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26 Abstract

27 The accurate prediction of cloud condensation nuclei (CCN) number
28  concentration (Nccn) on a large spatiotemporal scale is challenging but critical to
29  evaluate the aerosol cloud interaction (ACI) effect. Combining multi-source dataset and
30  the Ncen simulated by the Weather Research and Forecasting coupled with Chemistry
31 (WRF-Chem) model, we have developed a new machine learning-based model which
32 predicts well both regional and hourly-to-yearly scale Nccn at typical supersaturations
33 in the North China Plain (NCP). We show that the prediction bias of Nccn compared to
34  observations is reduced from -39% with the WRF-Chem model to approximately -8%
35  with the new model. The greatest improvement is seen in polluted cases. The new model
36  captures well the spatial variation and better describes long-term trends of Ncen than
37 the WRF-Chem. More importantly, the study reveals a significant long-term decreasing
38  trend of Ncen in NCP due to a rapid reduction in aerosol concentrations from 2014 to
39 2018, during which a series of strict emission reduction measures were implemented
40 by the Chinese government. This reflects the climate benefit of pollution control. Our
41 study further illustrates that the new model reduces the uncertainty in simulating cloud
42 radiative forcing from an overestimation of 1.07+0.76 W m to only 0.18+0.65 W m?,
43  illustrating the high sensitivity of climate forcing to changes in Nccn. This work offers
44 anew modeling framework that has the potential to greatly improve the assessment of
45  the ACI effect in current models, and guides the way to simulate CCN in other regions

46  around the world.
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47 1. Introduction

48 Aerosol indirect radiative effects caused by aerosol-cloud interactions (ACI) are
49  the largest source of uncertainty when assessing climate change (IPCC 2021). A major
50 issue is the lack of an accurate characterization of cloud condensation nuclei (CCN, or
51  cloud nuclei) number concentrations (Nccn) in global climate models (Sotiropoulou et
52  al., 2007; Fanourgakis et al., 2019). This is largely due to the nonlinear interactions
53  Dbetween the aerosol physical and chemical properties and CCN, making the
54  quantification of the Nccn remain highly uncertain. Current models tend to
55  underestimate CCN number concentrations by 20-40% on average, based on
56  comparisons between results from 14 models and observations at sites distributed
57  globally (Fanourgakis et al., 2019). Biases were greater in the Northern Hemisphere
58  due to intensive human activities (Sotiropoulou et al., 2007). It has been proposed that
59  ~10-30% changes in cloud droplet concentrations might be associated with the
60 uncertainties in cloud radiative forcing by ~0.1-2 W m (Charlson et al., 1987;
61  Sotiropoulou et al., 2007; Yu et al., 2022). Towards improving estimates of the ACI

62  effect in modeling, it is critical to obtain accurate spatiotemporal distributions of CCN.

63 Predicting Ncen remains challenging because aerosol CCN activity varies greatly
64  intime and space and involves microphysical and chemical processes. Previous studies
65  have underscored that the main uncertainties in simulating Nccn at regional and global
66  scales are the simplified representations of particle size distribution (Menon & Rotstayn,

67  2006), as well as the lack of detailed treatment of the microphysical and chemical
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68  processes in current models (Sha et al., 2019; Yu et al., 2020). Therefore, a considerable
69 number of CCN closure studies have been carried out to predict Ncen in different
70  environments (Moore et al., 2012; Zhang et al., 2014, 2016, 2017,2019; Xu et al., 2021;
71  Ren et al, 2018, 2023). Although extensive CCN observations and closure studies
72 might help to reconcile this uncertainty, field measurements are relatively sparse and
73 have only been collected during a few campaigns at a few sites (Schmale et al., 2018;
74 Roseetal., 2021)due to the limitations of techniques and cost. Closure studies, however,
75  have mostly focused on investigating the relative importance of the aerosol physical
76 and chemical properties to CCN prediction and have not yet provided a CCN
77  parameterization scheme that is applicable to different regions over the globe. Some
78  studies have attempted to develop a correlation between aerosol optical properties and
79  CCN number concentrations (Rosenfeld et al., 2016). Compared with the measurement
80 of CCN at ground sites, satellite retrieval methods offer global coverage with high
81  spatial and temporal resolutions (Rosenfeld et al., 2016; Liu et al., 2020). However,
82  they are limited to clear-sky conditions. Due to the aerosol swelling effect (Liu et al.,
83  2018), there are typically large deviations of -30% to +90% in the estimation accuracy

84  of Ncen in different environments (Shen et al., 2019).

85 In recent years, machine learning (ML) has been used for the inversion of
86  atmospheric environmental parameters such as tropospheric ozone and particulate
87  matter with a diameter of 2.5 um or smaller (PM25) (Grange et al., 2018; Geng et al.,
88  2021; Wei et al., 2023). To our knowledge, ML-based prediction of CCN properties is

89  few and far between, with studies only focused on analyzing the importance of different

4
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90  variables to estimating CCN spectra at a single field site (Liang et al., 2022) or were
91  conducted in relative clean regions (Nair et al., 2020, 2021). It would be a step forward
92  to use an ML-based method to predict Nccn in polluted areas because it would help to
93  verify the applicability of the method in different regions, but most importantly, it
94  would improve model simulations of the ACI effect in polluted regions where errors in

95  predicting Nccn are greater than in clean regions.

96 In this study, we have developed a new ML-based model for predicting Nccn on
97  hourly-to-yearly scale in the heavily polluted North China Plain (NCP) by using a
98  multi-source dataset of atmospheric variables and CCN concentration outputs from the
99  Weather Research and Forecasting coupled with online chemistry (WRF-Chem) model.
100  The diagram of the model construction and the Nccn prediction is shown in Figure 1.
101  We have presented and analyzed the relative importance of the different parameters to
102  CCN prediction; Moreover, we have verified the performance of the new model in
103  predicting the Ncen over different temporal and spatial scales in the NCP. Finally, by
104  incorporating the Nccn prediction biases into the evaluation of cloud parameters and
105 radiative forcing, we investigate the sensitivity of aerosols indirect climate forcing to

106  CCN concentrations changes.

107 2. Data collection and model construction

108 In this study, we develop the ML-based model by employing the Random Forest
109  Regression method (RFRM) and outputs of Ncen from the WRF-Chem model. A region

110  within 32°-40°N and 114°-121°E in the NCP is chosen as the study area (Fig. S1 and
5
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111 Section 1 in the online supplemental Information SI). In the WRF-Chem modeling
112 system, the sectional Model for Simulating Aerosol Interactions and Chemistry
113 (MOSAIC) is used here (see Section 2 in the SI). The simulation in WRF-Chem is
114  conducted from 1 January 2014 to 31 December 2018 with an hourly resolution. The
115 Morrison two-moment scheme (Morrison et al., 2009) and the Carbon Bond
116  Mechanism Z photochemical mechanism (Zaveri et al., 1999) are employed in the
117 WRF-Chem model. SI gives more details about the other parameterizations used. The
118  simulated Nccn is as one of the input parameters of the RFRM model which has been
119  trained and validated with field observational dataset obtained at the sites in this region.
120 Other input parameters include the chemical components of PM2s from the
121 Tsinghua University Tracking Air Pollution in China dataset (Geng et al., 2021) and gas
122 and particulate pollutants (nitrogen dioxide (NO), sulfur dioxide (SO.), carbon
123  monoxide (CO), ozone (0O3) and PMazs) collected from the China National
124  Environmental Monitoring Centre network. Meteorological parameters are from the
125  European Centre for Medium-range Weather Forecasts Reanalysis version 5 (ERA-5)
126  and include temperature, relative humidity (RH), total precipitation (TP), wind speed
127 (WS), wind direction (WD), planetary boundary layer height (BLH), surface pressure
128  (SP) and surface net solar radiation (SNSR). Cartesian coordinates were also added as
129  input due to the spatiotemporal nature of the input data (Yang et al., 2022). Table S1
130  and Section 3 of SI provide more details about the input parameters. Cross-validation
131 (Nair et al., 2020) is also applied to select the hyperparameters during the data

132 preprocessing (Fig. S2).
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133 Ground measurements of atmospheric gaseous precursors, fine particles chemical
134  compositions, and CCN number concentration (at supersaturations of 0.2% and 0.4%)
135  were collected during six field campaigns at three sites in the NCP (Fig. 3), used to
136  assess the performance of the developed ML-based model in predicting Nccn. More
137 details about the ground-based Nccn measurements and instrumentation can be found

138  in Section 5 of SI.
139 3. Results

140 3.1 The relative importance of the input parameters to the prediction of Nccn

141 The relative importance of the input parameters in predicting Ncen is quantified in
142 Fig. 2. The permutation score of the importance of each individual parameter is
143  calculated by randomly permuting values of the parameters and establishing the
144 association with RFRM-predicted Ncen. Nitrate (NOsY) emerges as the most crucial
145  indicator with the highest permutation score (~0.48—0.74) and correlation (~0.54). This
146  is likely due to the increment increase in the proportion of nitrate aerosols in PMa s in
147 recent years (Li et al., 2020; Liang et al., 2022), which are highly hygroscopic, so
148  dominates changes in particle hygroscopicity and CCN activity. The important role of
149  NOs can also be indicated by the good consistency of temporal variations of the field
150  measured NOs™ and Nccen (Fig. S3).

151 The importance of PM» s mass concentration, which is associated with the changes
152 in particle size and composition (Zhang et al., 2019), is secondary to NO3™ particles in

153  the summer seasons, normally an increase of PMz s corresponding to enhanced CCN

7
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154  activity. During the winter, changes in BLH contribute more to CCN predictions than
155  PMo2;s (Fig. 2b) and more to the model’s output (Fig. 2c). This is a season when the
156  planetary boundary layer strongly influences the evolution of haze and the
157  accumulation of particles in the lower atmosphere. Such effects are not as important in
158  summer (Zhang et al., 2019; Song et al., 2022). As reported in Guo et al. (2016), the
159  BLH would decrease significantly with the increase of the aerosol mass concentration.
160  Clearly, CCN predictions highly depend on the time and seasons. In addition, compared
161  to winter, the black carbon (BC) mass concentration plays a more important role in the
162  summer half year when the rapid aging processes of BC occurred and thus enhanced
163  the CCN activity (Ren et al., 2023). Note that the impact of sulfate acrosols on Nccn
164  prediction is much less important in both summer and winter seasons compared to
165  nitrate particles, with a permutation score ranging from ~0.02 to 0.03, largely due to its
166  decreased proportion in PM> s in recent years (Liang et al., 2022; Li et al., 2020).

167 The results also show the important role of the ambient temperature in the winter
168  half year, which is mainly reflected in the promotion of nucleation growth and
169  secondary generation of particles (Song et al., 2022). While in the summer half year,
170  the RH has a higher importance score in Nccn prediction, which is conducive to the
171 hygroscopic activation of particles (Chen et al., 2022). By comparison, the permutation
172 score of other meteorological factors (eg., WS, WD, TP, SP and SNSR) are relatively
173 low (< 0.06) both in summer and winter half year in the NCP.

174 In addition, among the gaseous pollutants, the NO: is found to be the most

175  important factor when predicting Nccn, which may be due to the production of nitrate
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176  (Lietal., 2020). However, different from previous reports by Nair and Yu (2020), other
177  gas precursors are less important with low permutation score values. In summary, the
178  critical important parameters for predicting Nccn include the PMas, chemical
179  components (nitrate, organics and BC), meteorological factors (RH, BLH, and TEM),
180  and gaseous precursors (NO2). However, the importance of each input parameters in

181  predicting CCN varies with time such as seasons.

182 3.2 Performance of the new model in predicting Nccn at field sites in the NCP

183 To examine the performance of the newly developed model in predicting Nccn, we
184  compare the predicted Nccn with both the simulations by WRF-Chem and the
185  observations from six field campaigns in NCP (Fig. 3). The six campaigns, named as
186  BJ2014 WIN, BJ2015 AUT, BJ2016 WIN, BJ2017 SUM, XT2016 SUM, and
187  GC2018_WIN, were conducted in different seasons at three sites in the NCP (Fig. 3a).
188  The observed Nccn varies from a few hundred to tens of thousands at these sites, and
189  the campaign mean mass concentration of PM, s ranges from 35.6 to 160 pg m™ (Fig.
190  3b), indicating that the observations can represent various atmospheric conditions,
191  spanning from clean to polluted in the region. Fig. 3a shows Nccn at a supersaturation
192 of 0.2% (the typical range of supersaturations in clouds). It shows that, for all the six
193  campaigns, the time series of Ncen predicted by the new model agrees better with the
194  observed Ncen compared to simulations by the WRF-Chem model. Although both the
195 new model and WRF-Chem exhibit underestimations in observed Nccn, the average
196  bias between the predicted and observed Nccn has been reduced from -39% by the

197  WRF-Chem model to approximately -8% by the newly constructed model (Fig. 3c).
9
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198  Compared to WRF-Chem simulations, the new model showed the greatest
199  improvement during the winter campaigns when PMas concentrations were usually
200  higher. For example, during the GC2018 WIN campaign, the observed Nccn is
201  underestimated as large as 61% by the WRF-Chem (Fig. S4), while the underestimation
202  is largely improved with the predicted bias of only 3% in the new model (Fig. S4).
203  WRF-Chem simulations for warm seasons noticeably improved, e.g., the uncertainty
204  decreased to 8% during the BJ2015_AUT campaign (Fig. S4). Overall, the new model
205  still performs better than the WRF-Chem model and is with averaged predicted bias of
206  18% during summer campaigns. Occasionally, the WRF-Chem model overestimated
207  the Ncen apparently, e.g., the episodes of September 21 to 24 during the BJ2015_AUT
208  campaign, and May 28 to 31 during the BJ2017_SUM campaign. Figure S5 shows
209  comparisons of Ncen at S=0.4%, which exhibits similar patterns to that at S=0.2%.
210  Overall, the new model performs well and can accurately capture the observed
211  fluctuations during these episodes. The improvements in our new model also
212 demonstrate the effectiveness of the model trained on data on a daily scale to data on
213 an hourly scale.

214 The large biases of the WRF-Chem to simulate Nccny may be caused by the
215  uncertainties in precursor vapor mass, size distributions of the particles, the
216  hygroscopic properties of the organics, dry deposition and cloud processing, which
217  have been noted and proposed by Fanourgakis et al. (2019). In our case, the
218  underestimation of Nccn by the WRF-Chem model is likely due to the overestimation
219  of the organics and BC mass fraction induced by WRF-Chem (Fig. S6), the simplified

10
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220  prescriptions in particle size distribution, and the bias of the hygroscopic parameter of
221  organics. Also, the fixed hygroscopicity parameter value does not sufficiently represent
222 the hygroscopicity of organics throughout the study period (Liu et al., 2021). Note that
223  for the periods of November 16 to 21 during the BJ2016_WIN campaign, Nccn is
224 considerably overpredicted by the new model. This may be due to the extremely high
225  levels of primary organic aerosol (POA) during that period (Fig. S7), resulting in
226  weakened aerosol hygroscopicity and CCN activity, thereby lowering CCN number
227  concentrations (Fan et al., 2020). Neglecting to distinguish between POA and SOA
228  information during the training of the new model may cause the overestimation of Nccn
229  when POA dominates. Uncertainties incurred by the new model could also originate
230  from the lack of physical interpretability in these ML-based models (Wei et al., 2023).
231  Additional input parameters that carry rich and meaningful information (e.g., size
232 distribution, aerosol sources and other secondary processes) are expected to further

233 improve the predictability of Nccw in future.

234 3.3 Performance of the new model in predicting hourly-to-yearly-scale Nccn

235 To further examine the performance of the new model in predicting Ncen at
236  different time scales, we compare the new model-predicted hourly-to-yearly Ncen in
237 Beijing with both WRF-Chem simulations and observed values (Fig. 4). The new model
238 captures well the diurnal cycle (Fig. 4a), while the WRF-Chem model underestimates
239  Ncen, especially at night. Concerning seasonal variations, similarly, the new model
240  performs better with the mean bias of ~ 6% compared to observations. While the mean

241  bias can increase to be ~25% by the WRF-Chem (Fig. 4b). Note that, the bias is much
11
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242 greater in the cold seasons than that in the warm seasons for the WRF-Chem. This is
243 probably due to the higher wintertime CN and CCN concentrations which are more
244 difficult for models to capture and simulate (Fanourgakis et al., 2019).

245 Figure 4c shows the long-term trend of yearly averaged Nccn. Here, the real
246  atmospheric long-term trend of Ncen (denoted as Ncen ows) is derived using the long-
247 term measurement of particle number size distribution (PNSD) at a field site in Beijing
248  (Fig. S8) (Fig. 4d, Shang et al., 2022) and the « calculated from the measured chemical
249  compositions based on the x-Kohler theory (Petters and Kreidenweis, 2007). The results
250  show that the predicted average annual Nccn at $=0.2% based on the new model agrees
251 well with Ncen_obs in terms of magnitude and long-term trend (Fig. 4c), showing a
252 decreasing trend year by year with the average annual CCN number concentration of
253 about 6216+3624 cm™ in 2014 and 3278+2306 cm™ in 2018; however, although the
254  WRF-Chem simulations also show a similar decreasing trend year by year, it
255  significantly underestimates the average annual Nccw of all years (with average bias of
256  43%), resulting in the inter-annual trend lines being parallel but not coincident. The
257  small bias (within +5%) between the new model predictions and the observations may
258  be due to the uncertainty from how Ncen obs is calculated , i.e., using the Tracking Air
259  Pollution in China (TAP) dataset to calculate x. A comparison of the values of x and
260  Ncen between that derived using field observations and the TAP dataset shows little
261  differences (Fig. S9); actually, the long-term change of Nccn is much less sensitive to
262  changes in x values compared to the PNSD, and thus the uncertainty in the long-term
263  Ncen_obs caused by using the TAP dataset is negligible (Fig. S9). The method to

12
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264  calculate Ncen at $=0.2% based on x-Kohler theory would cause an upper-limit
265  uncertainty of 7% (Ren et al., 2018).

266 According to Fig. 4d-e, the long-term decreasing trend of Ncen at $=0.2% from
267 2014 to 2018 is mainly attributed to a significant reduction in aerosol particle number
268  concentrations in the atmosphere. In addition, the peak diameter of the PNSD shows a
269  shift toward the left, decreasing slightly from about 70 nm in 2014 to 30 nm in 2018
270  due to the enhanced new particle formation events in recent years (Zhu et al., 2021).
271 This would also result in less aerosol particles serving as CCN. Although the xchem has
272 a slight upward trend from 2014 to 2018 (Fig. 4e), yielding decreases in activation
273 diameter and thereby more CCN, the aerosol particle hygroscopicity, however, plays
274 much less significant role in regulating the total Nccn compared to the changes in

275  particle number size distribution during this period.

276 3.4 Spatial variations of Nccn derived by the new model and WRF-Chem

277 We further examine the spatiotemporal changes of Ncen at $=0.2% in the NCP
278  derived by the new model and WRF-Chem (Fig. 5). Regionally, the Nccn predicted by
279  the new model is also generally higher than that simulated by WRF-Chem at most of
280 the sites. The Ncen derived by the new model and WRF-Chem both decrease from 2014
281  to 2018 but with different decreasing rates (Fig. 5c-¢). On average, Ncen derived by the
282  new model and WRF-Chem decrease from 4996+1147 to 3930+884 cm™ and from
283 2834+1366 to 2111546 cm™ respectively from 2014 to 2018 in the NCP region (Fig.
284  5c), corresponding to annual decreasing rates of approximately ~ -247 cm™ yr'! (-4%

285  yr!") for the new model and ~ -167 cm™ yr! (-5% yr'!) for the WRF-Chem model (Fig.
13
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286  5d-e). Moreover, Ncen and its changes from 2014 to 2018 predicted by the new model
287  show more significant spatial variations than that simulated by the WRF-Chem model.
288  Differences in new-model-predicted Nccn between 2014 and 2018 (2018 minus 2014)
289  show negative values at ~90% of the sites, i.e., downward trends in Ncen (Fig. 5cl).
290  The sites with apparent Ncen reduction are mainly located in the central and northern
291  of NCP, especially in Beijing-Tianjin-Hebei (BTH) and central Shandong, where are
292 mostly impacted by heavy industry and densely populated (Wei et al., 2023). Sites in
293  southern NCP have slight downward trends in Ncen. The downward trend is consistent
294  with the variations in concentration of gaseous pollutants due to the emission reduction
295  in past years in China (Fig. S10). Interestingly, note a few sites with positive values
296  (upward trends in Ncen) are mainly located along the coast. An increase in the fraction
297  of accumulation-mode particles in coastal areas has been reported contributing more
298  CCN (Zhu et al., 2021). This demonstrates the good performance of the new model in
299  capturing the real-time spatial variations of CCN on a regional scale. By contrast, WRF-
300 Chem simulation fails to capture such spatial variations, showing overall decreasing
301  trends at all sites in the NCP (Fig. Sc-e).

302 In summary, our newly constructed model can capture the spatial variability in the
303  long-term trend of Nccwn, while the WRF-Chem model might mask the variations of
304  Nccnamong different sites. This will smooth out the true impact of aerosols on weather

305 and climate at regional or local scales, leading to uncertainties in model simulations.

14
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306 3.5 Sensitivity of the cloud parameters and radiative forcing to CCN prediction
307  biases

308 To evaluate the effects introduced by Ncen prediction biases to the aerosol indirect
309 effects, we further incorporate the deviations between observed Nccn (denoted as
310  CCNosgs) and Nccen predicted by the new model (denoted as CCNwmr) and the simulated
311 by the WRF-Chem model (denoted as CCNwrF-chem) into calculations of the cloud
312  parameters and radiative forcing, as are shown in Fig. 6 (for S =0.2%) and Figs. S11-
313 13 (for S=0.1%, and 0.4%). Typically, aerosol particles serving as CCN could indirectly
314  affect the global climate by the Twomey (Twomey, 1977) and Albrecht effects (Albrecht,
315 1989). According to Wang et al. (2019), two parameters of cloud optical thickness (7)
316  and the absorption coefficient (1-wo) can be used to estimate the Twomey effects. The
317  process of cloud-to-rain conversion, which can be parameterized by the critical radius
318  (r¢) and the cloud-to-rain conversion threshold function (74), is critical to estimate the
319  Albrecht effect. Therefore, the ». and 74 is also calculated here. Indirect (cloud)
320 radiative forcing (F¢) is also evaluated based on the deviations in CCN number
321  concentration under the assumption of a constant liquid water content (Charlson, 1992;
322 Wang et al., 2008). Section 6 of the SI provides details about the methods used to
323  evaluate aerosol indirect effects.

324 In general, the results show that these cloud properties are more sensitive to the
325  changes in Nccn when the models underestimate the CCN number concentrations (A
326 Ncen<0) compared to the cases with an overestimation (Figure. 6a-d). For example, a
327  ~50% underestimation (overestimation) of Nccn could lead to relative deviations

15
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328  (uncertainties) of -21% (14%) for 7, 27% (-12%) for (1-wo), and -11% (7%) for r. at
329  5=0.2%. Note that, on average, both the new model and WRF-Chem in this study show
330  underestimations in Nccn within the sensitivity zone of the cloud effect (Fig. 6), It is
331  thus expected to cause large uncertainties in evaluating the cloud radiative forcing, a
332  topic worthy of further attention. Given that the uncertainty in Nccn predicted by the
333  WRF-Chem model is much greater than that of our new model, the uncertainties and
334  variation ranges of these cloud parameters from WRF-Chem simulations are also
335 greater. Specifically, the uncertainties of CCNmL and CCNwrr-chem lead to the
336  uncertainties of -52% to +91% and -77% to +171% respectively, for the 7 (Fig. 6a and
337 al), -47% to +112% and -63% to +344% respectively, for the 1-wo (Fig. 6b and bl), -
338 31% to +38% and -53% to +65% respectively, for the . (Fig. 6¢ and c1), and -256% to
339 +210% and -434% to +353% respectively, for the 74 (Fig. 6d and d1).

340 In addition, the underestimation of CCN would lead to underestimations of cloud
341  optical thickness 7 and the critical radius 7. of the automatic cloud/rain transformation,
342  but overestimations of (1-wo) and the threshold function 74 of the automatic cloud/rain
343  transformation, all of which depend on their physical mechanisms within the realm of
344 aerosol-cloud interactions (Stier et al., 2024) (Fig. S11). This is also the case at the other
345  supersaturation levels considered (Fig. S11-S13).

346 As aresult, we derive that the mean underestimation of ~39+80% in Nccn at $=0.2%
347  caused by the WRF-Chem leads to underestimations of 15+22% in the 7, 8+10% in the
348  rc, and an overestimation of 18+21% in the absorption coefficient (1-wo) and 53+73%
349  inthe T4. While, the uncertainties for all these parameters are largely reduced when the
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350  mean underestimation of ~8+38% in Nccn at $=0.2% that is caused by our new model
351 s applied (Fig. 6e). For example, the underestimation of cloud optical thickness t
352  decreases to ~3%, an improvement compared to the underestimation of about 15% by
353  the WRF-Chem model. Also, the new model reduces the underestimation of the critical
354  radius rc of the automatic cloud/rain transformation to only ~1%. Ultimately, the
355  uncertainty of cloud radiative forcing F. has been significantly reduced from an
356  overestimation of 1.07+0.76 W m? by the WRF-Chem model to only 0.18+0.65 W m™
357 by the new model, showing the high sensitivity of climate forcing to the uncertainties
358 in CCN number concentrations. Note that a limitation when evaluating the cloud
359 radiative forcing based on the assumption of cloud fraction and the fractional
360 transmission is the approximate analytical expression. Therefore, the results presented
361  here may represent the upper limit, and the sensitivity of the radiative forcing to changes

362  in Ncen would be weaker over continental areas (Wang et al., 2008; Yu et al., 2022).

363 4. Discussion and conclusions

364 In this study, using a multisource dataset of atmospheric variables and the Nccen
365  simulations by the WRF-Chem model, we have developed a new machine-learning-
366 based model that predicts well prediction of regional-scale Nccn based on the
367  application of the model to data from the densely populated NCP region. The results
368  show that the prediction bias of Nccn compared to observations is reduced from -39%
369  from WRF-Chem simulations to approximately -8% from the newly constructed model.

370  The improvement is greatest during heavy pollution periods or cold seasons. In general,
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371  our new model captures the spatial differences in Ncen in the NCP better than the WRF-
372 Chem model. In addition, the new model reveals a long-term downward trend of Ncen
373  coincident with the observed trend for the period of 2014-2018. By further
374 incorporating the Nccen prediction biases into the evaluation of cloud parameters and
375  radiative forcing, we found that the cloud properties are more sensitive to the changes
376  in Ncen when the models underestimated the CCN number concentrations compared to
377  the cases when the models overestimated Nccn. As a result, the simulated uncertainty
378  of cloud radiative forcing F¢ could be significantly reduced from an overestimation of
379 1.07£0.76 W m™ to only 0.18+0.65 W m™ by the new model. Given the simplified
380  setting in current climate models, this work emphasizes the necessity and urgency to
381  obtain the precise Nccen values, offering a new framework for predicting CCN
382  concentrations based on machine learning algorithms. Incorporating this framework
383  into traditional three-dimensional numerical or global climate models could help reduce
384  the uncertainty of simulated aerosol indirect effects.

385 Note that in this study, observational data from six campaigns at three sites are
386 analyzed. Validating the simulated Nccn through comparisons with observations at
387  more ground sites is thus warranted. In the future, it is crucial to obtain comprehensive
388  monitoring data of CCN and other key aerosol properties (e.g., particle size distribution,
389  chemical compositions) in different environments. Our modeling framework could then
390  be used to simulate ground-level CCN data in other regions around the world and even

391  onaglobalscale. This new modeling framework could also guide the way to developing

18



https://doi.org/10.5194/egusphere-2025-1483
Preprint. Discussion started: 3 June 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

392  anew machine-learning-based model to predict CCN vertical profiles, which is useful

393  for the accurate evaluation of the ACI effect.

394 Code and Data availability

395  The data and code are publicly accessible at https://zenodo.org/records/15523200 (Ren
396 et al., 2025). This includes the machine learning code, the corresponding training and
397  testing dataset and the observation data, the script and namelist file used in WRF-Chem
398 and the scripts used for plotting, supporting the findings of this study. The release
399  version of Python and the Scikit-Learn machine learning library are from https://scikit-
400  learn.org/stable/index.html. The chemical compositions were adopted from Tsinghua
401  University TAP (Tracking Air Pollution in China) dataset and available at
402  http://tapdata.org.cn/?page id=59&item=pm25 (last access: May, 2025, Geng et al.,
403  2021). The meteorological datasets are from the fifth generation European Centre for
404  Medium-Range Weather Forecasts reanalysis (ERA-5) and available at
405  https://cds.climate.copernicus.eu/datasets (last access: May, 2025). The ground-based air
406  quality monitoring observations are from the China National Environmental
407  Monitoring Centre network and available from https://quotsoft.net/air/. The release
408  version of WRF-Chem can be downloaded from
409  http://www2.mmm.ucar.edu/wrf/users/download/get_source.html. The initial
410  meteorological variables are from the National Center for Environmental Prediction's
411  Final Operational Global (NCEP/FNL) and available from

412 https://rda.ucar.edu/datasets/d083002/dataaccess/# (last access: May, 2025). The initial
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413  and boundary chemical conditions are from the Community Atmosphere Model with
414  Chemistry model and can be downloaded from (https://www.acom.ucar.edu/cam-
415  chem/cam-chem.shtml last access: May, 2025). The anthropogenic emissions are from
416  Multi resolution Emission Inventory for China (http://meicmodel.org.cn, last access:
417  May, 2025, Zheng et al., 2018). The biological, biomass and fire emissions inventory
418  are taken from the Model of Emissions of Gases and Aerosols from Nature and the Fire
419  Inventory from NCAR, respectively (https://www.acom.ucar.edu/wrf-
420  chem/download.shtml and https://www.acom.ucar.edu/Data/fire/ last access: May,

421 2025)

422 Supplement

423  The Supplement contains the information of the field campaigns, additional
424 descriptions of the WRF-Chem simulation (study domain, emission inventory,
425  parameterization scheme, and initial and boundary conditions), introductions of the

426  auxiliary variables, and the method to evaluate aerosol indirect effects.
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613  Fig. 1 Methodological framework of CCN number concentration prediction.
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concentration of PMas of 2014 from TAP dataset in NCP (http://tapdata.org.cn/) and

field observed average mass concentration of PMa s during the six field campaigns (see
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626  embedded histogram); (c) Scatter plots of the observed Ncen at $=0.2% with the New-

627  model predicted (top) and WRF-Chem simulated (bottom) respectively.
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629  Fig. 4 Performance of the new model in predicting hourly-to-yearly scale Nccw. (a)
630  Diurnal variations of Ncen at S=0.2% derived from the new model, the WRF-Chem,
631 and the observations from the field campaigns; (b) Seasonal variations, here the
632 comparison in summer, autumn and winter were conducted using the campaign
633 averages of BJ2017 SUM, BJ2015 AUT, and BJ2014 WIN&BJ2016 WIN
634  respectively with the new model and WRF-Chem predictions at corresponding periods;
635  (c) Trends of annual mean Nccn from 2014 to 2018; (d) Trends of annual mean particle
636  number concentration and peak diameter; (¢) Trends of annual mean of the hygroscopic

637  parameter kchem calculated from TAP dataset in Beijing.
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Fig. 5 Spatial variations of Nccn derived by the new model (top) and WRF-Chem
(bottom) at the sites in the studied region. (al) Average Nccn at $=0.2% in 2014
predicted by the new model; (a2) Average Nccen at $=0.2% in 2014 by the WRF-Chem;
(bl and b2) Same as al and a2 but in 2018; (c1) Differences in Ncen at S=0.2% between
the year of 2014 and 2018 predicted by the new model; (c2) Same as (cl) but by the
WRF-Chem; (d1) Trends of Ncen at $=0.2% from 2014 to 2018 predicted by the new
model ; (d2) Same as (d1) but by the WRF-Chem; (el) Change rates of Nccn at $=0.2%
from 2014 to 2018 predicted by the new model; (e2) Same as (el) but by the WRF-

Chem.
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649  Fig. 6 Sensitivity of the cloud parameters and radiative forcing to CCN prediction
650 biases. (a) Dependence of the uncertainty of the cloud optical thickness (7) on the
651  uncertainty of Ncen at S=0.2% with the new model; (al) Same as (a) but by the WRF-
652  Chem; (b) Dependence of the uncertainty of the absorption coefficient (1-wo) on the
653  uncertainty of Ncen at $=0.2% with the new model; (b1) Same as (b) but by the by the
654  WRF-Chem; (c) Dependence of the uncertainty of the critical radius (r¢) on the
655  uncertainty of Ncen at §=0.2% with the new model; (c1) Same as (c¢) but by the WREF-
656  Chem; (d) Dependence of the uncertainty of the cloud-to-rain conversion threshold
657  function (74) on the uncertainty of Nccn at $=0.2% with the new model; (d1) Same as
658  (d) but by the WRF-Chem; () Mean uncertainty in simulating the cloud properties and
659  (f) radiative forcing (F¢) by the new model and the WRF-Chem; Black star shows the

660 mean value for the observation.
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