

Supplement Information

Multidecadal trends in CO₂ evasion and aquatic metabolism in a large temperate river

An Truong Nguyen^{1*}, Gwenaël Abril^{2,3}, Jacob S. Diamond^{1,4}, Raphaël Lamouroux⁵, Cécile Martinet⁶, Florentina Moatar¹

¹ INRAE, UR RiverLy, 5 Rue de la Doua, 69100 Villeurbanne, France

²Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques

²Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, Muséum National d'Histoire Naturelle, CNRS, IRD, SU, UCN, UA, Paris, France.

³ Programa de Geoquímica, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil

⁴ Dipartimento di Scienze Ambientali, Informatica e Statistica, University of Venice Ca' Foscari, Via Torino 155, 30172 Venezia Mestre, Italy

⁵EDF – Recherche et Développement, Laboratoire National d'Hydraulique et Environnement, Chatou, France

¹⁴ ⁶EDF – Division Technique Générale, Electricité de France, Grenoble, France

* Corresponding author: truongan9393@yahoo.com, truong-an.nguyen@inrae.fr

1. Supplementary method

S1. Dataset

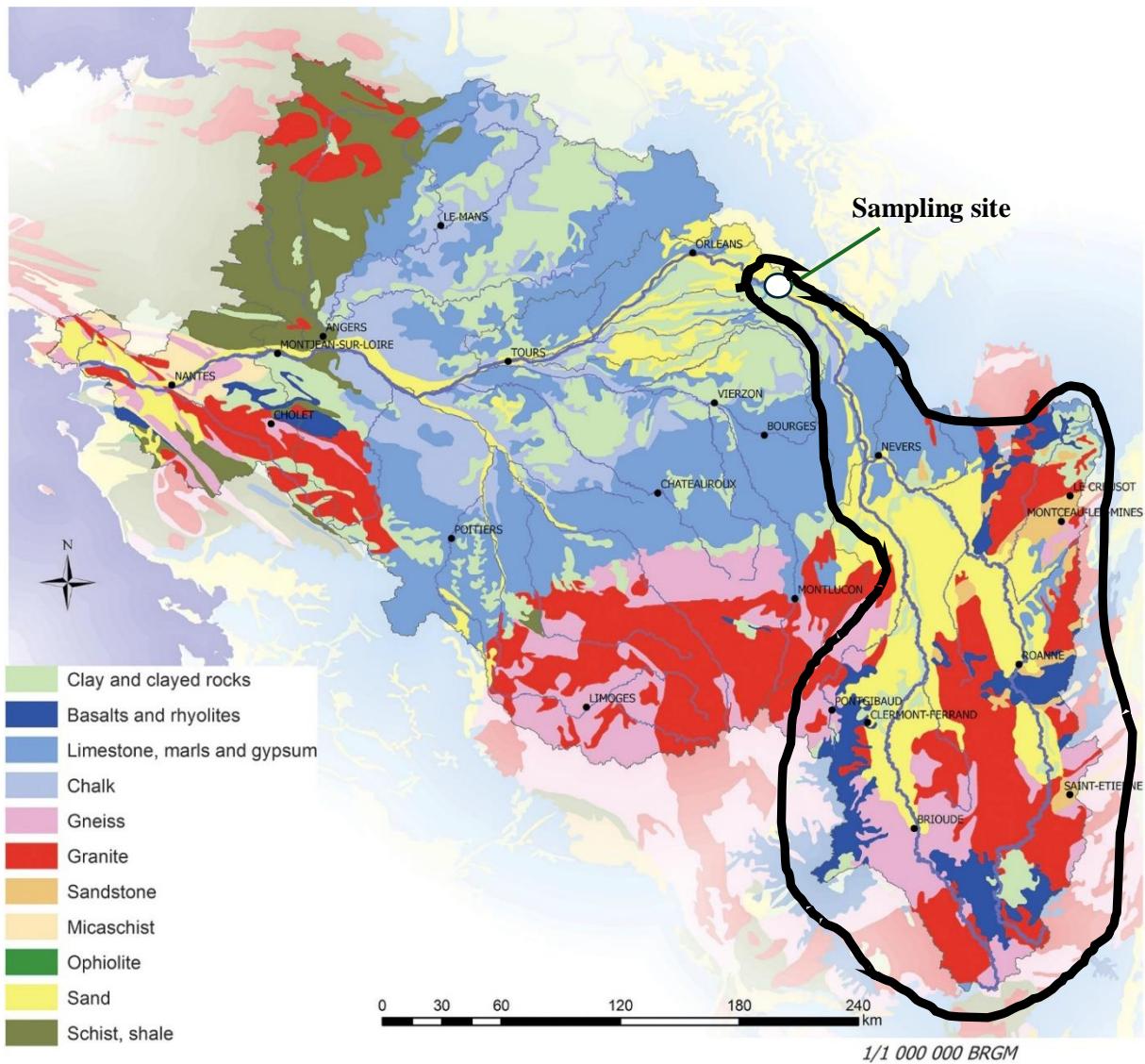
19 The combination of datasets from the continuous monitoring and grab sampling program is used to
20 obtain long-term high-frequency datasets, including hourly temperature, conductivity, alkalinity, and
21 dissolved oxygen in 1990-2021.

Continuous monitoring program

23 The EDF measurement system is a floating platform with a temperature sensor and sensors for pH (range
24 0–14 pH unit), DO (range 0–20 mg L⁻¹), and conductivity (range 0–1000 µS cm⁻¹) (Campbell 1 ®). The
25 surface water at 20 cm depth is pumped (ca. 0.5 L s⁻¹) through the system and measurements are recorded
26 every 5 seconds, with average values saved every hour. It should be noted that data was collected both
27 upstream and downstream at each power plant, with the upstream station located at the entrance of the
28 dam and the downstream station located approximately 2–5km downstream of the dam. The data used
29 for data analysis in this study was upstream station because of its data completeness. Prior to 2008,
30 estimated uncertainties from membrane sensors were ±0.3°C, ±0.3 pH units, ±8% mg O₂ L⁻¹, ±5% µS

31 cm^{-1} membrane sensors (Moatar et al., 2001). After 2008, new optical sensors have uncertainties of \pm
32 0.1 pH units, 3% $\text{mg O}_2 \text{ L}^{-1}$.

33
34
35



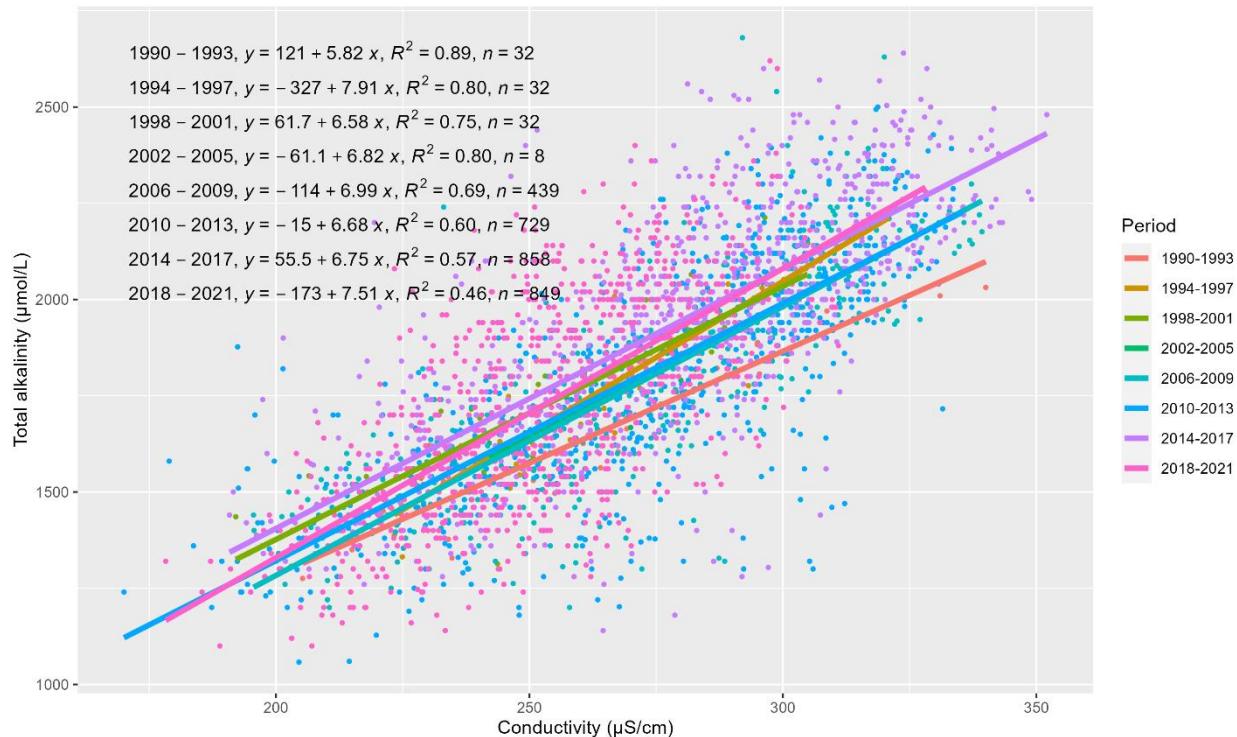
36
37 Figure S1. The sampling site and the lithology in the Loire basin (Moatar et al., 2022).

38 Grab sampling monitoring program

39 Grab sampling data was collected by EDF and Loire-Brittany Water Agency (AELB), including pH,
40 conductivity, and alkalinity from 1990-2021, with frequency ranging from daily to monthly. Grab
41 sampling data exists only in the upstream of the nuclear power plant. While AELB provided data for the
42 period of 1990 to 2003 for these parameters, EDF supplied data from 2007 to 2021, so missing grab
43 sampling data in the period 2004-2006. However, the primary objective of utilizing grab sampling data
44 is to determine the correlation between total alkalinity and conductivity. This allows for the estimation

45 of daily alkalinity based on the mean daily conductivity (calculated from the hourly dataset) for the
46 period of 1990-2021 (Figure S2).

47 To reconstruct daily alkalinity from conductivity, we employed the *IterativeImputer* function with
48 *BayesianRidge* estimator (i.e., regularized linear regression) by using *scikit-learn*¹, a Python package
49 (Pedregosa et al., 2011). The *BayesianRidge* estimator filled the missing daily alkalinity by iteratively
50 modeling the linear relationship between daily conductivity and available alkalinity data, while
51 regularization accounts for potential changes in their relationship over 32 years. This process begins by
52 estimating data for the period with fewest missing data, then continues iteratively until the imputed
53 values converge, meaning subsequent iterations produce minimal changes in the estimates. This iterative
54 process allows the imputer to adapt to underlying trends and shifts in the data. Besides, to verify the
55 stability of the relationship between alkalinity and conductivity, we performed linear regressions on 4-
56 year period of 32 years dataset which revealed quite similar slopes across all periods except 1990-1993
57 (Figure S2).



¹ <https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html>

64 **S2. Data cleaning procedure**

65 Although the sensors for pH and DO measurements were periodically calibrated by EDF, the dataset
66 exhibited a notable number of anomalous values prior to 2008, which prompted the implementation of
67 comprehensive data control procedures. These procedures addressed sensor drift and outlier removal
68 which were proposed by (Jones et al., 2022; Moatar et al., 2001). Data cleaning was conducted for the
69 hourly pH and dissolved oxygen data in this study, while the daily conductivity was carried out by EDF
70 which based on visual inspection. Hourly temperature and alkalinity data from grab sampling were only
71 checked through a range check to eliminate unrealistic values, but there was minimal significant removal
72 of this data.

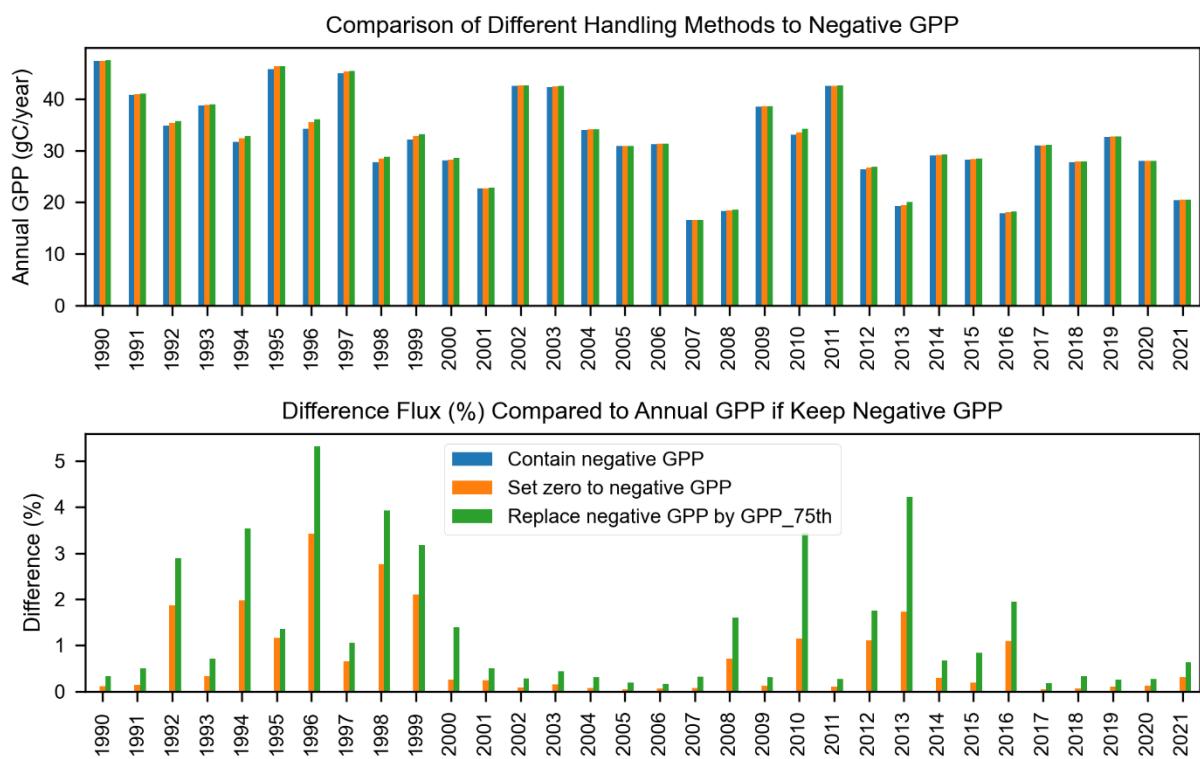
73 The following steps carried out the data cleaning and correction for hourly pH. Firstly, performing the
74 rules-based anomaly detection and correction as a first pass at quality control, including range check
75 (pH ranges from 6 to 10 in Loire River), data persistence check (pH relatively constant in few days),
76 significant change check (jump or drop within few hours), calibration and drift event detection check.
77 This step was performed automatically with the support of *pyhydroqc*, a python package for automating
78 aquatic sensor data processing (Jones et al., 2022). Secondly, error detection was manually inspected by
79 comparing values between upstream and downstream, together with daily discharge. This step used the
80 interactive plot with the support of *plotly* package to check the errors which were identified in previous
81 steps. The use of daily discharge was to eliminate false detection of abnormal data, especially in the case
82 of high discharge where there are often sudden changes in pH and conductivity. There was 10.6% data
83 (about 3 years of data) was assessed as anomalous and was discarded. Finally, missing data will be
84 completed based on several cases. Linear interpolation was applied for missing data within 6 hours
85 (2.3% data). Linear interpolation between upstream and downstream stations was applied for missing
86 either upstream or downstream (7.5 % data). Linear interpolation between adjacent stations was applied
87 when missing both data in upstream and downstream in Dampierre station but existed in adjacent
88 stations (0.5% data). The remaining missing data was then filled based on the seasonal Kalman
89 smoother, which estimates the missing values while considering the seasonal patterns and annual trend
90 (*tsmoothie* package) (0.3% data).

91 The data cleaning and correction for hourly DO were carried out by following steps which were from
92 Diamond et al. (in revision.). We first removed physically impossible values and then applied a lowpass
93 filter to remove instrument noise in the DO signal. We then removed values that exceeded plausible
94 hourly changes in DO (e.g., a leap from 10 to 15 mg L⁻¹) using 95% confidence intervals for hourly
95 changes on a monthly basis as our cutoff. We finally used visual inspection to flag data of questionable
96 validity and corrected for linear drift and anomalous drops or jumps in DO data. We then filled all
97 remaining missing with a seasonal Kalman filter.

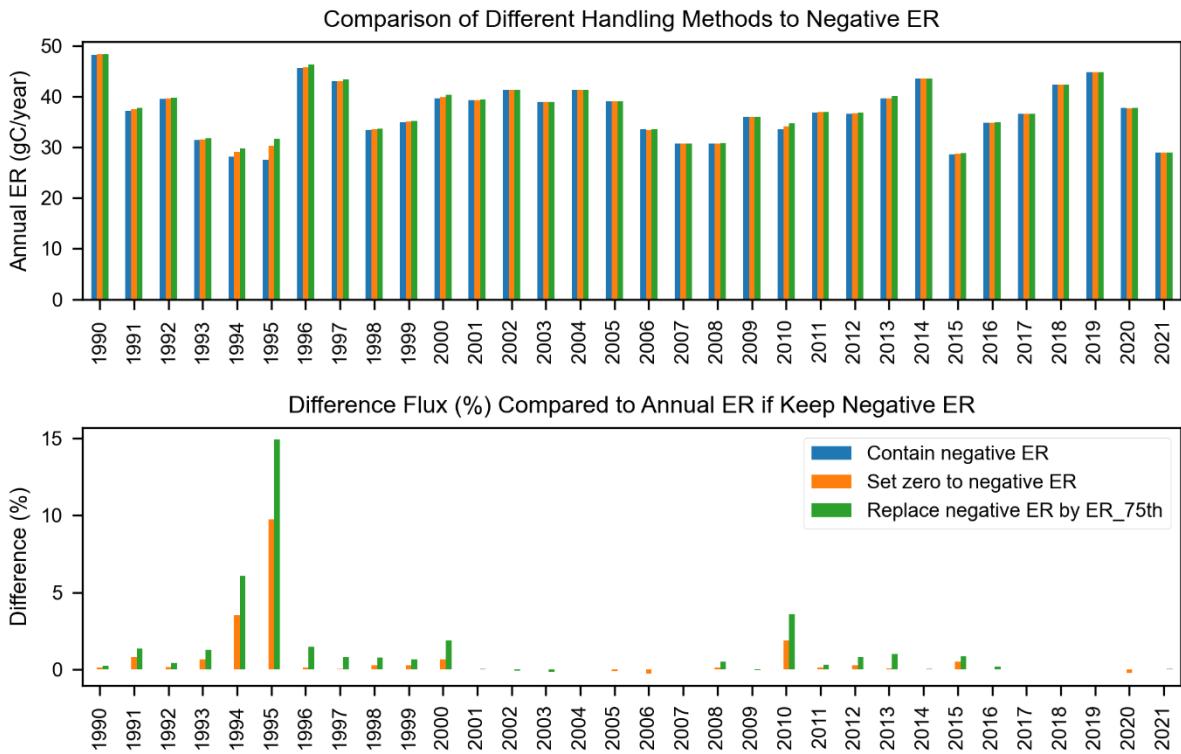
98 **S3. Handling estimated GPP, ER and K600**

99 **GPP, ER**

100 Although the *streamMetabolizer* model uses inputs such as light, water temperature, and river discharge
 101 to reduce the equifinality of GPP, ER, and K600, this model can produce unrealistic values, like negative
 102 GPP. This issue typically arises when diel variations in dissolved oxygen (DO) are weak—meaning the
 103 DO levels are similar between day and night—making it difficult for the model to accurately separate
 104 the contributions of GPP and ER (Appling et al., 2018). When the diel DO signal is minimal, the GPP
 105 is likely close to zero, which can lead to the model estimating a negative median GPP value.
 106 Consequently, it is common practice to set these negative GPP estimates to zero (Blaszcak et al., 2019).
 107 In our study, we used a different approach by replacing negative GPP estimates with the 75th percentile
 108 of GPP values estimated by the *streamMetabolizer* model rather than force to zero. However, this
 109 adjustment did not substantially alter the annual GPP calculations. Replacing negative GPP with the
 110 75th percentile increased annual GPP by an average of 1.3% (ranging from 0.1% to 5.3%), while setting
 111 negative GPP to zero resulted in a smaller increase, ranging from 0.04% to 3.4% (Figure S3). Similarly,
 112 the annual ER calculations across different treatments for unrealistic ER values show no significant
 113 differences, with an average flux variation of around 1%, except in 1995, where the difference reaches
 114 15% (Figure S4).



115
 116 Figure S3. Comparison of annual GPP estimates based on different approach for handling negative
 117 GPP values: retaining negative GPP, setting negative GPP to zero, and replacing negative GPP with
 118 the 75th percentile of estimated GPP from the *streamMetabolizer* model.



119
120 Figure S4. Comparison of annual ER estimates based on different approach for handling negative ER
121 values: retaining negative ER, setting negative ER to zero, and replacing negative ER with the 75th
122 percentile of estimated ER from the *streamMetabolizer* model.
123

124 K600

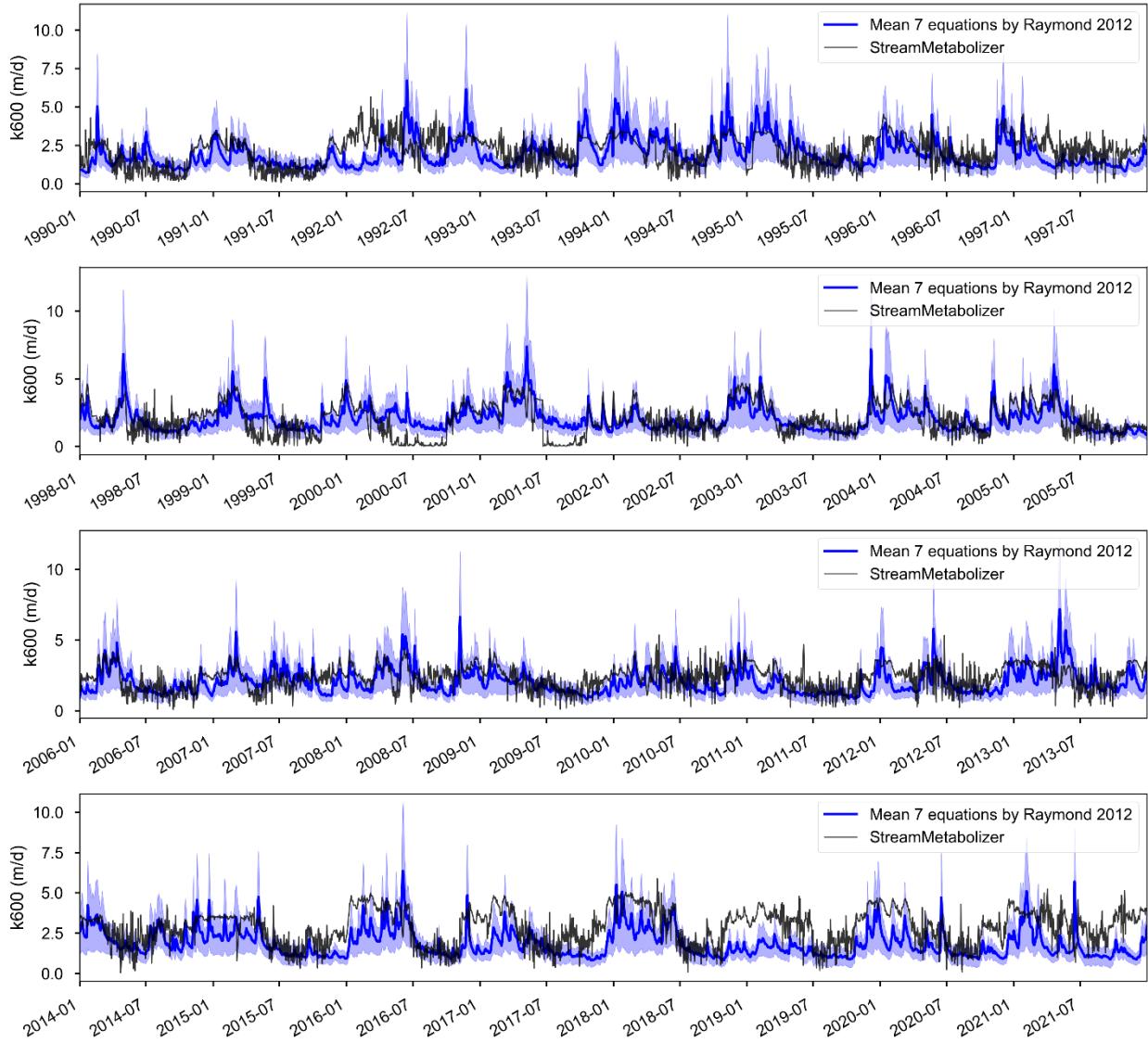
125 The k600 values estimated by the StreamMetabolizer model were compared with the mean k600 (m d^{-1})
126 calculated from seven fitted equations proposed by Raymond et al. (2012) for streams and small rivers
127 (Table S1). Both k600 estimates exhibited similar seasonal fluctuations, with the lowest values occurring
128 in summer and the highest in winter. The comparison revealed that the mean absolute percentage error
129 (MAPE) between the StreamMetabolizer estimates and the mean k600 from the seven fitted equations
130 ranged from 36% to 62%. Specifically, the Raymond et al. (2012) k600 estimates tended to be higher in
131 summer and lower in winter compared to those estimated by the StreamMetabolizer model. However,
132 the k600 values derived from StreamMetabolizer fall within the same order of magnitude as those from
133 the seven fitted equations (Figure S5). The k600 estimates from the StreamMetabolizer model were
134 selected for FCO2 calculations to ensure consistency with the NEP calculations.
135

136 **Table S1.** Seven fitted equations for predicting the k600 (m d^{-1}) for stream/rivers based on velocity
137 (V , in m s^{-1}), slope (S ; unitless), depth (D , in meters), discharge (Q , in $\text{m}^3 \text{s}^{-1}$), and the Froude number
138 (Fr ; unitless) (Raymond et al., 2012).

Model equation

1. $k_{600} = (VS)^{0.89 \pm 0.020} \times D^{0.54 \pm 0.030} \times 5037 \pm 604$
2. $k_{600} = 5937 \pm 606 \times (1 - 2.54 \pm 0.223 \times Fr^2) \times (VS)^{0.89 \pm 0.017} \times D^{0.58 \pm 0.027}$
3. $k_{600} = 1162 \pm 192 \times S^{0.77 \pm 0.028} \times V^{0.85 \pm 0.045}$
4. $k_{600} = (VS)^{0.76 \pm 0.027} \times 951.5 \pm 144$
5. $k_{600} = VS \times 2841 \pm 107 + 2.02 \pm 0.209$
6. $k_{600} = 929 \pm 141 \times (VS)^{0.75 \pm 0.027} \times Q^{0.011 \pm 0.016}$
7. $k_{600} = 4725 \pm 445 \times (VS)^{0.86 \pm 0.016} \times Q^{-0.14 \pm 0.012} \times D^{0.66 \pm 0.029}$

139



140

141 Figure S5. Comparison of estimated k_{600} from *StreamMetabolizer* model and mean of seven fitted
142 equations from Raymond et al. (2012) for streams/rivers.

143 S4. Uncertainties in FCO₂ and NEP estimation

144 Estimating FCO₂ and NEP using models such as PyCO₂SYS and streamMetabolizer often involves
145 large uncertainties, particularly when considering the propagation of errors in all model input data and

146 the summing/multiplying of these uncertainties in calculating fluxes (Battin et al., 2023; Kirk & Cohen,
 147 2023). In this study, we assumed that after a careful data treatment process, the continuous datasets of
 148 DO, pH, conductivity, water temperature, discharge, and solar radiation were accurate. While both the
 149 PyCO2SYS and streamMetabolizer models provide a range of uncertainty, we used the average of these
 150 distributions as the best daily estimates, using the default input data accuracy. However, it is important
 151 to note that the daily total alkalinity (TA) data did not cover the entire 32-year period, unlike the other
 152 variables. Consequently, the error in TA reconstruction could introduce uncertainty in FCO2 estimation
 153 and potentially affect conclusions regarding the temporal distribution of CO2 sink/source states
 154 throughout the year, as well as comparisons with NEP. However, our analysis indicates that the
 155 uncertainty in the estimated TA ($\pm 190 \mu\text{mol/L}$) only leads to $\pm 11\%$ uncertainty in pCO2 estimation by
 156 PyCO2SYS. As shown in Table S1, the statistical results comparing the annual distribution of trophic
 157 states remain consistent, with a maximum deviation of only 3%. Moreover, the dominance of the CO2
 158 source–heterotrophic state throughout the year remains almost unchanged, with less than a 1%
 159 difference under any range of TA uncertainty, even though the magnitude of FCO2 could vary up to
 160 20%.

161 **Table S1.** Comparison of the occurrence and fluxes of each trophlux state within the uncertainty range
 162 of estimated alkalinity.

		CO2 source - Heterotrophic			CO2 source - Autotrophic			
		Period	Min	Mean	Max	Min	Mean	Max
Occurrence (% of days)	1990-2000	47	47.3	47.7	15.6	16.7	17.6	
	2001-2010	60.3	61.2	61.3	23.6	25.3	27	
	2011-2021	65.4	65.7	65.7	24.7	26.2	27.6	
FCO2 (gC/m2/y)	1990-2000	830.7	954.2	1100.2	87.2	102.6	118.9	
	2001-2010	1266.5	1453.5	1668.7	75	87.7	102.4	
	2011-2021	602.2	717.3	840.8	48.6	58.7	70.6	
		CO2 sink - Heterotrophic			CO2 sink - Autotrophic			
		Period	Min	Mean	Max	Min	Mean	Max
Occurrence (% of days)	1990-2000	7.6	7.3	6.9	29.8	28.7	27.8	
	2001-2010	2.3	1.7	1.5	14.1	15.5	13.4	
	2011-2021	1.4	1.1	1.3	8.8	7.3	5.9	
FCO2 (gC/m2/y)	1990-2000	-4.6	-4.4	-3.8	-22.4	-21	-19.6	
	2001-2010	-1.3	-0.6	-1	-7.4	-7.8	-6.6	
	2011-2021	-1.5	-0.9	-1.2	-3.4	-2.6	-2.1	

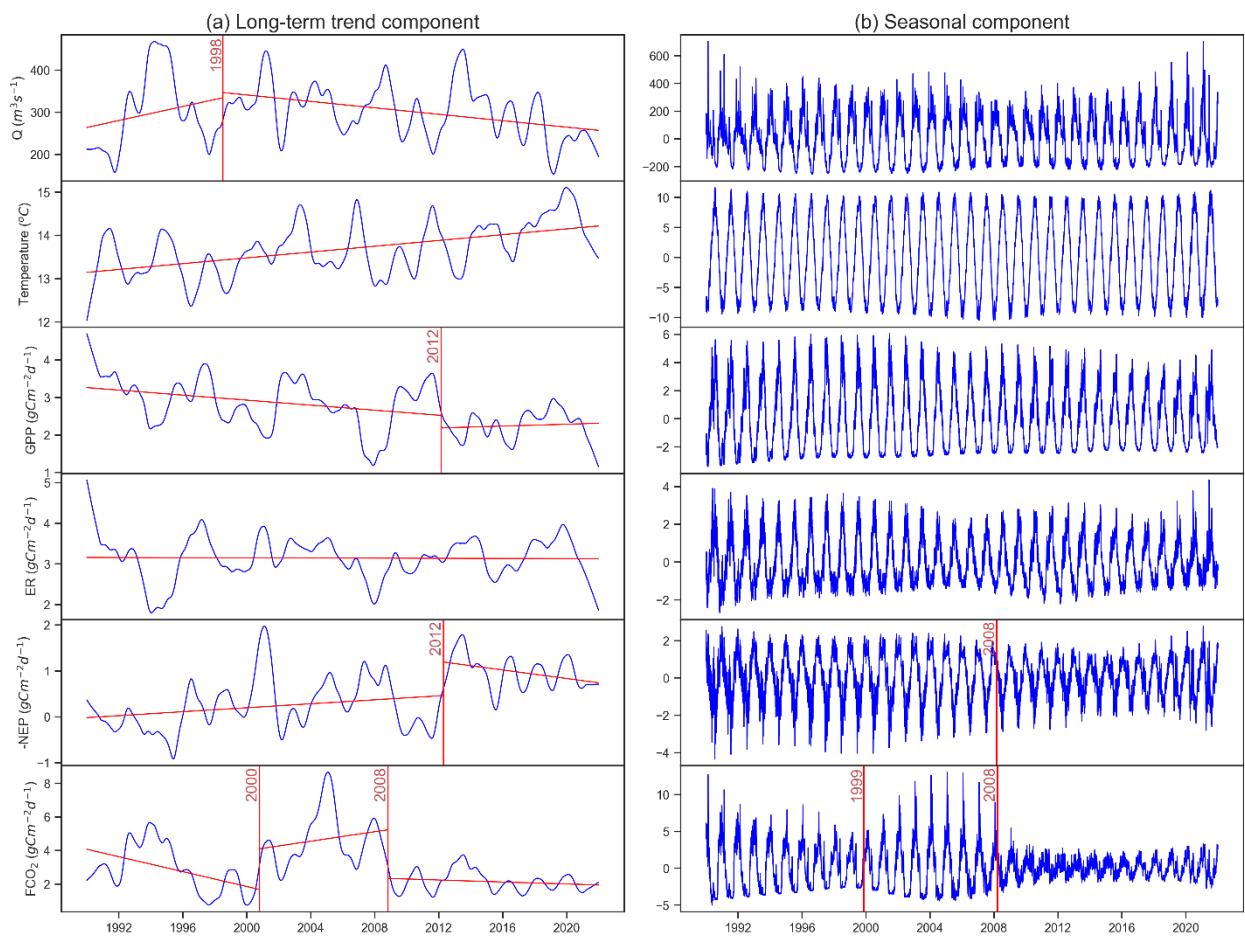
163

164 **S5. Change-point analysis**

165 We evaluated the long-term changes in FCO2 and metabolism using a statistical change point analysis,
 166 which identifies points in a time series where the statistical properties, such as the mean or variance,
 167 undergo significant shifts. We first applied seasonal decomposition on daily time series to extract trend,

168 seasonal, and residual components using the *statsmodels* Python package (Seabold & Perktold, 2010).
 169 Subsequently,
 170 The long-term trend component was analyzed using a piecewise linear regression method (model
 171 = "linear" in *ruptures*, a Python package), while shift point detection by standard deviation (changes in
 172 variance by model = "normal" in *ruptures*) was employed for the seasonal components. This process
 173 was also applied on related parameters including daily discharge, temperature, GPP, ER
 174

175 2. Supplementary results



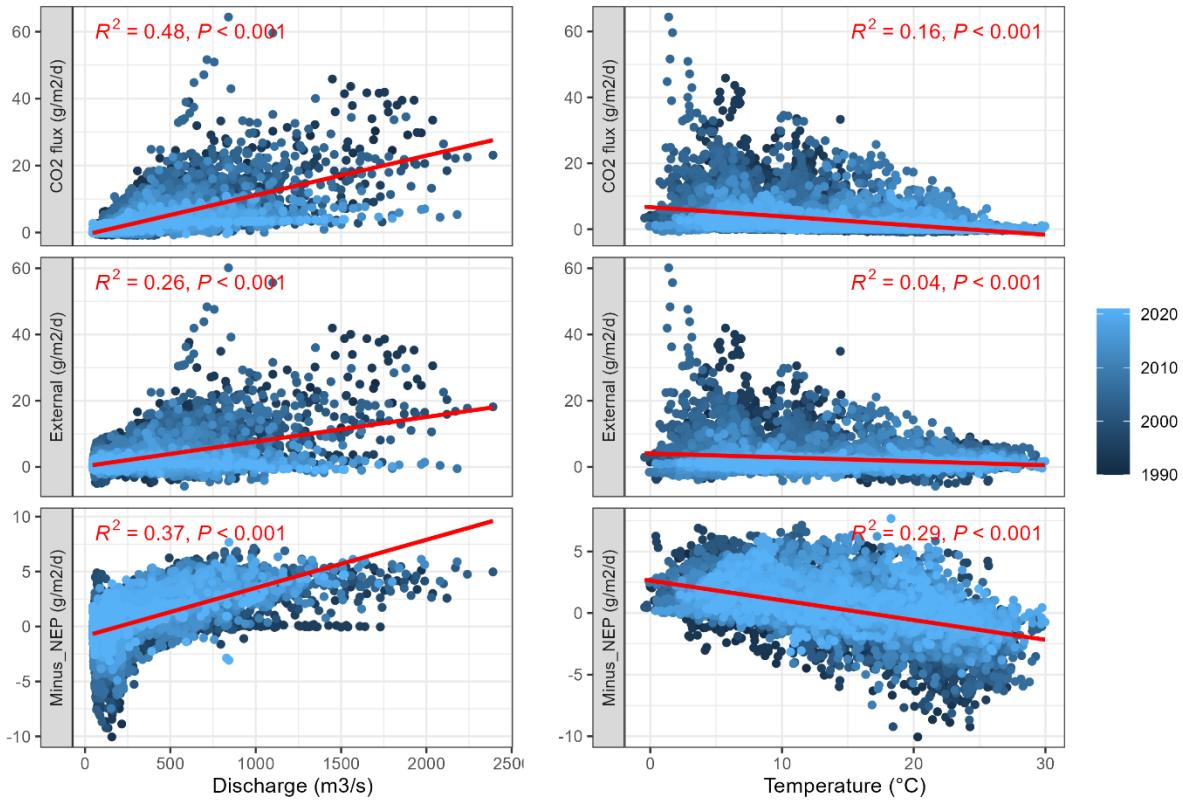
176
 177 Figure S6. Change-point analysis on the (a) long-term trend components and (b) seasonal components
 178 of daily discharge, temperature, and fluxes of GPP, ER, -NEP, and FCO₂. The red vertical lines
 179 indicate the change periods.

180
 181 Table S2. The correlations between annual FCO₂, -NEP, and hydroclimatic conditions (discharge,
 182 temperature) in each trophlux state

CO ₂ _NEP_state	Parameters	Days	Discharge	Temp	FCO ₂	-NEP	-NEP/CO ₂
Autotrophic Sink	Days		0.08	0.01	0.07	0.14	0.00
	Discharge	0.08		0.07	0.19	0.03	0.19

	Temp	0.01	0.07		0.04	0.00	0.00
	FCO2	0.07	0.19	0.04		0.14	0.32
	-NEP	0.14	0.03	0.00	0.14		0.13
	-NEP/CO2	0.00	0.19	0.00	0.32	0.13	
Autotrophic Source	Days		0.00	0.06	0.06	0.16	0.00
	Discharge	0.00		0.34	0.41	0.00	0.36
	Temp	0.06	0.34		0.14	0.00	0.21
	FCO2	0.06	0.41	0.14		0.13	0.32
	-NEP	0.16	0.00	0.00	0.13		0.01
	-NEP/CO2	0.00	0.36	0.21	0.32	0.01	
Heterotrophic Sink	Days		0.01	0.21	0.00	0.03	0.05
	Discharge	0.01		0.40	0.67	0.00	0.16
	Temp	0.21	0.40		0.40	0.10	0.90
	FCO2	0.00	0.67	0.40		0.01	0.18
	-NEP	0.03	0.00	0.10	0.01		0.12
	-NEP/CO2	0.05	0.16	0.90	0.18	0.12	
Heterotrophic Source	Days		0.00	0.69	0.01	0.30	0.07
	Discharge	0.00		0.04	0.36	0.11	0.11
	Temp	0.69	0.04		0.09	0.07	0.06
	FCO2	0.01	0.36	0.09		0.06	0.59
	-NEP	0.30	0.11	0.07	0.06		0.04
	-NEP/CO2	0.07	0.11	0.06	0.59	0.04	

183



184

185

Figure S7. Relationship of daily fluxes and annual discharge or annual water temperature

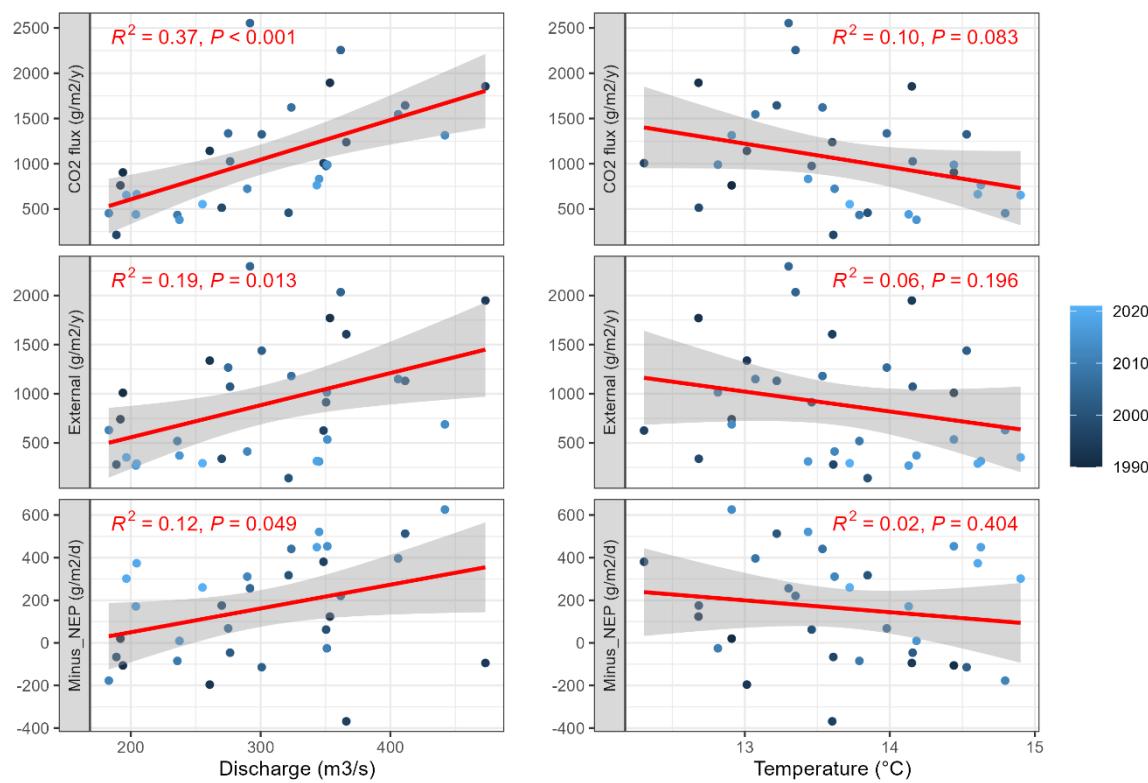
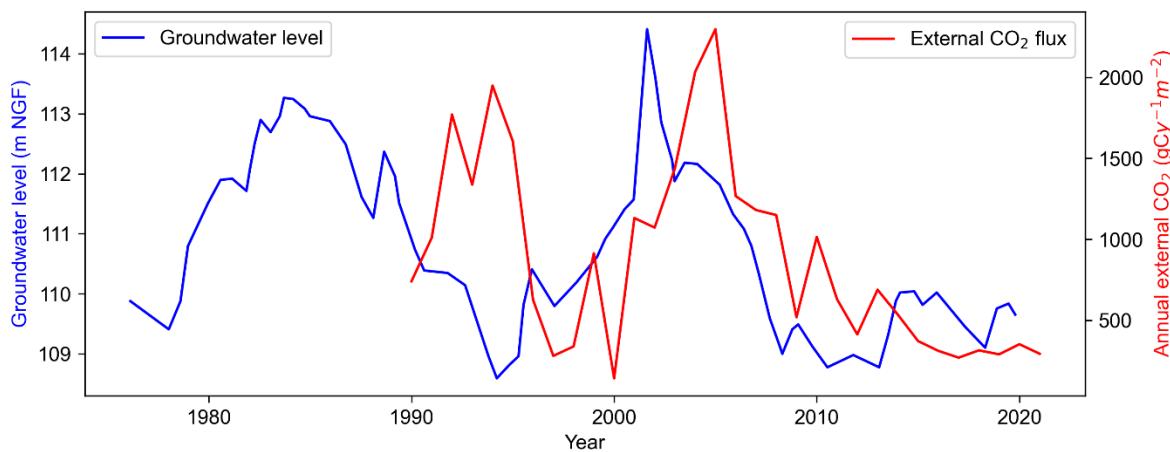


Figure S8. Relationship of annual fluxes and annual discharge or annual water temperature

Figure S9. Multi-annual patterns of annual external CO₂ source in Loire River (this study) and mean

192 annual groundwater level in France (data extracted from Baulon et al., (2022))

References

194 Appling, A. P., Hall, R. O., Yackulic, C. B., & Arroita, M. (2018). Overcoming Equifinality:
 195 Leveraging Long Time Series for Stream Metabolism Estimation. *Journal of Geophysical Research: Biogeosciences*, 123(2), 624–645. <https://doi.org/10.1002/2017JG004140>

197 Battin, T. J., Lauerwald, R., Bernhardt, E. S., Bertuzzo, E., Gener, L. G., Hall, R. O., Hotchkiss, E. R.,
198 Maavara, T., Pavelsky, T. M., Ran, L., Raymond, P., Rosentreter, J. A., & Regnier, P. (2023). River
199 ecosystem metabolism and carbon biogeochemistry in a changing world. *Nature*, 613(7944), 449–459.
200 <https://doi.org/10.1038/s41586-022-05500-8>

201 Baulon, L., Allier, D., Massei, N., Bessiere, H., Fournier, M., & Bault, V. (2022). Influence of low-
202 frequency variability on groundwater level trends. *Journal of Hydrology*, 606, 127436.
203 <https://doi.org/10.1016/j.jhydrol.2022.127436>

204 Blaszcak, J. R., Delesantro, J. M., Urban, D. L., Doyle, M. W., & Bernhardt, E. S. (2019). Scoured or
205 suffocated: Urban stream ecosystems oscillate between hydrologic and dissolved oxygen extremes.
206 *Limnology and Oceanography*, 64(3), 877–894.

207 Camenen, B., Grabowski, R. C., Latapie, A., Paquier, A., Solari, L., & Rodrigues, S. (2016). On the
208 estimation of the bed-material transport and budget along a river segment: Application to the Middle
209 Loire River, France. *Aquatic Sciences*, 78(1), 71–81. <https://doi.org/10.1007/s00027-015-0442-3>

210 Jones, A. S., Jones, T. L., & Horsburgh, J. S. (2022). Toward automating post processing of aquatic
211 sensor data. *Environmental Modelling and Software*, 151, 105364.
212 <https://doi.org/10.1016/j.envsoft.2022.105364>

213 Kirk, L., & Cohen, M. J. (2023). River corridor sources dominate CO₂ emissions from a lowland river
214 network. *Journal of Geophysical Research: Biogeosciences*, 128(1), e2022JG006954.
215 <https://doi.org/10.1029/2022JG006954>

216 Moatar, F., Descy, J.-P., Rodrigues, S., Souchon, Y., Flouzy, M., Grosbois, C., Minaudo, C., Leitao,
217 M., Wantzen, K. M., & Bertrand, F. (2022). Chapter 7—The loire river basin. In K. Tockner, C. Zarfl,
218 & C. T. Robinson (Eds.), *Rivers of Europe* (Second Edition) (pp. 245–271). Elsevier.
219 <https://doi.org/10.1016/B978-0-08-102612-0.00007-9>

220 Moatar, F., Miquel, J., & Poirel, A. (2001). A quality-control method for physical and chemical
221 monitoring data. Application to dissolved oxygen levels in the river loire (france). *Journal of
222 Hydrology*, 252(1–4), 25–36. [https://doi.org/10.1016/S0022-1694\(01\)00439-5](https://doi.org/10.1016/S0022-1694(01)00439-5)

223 Raymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J., Mulholland, P., Laursen, A. E.,
224 McDowell, W. H., & Newbold, D. (2012). Scaling the gas transfer velocity and hydraulic geometry in
225 streams and small rivers. *Limnology and Oceanography: Fluids and Environments*, 2(1), 41–53.
226 <https://doi.org/10.1215/21573689-1597669>

227 Seabold, S., & Perktold, J. (2010). Statsmodels: Econometric and statistical modeling with python.
228 92–96. <https://doi.org/10.25080/Majora-92bf1922-011>

229

