared to simulations by the WRF-Chem model. Although both the 194 

new model and WRF-Chem exhibit underestimations in observed NCCN, the average 195 

bias between the predicted and observed NCCN has been reduced from -39% by the 196 

WRF-Chem model to approximately -8% by the newly constructed model (Fig. 3c). 197 
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Compared to WRF-Chem simulations, the new model showed the greatest 198 

improvement during the winter campaigns when PM2.5 concentrations were usually 199 

higher. For example, during the GC2018_WIN campaign, the observed NCCN is 200 

underestimated as large as 61% by the WRF-Chem (Fig. S4), while the underestimation 201 

is largely improved with the predicted bias of only 3% in the new model (Fig. S4). 202 

WRF-Chem simulations for warm seasons noticeably improved, e.g., the uncertainty 203 

decreased to 8% during the BJ2015_AUT campaign (Fig. S4). Overall, the new model 204 

still performs better than the WRF-Chem model and is with averaged predicted bias of 205 

18% during summer campaigns. Occasionally, the WRF-Chem model overestimated 206 

the NCCN apparently, e.g., the episodes of September 21 to 24 during the BJ2015_AUT 207 

campaign, and May 28 to 31 during the BJ2017_SUM campaign. Figure S5 shows 208 

comparisons of NCCN at S=0.4%, which exhibits similar patterns to that at S=0.2%. 209 

Overall, the new model performs well and can accurately capture the observed 210 

fluctuations during these episodes. The improvements in our new model also 211 

demonstrate the effectiveness of the model trained on data on a daily scale to data on 212 

an hourly scale. 213 

The large biases of the WRF-Chem to simulate NCCN may be caused by the 214 

uncertainties in precursor vapor mass, size distributions of the particles, the 215 

hygroscopic properties of the organics, dry deposition and cloud processing, which 216 

have been noted and proposed by Fanourgakis et al. (2019). In our case, the 217 

underestimation of NCCN by the WRF-Chem model is likely due to the overestimation 218 

of the organics and BC mass fraction induced by WRF-Chem (Fig. S6), the simplified 219 
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prescriptions in particle size distribution, and the bias of the hygroscopic parameter of 220 

organics. Also, the fixed hygroscopicity parameter value does not sufficiently represent 221 

the hygroscopicity of organics throughout the study period (Liu et al., 2021). Note that 222 

for the periods of November 16 to 21 during the BJ2016_WIN campaign, NCCN is 223 

considerably overpredicted by the new model. This may be due to the extremely high 224 

levels of primary organic aerosol (POA) during that period (Fig. S7), resulting in 225 

weakened aerosol hygroscopicity and CCN activity, thereby lowering CCN number 226 

concentrations (Fan et al., 2020). Neglecting to distinguish between POA and SOA 227 

information during the training of the new model may cause the overestimation of NCCN 228 

when POA dominates. Uncertainties incurred by the new model could also originate 229 

from the lack of physical interpretability in these ML-based models (Wei et al., 2023). 230 

Additional input parameters that carry rich and meaningful information (e.g., size 231 

distribution, aerosol sources and other secondary processes) are expected to further 232 

improve the predictability of NCCN in future.  233 

3.3 Performance of the new model in predicting hourly-to-yearly-scale NCCN 234 

To further examine the performance of the new model in predicting NCCN at 235 

different time scales, we compare the new model-predicted hourly-to-yearly NCCN in 236 

Beijing with both WRF-Chem simulations and observed values (Fig. 4). The new model 237 

captures well the diurnal cycle (Fig. 4a), while the WRF-Chem model underestimates 238 

NCCN, especially at night. Concerning seasonal variations, similarly, the new model 239 

performs better with the mean bias of ~ 6% compared to observations. While the mean 240 

bias can increase to be ~25% by the WRF-Chem (Fig. 4b). Note that, the bias is much 241 
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greater in the cold seasons than that in the warm seasons for the WRF-Chem. This is 242 

probably due to the higher wintertime CN and CCN concentrations which are more 243 

difficult for models to capture and simulate (Fanourgakis et al., 2019).  244 

Figure 4c shows the long-term trend of yearly averaged NCCN. Here, the real 245 

atmospheric long-term trend of NCCN (denoted as NCCN_Obs) is derived using the long-246 

term measurement of particle number size distribution (PNSD) at a field site in Beijing 247 

(Fig. S8) (Fig. 4d, Shang et al., 2022) and the κ calculated from the measured chemical 248 

compositions based on the κ-Köhler theory (Petters and Kreidenweis, 2007). The results 249 

show that the predicted average annual NCCN at S=0.2% based on the new model agrees 250 

well with NCCN_Obs in terms of magnitude and long-term trend (Fig. 4c), showing a 251 

decreasing trend year by year with the average annual CCN number concentration of 252 

about 6216±3624 cm-3 in 2014 and 3278±2306 cm-3 in 2018; however, although the 253 

WRF-Chem simulations also show a similar decreasing trend year by year, it 254 

significantly underestimates the average annual NCCN of all years (with average bias of 255 

43%), resulting in the inter-annual trend lines being parallel but not coincident. The 256 

small bias (within ±5%) between the new model predictions and the observations may 257 

be due to the uncertainty from how NCCN_Obs is calculated , i.e., using the Tracking Air 258 

Pollution in China (TAP) dataset to calculate κ. A comparison of the values of κ and 259 

NCCN between that derived using field observations and the TAP dataset shows little 260 

differences (Fig. S9); actually, the long-term change of NCCN is much less sensitive to 261 

changes in κ values compared to the PNSD, and thus the uncertainty in the long-term 262 

NCCN_Obs caused by using the TAP dataset is negligible (Fig. S9). The method to 263 
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calculate NCCN at S=0.2% based on κ-Köhler theory would cause an upper-limit 264 

uncertainty of 7% (Ren et al., 2018). 265 

According to Fig. 4d-e, the long-term decreasing trend of NCCN at S=0.2% from 266 

2014 to 2018 is mainly attributed to a significant reduction in aerosol particle number 267 

concentrations in the atmosphere. In addition, the peak diameter of the PNSD shows a 268 

shift toward the left, decreasing slightly from about 70 nm in 2014 to 30 nm in 2018 269 

due to the enhanced new particle formation events in recent years (Zhu et al., 2021). 270 

This would also result in less aerosol particles serving as CCN. Although the κchem has 271 

a slight upward trend from 2014 to 2018 (Fig. 4e), yielding decreases in activation 272 

diameter and thereby more CCN, the aerosol particle hygroscopicity, however, plays 273 

much less significant role in regulating the total NCCN compared to the changes in 274 

particle number size distribution during this period. 275 

3.4 Spatial variations of NCCN derived by the new model and WRF-Chem 276 

We further examine the spatiotemporal changes of NCCN at S=0.2% in the NCP 277 

derived by the new model and WRF-Chem (Fig. 5). Regionally, the NCCN predicted by 278 

the new model is also generally higher than that simulated by WRF-Chem at most of 279 

the sites. The NCCN derived by the new model and WRF-Chem both decrease from 2014 280 

to 2018 but with different decreasing rates (Fig. 5c-e). On average, NCCN derived by the 281 

new model and WRF-Chem decrease from 4996±1147 to 3930±884 cm-3 and from 282 

2834±1366 to 2111±546 cm-3 respectively from 2014 to 2018 in the NCP region (Fig. 283 

5c), corresponding to annual decreasing rates of approximately ~ -247 cm-3 yr-1 (-4% 284 

yr-1) for the new model and ~ -167 cm-3 yr-1 (-5% yr-1) for the WRF-Chem model (Fig. 285 
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5d-e). Moreover, NCCN and its changes from 2014 to 2018 predicted by the new model 286 

show more significant spatial variations than that simulated by the WRF-Chem model. 287 

Differences in new-model-predicted NCCN between 2014 and 2018 (2018 minus 2014) 288 

show negative values at ~90% of the sites, i.e., downward trends in NCCN (Fig. 5c1). 289 

The sites with apparent NCCN reduction are mainly located in the central and northern 290 

of NCP, especially in Beijing-Tianjin-Hebei (BTH) and central Shandong, where are 291 

mostly impacted by heavy industry and densely populated (Wei et al., 2023). Sites in 292 

southern NCP have slight downward trends in NCCN. The downward trend is consistent 293 

with the variations in concentration of gaseous pollutants due to the emission reduction 294 

in past years in China (Fig. S10). Interestingly, note a few sites with positive values 295 

(upward trends in NCCN) are mainly located along the coast. An increase in the fraction 296 

of accumulation-mode particles in coastal areas has been reported contributing more 297 

CCN (Zhu et al., 2021). This demonstrates the good performance of the new model in 298 

capturing the real-time spatial variations of CCN on a regional scale. By contrast, WRF-299 

Chem simulation fails to capture such spatial variations, showing overall decreasing 300 

trends at all sites in the NCP (Fig. 5c-e).  301 

In summary, our newly constructed model can capture the spatial variability in the 302 

long-term trend of NCCN, while the WRF-Chem model might mask the variations of 303 

NCCN among different sites. This will smooth out the true impact of aerosols on weather 304 

and climate at regional or local scales, leading to uncertainties in model simulations.  305 
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3.5 Sensitivity of the cloud parameters and radiative forcing to CCN prediction 306 

biases 307 

To evaluate the effects introduced by NCCN prediction biases to the aerosol indirect 308 

effects, we further incorporate the deviations between observed NCCN (denoted as 309 

CCNOBS) and NCCN predicted by the new model (denoted as CCNML) and the simulated 310 

by the WRF-Chem model (denoted as CCNWRF-Chem) into calculations of the cloud 311 

parameters and radiative forcing, as are shown in Fig. 6 (for S =0.2%) and Figs. S11-312 

13 (for S=0.1%, and 0.4%). Typically, aerosol particles serving as CCN could indirectly 313 

affect the global climate by the Twomey (Twomey, 1977) and Albrecht effects (Albrecht, 314 

1989). According to Wang et al. (2019), two parameters of cloud optical thickness (τ) 315 

and the absorption coefficient (1-ω0) can be used to estimate the Twomey effects. The 316 

process of cloud-to-rain conversion, which can be parameterized by the critical radius 317 

(rc) and the cloud-to-rain conversion threshold function (TA), is critical to estimate the 318 

Albrecht effect. Therefore, the rc and TA is also calculated here. Indirect (cloud) 319 

radiative forcing (Fc) is also evaluated based on the deviations in CCN number 320 

concentration under the assumption of a constant liquid water content (Charlson, 1992; 321 

Wang et al., 2008). Section 6 of the SI provides details about the methods used to 322 

evaluate aerosol indirect effects.  323 

In general, the results show that these cloud properties are more sensitive to the 324 

changes in NCCN when the models underestimate the CCN number concentrations (Δ325 

NCCN<0) compared to the cases with an overestimation (Figure. 6a-d). For example, a 326 

~50% underestimation (overestimation) of NCCN could lead to relative deviations 327 
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(uncertainties) of -21% (14%) for τ, 27% (-12%) for (1-ω0), and -11% (7%) for rc at 328 

S=0.2%. Note that, on average, both the new model and WRF-Chem in this study show 329 

underestimations in NCCN within the sensitivity zone of the cloud effect (Fig. 6), It is 330 

thus expected to cause large uncertainties in evaluating the cloud radiative forcing, a 331 

topic worthy of further attention. Given that the uncertainty in NCCN predicted by the 332 

WRF-Chem model is much greater than that of our new model, the uncertainties and 333 

variation ranges of these cloud parameters from WRF-Chem simulations are also 334 

greater. Specifically, the uncertainties of CCNML and CCNWRF-Chem lead to the 335 

uncertainties of -52% to +91% and -77% to +171% respectively, for the τ (Fig. 6a and 336 

a1), -47% to +112% and -63% to +344% respectively, for the 1-ω0 (Fig. 6b and b1), -337 

31% to +38% and -53% to +65% respectively, for the rc (Fig. 6c and c1), and -256% to 338 

+210% and -434% to +353% respectively, for the TA (Fig. 6d and d1). 339 

In addition, the underestimation of CCN would lead to underestimations of cloud 340 

optical thickness τ and the critical radius rc of the automatic cloud/rain transformation, 341 

but overestimations of (1-ω0) and the threshold function TA of the automatic cloud/rain 342 

transformation, all of which depend on their physical mechanisms within the realm of 343 

aerosol-cloud interactions (Stier et al., 2024) (Fig. S11). This is also the case at the other 344 

supersaturation levels considered (Fig. S11-S13). 345 

As a result, we derive that the mean underestimation of ~39±80% in NCCN at S=0.2% 346 

caused by the WRF-Chem leads to underestimations of 15±22% in the τ, 8±10% in the 347 

rc, and an overestimation of 18±21% in the absorption coefficient (1-ω0) and 53±73% 348 

in the TA. While, the uncertainties for all these parameters are largely reduced when the 349 
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mean underestimation of ~8±38% in NCCN at S=0.2% that is caused by our new model 350 

is applied (Fig. 6e). For example, the underestimation of cloud optical thickness τ 351 

decreases to ~3%, an improvement compared to the underestimation of about 15% by 352 

the WRF-Chem model. Also, the new model reduces the underestimation of the critical 353 

radius rc of the automatic cloud/rain transformation to only ~1%. Ultimately, the 354 

uncertainty of cloud radiative forcing Fc has been significantly reduced from an 355 

overestimation of 1.07±0.76 W m-2 by the WRF-Chem model to only 0.18±0.65 W m-2 356 

by the new model, showing the high sensitivity of climate forcing to the uncertainties 357 

in CCN number concentrations. Note that a limitation when evaluating the cloud 358 

radiative forcing based on the assumption of cloud fraction and the fractional 359 

transmission is the approximate analytical expression. Therefore, the results presented 360 

here may represent the upper limit, and the sensitivity of the radiative forcing to changes 361 

in NCCN would be weaker over continental areas (Wang et al., 2008; Yu et al., 2022). 362 

4. Discussion and conclusions 363 

In this study, using a multisource dataset of atmospheric variables and the NCCN 364 

simulations by the WRF-Chem model, we have developed a new machine-learning-365 

based model that predicts well prediction of regional-scale NCCN based on the 366 

application of the model to data from the densely populated NCP region. The results 367 

show that the prediction bias of NCCN compared to observations is reduced from -39% 368 

from WRF-Chem simulations to approximately -8% from the newly constructed model. 369 

The improvement is greatest during heavy pollution periods or cold seasons. In general, 370 
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our new model captures the spatial differences in NCCN in the NCP better than the WRF-371 

Chem model. In addition, the new model reveals a long-term downward trend of NCCN 372 

coincident with the observed trend for the period of 2014–2018. By further 373 

incorporating the NCCN prediction biases into the evaluation of cloud parameters and 374 

radiative forcing, we found that the cloud properties are more sensitive to the changes 375 

in NCCN when the models underestimated the CCN number concentrations compared to 376 

the cases when the models overestimated NCCN. As a result, the simulated uncertainty 377 

of cloud radiative forcing Fc could be significantly reduced from an overestimation of 378 

1.07±0.76 W m-2 to only 0.18±0.65 W m-2 by the new model. Given the simplified 379 

setting in current climate models, this work emphasizes the necessity and urgency to 380 

obtain the precise NCCN values, offering a new framework for predicting CCN 381 

concentrations based on machine learning algorithms. Incorporating this framework 382 

into traditional three-dimensional numerical or global climate models could help reduce 383 

the uncertainty of simulated aerosol indirect effects.  384 

Note that in this study, observational data from six campaigns at three sites are 385 

analyzed. Validating the simulated NCCN through comparisons with observations at 386 

more ground sites is thus warranted. In the future, it is crucial to obtain comprehensive 387 

monitoring data of CCN and other key aerosol properties (e.g., particle size distribution, 388 

chemical compositions) in different environments. Our modeling framework could then 389 

be used to simulate ground-level CCN data in other regions around the world and even 390 

on a global scale. This new modeling framework could also guide the way to developing 391 
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a new machine-learning-based model to predict CCN vertical profiles, which is useful 392 

for the accurate evaluation of the ACI effect.  393 

Code and Data availability  394 

The data and code are publicly accessible at https://zenodo.org/records/15523200 (Ren 395 

et al., 2025). This includes the machine learning code, the corresponding training and 396 

testing dataset and the observation data, the script and namelist file used in WRF-Chem 397 

and the scripts used for plotting, supporting the findings of this study. The release 398 

version of Python and the Scikit-Learn machine learning library are from https://scikit-399 

learn.org/stable/index.html. The chemical compositions were adopted from Tsinghua 400 

University TAP (Tracking Air Pollution in China) dataset and available at 401 

http://tapdata.org.cn/?page_id=59&item=pm25 (last access: May, 2025, Geng et al., 402 

2021). The meteorological datasets are from the fifth generation European Centre for 403 

Medium-Range Weather Forecasts reanalysis (ERA-5) and available at 404 

https://cds.climate.copernicus.eu/datasets (last access: May, 2025). The ground-based air 405 

quality monitoring observations are from the China National Environmental 406 

Monitoring Centre network and available from https://quotsoft.net/air/. The release 407 

version of WRF-Chem can be downloaded from 408 

http://www2.mmm.ucar.edu/wrf/users/download/get_source.html. The initial 409 

meteorological variables are from the National Center for Environmental Prediction's 410 

Final Operational Global (NCEP/FNL) and available from 411 

https://rda.ucar.edu/datasets/d083002/dataaccess/# (last access: May, 2025). The initial 412 
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and boundary chemical conditions are from the Community Atmosphere Model with 413 

Chemistry model and can be downloaded from (https://www.acom.ucar.edu/cam-414 

chem/cam-chem.shtml last access: May, 2025). The anthropogenic emissions are from 415 

Multi resolution Emission Inventory for China (http://meicmodel.org.cn, last access: 416 

May, 2025, Zheng et al., 2018). The biological, biomass and fire emissions inventory 417 

are taken from the Model of Emissions of Gases and Aerosols from Nature and the Fire 418 

Inventory from NCAR, respectively (https://www.acom.ucar.edu/wrf-419 

chem/download.shtml and https://www.acom.ucar.edu/Data/fire/ last access: May, 420 

2025) 421 

Supplement 422 

The Supplement contains the information of the field campaigns, additional 423 

descriptions of the WRF-Chem simulation (study domain, emission inventory, 424 

parameterization scheme, and initial and boundary conditions), introductions of the 425 

auxiliary variables, and the method to evaluate aerosol indirect effects. 426 
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Fig. 1 Methodological framework of CCN number concentration prediction.  613 
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 614 

Fig. 2 The relative importance of the input parameters to the prediction of NCCN. (a) 615 

Permutation importance of each parameter and its determination coefficient in the 616 

summer half of year; (b) Same as (a) but for the winter half of year; (c) Scatter plots of 617 

the input parameters (NO3
-, PM2.5, RH, TEM, BLH) with CCN number concentration 618 

at S=0.2%.  619 
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Fig. 3 Performance of the new model in predicting NCCN at field sites in NCP. (a) Time 620 

series of the observed and predicted CCN number concentrations at S=0.2% for the six 621 

campaigns (BJ2015_AUT, BJ2017_SUM, XT2016_SUM, BJ2014_WIN, 622 

BJ2016_WIN, GC2018_WIN) in the North China Plain; (b) Map for average mass 623 

concentration of PM2.5 of 2014 from TAP dataset in NCP (http://tapdata.org.cn/) and 624 

field observed average mass concentration of PM2.5 during the six field campaigns (see 625 
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embedded histogram); (c) Scatter plots of the observed NCCN at S=0.2% with the New-626 

model predicted (top) and WRF-Chem simulated (bottom) respectively.  627 

 628 

Fig. 4 Performance of the new model in predicting hourly-to-yearly scale NCCN. (a) 629 

Diurnal variations of NCCN at S=0.2% derived from the new model, the WRF-Chem, 630 

and the observations from the field campaigns; (b) Seasonal variations, here the 631 

comparison in summer, autumn and winter were conducted using the campaign 632 

averages of BJ2017_SUM, BJ2015_AUT, and BJ2014_WIN&BJ2016_WIN 633 

respectively with the new model and WRF-Chem predictions at corresponding periods;  634 

(c) Trends of annual mean NCCN from 2014 to 2018; (d) Trends of annual mean particle 635 

number concentration and peak diameter; (e) Trends of annual mean of the hygroscopic 636 

parameter κchem calculated from TAP dataset in Beijing. 637 
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 638 

Fig. 5 Spatial variations of NCCN derived by the new model (top) and WRF-Chem 639 

(bottom) at the sites in the studied region. (a1) Average NCCN at S=0.2% in 2014 640 

predicted by the new model; (a2) Average NCCN at S=0.2% in 2014 by the WRF-Chem; 641 

(b1 and b2) Same as a1 and a2 but in 2018; (c1) Differences in NCCN at S=0.2% between 642 

the year of 2014 and 2018 predicted by the new model; (c2) Same as (c1) but by the 643 

WRF-Chem; (d1) Trends of NCCN at S=0.2% from 2014 to 2018 predicted by the new 644 

model ; (d2) Same as (d1) but by the WRF-Chem; (e1) Change rates of NCCN at S=0.2% 645 

from 2014 to 2018 predicted by the new model; (e2) Same as (e1) but by the WRF-646 

Chem.  647 
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 648 

Fig. 6 Sensitivity of the cloud parameters and radiative forcing to CCN prediction 649 

biases. (a) Dependence of the uncertainty of the cloud optical thickness (τ) on the 650 

uncertainty of NCCN at S=0.2% with the new model; (a1) Same as (a) but by the WRF-651 

Chem; (b) Dependence of the uncertainty of the absorption coefficient (1-ω0) on the 652 

uncertainty of NCCN at S=0.2% with the new model; (b1) Same as (b) but by the by the 653 

WRF-Chem; (c) Dependence of the uncertainty of the critical radius (rc) on the 654 

uncertainty of NCCN at S=0.2% with the new model; (c1) Same as (c) but by the WRF-655 

Chem; (d) Dependence of the uncertainty of the cloud-to-rain conversion threshold 656 

function (TA) on the uncertainty of NCCN at S=0.2% with the new model; (d1) Same as 657 

(d) but by the WRF-Chem; (e) Mean uncertainty in simulating the cloud properties and 658 

(f) radiative forcing (Fc) by the new model and the WRF-Chem; Black star shows the 659 

mean value for the observation. 660 
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