

1 Machine learning significantly improves the simulation of hourly-to- 2 yearly scale cloud nuclei concentration and radiative forcing in 3 polluted atmosphere

4 Jingye Ren^{1,2}, Songjian Zou³, Honghao Xu³, Guiquan Liu³, Zhe Wang³, Anran Zhang³,
5 Chuanfeng Zhao⁴, Min Hu⁵, Dongjie Shang⁵, Lizi Tang⁵, Ru-Jin Huang¹, Yele Sun⁶,
6 Fang Zhang^{3*}

⁷ ¹State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of
⁸ Sciences, Xi'an, 710061, China

⁹ ²Xi'an Institute for Innovative Earth Environment Research, Xi'an, 710061, China

10 ³School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen,
11 518005, China

12 ⁴Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing,
13 100871, China

14 ⁵State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of
15 Environmental Sciences and Engineering, Peking University, Beijing, 100871, China

16 ⁶State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,
17 Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China

19 Corresponding author: Fang Zhang, zhangfang2021@nlu.edu.cn

20

21

22

25

24

25

26 **Abstract**

27 The accurate prediction of cloud condensation nuclei (CCN) number
28 concentration (N_{CCN}) on a large spatiotemporal scale is challenging but critical to
29 evaluate the aerosol cloud interaction (ACI) effect. Combining multi-source dataset and
30 the N_{CCN} simulated by the Weather Research and Forecasting coupled with Chemistry
31 (WRF-Chem) model, we have developed a new machine learning-based model which
32 predicts well both regional and hourly-to-yearly scale N_{CCN} at typical supersaturations
33 in the North China Plain (NCP). We show that the prediction bias of N_{CCN} compared to
34 observations is reduced from -39% with the WRF-Chem model to approximately -8%
35 with the new model. The greatest improvement is seen in polluted cases. The new model
36 captures well the spatial variation and better describes long-term trends of N_{CCN} than
37 the WRF-Chem. More importantly, the study reveals a significant long-term decreasing
38 trend of N_{CCN} in NCP due to a rapid reduction in aerosol concentrations from 2014 to
39 2018, during which a series of strict emission reduction measures were implemented
40 by the Chinese government. This reflects the climate benefit of pollution control. Our
41 study further illustrates that the new model reduces the uncertainty in simulating cloud
42 radiative forcing from an overestimation of $1.07 \pm 0.76 \text{ W m}^{-2}$ to only $0.18 \pm 0.65 \text{ W m}^{-2}$,
43 illustrating the high sensitivity of climate forcing to changes in N_{CCN} . This work offers
44 a new modeling framework that has the potential to greatly improve the assessment of
45 the ACI effect in current models, and guides the way to simulate CCN in other regions
46 around the world.

47 **1. Introduction**

48 Aerosol indirect radiative effects caused by aerosol-cloud interactions (ACI) are
49 the largest source of uncertainty when assessing climate change (IPCC 2021). A major
50 issue is the lack of an accurate characterization of cloud condensation nuclei (CCN, or
51 cloud nuclei) number concentrations (N_{CCN}) in global climate models (Sotiropoulou et
52 al., 2007; Fanourgakis et al., 2019). This is largely due to the nonlinear interactions
53 between the aerosol physical and chemical properties and CCN, making the
54 quantification of the N_{CCN} remain highly uncertain. Current models tend to
55 underestimate CCN number concentrations by 20–40% on average, based on
56 comparisons between results from 14 models and observations at sites distributed
57 globally (Fanourgakis et al., 2019). Biases were greater in the Northern Hemisphere
58 due to intensive human activities (Sotiropoulou et al., 2007). It has been proposed that
59 ~10–30% changes in cloud droplet concentrations might be associated with the
60 uncertainties in cloud radiative forcing by ~0.1–2 $W\ m^{-2}$ (Charlson et al., 1987;
61 Sotiropoulou et al., 2007; Yu et al., 2022). Towards improving estimates of the ACI
62 effect in modeling, it is critical to obtain accurate spatiotemporal distributions of CCN.

63 Predicting N_{CCN} remains challenging because aerosol CCN activity varies greatly
64 in time and space and involves microphysical and chemical processes. Previous studies
65 have underscored that the main uncertainties in simulating N_{CCN} at regional and global
66 scales are the simplified representations of particle size distribution (Menon & Rotstayn,
67 2006), as well as the lack of detailed treatment of the microphysical and chemical

68 processes in current models (Sha et al., 2019; Yu et al., 2020). Therefore, a considerable
69 number of CCN closure studies have been carried out to predict N_{CCN} in different
70 environments (Moore et al., 2012; Zhang et al., 2014, 2016, 2017, 2019; Xu et al., 2021;
71 Ren et al., 2018, 2023). Although extensive CCN observations and closure studies
72 might help to reconcile this uncertainty, field measurements are relatively sparse and
73 have only been collected during a few campaigns at a few sites (Schmale et al., 2018;
74 Rose et al., 2021) due to the limitations of techniques and cost. Closure studies, however,
75 have mostly focused on investigating the relative importance of the aerosol physical
76 and chemical properties to CCN prediction and have not yet provided a CCN
77 parameterization scheme that is applicable to different regions over the globe. Some
78 studies have attempted to develop a correlation between aerosol optical properties and
79 CCN number concentrations (Rosenfeld et al., 2016). Compared with the measurement
80 of CCN at ground sites, satellite retrieval methods offer global coverage with high
81 spatial and temporal resolutions (Rosenfeld et al., 2016; Liu et al., 2020). However,
82 they are limited to clear-sky conditions. Due to the aerosol swelling effect (Liu et al.,
83 2018), there are typically large deviations of -30% to +90% in the estimation accuracy
84 of N_{CCN} in different environments (Shen et al., 2019).

85 In recent years, machine learning (ML) has been used for the inversion of
86 atmospheric environmental parameters such as tropospheric ozone and particulate
87 matter with a diameter of 2.5 μm or smaller (PM_{2.5}) (Grange et al., 2018; Geng et al.,
88 2021; Wei et al., 2023). To our knowledge, ML-based prediction of CCN properties is
89 few and far between, with studies only focused on analyzing the importance of different

90 variables to estimating CCN spectra at a single field site (Liang et al., 2022) or were
91 conducted in relative clean regions (Nair et al., 2020, 2021). It would be a step forward
92 to use an ML-based method to predict N_{CCN} in polluted areas because it would help to
93 verify the applicability of the method in different regions, but most importantly, it
94 would improve model simulations of the ACI effect in polluted regions where errors in
95 predicting N_{CCN} are greater than in clean regions.

96 In this study, we have developed a new ML-based model for predicting N_{CCN} on
97 hourly-to-yearly scale in the heavily polluted North China Plain (NCP) by using a
98 multi-source dataset of atmospheric variables and CCN concentration outputs from the
99 Weather Research and Forecasting coupled with online chemistry (WRF-Chem) model.
100 The diagram of the model construction and the N_{CCN} prediction is shown in Figure 1.
101 We have presented and analyzed the relative importance of the different parameters to
102 CCN prediction; Moreover, we have verified the performance of the new model in
103 predicting the N_{CCN} over different temporal and spatial scales in the NCP. Finally, by
104 incorporating the N_{CCN} prediction biases into the evaluation of cloud parameters and
105 radiative forcing, we investigate the sensitivity of aerosols indirect climate forcing to
106 CCN concentrations changes.

107 **2. Data collection and model construction**

108 In this study, we develop the ML-based model by employing the Random Forest
109 Regression method (RFRM) and outputs of N_{CCN} from the WRF-Chem model. A region
110 within 32°-40°N and 114°-121°E in the NCP is chosen as the study area (Fig. S1 and

111 Section 1 in the online supplemental Information SI). In the WRF-Chem modeling
112 system, the sectional Model for Simulating Aerosol Interactions and Chemistry
113 (MOSAIC) is used here (see Section 2 in the SI). The simulation in WRF-Chem is
114 conducted from 1 January 2014 to 31 December 2018 with an hourly resolution. The
115 Morrison two-moment scheme (Morrison et al., 2009) and the Carbon Bond
116 Mechanism Z photochemical mechanism (Zaveri et al., 1999) are employed in the
117 WRF-Chem model. SI gives more details about the other parameterizations used. The
118 simulated N_{CCN} is as one of the input parameters of the RFRM model which has been
119 trained and validated with field observational dataset obtained at the sites in this region.

120 Other input parameters include the chemical components of $PM_{2.5}$ from the
121 Tsinghua University Tracking Air Pollution in China dataset (Geng et al., 2021) and gas
122 and particulate pollutants (nitrogen dioxide (NO_2), sulfur dioxide (SO_2), carbon
123 monoxide (CO), ozone (O_3) and $PM_{2.5}$) collected from the China National
124 Environmental Monitoring Centre network. Meteorological parameters are from the
125 European Centre for Medium-range Weather Forecasts Reanalysis version 5 (ERA-5)
126 and include temperature, relative humidity (RH), total precipitation (TP), wind speed
127 (WS), wind direction (WD), planetary boundary layer height (BLH), surface pressure
128 (SP) and surface net solar radiation (SNSR). Cartesian coordinates were also added as
129 input due to the spatiotemporal nature of the input data (Yang et al., 2022). Table S1
130 and Section 3 of SI provide more details about the input parameters. Cross-validation
131 (Nair et al., 2020) is also applied to select the hyperparameters during the data
132 preprocessing (Fig. S2).

133 Ground measurements of atmospheric gaseous precursors, fine particles chemical
134 compositions, and CCN number concentration (at supersaturations of 0.2% and 0.4%)
135 were collected during six field campaigns at three sites in the NCP (Fig. 3), used to
136 assess the performance of the developed ML-based model in predicting N_{CCN} . More
137 details about the ground-based N_{CCN} measurements and instrumentation can be found
138 in Section 5 of SI.

139 **3. Results**

140 **3.1 The relative importance of the input parameters to the prediction of N_{CCN}**

141 The relative importance of the input parameters in predicting N_{CCN} is quantified in
142 Fig. 2. The permutation score of the importance of each individual parameter is
143 calculated by randomly permuting values of the parameters and establishing the
144 association with RFRM-predicted N_{CCN} . Nitrate (NO_3^-) emerges as the most crucial
145 indicator with the highest permutation score (~0.48–0.74) and correlation (~0.54). This
146 is likely due to the increment increase in the proportion of nitrate aerosols in $PM_{2.5}$ in
147 recent years (Li et al., 2020; Liang et al., 2022), which are highly hygroscopic, so
148 dominates changes in particle hygroscopicity and CCN activity. The important role of
149 NO_3^- can also be indicated by the good consistency of temporal variations of the field
150 measured NO_3^- and N_{CCN} (Fig. S3).

151 The importance of $PM_{2.5}$ mass concentration, which is associated with the changes
152 in particle size and composition (Zhang et al., 2019), is secondary to NO_3^- particles in
153 the summer seasons, normally an increase of $PM_{2.5}$ corresponding to enhanced CCN

154 activity. During the winter, changes in BLH contribute more to CCN predictions than
155 $\text{PM}_{2.5}$ (Fig. 2b) and more to the model's output (Fig. 2c). This is a season when the
156 planetary boundary layer strongly influences the evolution of haze and the
157 accumulation of particles in the lower atmosphere. Such effects are not as important in
158 summer (Zhang et al., 2019; Song et al., 2022). As reported in Guo et al. (2016), the
159 BLH would decrease significantly with the increase of the aerosol mass concentration.
160 Clearly, CCN predictions highly depend on the time and seasons. In addition, compared
161 to winter, the black carbon (BC) mass concentration plays a more important role in the
162 summer half year when the rapid aging processes of BC occurred and thus enhanced
163 the CCN activity (Ren et al., 2023). Note that the impact of sulfate aerosols on N_{CCN}
164 prediction is much less important in both summer and winter seasons compared to
165 nitrate particles, with a permutation score ranging from ~0.02 to 0.03, largely due to its
166 decreased proportion in $\text{PM}_{2.5}$ in recent years (Liang et al., 2022; Li et al., 2020).

167 The results also show the important role of the ambient temperature in the winter
168 half year, which is mainly reflected in the promotion of nucleation growth and
169 secondary generation of particles (Song et al., 2022). While in the summer half year,
170 the RH has a higher importance score in N_{CCN} prediction, which is conducive to the
171 hygroscopic activation of particles (Chen et al., 2022). By comparison, the permutation
172 score of other meteorological factors (eg., WS, WD, TP, SP and SNSR) are relatively
173 low (< 0.06) both in summer and winter half year in the NCP.

174 In addition, among the gaseous pollutants, the NO_2 is found to be the most
175 important factor when predicting N_{CCN} , which may be due to the production of nitrate

176 (Li et al., 2020). However, different from previous reports by Nair and Yu (2020), other
177 gas precursors are less important with low permutation score values. In summary, the
178 critical important parameters for predicting N_{CCN} include the PM_{2.5}, chemical
179 components (nitrate, organics and BC), meteorological factors (RH, BLH, and TEM),
180 and gaseous precursors (NO₂). However, the importance of each input parameters in
181 predicting CCN varies with time such as seasons.

182 **3.2 Performance of the new model in predicting N_{CCN} at field sites in the NCP**

183 To examine the performance of the newly developed model in predicting N_{CCN} , we
184 compare the predicted N_{CCN} with both the simulations by WRF-Chem and the
185 observations from six field campaigns in NCP (Fig. 3). The six campaigns, named as
186 BJ2014_WIN, BJ2015_AUT, BJ2016_WIN, BJ2017_SUM, XT2016_SUM, and
187 GC2018_WIN, were conducted in different seasons at three sites in the NCP (Fig. 3a).
188 The observed N_{CCN} varies from a few hundred to tens of thousands at these sites, and
189 the campaign mean mass concentration of PM_{2.5} ranges from 35.6 to 160 $\mu\text{g m}^{-3}$ (Fig.
190 3b), indicating that the observations can represent various atmospheric conditions,
191 spanning from clean to polluted in the region. Fig. 3a shows N_{CCN} at a supersaturation
192 of 0.2% (the typical range of supersaturations in clouds). It shows that, for all the six
193 campaigns, the time series of N_{CCN} predicted by the new model agrees better with the
194 observed N_{CCN} compared to simulations by the WRF-Chem model. Although both the
195 new model and WRF-Chem exhibit underestimations in observed N_{CCN} , the average
196 bias between the predicted and observed N_{CCN} has been reduced from -39% by the
197 WRF-Chem model to approximately -8% by the newly constructed model (Fig. 3c).

198 Compared to WRF-Chem simulations, the new model showed the greatest
199 improvement during the winter campaigns when $PM_{2.5}$ concentrations were usually
200 higher. For example, during the GC2018_WIN campaign, the observed N_{CCN} is
201 underestimated as large as 61% by the WRF-Chem (Fig. S4), while the underestimation
202 is largely improved with the predicted bias of only 3% in the new model (Fig. S4).
203 WRF-Chem simulations for warm seasons noticeably improved, e.g., the uncertainty
204 decreased to 8% during the BJ2015_AUT campaign (Fig. S4). Overall, the new model
205 still performs better than the WRF-Chem model and is with averaged predicted bias of
206 18% during summer campaigns. Occasionally, the WRF-Chem model overestimated
207 the N_{CCN} apparently, e.g., the episodes of September 21 to 24 during the BJ2015_AUT
208 campaign, and May 28 to 31 during the BJ2017_SUM campaign. Figure S5 shows
209 comparisons of N_{CCN} at $S=0.4\%$, which exhibits similar patterns to that at $S=0.2\%$.
210 Overall, the new model performs well and can accurately capture the observed
211 fluctuations during these episodes. The improvements in our new model also
212 demonstrate the effectiveness of the model trained on data on a daily scale to data on
213 an hourly scale.

214 The large biases of the WRF-Chem to simulate N_{CCN} may be caused by the
215 uncertainties in precursor vapor mass, size distributions of the particles, the
216 hygroscopic properties of the organics, dry deposition and cloud processing, which
217 have been noted and proposed by Fanourgakis et al. (2019). In our case, the
218 underestimation of N_{CCN} by the WRF-Chem model is likely due to the overestimation
219 of the organics and BC mass fraction induced by WRF-Chem (Fig. S6), the simplified

220 prescriptions in particle size distribution, and the bias of the hygroscopic parameter of
221 organics. Also, the fixed hygroscopicity parameter value does not sufficiently represent
222 the hygroscopicity of organics throughout the study period (Liu et al., 2021). Note that
223 for the periods of November 16 to 21 during the BJ2016_WIN campaign, N_{CCN} is
224 considerably overpredicted by the new model. This may be due to the extremely high
225 levels of primary organic aerosol (POA) during that period (Fig. S7), resulting in
226 weakened aerosol hygroscopicity and CCN activity, thereby lowering CCN number
227 concentrations (Fan et al., 2020). Neglecting to distinguish between POA and SOA
228 information during the training of the new model may cause the overestimation of N_{CCN}
229 when POA dominates. Uncertainties incurred by the new model could also originate
230 from the lack of physical interpretability in these ML-based models (Wei et al., 2023).
231 Additional input parameters that carry rich and meaningful information (e.g., size
232 distribution, aerosol sources and other secondary processes) are expected to further
233 improve the predictability of N_{CCN} in future.

234 **3.3 Performance of the new model in predicting hourly-to-yearly-scale N_{CCN}**

235 To further examine the performance of the new model in predicting N_{CCN} at
236 different time scales, we compare the new model-predicted hourly-to-yearly N_{CCN} in
237 Beijing with both WRF-Chem simulations and observed values (Fig. 4). The new model
238 captures well the diurnal cycle (Fig. 4a), while the WRF-Chem model underestimates
239 N_{CCN} , especially at night. Concerning seasonal variations, similarly, the new model
240 performs better with the mean bias of ~6% compared to observations. While the mean
241 bias can increase to be ~25% by the WRF-Chem (Fig. 4b). Note that, the bias is much

242 greater in the cold seasons than that in the warm seasons for the WRF-Chem. This is
243 probably due to the higher wintertime CN and CCN concentrations which are more
244 difficult for models to capture and simulate (Fanourgakis et al., 2019).

245 Figure 4c shows the long-term trend of yearly averaged N_{CCN} . Here, the real
246 atmospheric long-term trend of N_{CCN} (denoted as N_{CCN_Obs}) is derived using the long-
247 term measurement of particle number size distribution (PNSD) at a field site in Beijing
248 (Fig. S8) (Fig. 4d, Shang et al., 2022) and the κ calculated from the measured chemical
249 compositions based on the κ -Köhler theory (Petters and Kreidenweis, 2007). The results
250 show that the predicted average annual N_{CCN} at $S=0.2\%$ based on the new model agrees
251 well with N_{CCN_Obs} in terms of magnitude and long-term trend (Fig. 4c), showing a
252 decreasing trend year by year with the average annual CCN number concentration of
253 about $6216 \pm 3624 \text{ cm}^{-3}$ in 2014 and $3278 \pm 2306 \text{ cm}^{-3}$ in 2018; however, although the
254 WRF-Chem simulations also show a similar decreasing trend year by year, it
255 significantly underestimates the average annual N_{CCN} of all years (with average bias of
256 43%), resulting in the inter-annual trend lines being parallel but not coincident. The
257 small bias (within $\pm 5\%$) between the new model predictions and the observations may
258 be due to the uncertainty from how N_{CCN_Obs} is calculated, i.e., using the Tracking Air
259 Pollution in China (TAP) dataset to calculate κ . A comparison of the values of κ and
260 N_{CCN} between that derived using field observations and the TAP dataset shows little
261 differences (Fig. S9); actually, the long-term change of N_{CCN} is much less sensitive to
262 changes in κ values compared to the PNSD, and thus the uncertainty in the long-term
263 N_{CCN_Obs} caused by using the TAP dataset is negligible (Fig. S9). The method to

264 calculate N_{CCN} at $S=0.2\%$ based on κ -Köhler theory would cause an upper-limit
265 uncertainty of 7% (Ren et al., 2018).

266 According to Fig. 4d-e, the long-term decreasing trend of N_{CCN} at $S=0.2\%$ from
267 2014 to 2018 is mainly attributed to a significant reduction in aerosol particle number
268 concentrations in the atmosphere. In addition, the peak diameter of the PNSD shows a
269 shift toward the left, decreasing slightly from about 70 nm in 2014 to 30 nm in 2018
270 due to the enhanced new particle formation events in recent years (Zhu et al., 2021).
271 This would also result in less aerosol particles serving as CCN. Although the κ_{chem} has
272 a slight upward trend from 2014 to 2018 (Fig. 4e), yielding decreases in activation
273 diameter and thereby more CCN, the aerosol particle hygroscopicity, however, plays
274 much less significant role in regulating the total N_{CCN} compared to the changes in
275 particle number size distribution during this period.

276 **3.4 Spatial variations of N_{CCN} derived by the new model and WRF-Chem**

277 We further examine the spatiotemporal changes of N_{CCN} at $S=0.2\%$ in the NCP
278 derived by the new model and WRF-Chem (Fig. 5). Regionally, the N_{CCN} predicted by
279 the new model is also generally higher than that simulated by WRF-Chem at most of
280 the sites. The N_{CCN} derived by the new model and WRF-Chem both decrease from 2014
281 to 2018 but with different decreasing rates (Fig. 5c-e). On average, N_{CCN} derived by the
282 new model and WRF-Chem decrease from 4996 ± 1147 to $3930 \pm 884 \text{ cm}^{-3}$ and from
283 2834 ± 1366 to $2111 \pm 546 \text{ cm}^{-3}$ respectively from 2014 to 2018 in the NCP region (Fig.
284 5c), corresponding to annual decreasing rates of approximately $\sim -247 \text{ cm}^{-3} \text{ yr}^{-1}$ (-4%
285 yr^{-1}) for the new model and $\sim -167 \text{ cm}^{-3} \text{ yr}^{-1}$ (-5% yr^{-1}) for the WRF-Chem model (Fig.

286 5d-e). Moreover, N_{CCN} and its changes from 2014 to 2018 predicted by the new model
287 show more significant spatial variations than that simulated by the WRF-Chem model.
288 Differences in new-model-predicted N_{CCN} between 2014 and 2018 (2018 minus 2014)
289 show negative values at ~90% of the sites, i.e., downward trends in N_{CCN} (Fig. 5c1).
290 The sites with apparent N_{CCN} reduction are mainly located in the central and northern
291 of NCP, especially in Beijing-Tianjin-Hebei (BTH) and central Shandong, where are
292 mostly impacted by heavy industry and densely populated (Wei et al., 2023). Sites in
293 southern NCP have slight downward trends in N_{CCN} . The downward trend is consistent
294 with the variations in concentration of gaseous pollutants due to the emission reduction
295 in past years in China (Fig. S10). Interestingly, note a few sites with positive values
296 (upward trends in N_{CCN}) are mainly located along the coast. An increase in the fraction
297 of accumulation-mode particles in coastal areas has been reported contributing more
298 CCN (Zhu et al., 2021). This demonstrates the good performance of the new model in
299 capturing the real-time spatial variations of CCN on a regional scale. By contrast, WRF-
300 Chem simulation fails to capture such spatial variations, showing overall decreasing
301 trends at all sites in the NCP (Fig. 5c-e).

302 In summary, our newly constructed model can capture the spatial variability in the
303 long-term trend of N_{CCN} , while the WRF-Chem model might mask the variations of
304 N_{CCN} among different sites. This will smooth out the true impact of aerosols on weather
305 and climate at regional or local scales, leading to uncertainties in model simulations.

306 **3.5 Sensitivity of the cloud parameters and radiative forcing to CCN prediction**

307 **biases**

308 To evaluate the effects introduced by N_{CCN} prediction biases to the aerosol indirect
309 effects, we further incorporate the deviations between observed N_{CCN} (denoted as
310 CCN_{OBS}) and N_{CCN} predicted by the new model (denoted as CCN_{ML}) and the simulated
311 by the WRF-Chem model (denoted as $CCN_{WRF-Chem}$) into calculations of the cloud
312 parameters and radiative forcing, as are shown in Fig. 6 (for $S = 0.2\%$) and Figs. S11-
313 13 (for $S = 0.1\%$, and 0.4%). Typically, aerosol particles serving as CCN could indirectly
314 affect the global climate by the Twomey (Twomey, 1977) and Albrecht effects (Albrecht,
315 1989). According to Wang et al. (2019), two parameters of cloud optical thickness (τ)
316 and the absorption coefficient ($1 - \omega_0$) can be used to estimate the Twomey effects. The
317 process of cloud-to-rain conversion, which can be parameterized by the critical radius
318 (r_c) and the cloud-to-rain conversion threshold function (TA), is critical to estimate the
319 Albrecht effect. Therefore, the r_c and TA is also calculated here. Indirect (cloud)
320 radiative forcing (F_c) is also evaluated based on the deviations in CCN number
321 concentration under the assumption of a constant liquid water content (Charlson, 1992;
322 Wang et al., 2008). Section 6 of the SI provides details about the methods used to
323 evaluate aerosol indirect effects.

324 In general, the results show that these cloud properties are more sensitive to the
325 changes in N_{CCN} when the models underestimate the CCN number concentrations (Δ
326 $N_{CCN} < 0$) compared to the cases with an overestimation (Figure. 6a-d). For example, a
327 $\sim 50\%$ underestimation (overestimation) of N_{CCN} could lead to relative deviations

328 (uncertainties) of -21% (14%) for τ , 27% (-12%) for $(1-\omega_0)$, and -11% (7%) for r_c at
329 $S=0.2\%$. Note that, on average, both the new model and WRF-Chem in this study show
330 underestimations in N_{CCN} within the sensitivity zone of the cloud effect (Fig. 6), It is
331 thus expected to cause large uncertainties in evaluating the cloud radiative forcing, a
332 topic worthy of further attention. Given that the uncertainty in N_{CCN} predicted by the
333 WRF-Chem model is much greater than that of our new model, the uncertainties and
334 variation ranges of these cloud parameters from WRF-Chem simulations are also
335 greater. Specifically, the uncertainties of CCN_{ML} and $CCN_{WRF-Chem}$ lead to the
336 uncertainties of -52% to +91% and -77% to +171% respectively, for the τ (Fig. 6a and
337 a1), -47% to +112% and -63% to +344% respectively, for the $1-\omega_0$ (Fig. 6b and b1), -
338 31% to +38% and -53% to +65% respectively, for the r_c (Fig. 6c and c1), and -256% to
339 +210% and -434% to +353% respectively, for the TA (Fig. 6d and d1).

340 In addition, the underestimation of CCN would lead to underestimations of cloud
341 optical thickness τ and the critical radius r_c of the automatic cloud/rain transformation,
342 but overestimations of $(1-\omega_0)$ and the threshold function TA of the automatic cloud/rain
343 transformation, all of which depend on their physical mechanisms within the realm of
344 aerosol-cloud interactions (Stier et al., 2024) (Fig. S11). This is also the case at the other
345 supersaturation levels considered (Fig. S11-S13).

346 As a result, we derive that the mean underestimation of $\sim 39 \pm 80\%$ in N_{CCN} at $S=0.2\%$
347 caused by the WRF-Chem leads to underestimations of $15 \pm 22\%$ in the τ , $8 \pm 10\%$ in the
348 r_c , and an overestimation of $18 \pm 21\%$ in the absorption coefficient $(1-\omega_0)$ and $53 \pm 73\%$
349 in the TA . While, the uncertainties for all these parameters are largely reduced when the

350 mean underestimation of $\sim 8 \pm 38\%$ in N_{CCN} at $S=0.2\%$ that is caused by our new model
351 is applied (Fig. 6e). For example, the underestimation of cloud optical thickness τ
352 decreases to $\sim 3\%$, an improvement compared to the underestimation of about 15% by
353 the WRF-Chem model. Also, the new model reduces the underestimation of the critical
354 radius r_c of the automatic cloud/rain transformation to only $\sim 1\%$. Ultimately, the
355 uncertainty of cloud radiative forcing F_c has been significantly reduced from an
356 overestimation of $1.07 \pm 0.76 \text{ W m}^{-2}$ by the WRF-Chem model to only $0.18 \pm 0.65 \text{ W m}^{-2}$
357 by the new model, showing the high sensitivity of climate forcing to the uncertainties
358 in CCN number concentrations. Note that a limitation when evaluating the cloud
359 radiative forcing based on the assumption of cloud fraction and the fractional
360 transmission is the approximate analytical expression. Therefore, the results presented
361 here may represent the upper limit, and the sensitivity of the radiative forcing to changes
362 in N_{CCN} would be weaker over continental areas (Wang et al., 2008; Yu et al., 2022).

363 **4. Discussion and conclusions**

364 In this study, using a multisource dataset of atmospheric variables and the N_{CCN}
365 simulations by the WRF-Chem model, we have developed a new machine-learning-
366 based model that predicts well prediction of regional-scale N_{CCN} based on the
367 application of the model to data from the densely populated NCP region. The results
368 show that the prediction bias of N_{CCN} compared to observations is reduced from -39%
369 from WRF-Chem simulations to approximately -8% from the newly constructed model.
370 The improvement is greatest during heavy pollution periods or cold seasons. In general,

371 our new model captures the spatial differences in N_{CCN} in the NCP better than the WRF-
372 Chem model. In addition, the new model reveals a long-term downward trend of N_{CCN}
373 coincident with the observed trend for the period of 2014–2018. By further
374 incorporating the N_{CCN} prediction biases into the evaluation of cloud parameters and
375 radiative forcing, we found that the cloud properties are more sensitive to the changes
376 in N_{CCN} when the models underestimated the CCN number concentrations compared to
377 the cases when the models overestimated N_{CCN} . As a result, the simulated uncertainty
378 of cloud radiative forcing F_c could be significantly reduced from an overestimation of
379 $1.07 \pm 0.76 \text{ W m}^{-2}$ to only $0.18 \pm 0.65 \text{ W m}^{-2}$ by the new model. Given the simplified
380 setting in current climate models, this work emphasizes the necessity and urgency to
381 obtain the precise N_{CCN} values, offering a new framework for predicting CCN
382 concentrations based on machine learning algorithms. Incorporating this framework
383 into traditional three-dimensional numerical or global climate models could help reduce
384 the uncertainty of simulated aerosol indirect effects.

385 Note that in this study, observational data from six campaigns at three sites are
386 analyzed. Validating the simulated N_{CCN} through comparisons with observations at
387 more ground sites is thus warranted. In the future, it is crucial to obtain comprehensive
388 monitoring data of CCN and other key aerosol properties (e.g., particle size distribution,
389 chemical compositions) in different environments. Our modeling framework could then
390 be used to simulate ground-level CCN data in other regions around the world and even
391 on a global scale. This new modeling framework could also guide the way to developing

392 a new machine-learning-based model to predict CCN vertical profiles, which is useful
393 for the accurate evaluation of the ACI effect.

394 **Code and Data availability**

395 The data and code are publicly accessible at <https://zenodo.org/records/15523200> (Ren
396 et al., 2025). This includes the machine learning code, the corresponding training and
397 testing dataset and the observation data, the script and namelist file used in WRF-Chem
398 and the scripts used for plotting, supporting the findings of this study. The release
399 version of Python and the Scikit-Learn machine learning library are from <https://scikit-learn.org/stable/index.html>. The chemical compositions were adopted from Tsinghua
400 University TAP (Tracking Air Pollution in China) dataset and available at
401 http://tapdata.org.cn/?page_id=59&item=pm25 (last access: May, 2025, Geng et al.,
402 2021). The meteorological datasets are from the fifth generation European Centre for
403 Medium-Range Weather Forecasts reanalysis (ERA-5) and available at
404 <https://cds.climate.copernicus.eu/datasets> (last access: May, 2025). The ground-based air
405 quality monitoring observations are from the China National Environmental
406 Monitoring Centre network and available from <https://quotsoft.net/air/>. The release
407 version of WRF-Chem can be downloaded from
408 http://www2.mmm.ucar.edu/wrf/users/download/get_source.html. The initial
409 meteorological variables are from the National Center for Environmental Prediction's
410 Final Operational Global (NCEP/FNL) and available from
411 <https://rda.ucar.edu/datasets/d083002/dataaccess/#> (last access: May, 2025). The initial
412 <https://rda.ucar.edu/datasets/d083002/dataaccess/#> (last access: May, 2025). The initial

413 and boundary chemical conditions are from the Community Atmosphere Model with
414 Chemistry model and can be downloaded from (<https://www.acom.ucar.edu/cam-chem/cam-chem.shtml> last access: May, 2025). The anthropogenic emissions are from
415 Multi resolution Emission Inventory for China (<http://meicmodel.org.cn>, last access:
416 May, 2025, Zheng et al., 2018). The biological, biomass and fire emissions inventory
417 are taken from the Model of Emissions of Gases and Aerosols from Nature and the Fire
418 Inventory from NCAR, respectively (<https://www.acom.ucar.edu/wrf-chem/download.shtml> and <https://www.acom.ucar.edu/Data/fire/> last access: May,
419 2025)

422 **Supplement**

423 The Supplement contains the information of the field campaigns, additional
424 descriptions of the WRF-Chem simulation (study domain, emission inventory,
425 parameterization scheme, and initial and boundary conditions), introductions of the
426 auxiliary variables, and the method to evaluate aerosol indirect effects.

427 **Author contributions**

428 JYR: Conceptualization, Investigation, Formal analysis, Writing – original draft. SJZ:
429 Data curation. HHX and GQL: Formal analysis. ZW: Formal analysis. ARZ: Data
430 curation. CFZ: Technical support. MH: Data curation. DJS: Data curation. LZT: Data
431 curation. RJH: Funding acquisition. YLS: Technical support. FZ: Writing-Reviewing
432 and Editing, Funding acquisition. All authors read and approved the final manuscript.

433 **Competing interests**

434 The contact author has declared that none of the authors has any competing interests.

435 **Acknowledgements**

436 This work was funded by the National Natural Science Foundation of China (NSFC)
437 research project (Grant No. 42405118, 42475112, 41975174), the State Key Laboratory
438 of Loess and Quaternary Geology grant, the Institute of Earth Environment, Chinese
439 Academy of Sciences (SKLLQG2429), Shenzhen Science and Technology Plan Project
440 (Grant No. GXWD20220811174022002; KCXST2022102111404011), Guangdong
441 Natural Science Foundation (Grant No. 2024A1515011005).

442 **References**

443 Albrecht, B.: Aerosols, cloud microphysics, and fractional cloudiness, *Science*,
444 245(4923), 1227 – 1230, <https://doi.org/10.1126/science.245.4923.1227>, 1989.

445 Charlson, R., Lovelock, J., Andreae, M., Warren, S.: Oceanic phytoplankton,
446 atmospheric sulphur, cloud albedo and climate, *Nature*, 326(6114), 655 – 661,
447 <https://doi.org/10.1038/326655a0>, 1987.

448 Chen, L., Zhang, F., Zhang, D. et al.: Measurement report: Hygroscopic growth of
449 ambient fine particles measured at five sites in China, *Atmos. Chem. Phys.*, 22(10),
450 6773 – 6786, <https://doi.org/10.5194/acp-22-6773-2022>, 2022.

451 Charlson, R. et al.: Climate Forcing by Anthropogenic Aerosols, *Science*, 255, 423 –
452 430, <https://doi.org/10.1126/science.255.5043.423>, 1992.

453 Fanourgakis, G., Kanakidou, M., Nenes, A. et al.: Evaluation of global simulations of
454 aerosol particle and cloud condensation nuclei number, with implications for cloud
455 droplet formation, *Atmos. Chem. Phys.*, 19(13), 8591 – 8617, <https://doi.org/10.5194/acp-19-8591-2019>, 2019.

457 Fan, X., Liu, J., Zhang, F. et al.: Contrasting size-resolved hygroscopicity of fine
458 particles derived by HTDMA and HR-ToF-AMS measurements between summer
459 and winter in Beijing: the impacts of aerosol aging and local emissions, *Atmos.*
460 *Chem. Phys.*, 20, 915 – 929, <https://doi.org/10.5194/acp-20-915-2020>, 2020.

461 Grange, S., Carslaw, D., Lewis, A. et al.: Random Forest meteorological normalisation
462 models for Swiss PM₁₀ trend analysis, *Atmos. Chem. Phys.*, 18(9), 6223 – 6239,
463 <https://doi.org/10.5194/acp-18-6223-2018>, 2018.

464 Geng, G., Xiao, Q., Liu, S. et al.: Tracking air pollution in China: near real-time PM2.
465 5 retrievals from multisource data fusion, *Environmental Science & Technology*,
466 55(17), 12106 – 12115, <https://doi.org/10.1021/acs.est.1c01863>, 2021.

467 Guo, J., Miao, Y., Zhang, Y. et al.: The climatology of planetary boundary layer height
468 in China derived from radiosonde and reanalysis data, *Atmos. Chem. Phys.*, 16(20),
469 13309 – 13319, <https://doi.org/10.5194/acp-16-13309-2016>, 2016.

470 IPCC. Summary for Policymakers. In *Climate Change 2021: The Physical Science*
471 *Basis. Contribution of Working Group I to the Sixth Assessment Report of the*
472 *Intergovernmental Panel on Climate Change*; Cambridge University Press:
473 Cambridge, United Kingdom and New York, NY, USA. (2021).

474 Liu, C., Wang, T., Rosenfeld, D. et al.: Anthropogenic effects on cloud condensation
475 nuclei distribution and rain initiation in East Asia, *Geophysical Research Letters*,
476 47, <https://doi.org/10.1029/2019GL086184>, 2020.

477 Liu, J., Li, Z.: Significant underestimation in the optically based estimation of the
478 aerosol first indirect effect induced by the aerosol swelling effect, *Geophysical*
479 *Research Letters*, 45(11), 5690 – 5699, <https://doi.org/10.1029/2018GL077679>,
480 2018.

481 Liang, M., Tao, J., Ma, N. et al.: Prediction of CCN spectra parameters in the North
482 China Plain using a random forest model, *Atmospheric Environment*, 289, 119323,
483 <https://doi.org/10.1016/j.atmosenv.2022.119323>, 2022.

484 Li, S., Zhang, F., Jin, X. et al.: Characterizing the ratio of nitrate to sulfate in ambient
485 fine particles of urban Beijing during 2018-2019, *Atmospheric Environment*, 237,
486 <https://doi.org/10.1016/j.atmosenv.2020.117662>, 2020.

487 Liu, J., Zhang, F., Xu, W. et al.: Hygroscopicity of organic aerosols linked to formation
488 mechanisms, *Geophysical Research Letters*, 48,
489 <https://doi.org/10.1029/2020GL091683>, 2021.

490 Menon & Rotstayn.: The radiative influence of aerosol effects on liquid-phase cumulus
491 and stratiform clouds based on sensitivity studies with two climate models,
492 *Climate Dynamics*, 27, 4, 345 – 356, <https://doi.org/10.1007/s00382-006-0139-3>,
493 2006.

494 Moore, R., Cerully, K., Bahreini, R. et al.: Hygroscopicity and composition of
495 California CCN during summer 2010, *Journal of Geophysical Research: Atmospheres*, 117, <https://doi.org/10.1029/2011JD017352>, 2012.

497 Morrison, H., Thompson, G., Tatarskii, V.: Impact of cloud microphysics on the
498 development of trailing stratiform precipitation in a simulated squall line:
499 Comparison of one-and two-moment schemes, *Monthly Weather Review*, 137(3),
500 991 – 1007, <https://doi.org/10.1175/2008MWR2556.1>, 2009.

501 Nair, A. A., Yu, F.: Using machine learning to derive cloud condensation nuclei number
502 concentrations from commonly available measurements, *Atmos. Chem. Phys.*,
503 20(21), 12853 – 12869, <https://doi.org/10.5194/acp-20-12853-2020>, 2020.

504 Nair, A. A., Yu, F., Campuzano-Jost, P. et al.: Machine learning uncovers aerosol size
505 information from chemistry and meteorology to quantify potential cloud-forming
506 particles, *Geophysical Research Letters*, 48, <https://doi.org/10.1029/2021GL094133>, 2021.

508 Petters, M. D., Kreidenweis, S. M.: A single parameter representation of hygroscopic
509 growth and cloud condensation nucleus activity, *Atmos. Chem. Phys.*, 7(8),
510 1961 – 1971, <https://doi.org/10.5194/acp-7-1961-2007>, 2007.

511 Ren, J., Zhang, F., Wang, Y. et al.: Using different assumptions of aerosol mixing state
512 and chemical composition to predict CCN concentrations based on field

513 measurements in urban Beijing, *Atmos. Chem. Phys.*, 18(9), 6907 – 6921,
514 <https://doi.org/10.5194/acp-18-6907-2018>, 2018.

515 Ren, J., Chen, L., Liu, J., and Zhang, F.: The density of ambient black carbon retrieved
516 by a new method: implications for cloud condensation nuclei prediction, *Atmos.*
517 *Chem. Phys.*, 23, 4327 – 4342, <https://doi.org/10.5194/acp-23-4327-2023>, 2023.

518 Rose, C., Collaud Coen, M. et al.: Seasonality of the particle number concentration and
519 size distribution: a global analysis retrieved from the network of Global
520 Atmosphere Watch (GAW) near-surface observatories, *Atmos. Chem. Phys.*, 21,
521 17185 – 17223, <https://doi.org/10.5194/acp-21-17185-2021>, 2021.

522 Rosenfeld, D., Zheng, Y., Hashimshoni, E. et al.: Satellite retrieval of cloud
523 condensation nuclei concentrations by using clouds as CCN chambers,
524 *Proceedings of the National Academy of Sciences*, 113(21), 5828 – 5834,
525 <https://doi.org/10.1073/pnas.1514044113>, 2016.

526 Ren, J., Zou, S., Xu, H., Liu, G., Wang, Z., Zhang, A., Zhao, C., Hu, M., Shang, D.,
527 Tang, L., Huang, R.-J., Sun, Y., & Zhang, F.: Machine learning significantly
528 improves the simulation of hourly-to-yearly scale cloud nuclei concentration and
529 radiative forcing in polluted atmosphere [Data set].
530 Zenodo. <https://zenodo.org/records/15523200>, 2025.

531 Sotiropoulou, R. E. P., Nenes, A., Adams, P. J. et al.: Cloud condensation nuclei
532 prediction error from application of Köhler theory: Importance for the aerosol
533 indirect effect, *Journal of Geophysical Research: Atmospheres*, 112(D12)
534 <https://doi.org/10.1029/2006JD007834>, 2007.

535 Shen, Y., Virkkula, A., Ding, A. et al.: Estimating cloud condensation nuclei number
536 concentrations using aerosol optical properties: role of particle number size
537 distribution and parameterization, *Atmos. Chem. Phys.*, 19(24), 15483 – 15502,
538 <https://doi.org/10.5194/acp-19-15483-2019>, 2019.

539 Sha, T., Ma, X.Y., Jia, H. L. et al.: Exploring the influence of two inventories on
540 simulated air pollutants during winter over the Yangtze River Delta, *Atmospheric*

541 Environment, 206, 170 – 182, <https://doi.org/10.1016/j.atmosenv.2019.03.006>,
542 2019.

543 Schmale, J., Henning, S., Decesari, S. et al.: Long-term cloud condensation nuclei
544 number concentration, particle number size distribution and chemical composition
545 measurements at regionally representative observatories, Atmos. Chem. Phys.,
546 18(4), 2853 – 2881, <https://doi.org/10.5194/acp-18-2853-2018>, 2018.

547 Song, C., Becagli, S., Beddows, D. C. S. et al.: Understanding Sources and Drivers of
548 Size-Resolved Aerosol in the High Arctic Islands of Svalbard Using a Receptor
549 Model Coupled with Machine Learning, Environmental Science & Technology,
550 56(16), 11189 – 11198, <https://doi.org/10.1021/acs.est.1c07796>, 2022.

551 Shang, D., Tang, L., Fang, X. et al.: Variations in source contributions of particle
552 number concentration under long-term emission control in winter of urban Beijing,
553 Environmental Pollution, 304, 119072, 2022.
<https://doi.org/10.1016/j.envpol.2022.119072>, 2022.

555 Stier, P., van den Heever, S. C., Christensen, M. W. et al.: Multifaceted aerosol effects
556 on precipitation, Nature Geoscience, 17(8), 719 – 732,
557 <https://doi.org/10.1038/s41561-024-01482-6>, 2024.

558 Twomey, S.: The influence of pollution on the shortwave albedo of clouds, Journal of
559 the atmospheric sciences, 34(7), 1149-1152, [https://doi.org/10.1175/1520-0469\(1977\)034<1149:TIOPOT>2.0.CO;2](https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2), 1977.

561 Wei, J., Li, Z., Wang, J. et al.: Ground-level gaseous pollutants (NO₂, SO₂, and CO) in
562 China: daily seamless mapping and spatiotemporal variations, Atmos. Chem.
563 Phys., 23, 1511 – 1532, <https://doi.org/10.5194/acp-23-1511-2023>, 2023.

564 Wang, Y., Niu, S., Lv, J. et al.: A new method for distinguishing unactivated particles in
565 cloud condensation nuclei measurements: implications for aerosol indirect effect
566 evaluation, Geophysical Research Letters, 46, 14,185 – 14,194,
567 <https://doi.org/10.1029/2019GL085379>, 2019.

568 Wang, J., Lee, Y.-N., Daum, P. H., Jayne, J., and Alexander, M. L.: Effects of aerosol
569 organics on cloud condensation nucleus (CCN) concentration and first indirect

570 aerosol effect, *Atmos. Chem. Phys.*, 8, 6325 – 6339, <https://doi.org/10.5194/acp-8-6325-2008>, 2008.

572 Xu, W., Fossum, K. N., Ovadnevaite, J. et al.: The impact of aerosol size-dependent
573 hygroscopicity and mixing state on the cloud condensation nuclei potential over
574 the north-east Atlantic, *Atmos. Chem. Phys.*, 21, 8655 – 8675,
575 <https://doi.org/10.5194/acp-21-8655-2021>, 2021.

576 Yang, N., Shi, H., Tang, H. et al.: Geographical and temporal encoding for improving
577 the estimation of PM_{2.5} concentrations in China using end-to-end gradient boosting,
578 *Remote Sensing of Environment*, 269, 112828,
579 <https://doi.org/10.1016/j.rse.2021.112828>, 2022.

580 Yu, F., Luo, G., Nair, A. A., Tsigaridis, K., & Bauer, S. E.: Use of machine learning to
581 reduce uncertainties in particle number concentration and aerosol indirect
582 radiative forcing predicted by climate models, *Geophysical Research Letters*, 49,
583 <https://doi.org/10.1029/2022GL098551>, 2022.

584 Yu, F., Luo, G., Nair, A. A. et al.: Wintertime new particle formation and its contribution
585 to cloud condensation nuclei in the Northeastern United States, *Atmos. Chem.*
586 *Phys.*, 20(4), 2591 – 2601, <https://doi.org/10.5194/acp-20-2591-2020>, 2020.

587 Zhu, Y., Shen, Y., Li, K. et al.: Investigation of particle number concentrations and new
588 particle formation with largely reduced air pollutant emissions at a coastal semi-
589 urban site in northern China, *Journal of Geophysical Research: Atmospheres*, 126,
590 e2021JD035419, <https://doi.org/10.1029/2021JD035419>, 2021.

591 Zhang, F., Li, Y., Li, Z. et al.: Aerosol hygroscopicity and cloud condensation nuclei
592 activity during the AC3Exp campaign: Implications for cloud condensation nuclei
593 parameterization, *Atmos. Chem. Phys.*, 14(24), 13423–13437,
594 <https://doi.org/10.5194/acp-14-13423-2014>, 2014.

595 Zhang, F., Li, Z., Li, Y. et al.: Impacts of organic aerosols and its oxidation level on
596 CCN activity from measurement at a suburban site in China, *Atmos. Chem. Phys.*,
597 16(8), 5413 – 5425, <https://doi.org/10.5194/acp-16-5413-2016>, 2016.

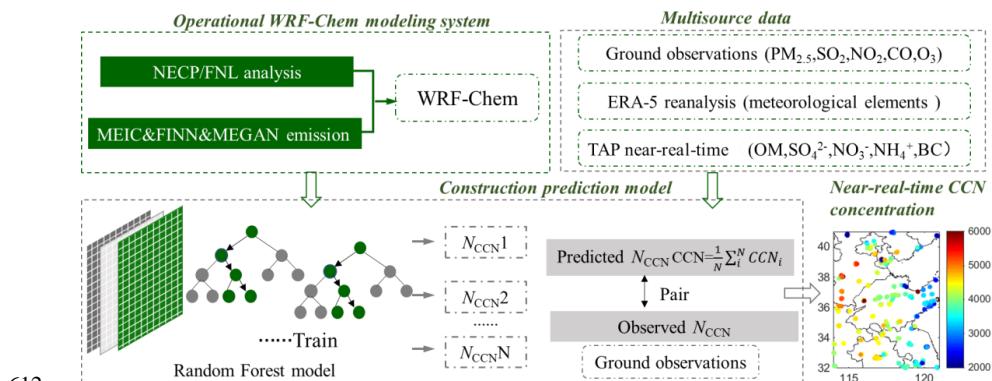
598 Zhang, F., Ren, J., Fan, T. et al.: Significantly enhanced aerosol CCN activity and
599 number concentrations by nucleation-initiated haze events: A case study in urban
600 Beijing, *Journal of Geophysical Research: Atmospheres*, 124(24), 14102 – 14113,
601 <https://doi.org/10.1029/2019JD031457>, 2019.

602 Zhang, F., Wang, Y., Peng, J. et al.: Uncertainty in predicting CCN activity of aged and
603 primary aerosols, *Journal of Geophysical Research: Atmospheres*, 122(21),
604 11723 – 11736, <https://doi.org/10.1002/2017JD027058>, 2017.

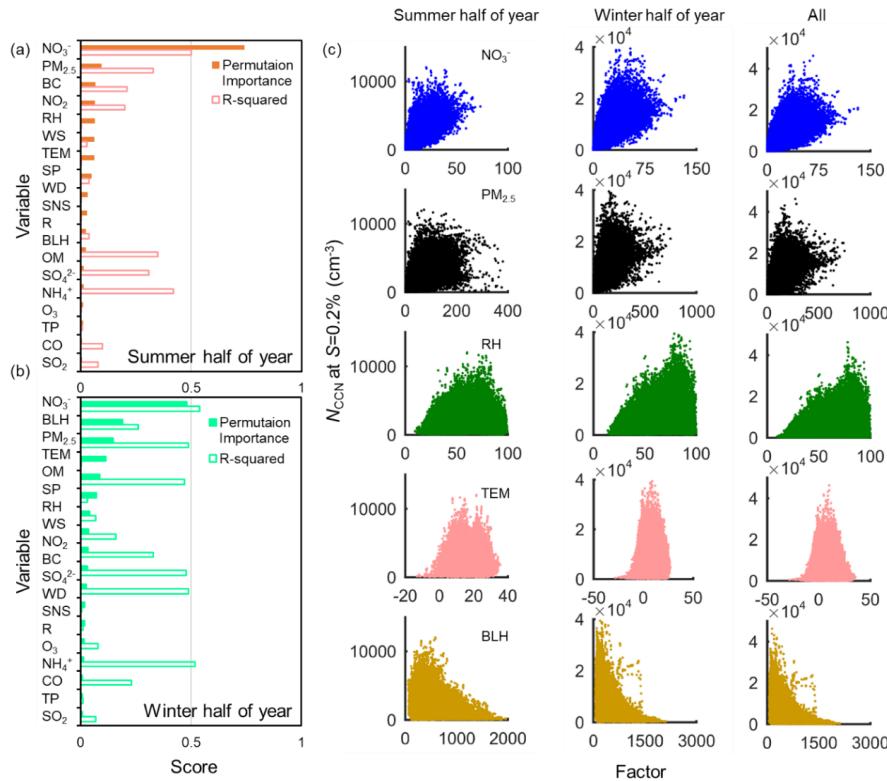
605 Zaveri, R. A., Peters, L. K.: A new lumped structure photochemical mechanism for
606 large-scale applications, *Journal of Geophysical Research: Atmospheres*, 104,
607 30387 – 30415, <https://doi.org/10.1029/1999JD900876>, 1999.

608 Zheng, B., Tong, D., Li, M., Liu, F. et al.: Trends in China's anthropogenic emissions
609 since 2010 as the consequence of clean air actions, *Atmos. Chem. Phys.*, 18,
610 14095-14111, <https://doi.org/10.5194/acp-18-14095-2018>, 2018.

611 **Figures**

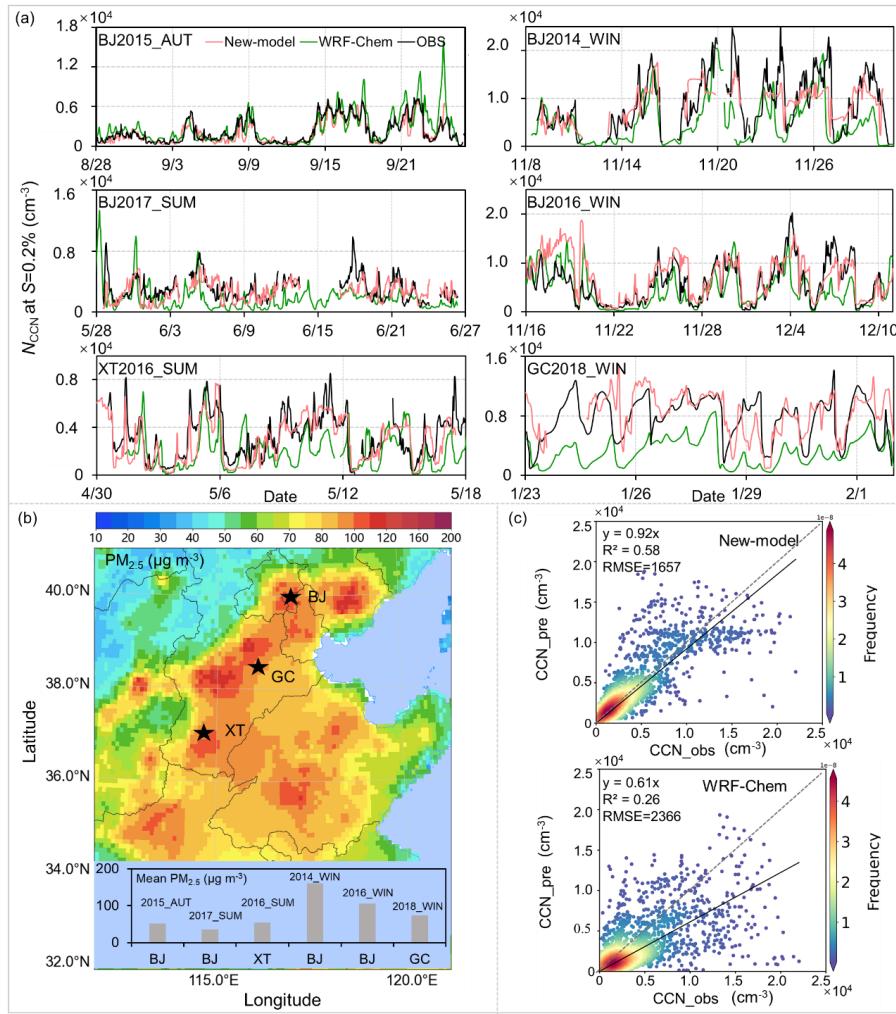


612 613 **Fig. 1** Methodological framework of CCN number concentration prediction.



614

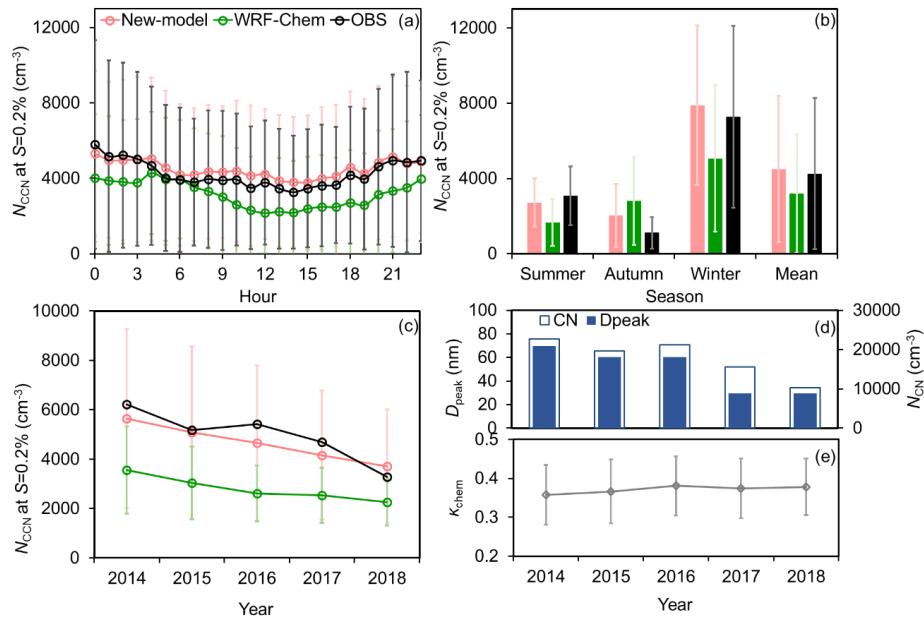
615 **Fig. 2** The relative importance of the input parameters to the prediction of N_{CCN} . (a)
616 Permutation importance of each parameter and its determination coefficient in the
617 summer half of year; (b) Same as (a) but for the winter half of year; (c) Scatter plots of
618 the input parameters (NO₃⁻, PM_{2.5}, RH, TEM, BLH) with CCN number concentration
619 at $S=0.2\%$.



620 **Fig. 3** Performance of the new model in predicting N_{CCN} at field sites in NCP. (a) Time
621 series of the observed and predicted CCN number concentrations at $S=0.2\%$ for the six
622 campaigns (BJ2015_AUT, BJ2017_SUM, XT2016_SUM, BJ2014_WIN,
623 BJ2016_WIN, GC2018_WIN) in the North China Plain; (b) Map for average mass
624 concentration of $PM_{2.5}$ of 2014 from TAP dataset in NCP (<http://tapdata.org.cn/>) and
625 field observed average mass concentration of $PM_{2.5}$ during the six field campaigns (see

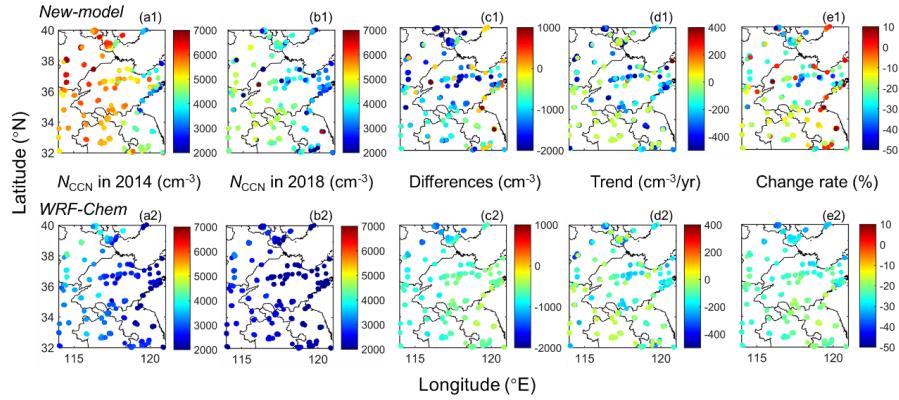
626 embedded histogram); (c) Scatter plots of the observed N_{CCN} at $S=0.2\%$ with the New-

627 model predicted (top) and WRF-Chem simulated (bottom) respectively.



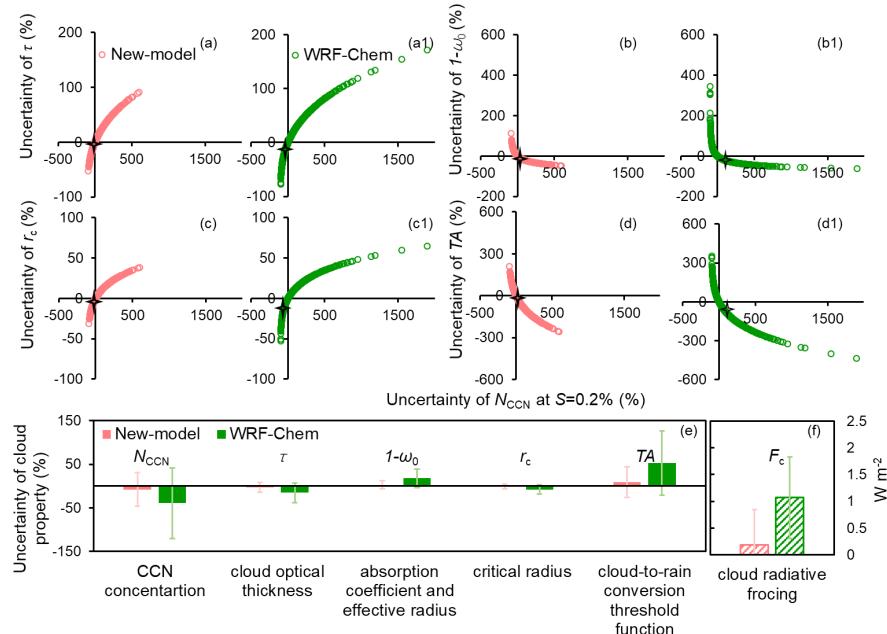
628

629 **Fig. 4** Performance of the new model in predicting hourly-to-yearly scale N_{CCN} . (a)
630 Diurnal variations of N_{CCN} at $S=0.2\%$ derived from the new model, the WRF-Chem,
631 and the observations from the field campaigns; (b) Seasonal variations, here the
632 comparison in summer, autumn and winter were conducted using the campaign
633 averages of BJ2017_SUM, BJ2015_AUT, and BJ2014_WIN&BJ2016_WIN
634 respectively with the new model and WRF-Chem predictions at corresponding periods;
635 (c) Trends of annual mean N_{CCN} from 2014 to 2018; (d) Trends of annual mean particle
636 number concentration and peak diameter; (e) Trends of annual mean of the hygroscopic
637 parameter κ_{chem} calculated from TAP dataset in Beijing.



638

639 **Fig. 5** Spatial variations of N_{CCN} derived by the new model (top) and WRF-Chem
640 (bottom) at the sites in the studied region. (a1) Average N_{CCN} at $S=0.2\%$ in 2014
641 predicted by the new model; (a2) Average N_{CCN} at $S=0.2\%$ in 2014 by the WRF-Chem;
642 (b1 and b2) Same as a1 and a2 but in 2018; (c1) Differences in N_{CCN} at $S=0.2\%$ between
643 the year of 2014 and 2018 predicted by the new model; (c2) Same as (c1) but by the
644 WRF-Chem; (d1) Trends of N_{CCN} at $S=0.2\%$ from 2014 to 2018 predicted by the new
645 model ; (d2) Same as (d1) but by the WRF-Chem; (e1) Change rates of N_{CCN} at $S=0.2\%$
646 from 2014 to 2018 predicted by the new model; (e2) Same as (e1) but by the WRF-
647 Chem.



648

649 **Fig. 6** Sensitivity of the cloud parameters and radiative forcing to CCN prediction

650 biases. (a) Dependence of the uncertainty of the cloud optical thickness (τ) on the

651 uncertainty of N_{CCN} at $S=0.2\%$ with the new model; (a1) Same as (a) but by the WRF-

652 Chem; (b) Dependence of the uncertainty of the absorption coefficient ($1-\omega_0$) on the

653 uncertainty of N_{CCN} at $S=0.2\%$ with the new model; (b1) Same as (b) but by the by the

654 WRF-Chem; (c) Dependence of the uncertainty of the critical radius (r_c) on the

655 uncertainty of N_{CCN} at $S=0.2\%$ with the new model; (c1) Same as (c) but by the WRF-

656 Chem; (d) Dependence of the uncertainty of the cloud-to-rain conversion threshold

657 function (TA) on the uncertainty of N_{CCN} at $S=0.2\%$ with the new model; (d1) Same as

658 (d) but by the WRF-Chem; (e) Mean uncertainty in simulating the cloud properties and

659 (f) radiative forcing (F_c) by the new model and the WRF-Chem; Black star shows the

660 mean value for the observation.