
Referee 1 

Ren et al. used the Random Forest Regression (RFR) model to predict cloud 

condensation nuclei (CCN) concentrations in the North China Plain. Their results 

showed a reduced prediction bias compared to WRF-Chem. Moreover, by incorporating 

observational data such as PM2.5, NO2, SO2, the model captured the long-term 

decreasing trend in aerosol concentration from 2014 to 2018. 

While the approach and the results are interesting, I have several concerns regarding 

the current manuscript: 

1. The methodology particularly and the manuscript generally lacks critical 

information for readers to follow. Why the authors decided to put information such 

as study domain, details about WRF-Chem, RFR configurations/training and 

validating and more in the Supplemental Information (SI)? I find it’s very hard to 

understand and follow the methodology session.  

Re: Thank you for your efforts and time on handling the paper. We have put more 

information in the main text of the paper and updated the section of Methods and see 

as follows or Lines 106-225: “  

2. Methods 

2.1 Study area 

In this work, we select the North China Plain (NCP) (32°-40°N and 114°-121°E) 

as the study area. Being one of the most polluted areas in China, the aerosol particles 

in NCP are with more complex composition and mixing state, which leads to great 

challenge in accurate prediction of cloud concentration nuclei (CCN) concentrations. 

In recent years, emissions of gas pollutants and fine particles have shown a significant 

downward trend year by year (Wei et al., 2023) due to the implementation of the 

vigorous emission reduction in China (Zheng et al., 2018). This also makes changes in 

aerosols CCN activity in the study area from the point of view in assessment of the 

climate effect of aerosols.   

2.2 Model construction and validation 

Here we develop the ML-based NCCN prediction model by employing the Random 

Forest Regression method (RFRM) that has been demonstrated and can solve 

multivariate and nonlinear regression problems (Nair and Yu, 2020; Liang et al., 2022). 

The diagram of the model construction and the NCCN prediction is shown in Figure 1. 

Due to lack of a large spatial scale observed NCCN data, we use simulated NCCN by WRF-

Chem model as the targeted variable that can basically capture the ambient temporal 

variability of CCN concentration despite a deviation of ~40% by comparing with our 

six field observations (Figure 4). The input parameters include the chemical 

components of PM2.5 (organic, sulfate, nitrate, ammonium, black carbon) from the 

Tsinghua University Tracking Air Pollution in China dataset (Liu et al., 2022) and gas 

and particulate pollutants (nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon 

monoxide (CO), ozone (O3) and PM2.5) collected from the China National 

Environmental Monitoring Centre network. Meteorological parameters are from the 

European Centre for Medium-range Weather Forecasts Reanalysis version 5 (ERA-5) 

and include temperature, relative humidity (RH), total precipitation (TP), wind speed 



(WS), wind direction (WD), planetary boundary layer height (BLH), surface pressure 

(SP) and surface net solar radiation (SNSR). These datasets have undergone validation 

and been proven highly suitable for developing machine learning models for 

atmospheric applications (Nair and Yu, 2020; Wei et al., 2023). Cartesian coordinates 

were also added as input due to the spatiotemporal nature of the input data (Yang et al., 

2022). Supplemental Table 1 provides more details about the input parameters.  

When constructing the model, all the aforementioned species data (predictor and 

target variables) were processed to match the same spatiotemporal resolution, and then 

split into 7:3 ratio for model training and testing respectively. As a result, a total of 

274365 samples is included in the training datasets. In order to assure a stronger 

generalization ability of the NCCN prediction model, the 10-fold cross-validation is 

adopted (Wei et al., 2023). The optimization parameters of RF model were examined 

by varying hyperparameters (Fig. S1). In addition, cross-validation (CV) is applied to 

select the hyperparameters during the data preprocessing (Yang et al., 2022). The CV 

results showed that when the number of trees (n_estimators) was less than 200, the 

prediction accuracy increased rapidly with the increase of the number of trees, and then 

gradually stabilized. According to the CV score and the number of data sample, the 

number of trees was set to 500 in this study. The impact of max depth on the CV score 

showed that, with the increase of depth, the complexity of the model increases. Thus, 

the max depth is set to 28. Also, the model generalization error was larger when the 

minimum sample number of the leaf and branch node are large, indicating that the 

model itself is close to the optimal model complexity level. Therefore, a higher value 

was set given the large sample size in this case. The influence of the maximum selection 

feature number on CV score showed a trend of increasing first and then decreasing, so 

the maximum value of CV curve was set to 16.  

 
Figure 2. Comparison of RFRM retrieval and WRF-Chem simulated NCCN at S=0.2%. 

(a and b) Density plots of retrieval NCCN at S=0.2% as a function of the simulations 

from WRF-Chem on the testing dataset. 

Fig. 2 shows the performance of our developed RFRM models by comparing the 

testing dataset (sample size: N=117585) of CCN simulated by WRF-Chem with the 

predicted CCN. Here the quality metrics for model performance are based on the 

correlation coefficient (R2), root mean square error (RMSE) and the slope of the RFRM 

predicted and the WRF-Chem simulated CCN concentrations. It showed that the 

estimated NCCN at S=0.2% are highly correlated with the values from WRF-Chem, with 



the correlation R2 of ~0.89-0.91 and slopes of 0.83 and 0.86 in our developed RFRM 

model. This suggests that our model works well in estimating NCCN with a high aerosol 

loading environment. We also found that the accuracy of the CCN prediction will 

deteriorate slightly if not including the information of chemical compositions (Fig. S2), 

or if using XGBoost algorithm (Fig.S3) when constructing the model.  

 Given that the ultimate goal of model development is to more accurately predict 

the actual atmospheric concentration of CCN, we further conducted a comparative 

analysis of the prediction results against the in-situ observation data in this region, 

spanning from the hourly scale to the interannual scale (see Figure 3-6), which will be 

presented and discussed in detail in Section 3.2 and 3.3.  

2.3 Data and other details in the model construction  

2.3.1 NCCN simulated by WRF-Chem model 

The WRF-Chem version 4.1.5 is used to simulate NCCN in this study, which nested 

a domain in 10 km×10 km covering the entire NCP (Fig. S4) and contained 181×170 

grids. The simulation in WRF-Chem is conducted from 1 January 2014 to 31 December 

2018 with an hourly resolution. In the WRF-Chem modeling system, the sectional 

Model for Simulating Aerosol Interactions and Chemistry (MOSAIC), the Morrison 

two-moment scheme (Morrison et al., 2009) and the Carbon Bond Mechanism Z 

photochemical mechanism (Zaveri et al., 1999) are employed. We also compared the 

simulation using the Regional Acid Deposition Model (Stockwell et al., 1990) and the 

Lin microphysics scheme (Lin et al., 1983). Considering the calculation efficiency and 

accuracy with the measurements, the CBMZ-MOSAIC and Morrison 2-monment 

scheme were finally applied to simulate the long-term CCN concentration. More details 

about the other parameterizations used for WRF-Chem simulation were given in SI.  

2.3.2 Gound-based measurements and datasets 

Ground measurements of atmospheric gaseous precursors, fine particles chemical 

compositions, and CCN number concentration (at supersaturations of 0.2% and 0.4%) 

were collected during six field campaigns at three sites in the NCP (Fig. 4), used to 

assess the performance of the developed ML-based model in predicting NCCN. The six 

campaigns were conducted as follows: at the Beijing (BJ) site from 8–30 November 

2014, 20 August to 6 October 2015, 16 November to 20 December 2016, and 28 May 

to 27 June 2017; at the Xingtai (XT) site from 17 May to 14 June 2016; and at the 

Gucheng (GC) site from 23 January to 3 February 2018. They are accordingly named 

BJ2014_WIN, BJ2015_AUT, BJ2016_WIN, BJ2017_SUM, XT2016_SUM, and 

GC2018_WIN (Fig. 4a).  

The BJ site (Longitude: 116.37° E; Latitude: 39.97° N) is located at the 

meteorological tower station of the Institute of Atmospheric Physics, Chinese Academy 

of Sciences. It is representative of the general emission conditions in urban areas of the 

northern NCP. The primary pollution sources here are surrounding traffic and 

residential emissions. The XT site (Longitude: 114.37° E; Latitude: 37.18° N) is 

situated at a national weather station. It is primarily influenced by emissions from 

surrounding towns and factories (e.g., coal-fired power plants, coking, steel, cement, 

and chemical industries) and thus reflects polluted suburban conditions in the southern 

NCP. The GC site (Longitude: 115.74° E; Latitude: 39.15° N) is located at the 



Integrated Ecological-Meteorological Observation and Experiment Station of the 

Chinese Academy of Meteorological Sciences. Surrounded mainly by nearby villages, 

farmland, and transportation networks, this site represents the regional background 

pollution in the northern NCP. 

The CCN number concentrations were measured by using the Droplet Measurement 

Technologies CCN counter (model CCNC-100, DMT Inc. Lance et al., 2006) at BJ and 

XT site. The supersaturation (S) levels set for each CCN measurement cycle were 0.1%, 

0.2%, 0.4%, and 0.8%, respectively. Another measurement at GC site was referred from 

Zhang et al. (2020). In this study, the comparisons between the measured and predicted 

NCCN were mostly based on the value at S=0.2% and S=0.4%. The observed NCCN varies 

from a few hundred to tens of thousands at these sites, and the campaign mean mass 

concentration of PM2.5 ranges from 35.6 to 160 μg m-3 (Fig. 4b), indicating that the 

observations can represent various atmospheric conditions, spanning from clean to 

polluted in the region. More details about the observations could be found in Fan et al. 

(2020), Ren et al. (2018), and Zhang et al. (2019). In addition, the long-term 

measurement of particle number size distribution (PNSD) at a field site in Beijing (Fig. 

S5, Shang et al., 2022) is also used for deriving the long-term trend of yearly averaged 

NCCN. 

For example, it is unclear whether nitrate was the output of the WRF-Chem?  

Re: The nitrate was from the Tsinghua University Tracking Air Pollution in China 

dataset (Liu et al., 2022). We have provided a detailed introduction to the data in the 

methodology section and see as follows or Lines 125-127: 

“…The input parameters include the chemical components of PM2.5 (organic, sulfate, 

nitrate, ammonium, black carbon) from the Tsinghua University Tracking Air Pollution 

in China dataset (Liu et al., 2022) …” 

A minor point: “new model” is not a preferred terminology in the result figures. 

Re: The “new model” has been replaced with “RFRM” in the result figures. 

While the relative importance of the input parameters is informative, it does not 

adequately explain the substantial improvement in CCN predictions. With a large bias 

in WRF-Chem simulations (~39%), it is unclear why the authors included WRF-Chem 

outputs as predictors? 

Re: Currently, NCCN observation is still very lacking, mostly consisting of single field 

observations (Ren et al., 2018; Zhang et al., 2019). The NCCN from satellite‐retrieved 

method can be as high as there are usually large deviations of -30%–+90% in the 

estimation accuracy (Shen et al., 2019). Numerical model has been demonstrated that 

it can capture the relative amplitude of the variability of the aerosol particle number 

concentration and CCN number concentration (Fanourgakis et al., 2019; Nair and Yu, 

2020). To develop a spatiotemporal-scale model for predicting CCN concentrations, the 

CCN concentration output by WRF-Chem is used as the target variable. We have added 

some explanations as follows or see Lines 122-125: 

“…Due to lack of a large spatial scale observed NCCN data, we use simulated NCCN by 

WRF-Chem model as the targeted variable that can basically capture the ambient 

temporal variability of CCN concentration despite a deviation of ~40% by comparing 

with our six field observations (Figure 4) …” 



On the other hand, if the authors only used observational data to train the ML model, 

then the current results would not be apple to apple comparison. A more appropriate 

benchmark would be a comparison between the RFRM and other machine learning 

methods used in previous studies. 

Re: Thank you for your suggestion. We have added detailed description regarding the 

RFRM model construction, and also compared with XGBoost model as follows or see 

Lines 117-173:  

“… 2.2 Model construction and validation 

Here we develop the ML-based NCCN prediction model by employing the Random 

Forest Regression method (RFRM) that has been demonstrated and can solve 

multivariate and nonlinear regression problems (Nair and Yu, 2020; Liang et al., 2022). 

The diagram of the model construction and the NCCN prediction is shown in Figure 1. 

Due to lack of a large spatial scale observed NCCN data, we use simulated NCCN by WRF-

Chem model as the targeted variable that can basically capture the ambient temporal 

variability of CCN concentration despite a deviation of ~40% by comparing with our 

six field observations (Figure 4). The input parameters include the chemical 

components of PM2.5 (organic, sulfate, nitrate, ammonium, black carbon) from the 

Tsinghua University Tracking Air Pollution in China dataset (Liu et al., 2022) and gas 

and particulate pollutants (nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon 

monoxide (CO), ozone (O3) and PM2.5) collected from the China National 

Environmental Monitoring Centre network. Meteorological parameters are from the 

European Centre for Medium-range Weather Forecasts Reanalysis version 5 (ERA-5) 

and include temperature, relative humidity (RH), total precipitation (TP), wind speed 

(WS), wind direction (WD), planetary boundary layer height (BLH), surface pressure 

(SP) and surface net solar radiation (SNSR). These datasets have undergone validation 

and been proven highly suitable for developing machine learning models for 

atmospheric applications (Nair and Yu, 2020; Wei et al., 2023). Cartesian coordinates 

were also added as input due to the spatiotemporal nature of the input data (Yang et al., 

2022). Supplemental Table 1 provides more details about the input parameters.  

When constructing the model, all the aforementioned species data (predictor and 

target variables) were processed to match the same spatiotemporal resolution, and then 

split into 7:3 ratio for model training and testing respectively. As a result, a total of 

274365 samples is included in the training datasets. In order to assure a stronger 

generalization ability of the NCCN prediction model, the 10-fold cross-validation is 

adopted (Wei et al., 2023). The optimization parameters of RF model were examined 

by varying hyperparameters (Fig. S1). In addition, cross-validation (CV) is applied to 

select the hyperparameters during the data preprocessing (Yang et al., 2022). The CV 

results showed that when the number of trees (n_estimators) was less than 200, the 

prediction accuracy increased rapidly with the increase of the number of trees, and then 

gradually stabilized. According to the CV score and the number of data sample, the 

number of trees was set to 500 in this study. The impact of max depth on the CV score 

showed that, with the increase of depth, the complexity of the model increases. Thus, 

the max depth is set to 28. Also, the model generalization error was larger when the 

minimum sample number of the leaf and branch node are large, indicating that the 



model itself is close to the optimal model complexity level. Therefore, a higher value 

was set given the large sample size in this case. The influence of the maximum selection 

feature number on CV score showed a trend of increasing first and then decreasing, so 

the maximum value of CV curve was set to 16.  

 
Figure 2. Comparison of RFRM retrieval and WRF-Chem simulated NCCN at S=0.2%. 

(a and b) Density plots of retrieval NCCN at S=0.2% as a function of the simulations 

from WRF-Chem on the testing dataset. 

Fig. 2 shows the performance of our developed RFRM models by comparing the 

testing dataset (sample size: N=117585) of CCN simulated by WRF-Chem with the 

predicted CCN. Here the quality metrics for model performance are based on the 

correlation coefficient (R2), root mean square error (RMSE) and the slope of the RFRM 

predicted and the WRF-Chem simulated CCN concentrations. It showed that the 

estimated NCCN at S=0.2% are highly correlated with the values from WRF-Chem, with 

the correlation R2 of ~0.89-0.91 and slopes of 0.83 and 0.86 in our developed RFRM 

model. This suggests that our model works well in estimating NCCN with a high aerosol 

loading environment. We also found that the accuracy of the CCN prediction will 

deteriorate slightly if not including the information of chemical compositions (Fig. S2), 

or if using XGBoost algorithm (Fig. S3) when constructing the model.  

 

Figure S2. Comparison of RFRM-ShortVars model retrieval and WRF-Chem 

simulated NCCN at S=0.2%. (a and b) Density plots of retrieval NCCN at S=0.2% as a 

function of the simulations from WRF-Chem on the testing dataset.



 
Figure S3. Same as Figure S2 but from XGBoost model. 

 Given that the ultimate goal of model development is to more accurately predict 

the actual atmospheric concentration of CCN, we further conducted a comparative 

analysis of the prediction results against the in-situ observation data in this region, 

spanning from the hourly scale to the interannual scale (see Figure 3-6), which will be 

presented and discussed in detail in Section 3.2 and 3.3 …” 
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