
Referee 2 

The manuscript by Ren et al. presents a machine learning (ML) model based on 

Random Forest Regression (RFRM) to predict cloud condensation nuclei number 

concentration (NCCN) at typical supersaturations in the North China Plain (NCP), which 

they then demonstrate that their model reduces the prediction bias from 39% (WRF-

Chem) to 8%. The study also analyzes the importance of different input factors, 

evaluates the model’s performance in simulating spatiotemporal variability, and 

quantifies the reduction in cloud radiative forcing uncertainty achieved by mitigating 

NCCN simulation biases. While the topic is highly relevant to GMD and represents a 

potential advancement in climate modeling, I have significant concerns regarding the 

methodological approach and validation logic, as well as the clarity of the manuscript. 

I recommend returning the manuscript to the authors with encouragement to revise and 

resubmit after addressing the following concerns. 

Major Concerns 

The training and testing datasets use WRF-Chem simulations as the output variable 

(target), but model performance is evaluated against observations. From a machine 

learning perspective, if the target variable (output) in both training and testing is WRF-

Chem simulations, the model’s objective should be to approximate WRF-Chem’s 

output—not observations. Thus, model performance should be assessed based on how 

well it replicates WRF-Chem’s results, not observations. The authors report that WRF-

Chem exhibits a significant bias (~39%) compared to observations, yet their ML model, 

trained to emulate WRF-Chem, shows a much smaller bias (~8%). This discrepancy is 

counterintuitive and requires a thorough explanation, which is currently missing. 

Re: The reviewer put forward an insightful comment. However, the reviewer may 

misunderstand the part where we compared the CCN predicted by the RFRM model 

with both the observed CCN and that simulated by WRF-Chem. This could be 

attributed to that we do not elaborate on this clearly in the methodology section. Due to 

the scarcity of a large spatial scale CCN observations (regional and global), in this study, 

the RFRM model was trained using simulated CCN concentrations from WRF-Chem 

as the target variable, which can capture general temporal variations in ambient CCN 

concentrations (Fig. 4) despite some biases.  

When constructing the model, all the aforementioned species data (predictor and 

target variables) were processed to match the same spatiotemporal resolution, and then 

split into 7:3 ratio for model training and testing respectively. Fig. 2 shows the 

performance of our developed RFRM models by comparing the testing dataset (sample 

size: N=117585) of CCN simulated by WRF-Chem with the predicted CCN. It showed 

that the estimated NCCN at S=0.2% are highly correlated with the values from WRF-

Chem, with the correlation R2 of ~0.89-0.91 and slopes of 0.83 and 0.86 in our 

developed RFRM model. This suggests that our model works well in estimating NCCN 

with a high aerosol loading environment  

However, given that the ultimate goal of model development is to more accurately 

predict the actual atmospheric concentration of CCN, we further conducted a 

comparative analysis of the prediction results against the in-situ observation data in this 



region, spanning from the hourly scale to the interannual scale (see Figure 3-6). For this 

comparison, we also plotted and included the WRF-Chem simulated CCN in the figures. 

As a result, we can get how the developed model has improved the WRF-Chem 

simulations.   

We have added detailed descriptions in the revised text or see follows (Lines 117-173): 

“… 2.2 Model construction and validation 

Here we develop the ML-based NCCN prediction model by employing the Random 

Forest Regression method (RFRM) that has been demonstrated and can solve 

multivariate and nonlinear regression problems (Nair and Yu, 2020; Liang et al., 2022). 

The diagram of the model construction and the NCCN prediction is shown in Figure 1. 

Due to lack of a large spatial scale observed NCCN data, we use simulated NCCN by WRF-

Chem model as the targeted variable that can basically capture the ambient temporal 

variability of CCN concentration despite a deviation of ~40% by comparing with our 

six field observations (Figure 4). The input parameters include the chemical 

components of PM2.5 (organic, sulfate, nitrate, ammonium, black carbon) from the 

Tsinghua University Tracking Air Pollution in China dataset (Liu et al., 2022) and gas 

and particulate pollutants (nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon 

monoxide (CO), ozone (O3) and PM2.5) collected from the China National 

Environmental Monitoring Centre network. Meteorological parameters are from the 

European Centre for Medium-range Weather Forecasts Reanalysis version 5 (ERA-5) 

and include temperature, relative humidity (RH), total precipitation (TP), wind speed 

(WS), wind direction (WD), planetary boundary layer height (BLH), surface pressure 

(SP) and surface net solar radiation (SNSR). These datasets have undergone validation 

and been proven highly suitable for developing machine learning models for 

atmospheric applications (Nair and Yu, 2020; Wei et al., 2023). Cartesian coordinates 

were also added as input due to the spatiotemporal nature of the input data (Yang et al., 

2022). Supplemental Table 1 provides more details about the input parameters.  

When constructing the model, all the aforementioned species data (predictor and 

target variables) were processed to match the same spatiotemporal resolution, and then 

split into 7:3 ratio for model training and testing respectively. As a result, a total of 

274365 samples is included in the training datasets. In order to assure a stronger 

generalization ability of the NCCN prediction model, the 10-fold cross-validation is 

adopted (Wei et al., 2023). The optimization parameters of RF model were examined 

by varying hyperparameters (Fig. S1). In addition, cross-validation (CV) is applied to 

select the hyperparameters during the data preprocessing (Yang et al., 2022). The CV 

results showed that when the number of trees (n_estimators) was less than 200, the 

prediction accuracy increased rapidly with the increase of the number of trees, and then 

gradually stabilized. According to the CV score and the number of data sample, the 

number of trees was set to 500 in this study. The impact of max depth on the CV score 

showed that, with the increase of depth, the complexity of the model increases. Thus, 

the max depth is set to 28. Also, the model generalization error was larger when the 

minimum sample number of the leaf and branch node are large, indicating that the 

model itself is close to the optimal model complexity level. Therefore, a higher value 

was set given the large sample size in this case. The influence of the maximum selection 



feature number on CV score showed a trend of increasing first and then decreasing, so 

the maximum value of CV curve was set to 16.  

 
Figure 2. Comparison of RFRM retrieval and WRF-Chem simulated NCCN at S=0.2%. 

(a and b) Density plots of retrieval NCCN at S=0.2% as a function of the simulations 

from WRF-Chem on the testing dataset. 

Fig. 2 shows the performance of our developed RFRM models by comparing the 

testing dataset (sample size: N=117585) of CCN simulated by WRF-Chem with the 

predicted CCN. Here the quality metrics for model performance are based on the 

correlation coefficient (R2), root mean square error (RMSE) and the slope of the RFRM 

predicted and the WRF-Chem simulated CCN concentrations. It showed that the 

estimated NCCN at S=0.2% are highly correlated with the values from WRF-Chem, with 

the correlation R2 of ~0.89-0.91 and slopes of 0.83 and 0.86 in our developed RFRM 

model. This suggests that our model works well in estimating NCCN with a high aerosol 

loading environment. We also found that the accuracy of the CCN prediction will 

deteriorate slightly if not including the information of chemical compositions (Fig. S2), 

or if using XGBoost algorithm (Fig. S3) when constructing the model.  

 

Figure S2. Comparison of RFRM-ShortVars model retrieval and WRF-Chem 

simulated NCCN at S=0.2%. (a and b) Density plots of retrieval NCCN at S=0.2% as a 

function of the simulations from WRF-Chem on the testing dataset.



 
Figure S3. Same as Figure S2 but from XGBoost model. 

 Given that the ultimate goal of model development is to more accurately predict 

the actual atmospheric concentration of CCN, we further conducted a comparative 

analysis of the prediction results against the in-situ observation data in this region, 

spanning from the hourly scale to the interannual scale (see Figure 3-6), which will be 

presented and discussed in detail in Section 3.2 and 3.3 …” 

Use multisource datasets as input and WRF-Chem simulations as output to make 

training and test sets. Table S1 indicates that all input variables used in the ML model 

are also available from WRF-Chem outputs. However, the author uses datasets from 

different sources and different spatiotemporal resolutions to construct the data set 

through interpolation. The authors provide no rationale and advantage of this approach. 

Conventionally, one would train ML models using consistent model outputs and later 

test with observational inputs to assess potential gains. 

Re: Although the input feature variables used in model training can indeed be derived 

from the output of WRF Chem. However, they exhibit varying degrees of bias. 

Assuming the non-linear relationship between predictor features and target variables is 

accurate, train the RFRM model. So, choosing more accurate feature factors to train 

machine learning models is crucial for improving model accuracy. It is also consistent 

with the standard practice of environmental data modeling. In machine learning 

modeling, we used PM2.5 chemical composition from the Tsinghua University Tracking 

China Air Pollution Dataset (Liu et al., 2022), gas and particulate pollutants from the 

China National Environmental Monitoring Center network, and meteorological 

parameters from the European Centre for Medium Range Weather Forecast Reanalysis 

5th edition (ERA-5) data as input variables. These are commonly used datasets for 

building atmospheric application machine learning models (Nair and Yu, 2020; Wei et 

al., 2023). The results indicate that the model trained on carefully selected predictive 

factors can reliably predict CCN. We have revised as follows and see Lines 125-138:  

“…The input parameters include the chemical components of PM2.5 (organic, sulfate, 

nitrate, ammonium, black carbon) from the Tsinghua University Tracking Air Pollution 

in China dataset (Liu et al., 2022) and gas and particulate pollutants (nitrogen dioxide 

(NO2), sulfur dioxide (SO2), carbon monoxide (CO), ozone (O3) and PM2.5) collected 

from the China National Environmental Monitoring Centre network. Meteorological 

parameters are from the European Centre for Medium-range Weather Forecasts 

Reanalysis version 5 (ERA-5) and include temperature, relative humidity (RH), total 



precipitation (TP), wind speed (WS), wind direction (WD), planetary boundary layer 

height (BLH), surface pressure (SP) and surface net solar radiation (SNSR). These 

datasets have undergone validation and been proven highly suitable for developing 

machine learning models for atmospheric applications (Nair and Yu, 2020; Wei et al., 

2023). Cartesian coordinates were also added as input due to the spatiotemporal nature 

of the input data (Yang et al., 2022). Supplemental Table 1 provides more details about 

the input parameters …” 

The model is trained on data from 378 monitoring sites across the NCP (2014–2018) 

but evaluated using three sites (Beijing, Xingtai, Gucheng) within the same region and 

time period. This does not test generalizability. True validation requires spatiotemporal 

extrapolation: e.g., evaluation outside the training period or region. Performance on 

training-era/training-region data is expected to be favorable and does not demonstrate 

robust predictive skill.  

Re: Thank you. In this study, the RFRM model is trained on data from 378 sites across 

in NCP from 2014 to 2018. The six observations were excluded from the set of 378 

monitoring sites across NCP, and the corresponding time periods were eliminated in the 

model training process. Therefore, the evaluation is conducted outside of the training 

period or region.  

Besides, observations at these sites could represent the average polluted and 

background conditions in the NCP (eg., PM2.5 shown in Fig. 4b). Compared with the 

observed values, the better performance of the model can indicate its good predictive 

ability. See Lines 188-225: 

“…2.3.2 Gound-based measurements and datasets 

Ground measurements of atmospheric gaseous precursors, fine particles chemical 

compositions, and CCN number concentration (at supersaturations of 0.2% and 0.4%) 

were collected during six field campaigns at three sites in the NCP (Fig. 4), used to 

assess the performance of the developed ML-based model in predicting NCCN. The six 

campaigns were conducted as follows: at the Beijing (BJ) site from 8–30 November 

2014, 20 August to 6 October 2015, 16 November to 20 December 2016, and 28 May 

to 27 June 2017; at the Xingtai (XT) site from 17 May to 14 June 2016; and at the 

Gucheng (GC) site from 23 January to 3 February 2018. They are accordingly named 

BJ2014_WIN, BJ2015_AUT, BJ2016_WIN, BJ2017_SUM, XT2016_SUM, and 

GC2018_WIN (Fig. 4a).  

The BJ site (Longitude: 116.37° E; Latitude: 39.97° N) is located at the 

meteorological tower station of the Institute of Atmospheric Physics, Chinese Academy 

of Sciences. It is representative of the general emission conditions in urban areas of the 

northern NCP. The primary pollution sources here are surrounding traffic and 

residential emissions. The XT site (Longitude: 114.37° E; Latitude: 37.18° N) is 

situated at a national weather station. It is primarily influenced by emissions from 

surrounding towns and factories (e.g., coal-fired power plants, coking, steel, cement, 

and chemical industries) and thus reflects polluted suburban conditions in the southern 

NCP. The GC site (Longitude: 115.74° E; Latitude: 39.15° N) is located at the 

Integrated Ecological-Meteorological Observation and Experiment Station of the 

Chinese Academy of Meteorological Sciences. Surrounded mainly by nearby villages, 



farmland, and transportation networks, this site represents the regional background 

pollution in the northern NCP. 

The CCN number concentrations were measured by using the Droplet 

Measurement Technologies CCN counter (model CCNC-100, DMT Inc. Lance et al., 

2006) at BJ and XT site. The supersaturation (S) levels set for each CCN measurement 

cycle were 0.1%, 0.2%, 0.4%, and 0.8%, respectively. Another measurement at GC site 

was referred from Zhang et al. (2020). In this study, the comparisons between the 

measured and predicted NCCN were mostly based on the value at S=0.2% and S=0.4%. 

The observed NCCN varies from a few hundred to tens of thousands at these sites, and 

the campaign mean mass concentration of PM2.5 ranges from 35.6 to 160 μg m-3 (Fig. 

4b), indicating that the observations can represent various atmospheric conditions, 

spanning from clean to polluted in the region. More details about the observations could 

be found in Fan et al. (2020), Ren et al. (2018), and Zhang et al. (2019). In addition, the 

long-term measurement of particle number size distribution (PNSD) at a field site in 

Beijing (Fig. S5, Shang et al., 2022) is also used for deriving the long-term trend of 

yearly averaged NCCN …” 

Other Major Concerns: 

The manuscript positions itself as unique by focusing on polluted regions (Lines 88–

95), yet only 6 field campaigns are used for evaluation, with no dedicated analysis of 

heavy-pollution events. Additionally, heavy reliance on "mean prediction bias" is 

misleading: if RMSE/MSE is the training loss (unstated in the text), ML models 

inherently bias predictions toward the mean. Therefore, the improvement of the "mean 

prediction bias" cannot fully prove the performance of the ML model in real scenarios, 

and it is more meaningful to conduct a detailed evaluation and analysis of a single 

severe pollution event. 

Re: Thanks for your suggestion, we have added some discussion about haze events in 

the revised text, see as follows or Lines 290-311: 

“…Compared to WRF-Chem simulations, the RFRM model showed the greatest 

improvement during the winter campaigns when PM2.5 concentrations were usually 

higher. For example, during the GC2018_WIN campaign, the observed NCCN is 

underestimated as large as 61% by the WRF-Chem (Fig. S8), while the underestimation 

is largely improved with the predicted bias of only 3% in the RFRM model (Fig. S8). 

WRF-Chem simulations for warm seasons noticeably improved, e.g., the uncertainty 

decreased to 8% during the BJ2015_AUT campaign (Fig. S8). Overall, the RFRM 

model still performs better than the WRF-Chem model and is with averaged predicted 

bias of 18% during summer campaigns. Occasionally, the WRF-Chem model 

overestimated the NCCN apparently, e.g., the episodes of September 21 to 24 during the 

BJ2015_AUT campaign, and May 28 to 31 during the BJ2017_SUM campaign. Here 

four pollution events from different seasons have been selected to further examine the 

capability of RFRM model to predict CCN concentrations (Figure 5). Fig. 5a presents 

a case from 14th to 18th September, 2015, during which PM2.5 levels increased from 

50 to 315 µg m⁻3. As pollution intensified, CCN concentrations also rose. Compared to 

observations, the RFRM model exhibited lower relative bias. Fig. 5b–d display three 

additional individual pollution episodes of varying severity with PM2.5 ranging from 10 



to 660 µg m⁻3. In all cases, the RFRM model more accurately captures the peak CCN 

concentrations during pollution events, exhibiting consistently lower relative bias. 

Especially for the case of 2nd to 5th December in 2016, the RFRM model can better 

capture the peak NCCN of high pollution, while the WRF-Chem did not simulate the 

peak on December 4th very well …” 

 

Fig. 5 Performance of the RFRM model in predicting NCCN during haze events. (a) Case 

of 24 to 18 September in 2015, (b) case of 6 to 18 May in 2016, (c) case of 2 to 5 

December in 2016, (d) case of 2 to 8 June in 2017. 

A common but concerning trend in ML applications is showcasing successes while 

neglecting failures. This paper follows that pattern. There is no discussion of scenarios 

where the model underperforms, its limitations, or potential pitfalls. For instance, an 

eager graduate student might misuse this model for policy analysis without realizing its 

constraints (e.g., lack of generalizability), leading to significant wasted effort. A 

rigorous journal paper must present a balanced view of model capabilities and 

weaknesses. 

Re: Thanks for the suggestion, some discussions about the model limitations were 

revised in the section of 4.2 Limitations and outlook or see Lines 481-500: 

“4.2 Limitations and outlook 

In this study, the RFRM model was trained using simulated CCN concentrations 



from WRF-Chem as the target variable, assuming that the nonlinear relationships 

between the predictor features and the target variable are accurate. However, as noted 

earlier, even though WRF-Chem simulations can capture the variation of NCCN, they 

carry an uncertainty of ~20–40% compared to observations (Fanourgakis et al., 2019). 

This contributes directly to uncertainty in the RFRM model’s predictions. Additionally, 

note that in this study, observational data from six campaigns at three sites are analyzed. 

Validating the simulated NCCN through comparisons with observations at more ground 

sites is thus warranted. In the future, it is crucial to obtain comprehensive monitoring 

data of CCN and other key aerosol properties (e.g., particle size distribution, chemical 

compositions) in different environments.  

The RFRM framework presented here relies on readily available atmospheric state 

variables (eg., chemical compositions, gas pollutants, and meteorology elements) and 

significantly improves the accuracy of NCCN prediction, thereby helping to bridge 

observational gaps. Our modeling framework could then be used to simulate ground-

level CCN data in other regions around the world and even on a global scale. Moreover, 

this approach may guide the development of machine‑learning–based models to predict 

CCN vertical profiles, which are critical for accurately assessing aerosol–cloud 

interactions…” 

Minor Concerns: 

Clarity and Presentation Issues.  

The methods section is placed in the Supplement, making the manuscript harder to 

follow. 

Re: Thank you for your efforts and time on handling the paper. We have updated the 

section of Methods and see as follows or Lines 106-225:  

“2. Methods 

2.1 Study area 

In this work, we select the North China Plain (NCP) (32°-40°N and 114°-121°E) 

as the study area. Being one of the most polluted areas in China, the aerosol particles 

in NCP are with more complex composition and mixing state, which leads to great 

challenge in accurate prediction of cloud concentration nuclei (CCN) concentrations. 

In recent years, emissions of gas pollutants and fine particles have shown a significant 

downward trend year by year (Wei et al., 2023) due to the implementation of the 

vigorous emission reduction in China (Zheng et al., 2018). This also makes changes in 

aerosols CCN activity in the study area from the point of view in assessment of the 

climate effect of aerosols.   

2.2 Model construction and validation 

Here we develop the ML-based NCCN prediction model by employing the Random 

Forest Regression method (RFRM) that has been demonstrated and can solve 

multivariate and nonlinear regression problems (Nair and Yu, 2020; Liang et al., 2022). 

The diagram of the model construction and the NCCN prediction is shown in Figure 1. 

Due to lack of a large spatial scale observed NCCN data, we use simulated NCCN by WRF-

Chem model as the targeted variable that can basically capture the ambient temporal 

variability of CCN concentration despite a deviation of ~40% by comparing with our 

six field observations (Figure 4). The input parameters include the chemical 



components of PM2.5 (organic, sulfate, nitrate, ammonium, black carbon) from the 

Tsinghua University Tracking Air Pollution in China dataset (Liu et al., 2022) and gas 

and particulate pollutants (nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon 

monoxide (CO), ozone (O3) and PM2.5) collected from the China National 

Environmental Monitoring Centre network. Meteorological parameters are from the 

European Centre for Medium-range Weather Forecasts Reanalysis version 5 (ERA-5) 

and include temperature, relative humidity (RH), total precipitation (TP), wind speed 

(WS), wind direction (WD), planetary boundary layer height (BLH), surface pressure 

(SP) and surface net solar radiation (SNSR). These datasets have undergone validation 

and been proven highly suitable for developing machine learning models for 

atmospheric applications (Nair and Yu, 2020; Wei et al., 2023). Cartesian coordinates 

were also added as input due to the spatiotemporal nature of the input data (Yang et al., 

2022). Supplemental Table 1 provides more details about the input parameters.  

When constructing the model, all the aforementioned species data (predictor and 

target variables) were processed to match the same spatiotemporal resolution, and then 

split into 7:3 ratio for model training and testing respectively. As a result, a total of 

274365 samples is included in the training datasets. In order to assure a stronger 

generalization ability of the NCCN prediction model, the 10-fold cross-validation is 

adopted (Wei et al., 2023). The optimization parameters of RF model were examined 

by varying hyperparameters (Fig. S1). In addition, cross-validation (CV) is applied to 

select the hyperparameters during the data preprocessing (Yang et al., 2022). The CV 

results showed that when the number of trees (n_estimators) was less than 200, the 

prediction accuracy increased rapidly with the increase of the number of trees, and then 

gradually stabilized. According to the CV score and the number of data sample, the 

number of trees was set to 500 in this study. The impact of max depth on the CV score 

showed that, with the increase of depth, the complexity of the model increases. Thus, 

the max depth is set to 28. Also, the model generalization error was larger when the 

minimum sample number of the leaf and branch node are large, indicating that the 

model itself is close to the optimal model complexity level. Therefore, a higher value 

was set given the large sample size in this case. The influence of the maximum selection 

feature number on CV score showed a trend of increasing first and then decreasing, so 

the maximum value of CV curve was set to 16.  

 
Figure 2. Comparison of RFRM retrieval and WRF-Chem simulated NCCN at S=0.2%. 

(a and b) Density plots of retrieval NCCN at S=0.2% as a function of the simulations 



from WRF-Chem on the testing dataset. 

Fig. 2 shows the performance of our developed RFRM models by comparing the 

testing dataset (sample size: N=117585) of CCN simulated by WRF-Chem with the 

predicted CCN. Here the quality metrics for model performance are based on the 

correlation coefficient (R2), root mean square error (RMSE) and the slope of the RFRM 

predicted and the WRF-Chem simulated CCN concentrations. It showed that the 

estimated NCCN at S=0.2% are highly correlated with the values from WRF-Chem, with 

the correlation R2 of ~0.89-0.91 and slopes of 0.83 and 0.86 in our developed RFRM 

model. This suggests that our model works well in estimating NCCN with a high aerosol 

loading environment. We also found that the accuracy of the CCN prediction will 

deteriorate slightly if not including the information of chemical compositions (Fig. S2), 

or if using XGBoost algorithm (Fig. S3) when constructing the model.  

 Given that the ultimate goal of model development is to more accurately predict 

the actual atmospheric concentration of CCN, we further conducted a comparative 

analysis of the prediction results against the in-situ observation data in this region, 

spanning from the hourly scale to the interannual scale (see Figure 3-6), which will be 

presented and discussed in detail in Section 3.2 and 3.3.  

2.3 Data and other details in the model construction  

2.3.1 NCCN simulated by WRF-Chem model 

The WRF-Chem version 4.1.5 is used to simulate NCCN in this study, which nested 

a domain in 10 km×10 km covering the entire NCP (Fig. S4) and contained 181×170 

grids. The simulation in WRF-Chem is conducted from 1 January 2014 to 31 December 

2018 with an hourly resolution. In the WRF-Chem modeling system, the sectional 

Model for Simulating Aerosol Interactions and Chemistry (MOSAIC), the Morrison 

two-moment scheme (Morrison et al., 2009) and the Carbon Bond Mechanism Z 

photochemical mechanism (Zaveri et al., 1999) are employed. We also compared the 

simulation using the Regional Acid Deposition Model (Stockwell et al., 1990) and the 

Lin microphysics scheme (Lin et al., 1983). Considering the calculation efficiency and 

accuracy with the measurements, the CBMZ-MOSAIC and Morrison 2-monment 

scheme were finally applied to simulate the long-term CCN concentration. More details 

about the other parameterizations used for WRF-Chem simulation were given in SI.  

2.3.2 Gound-based measurements and datasets 

Ground measurements of atmospheric gaseous precursors, fine particles chemical 

compositions, and CCN number concentration (at supersaturations of 0.2% and 0.4%) 

were collected during six field campaigns at three sites in the NCP (Fig. 4), used to 

assess the performance of the developed ML-based model in predicting NCCN. The six 

campaigns were conducted as follows: at the Beijing (BJ) site from 8–30 November 

2014, 20 August to 6 October 2015, 16 November to 20 December 2016, and 28 May 

to 27 June 2017; at the Xingtai (XT) site from 17 May to 14 June 2016; and at the 

Gucheng (GC) site from 23 January to 3 February 2018. They are accordingly named 

BJ2014_WIN, BJ2015_AUT, BJ2016_WIN, BJ2017_SUM, XT2016_SUM, and 

GC2018_WIN (Fig. 4a).  

The BJ site (Longitude: 116.37° E; Latitude: 39.97° N) is located at the 

meteorological tower station of the Institute of Atmospheric Physics, Chinese Academy 



of Sciences. It is representative of the general emission conditions in urban areas of the 

northern NCP. The primary pollution sources here are surrounding traffic and 

residential emissions. The XT site (Longitude: 114.37° E; Latitude: 37.18° N) is 

situated at a national weather station. It is primarily influenced by emissions from 

surrounding towns and factories (e.g., coal-fired power plants, coking, steel, cement, 

and chemical industries) and thus reflects polluted suburban conditions in the southern 

NCP. The GC site (Longitude: 115.74° E; Latitude: 39.15° N) is located at the 

Integrated Ecological-Meteorological Observation and Experiment Station of the 

Chinese Academy of Meteorological Sciences. Surrounded mainly by nearby villages, 

farmland, and transportation networks, this site represents the regional background 

pollution in the northern NCP. 

The CCN number concentrations were measured by using the Droplet Measurement 

Technologies CCN counter (model CCNC-100, DMT Inc. Lance et al., 2006) at BJ and 

XT site. The supersaturation (S) levels set for each CCN measurement cycle were 0.1%, 

0.2%, 0.4%, and 0.8%, respectively. Another measurement at GC site was referred from 

Zhang et al. (2020). In this study, the comparisons between the measured and predicted 

NCCN were mostly based on the value at S=0.2% and S=0.4%. The observed NCCN varies 

from a few hundred to tens of thousands at these sites, and the campaign mean mass 

concentration of PM2.5 ranges from 35.6 to 160 μg m-3 (Fig. 4b), indicating that the 

observations can represent various atmospheric conditions, spanning from clean to 

polluted in the region. More details about the observations could be found in Fan et al. 

(2020), Ren et al. (2018), and Zhang et al. (2019). In addition, the long-term 

measurement of particle number size distribution (PNSD) at a field site in Beijing (Fig. 

S5, Shang et al., 2022) is also used for deriving the long-term trend of yearly averaged 

NCCN …” 

Numerous ambiguities and errors hinder comprehension. 

For example: 

Lines 109–110 describe the study domain as 32°–40°N and 114°–121°E, but Figure S1 

shows a different region.  

Re: Here Figure S1 has been revised as Figure S4. It shows the simulation domain of 

WRF-Chem, which nested a domain in 10 km×10 km covering the entire North China 

Plain and contained 181×170 grids. A region within 32°-40°N and 114°-121°E in the 

NCP is chosen as the study area. The distance between the study area and the boundary 

of the simulation domain must be greater than 10 times of the resolution. Our study area 

is within the range of Fig. S4. The sentence has been revised as follows or see Lines 

108-109 and 176-178: 

“…In this work, we select the North China Plain (NCP) (32°-40°N and 114°-121°E) as 

the study area …” 

“…The WRF-Chem version 4.1.5 is used to simulate NCCN in this study, which nested 

a domain in 10 km×10 km covering the entire NCP (Fig. S4) and contained 181×170 

grids …” 

Lines 117–119 incorrectly state that simulated NCCN is an input to the RFRM model (it 

should be the output).  

Re: The sentence has been revised as follows or see Lines 122-125: 



“…Due to lack of a large spatial scale observed NCCN data, we use simulated NCCN by 

WRF-Chem model as the targeted variable that can basically capture the ambient 

temporal variability of CCN concentration despite a deviation of ~40% by comparing 

with our six field observations (Figure 4) …” 

Lines 154–155: The phrase "more to the model’s output" is unclear.  

Re: The sentence has been revised as follows or see Lines 241-243: 

“…During the winter, changes in BLH contribute more to CCN predictions than PM2.5 

(Fig. 3b) and the model’s output changes more significantly with this factor (Fig. 3c) …” 

Figure 3c: The frequency unit appears to be 1e-8, but this is not explicitly stated.  

Re: Note that figure 3 has been revised as figure 4. The figure has been revised. See 

follows: 

 
Fig. 4 Performance of the RFRM model in predicting NCCN at field sites in NCP. (a) 

Time series of the observed and predicted CCN number concentrations at S=0.2% for 

the six campaigns (BJ2015_AUT, BJ2017_SUM, XT2016_SUM, BJ2014_WIN, 



BJ2016_WIN, GC2018_WIN) in the North China Plain; (b) Map for average mass 

concentration of PM2.5 of 2014 from TAP dataset in NCP (http://tapdata.org.cn/) and 

field observed average mass concentration of PM2.5 during the six field campaigns (see 

embedded histogram); (c) Scatter plots of the observed NCCN at S=0.2% with the RFRM 

model predicted (top) and WRF-Chem simulated (bottom) respectively.  

Figure 6e shows NCCN uncertainties within 150%, while Figures 6a–d display 

uncertainties exceeding 500%. 

Re: Note that figure 6 has been revised as figure 8. And here figure 8a–d present all-

sites data points of the six observation campaigns. The statistical results show that the 

Random Forest Regression Model (RFRM) errors range from –90 to +600%, whereas 

the WRF‑Chem model exhibits a broader error span of –100 to +1800% when compared 

with the observations. Figure 8e summarizes the mean values across these campaigns 

with the NCCN uncertainties within 150%. Some descriptions have been added as 

follows or see Lines 446-448: 

“…While, the mean uncertainties for all these parameters are largely reduced when the 

mean underestimation of ~8±38% in NCCN at S=0.2% that is caused by RFRM model is 

applied (Fig. 8e) …” 

Similar problems appear in many places throughout the article, accompanied by 

punctuation errors, improper use of terms, etc., making reading extremely difficult.  

Insufficient Explanation of Counterintuitive Results. 

For instance, Figure 2a shows that sulfate has low permutation importance but high R-

Square. The authors do not adequately explain or validate this finding, leaving readers 

to speculate.  

Re: Despite the high correlation between sulfate features and the target variable, their 

importance scores within the RFRM model remain low. Two main factors explain this:  

a. Nonlinear model behavior 

Random Forest is a nonlinear algorithm that constructs an ensemble of decision 

trees; it captures complex, non-additive interactions between predictors and response 

variables. As a result, even a feature with a strong linear correlation to the outcome may 

not play a pivotal role in the trees’ local splits. Thus, sulfate may exhibit high correlation 

with CCN concentration but contribute little to the actual partitioning decisions made 

by the model. 

b. Collinearity with other predictors. 

Strong inter-feature correlations (e.g. sulfate with nitrate/ammonium at 0.84-

0.92/0.92-0.95) lead the model to favor one predictor (e.g. nitrate) over others when 

building decision splits. Because Random Forest often uses only one variable from a 

set of highly correlated candidates to optimally partition the data, sulfate’s importance 

score can be artificially diminished, despite sharing information with the target.  

Considering that the high hygroscopicity of sulfates is an effective seed for CCN, 

sulfate features were not removed during model training in our study. 

Some explanation has been added in the revised text, see as follows or Lines 250-259:  

http://tapdata.org.cn/


 

Figure S7. Heatmap of the feature variables in the winter half of year (a) and summer 

half of year (b). 

“… Note that the impact of sulfate aerosols on NCCN prediction is much less important 

in both summer and winter seasons compared to nitrate particles, with a permutation 

importance score ranging from ~0.02 to 0.03 but with higher correlation of ~0.31-0.49., 

This is mainly because the collinearity with nitrate features (~0.84-0.92) as seen in Fig. 

S7. In general, the machine learning algorithm often chooses one variable from a set of 

highly correlated candidates to optimally partition the data. Here sulfate’s importance 

score can be artificially diminished, largely due to its decreased proportion in PM2.5 in 

recent years (Liang et al., 2022; Li et al., 2020). As a note, due to the high 

hygroscopicity of sulfates is an effective seed for CCN, it was not removed in RFRM 

model…” 

Overstated Claims About Model Applicability. 

Lines 382–384 suggest that integrating this framework into traditional climate models 

could reduce aerosol indirect effect uncertainties. However, since the model is only 

validated within its training spatiotemporal domain, such claims about generalizability 

are premature. The authors should temper these statements or provide evidence of the 

model’s robustness beyond the tested conditions. 

Re: The sentence has been revised in the text, see as follows or Lines 477-480:  

“…Given the simplified setting in current climate models, this work emphasizes the 

necessity and urgency to obtain the precise NCCN values, offering a new framework for 

predicting CCN concentrations based on machine learning algorithms and effectively 

filling the observation gap of CCN concentrations…” 
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