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1. Supplementary method

S1. Dataset

The combination of datasets from the continuous monitoring and grab sampling program is used to
obtain long-term high-frequency datasets, including hourly temperature, conductivity, alkalinity, and
dissolved oxygen in 1990-2021.

Continuous monitoring program

The EDF measurement system is a floating platform with a temperature sensor and sensors for pH (range
0-14 pH unit), DO (range 0-20 mg L), and conductivity (range 0-1000 pS cm™) (Campbell | ®). The
surface water at 20 cm depth is pumped (ca. 0.5 L s™*) through the system and measurements are recorded
every 5 seconds, with average values saved every hour. It should be noted that data was collected both
upstream and downstream at each power plant, with the upstream station located at the entrance of the
dam and the downstream station located approximately 2-5km downstream of the dam. The data used
for data analysis in this study was upstream station because of its data completeness. Prior to 2008,

estimated uncertainties from membrane sensors were +0.3°C, £0.3 pH units, +8% mg O» LY +5% TN
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cm™ membrane sensors (Moatar et al., 2001). After 2008, new optical sensors have uncertainties of +
0.1 pH units, 3% mg O, L™,

Sampling site
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Figure S1. The sampling site and the lithology in the Loire basin (Moatar et al., 2022).

Grab sampling monitoring program

Grab sampling data was collected by EDF and Loire-Brittany Water Agency (AELB), including pH,
conductivity, and alkalinity from 1990-2021, with frequency ranging from daily to monthly. Grab
sampling data exists only in the upstream of the nuclear power plant. While AELB provided data for the
period of 1990 to 2003 for these parameters, EDF supplied data from 2007 to 2021, so missing grab
sampling data in the period 2004-2006. However, the primary objective of utilizing grab sampling data
is to determine the correlation between total alkalinity and conductivity. This allows for the estimation
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of daily alkalinity based on the mean daily conductivity (calculated from the hourly dataset) for the
period of 1990-2021 (Figure S2).

To reconstruct daily alkalinity from conductivity, we employed the lterativelmputer function with
BayesianRidge estimator (i.e., regularized linear regression) by using scikit-learn, a Python package
(Pedregosa et al., 2011). The BayesianRidge estimator filled the missing daily alkalinity by iteratively
modeling the linear relationship between daily conductivity and available alkalinity data, while
regularization accounts for potential changes in their relationship over 32 years. This process begins by
estimating data for the period with fewest missing data, then continues iteratively until the imputed
values converge, meaning subsequent iterations produce minimal changes in the estimates. This iterative
process allows the imputer to adapt to underlying trends and shifts in the data. Besides, to verify the
stability of the relationship between alkalinity and conductivity, we performed linear regressions on 4-
year period of 32 years dataset which revealed quite similar slopes across all periods except 1990-1993
(Figure S2).

1990 - 1993, y =121 + 5.82 x, R?=0.89, n=32
1994 - 1997, y = -327 + 7.91 x, R = 0.80, n = 32
1998 - 2001, y = 61.7 + 6.58 x, R =0.75, n = 32
2002 - 2005, y = -61.1 +6.82 x, R>=0.80,n =8
2006 - 2009, y = -114 +6.99 x, R? =.0.69, n= 4:39

2500 -

2010 -2013, y = -15+6.68 %, R?=0.60, n =729 B I Period

=5 2014 - 2017, y = 55.5 +6.75 x, R? = 0.57,n = 858 384304 ; 1990-1993
€ 2000- 2018 -2021, y = - 173 +7.51 x, R? = 0467 n =849, "= %41 e et & = 1994-1997
=2 . m== 1998-2001
2

£ == 2002-2005
g s 2006-2009
(—(: === 2010-2013
i) 2014-2017

2018-2021
1500 -

1000 -
260 250 360 SéO
Conductivity (uS/cm)
Figure S2. Relationship between measured total alkalinity and continuous measured conductivity in
Loire River.
We estimated daily depth (m) using a local rating curve (Depth (m) = 0.0716 x /Q(m3s~1) +
0.6171), which was established based on modeled depth from a 1D hydraulic model for the Loire River
(Camenen et al., 2016).

! https://scikit-learn.org/stable/modules/generated/sklearn.impute. Iterativelmputer.html
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S2. Data cleaning procedure

Although the sensors for pH and DO measurements were periodically calibrated by EDF, the dataset
exhibited a notable number of anomalous values prior to 2008, which prompted the implementation of
comprehensive data control procedures. These procedures addressed sensor drift and outlier removal
which were proposed by (Jones et al., 2022; Moatar et al., 2001). Data cleaning was conducted for the
hourly pH and dissolved oxygen data in this study, while the daily conductivity was carried out by EDF
which based on visual inspection. Hourly temperature and alkalinity data from grab sampling were only
checked through a range check to eliminate unrealistic values, but there was minimal significant removal
of this data.

The following steps carried out the data cleaning and correction for hourly pH. Firstly, performing the
rules-based anomaly detection and correction as a first pass at quality control, including range check
(pH ranges from 6 to 10 in Loire River), data persistence check (pH relatively constant in few days),
significant change check (jump or drop within few hours), calibration and drift event detection check.
This step was performed automatically with the support of pyhydroqc, a python package for automating
aquatic sensor data processing (Jones et al., 2022). Secondly, error detection was manually inspected by
comparing values between upstream and downstream, together with daily discharge. This step used the
interactive plot with the support of plotly package to check the errors which were identified in previous
steps. The use of daily discharge was to eliminate false detection of abnormal data, especially in the case
of high discharge where there are often sudden changes in pH and conductivity. There was 10.6% data
(about 3 years of data) was assessed as anomalous and was discarded. Finally, missing data will be
completed based on several cases. Linear interpolation was applied for missing data within 6 hours
(2.3% data). Linear interpolation between upstream and downstream stations was applied for missing
either upstream or downstream (7.5 % data). Linear interpolation between adjacent stations was applied
when missing both data in upstream and downstream in Dampierre station but existed in adjacent
stations (0.5% data). The remaining missing data was then filled based on the seasonal Kalman
smoother, which estimates the missing values while considering the seasonal patterns and annual trend
(tsmoothie package) (0.3% data).

The data cleaning and correction for hourly DO were carried out by following steps which were from
Diamond et al. (in revision.). We first removed physically impossible values and then applied a lowpass
filter to remove instrument noise in the DO signal. We then removed values that exceeded plausible
hourly changes in DO (e.g., a leap from 10 to 15 mg L™) using 95% confidence intervals for hourly
changes on a monthly basis as our cutoff. We finally used visual inspection to flag data of questionable
validity and corrected for linear drift and anomalous drops or jumps in DO data. We then filled all

remaining missing with a seasonal Kalman filter.
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S3. Handling estimated GPP, ER and K600

GPP, ER

Although the streamMetabolizer model uses inputs such as light, water temperature, and river discharge
to reduce the equifinality of GPP, ER, and K600, this model can produce unrealistic values, like negative
GPP. This issue typically arises when diel variations in dissolved oxygen (DO) are weak—meaning the
DO levels are similar between day and night—making it difficult for the model to accurately separate
the contributions of GPP and ER (Appling et al., 2018). When the diel DO signal is minimal, the GPP
is likely close to zero, which can lead to the model estimating a negative median GPP value.
Consequently, it is common practice to set these negative GPP estimates to zero (Blaszczak et al., 2019).
In our study, we used a different approach by replacing negative GPP estimates with the 75th percentile
of GPP values estimated by the streamMetabolizer model rather than force to zero. However, this
adjustment did not substantially alter the annual GPP calculations. Replacing negative GPP with the
75th percentile increased annual GPP by an average of 1.3% (ranging from 0.1% to 5.3%), while setting
negative GPP to zero resulted in a smaller increase, ranging from 0.04% to 3.4% (Figure S3). Similarly,
the annual ER calculations across different treatments for unrealistic ER values show no significant
differences, with an average flux variation of around 1%, except in 1995, where the difference reaches
15% (Figure S4).

Comparison of Different Handling Methods to Negative GPP
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Figure S3. Comparison of annual GPP estimates based on different approach for handling negative
GPP values: retaining negative GPP, setting negative GPP to zero, and replacing negative GPP with

the 75th percentile of estimated GPP from the streamMetabolizer model.
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Comparison of Different Handling Methods to Negative ER
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Figure S4. Comparison of annual ER estimates based on different approach for handling negative ER
values: retaining negative ER, setting negative ER to zero, and replacing negative ER with the 75th

percentile of estimated ER from the streamMetabolizer model.

K600

The k600 values estimated by the StreamMetabolizer model were compared with the mean k600 (m d ™)
calculated from seven fitted equations proposed by Raymond et al. (2012) for streams and small rivers
(Table S1). Both k600 estimates exhibited similar seasonal fluctuations, with the lowest values occurring
in summer and the highest in winter. The comparison revealed that the mean absolute percentage error
(MAPE) between the StreamMetabolizer estimates and the mean k600 from the seven fitted equations
ranged from 36% to 62%. Specifically, the Raymond et al. (2012) k600 estimates tended to be higher in
summer and lower in winter compared to those estimated by the StreamMetabolizer model. However,
the k600 values derived from StreamMetabolizer fall within the same order of magnitude as those from
the seven fitted equations (Figure S5). The k600 estimates from the StreamMetabolizer model were

selected for FCO2 calculations to ensure consistency with the NEP calculations.

Table S1. Seven fitted equations for predicting the k600 (m d™) for stream/rivers based on velocity
(V, in ms™), slope (S; unitless), depth (D, in meters), discharge (Q, in m®s™), and the Froude number
(Fr; unitless) (Raymond et al., 2012).
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Figure S5. Comparison of estimated k600 from StreamMetabolizer model and mean of seven fitted

equations from Raymond et al. (2012) for streams/rivers.
S4. Uncertainties in FCO2 and NEP estimation

Estimating FCO2 and NEP using models such as PyCO2SYS and streamMetabolizer often involves

large uncertainties, particularly when considering the propagation of errors in all model input data and
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the summing/multiplying of these uncertainties in calculating fluxes (Battin et al., 2023; Kirk & Cohen,
2023). In this study, we assumed that after a careful data treatment process, the continuous datasets of
DO, pH, conductivity, water temperature, discharge, and solar radiation were accurate. While both the
PyCO2SYS and streamMetabolizer models provide a range of uncertainty, we used the average of these
distributions as the best daily estimates, using the default input data accuracy. However, it is important
to note that the daily total alkalinity (TA) data did not cover the entire 32-year period, unlike the other
variables. Consequently, the error in TA reconstruction could introduce uncertainty in FCO2 estimation
and potentially affect conclusions regarding the temporal distribution of CO2 sink/source states
throughout the year, as well as comparisons with NEP. However, our analysis indicates that the
uncertainty in the estimated TA (£190 umol/L) only leads to £11% uncertainty in pCO2 estimation by
PyCO2SYS. As shown in Table S1, the statistical results comparing the annual distribution of trophic
states remain consistent, with a maximum deviation of only 3%. Moreover, the dominance of the CO2
source—heterotrophic state throughout the year remains almost unchanged, with less than a 1%
difference under any range of TA uncertainty, even though the magnitude of FCO2 could vary up to
20%.

Table S1. Comparison of the occurrence and fluxes of each trophlux state within the uncertainty range

of estimated alkalinity.

CO2 source - Heterotrophic | CO2 source - Autotrophic
Period Min Mean Max Min Mean Max
1990-2000 47 47.3 47.7 15.6 16.7 17.6
2001-2010 | 60.3 61.2 61.3 23.6 25.3 27
2011-2021 | 65.4 65.7 65.7 24.7 26.2 27.6
1990-2000 | 830.7 9542  1100.2 | 87.2 102.6 1189
FCO2 (gC/m2ly) | 2001-2010 | 1266.5 14535 1668.7 75 87.7 102.4
2011-2021 | 602.2 717.3 840.8 48.6 58.7 70.6

Occurrence
(% of days)

CO2 sink - Heterotrophic CO2 sink - Autotrophic
Period Min Mean Max Min Mean Max

1990-2000 | 7.6 73 6.9 208 287 278
Occurrence | 5051 5010 | 2.3 17 15 141 155 134
(% of days)

2011-2021 | 1.4 11 13 8.8 73 59
1990-2000 | -4.6 4.4 38 | 224 21 -196
FCO2 (gC/m2ly) | 2001-2010 | -1.3 06 1 74 78 6.6
2011-2021 | -1.5 0.9 12 34 26 2.1

S5. Change-point analysis

We evaluated the long-term changes in FCO2 and metabolism using a statistical change point analysis,
which identifies points in a time series where the statistical properties, such as the mean or variance,

undergo significant shifts. We first applied seasonal decomposition on daily time series to extract trend,

8
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seasonal, and residual components using the statsmodels Python package (Seabold & Perktold, 2010).
Subsequently,

The long-term trend component was analyzed using a piecewise linear regression method (model
="linear" in ruptures, a Python package), while shift point detection by standard deviation (changes in
variance by model="normal" in ruptures) was employed for the seasonal components. This process
was also applied on related parameters including daily discharge, temperature, GPP, ER

2. Supplementary results
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Figure S6. Change-point analysis on the (a) long-term trend components and (b) seasonal components
of daily discharge, temperature, and fluxes of GPP, ER, -NEP, and FCO.. The red vertical lines
indicate the change periods.

Table S2. The correlations between annual FCO2, -NEP, and hydroclimatic conditions (discharge,
temperature) in each trophlux state

CO2_NEP_state | Parameters | Days | Discharge | Temp | FCO2 | -NEP | -NEP/CO2

Autotrophic Days 0.08 0.01 0.07 0.14 0.00

Sink Discharge | 0.08 0.07 0.19 0.03 0.19
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Temp 0.01 0.07 0.04 0.00 0.00

FCO2 0.07 0.19 0.04 0.14 0.32
-NEP 0.14 0.03 0.00 0.14 0.13

-NEP/CO2 0.00 0.19 0.00 0.32 0.13
Days 0.00 0.06 0.06 0.16 0.00
Discharge 0.00 0.34 0.41 0.00 0.36
Autotrophic Temp 0.06 0.34 0.14 0.00 0.21
Source FCO2 0.06 0.41 0.14 0.13 0.32
-NEP 0.16 0.00 0.00 0.13 0.01

-NEP/CO2 0.00 0.36 0.21 0.32 0.01
Days 0.01 0.21 0.00 0.03 0.05
Discharge 0.01 0.40 0.67 0.00 0.16

Heterotrophic |  Temp 0.21 0.40 040 | 010 | 080

Sink FCO2 0.00 0.67 0.40 0.01 0.18
-NEP 0.03 0.00 0.10 0.01 0.12

-NEP/CO2 | 0.05 016 [ 090 | 018 [ 0.12
Days 0.00 0.69 0.01 0.30 0.07
Discharge 0.00 0.04 0.36 0.11 0.11
Heterotrophic Temp 0.69 0.04 0.09 0.07 0.06
Source FCO2 0.01 0.36 0.09 0.06 0.59
-NEP 0.30 0.11 0.07 0.06 0.04

-NEP/CO2 0.07 0.11 0.06 0.59 0.04
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Figure S7. Relationship of daily fluxes and annual discharge or annual water temperature
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Figure S8. Relationship of annual fluxes and annual discharge or annual water temperature

114

a

-y

w
I

112 4

Groundwater level (m NGF)

—— CGroundwater level

—— External CO> flux

r 2000

r 1500

r 1000

r 500

Annual external CO (gCy~1m~?)

1980

1990

2000
Year

2010

2020

Figure S9. Multi-annual patterns of annual external CO2 source in Loire River (this study) and mean

annual groundwater level in France (data extracted from Baulon et al., (2022))
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