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 16 

1. Supplementary method 17 

S1. Dataset 18 

The combination of datasets from the continuous monitoring and grab sampling program is used to 19 

obtain long-term high-frequency datasets, including hourly temperature, conductivity, alkalinity, and 20 

dissolved oxygen in 1990-2021. 21 

Continuous monitoring program 22 

The EDF measurement system is a floating platform with a temperature sensor and sensors for pH (range 23 

0–14 pH unit), DO (range 0–20 mg L-1), and conductivity (range 0–1000 μS cm-1) (Campbell l ®). The 24 

surface water at 20 cm depth is pumped (ca. 0.5 L s-1) through the system and measurements are recorded 25 

every 5 seconds, with average values saved every hour. It should be noted that data was collected both 26 

upstream and downstream at each power plant, with the upstream station located at the entrance of the 27 

dam and the downstream station located approximately 2-5km downstream of the dam. The data used 28 

for data analysis in this study was upstream station because of its data completeness. Prior to 2008, 29 

estimated uncertainties from membrane sensors were ±0.3°C, ±0.3 pH units, ±8% mg O2 L
-1, ±5% μS 30 
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cm-1 membrane sensors (Moatar et al., 2001). After 2008, new optical sensors have uncertainties of ± 31 

0.1 pH units, 3% mg O2 L
-1. 32 

 33 

 34 

 35 

 36 

Figure S1. The sampling site and the lithology in the Loire basin (Moatar et al., 2022). 37 

Grab sampling monitoring program 38 

Grab sampling data was collected by EDF and Loire-Brittany Water Agency (AELB), including pH, 39 

conductivity, and alkalinity from 1990-2021, with frequency ranging from daily to monthly. Grab 40 

sampling data exists only in the upstream of the nuclear power plant. While AELB provided data for the 41 

period of 1990 to 2003 for these parameters, EDF supplied data from 2007 to 2021, so missing grab 42 

sampling data in the period 2004-2006. However, the primary objective of utilizing grab sampling data 43 

is to determine the correlation between total alkalinity and conductivity. This allows for the estimation 44 
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of daily alkalinity based on the mean daily conductivity (calculated from the hourly dataset) for the 45 

period of 1990-2021 (Figure S2). 46 

To reconstruct daily alkalinity from conductivity, we employed the IterativeImputer function with 47 

BayesianRidge estimator (i.e., regularized linear regression) by using scikit-learn1, a Python package 48 

(Pedregosa et al., 2011). The BayesianRidge estimator filled the missing daily alkalinity by iteratively 49 

modeling the linear relationship between daily conductivity and available alkalinity data, while 50 

regularization accounts for potential changes in their relationship over 32 years. This process begins by 51 

estimating data for the period with fewest missing data, then continues iteratively until the imputed 52 

values converge, meaning subsequent iterations produce minimal changes in the estimates. This iterative 53 

process allows the imputer to adapt to underlying trends and shifts in the data. Besides, to verify the 54 

stability of the relationship between alkalinity and conductivity, we performed linear regressions on 4-55 

year period of 32 years dataset which revealed quite similar slopes across all periods except 1990-1993 56 

(Figure S2). 57 

 58 

Figure S2. Relationship between measured total alkalinity and continuous measured conductivity in 59 

Loire River. 60 

We estimated daily depth (m) using a local rating curve (𝐷𝑒𝑝𝑡ℎ (𝑚) = 0.0716 × √𝑄(𝑚3𝑠−1) +61 

0.6171), which was established based on modeled depth from a 1D hydraulic model for the Loire River 62 

(Camenen et al., 2016). 63 

                                                   
1 https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html 
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S2. Data cleaning procedure 64 

Although the sensors for pH and DO measurements were periodically calibrated by EDF, the dataset 65 

exhibited a notable number of anomalous values prior to 2008, which prompted the implementation of 66 

comprehensive data control procedures. These procedures addressed sensor drift and outlier removal 67 

which were proposed by (Jones et al., 2022; Moatar et al., 2001). Data cleaning was conducted for the 68 

hourly pH and dissolved oxygen data in this study, while the daily conductivity was carried out by EDF 69 

which based on visual inspection. Hourly temperature and alkalinity data from grab sampling were only 70 

checked through a range check to eliminate unrealistic values, but there was minimal significant removal 71 

of this data. 72 

The following steps carried out the data cleaning and correction for hourly pH. Firstly, performing the 73 

rules-based anomaly detection and correction as a first pass at quality control, including range check 74 

(pH ranges from 6 to 10 in Loire River), data persistence check (pH relatively constant in few days), 75 

significant change check (jump or drop within few hours), calibration and drift event detection check. 76 

This step was performed automatically with the support of pyhydroqc, a python package for automating 77 

aquatic sensor data processing (Jones et al., 2022). Secondly, error detection was manually inspected by 78 

comparing values between upstream and downstream, together with daily discharge. This step used the 79 

interactive plot with the support of plotly package to check the errors which were identified in previous 80 

steps. The use of daily discharge was to eliminate false detection of abnormal data, especially in the case 81 

of high discharge where there are often sudden changes in pH and conductivity. There was 10.6% data 82 

(about 3 years of data) was assessed as anomalous and was discarded. Finally, missing data will be 83 

completed based on several cases. Linear interpolation was applied for missing data within 6 hours 84 

(2.3% data). Linear interpolation between upstream and downstream stations was applied for missing 85 

either upstream or downstream (7.5 % data). Linear interpolation between adjacent stations was applied 86 

when missing both data in upstream and downstream in Dampierre station but existed in adjacent 87 

stations (0.5% data). The remaining missing data was then filled based on the seasonal Kalman 88 

smoother, which estimates the missing values while considering the seasonal patterns and annual trend 89 

(tsmoothie package) (0.3% data). 90 

The data cleaning and correction for hourly DO were carried out by following steps which were from 91 

Diamond et al. (in revision.). We first removed physically impossible values and then applied a lowpass 92 

filter to remove instrument noise in the DO signal. We then removed values that exceeded plausible 93 

hourly changes in DO (e.g., a leap from 10 to 15 mg L-1) using 95% confidence intervals for hourly 94 

changes on a monthly basis as our cutoff. We finally used visual inspection to flag data of questionable 95 

validity and corrected for linear drift and anomalous drops or jumps in DO data. We then filled all 96 

remaining missing with a seasonal Kalman filter. 97 
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S3. Handling estimated GPP, ER and K600 98 

GPP, ER 99 

Although the streamMetabolizer model uses inputs such as light, water temperature, and river discharge 100 

to reduce the equifinality of GPP, ER, and K600, this model can produce unrealistic values, like negative 101 

GPP. This issue typically arises when diel variations in dissolved oxygen (DO) are weak—meaning the 102 

DO levels are similar between day and night—making it difficult for the model to accurately separate 103 

the contributions of GPP and ER (Appling et al., 2018). When the diel DO signal is minimal, the GPP 104 

is likely close to zero, which can lead to the model estimating a negative median GPP value. 105 

Consequently, it is common practice to set these negative GPP estimates to zero (Blaszczak et al., 2019). 106 

In our study, we used a different approach by replacing negative GPP estimates with the 75th percentile 107 

of GPP values estimated by the streamMetabolizer model rather than force to zero. However, this 108 

adjustment did not substantially alter the annual GPP calculations. Replacing negative GPP with the 109 

75th percentile increased annual GPP by an average of 1.3% (ranging from 0.1% to 5.3%), while setting 110 

negative GPP to zero resulted in a smaller increase, ranging from 0.04% to 3.4% (Figure S3). Similarly, 111 

the annual ER calculations across different treatments for unrealistic ER values show no significant 112 

differences, with an average flux variation of around 1%, except in 1995, where the difference reaches 113 

15% (Figure S4). 114 

 115 

Figure S3. Comparison of annual GPP estimates based on different approach for handling negative 116 

GPP values: retaining negative GPP, setting negative GPP to zero, and replacing negative GPP with 117 

the 75th percentile of estimated GPP from the streamMetabolizer model. 118 
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 119 

Figure S4. Comparison of annual ER estimates based on different approach for handling negative ER 120 

values: retaining negative ER, setting negative ER to zero, and replacing negative ER with the 75th 121 

percentile of estimated ER from the streamMetabolizer model. 122 

 123 

K600 124 

The k600 values estimated by the StreamMetabolizer model were compared with the mean k600 (m d⁻¹) 125 

calculated from seven fitted equations proposed by Raymond et al. (2012) for streams and small rivers 126 

(Table S1). Both k600 estimates exhibited similar seasonal fluctuations, with the lowest values occurring 127 

in summer and the highest in winter. The comparison revealed that the mean absolute percentage error 128 

(MAPE) between the StreamMetabolizer estimates and the mean k600 from the seven fitted equations 129 

ranged from 36% to 62%. Specifically, the Raymond et al. (2012) k600 estimates tended to be higher in 130 

summer and lower in winter compared to those estimated by the StreamMetabolizer model. However, 131 

the k600 values derived from StreamMetabolizer fall within the same order of magnitude as those from 132 

the seven fitted equations (Figure S5). The k600 estimates from the StreamMetabolizer model were 133 

selected for FCO2 calculations to ensure consistency with the NEP calculations. 134 

 135 

Table S1. Seven fitted equations for predicting the k600 (m d-1) for stream/rivers based on velocity 136 

(V, in m s-1), slope (S; unitless), depth (D, in meters), discharge (Q, in m3
 s

-1), and the Froude number 137 

(Fr; unitless) (Raymond et al., 2012).  138 
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 139 

 140 

Figure S5. Comparison of estimated k600 from StreamMetabolizer model and mean of seven fitted 141 

equations from Raymond et al. (2012) for streams/rivers. 142 

S4. Uncertainties in FCO2 and NEP estimation 143 

Estimating FCO2 and NEP using models such as PyCO2SYS and streamMetabolizer often involves 144 

large uncertainties, particularly when considering the propagation of errors in all model input data and 145 
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the summing/multiplying of these uncertainties in calculating fluxes (Battin et al., 2023; Kirk & Cohen, 146 

2023). In this study, we assumed that after a careful data treatment process, the continuous datasets of 147 

DO, pH, conductivity, water temperature, discharge, and solar radiation were accurate. While both the 148 

PyCO2SYS and streamMetabolizer models provide a range of uncertainty, we used the average of these 149 

distributions as the best daily estimates, using the default input data accuracy. However, it is important 150 

to note that the daily total alkalinity (TA) data did not cover the entire 32-year period, unlike the other 151 

variables. Consequently, the error in TA reconstruction could introduce uncertainty in FCO2 estimation 152 

and potentially affect conclusions regarding the temporal distribution of CO2 sink/source states 153 

throughout the year, as well as comparisons with NEP. However, our analysis indicates that the 154 

uncertainty in the estimated TA (±190 μmol/L) only leads to ±11% uncertainty in pCO2 estimation by 155 

PyCO2SYS. As shown in Table S1, the statistical results comparing the annual distribution of trophic 156 

states remain consistent, with a maximum deviation of only 3%. Moreover, the dominance of the CO2 157 

source–heterotrophic state throughout the year remains almost unchanged, with less than a 1% 158 

difference under any range of TA uncertainty, even though the magnitude of FCO2 could vary up to 159 

20%. 160 

Table S1. Comparison of the occurrence and fluxes of each trophlux state within the uncertainty range 161 

of estimated alkalinity. 162 

    CO2 source - Heterotrophic CO2 source - Autotrophic 

  Period Min Mean Max Min Mean Max 

Occurrence 

(% of days) 

1990-2000 47 47.3 47.7 15.6 16.7 17.6 

2001-2010 60.3 61.2 61.3 23.6 25.3 27 

2011-2021 65.4 65.7 65.7 24.7 26.2 27.6 

FCO2 (gC/m2/y) 

1990-2000 830.7 954.2 1100.2 87.2 102.6 118.9 

2001-2010 1266.5 1453.5 1668.7 75 87.7 102.4 

2011-2021 602.2 717.3 840.8 48.6 58.7 70.6 

                

    CO2 sink - Heterotrophic CO2 sink - Autotrophic 

  Period Min Mean Max Min Mean Max 

Occurrence 

(% of days) 

1990-2000 7.6 7.3 6.9 29.8 28.7 27.8 

2001-2010 2.3 1.7 1.5 14.1 15.5 13.4 

2011-2021 1.4 1.1 1.3 8.8 7.3 5.9 

FCO2 (gC/m2/y) 

1990-2000 -4.6 -4.4 -3.8 -22.4 -21 -19.6 

2001-2010 -1.3 -0.6 -1 -7.4 -7.8 -6.6 

2011-2021 -1.5 -0.9 -1.2 -3.4 -2.6 -2.1 

 163 

S5. Change-point analysis 164 

We evaluated the long-term changes in FCO2 and metabolism using a statistical change point analysis, 165 

which identifies points in a time series where the statistical properties, such as the mean or variance, 166 

undergo significant shifts. We first applied seasonal decomposition on daily time series to extract trend, 167 



 

 

 

 

9 

seasonal, and residual components using the statsmodels Python package (Seabold & Perktold, 2010). 168 

Subsequently,  169 

The long-term trend component was analyzed using a piecewise linear regression method (model 170 

="linear" in ruptures, a Python package), while shift point detection by standard deviation (changes in 171 

variance by model="normal" in ruptures) was employed for the seasonal components. This process 172 

was also applied on related parameters including daily discharge, temperature, GPP, ER 173 

 174 

2. Supplementary results 175 

 176 

Figure S6. Change-point analysis on the (a) long-term trend components and (b) seasonal components 177 

of daily discharge, temperature, and fluxes of GPP, ER, -NEP, and FCO2. The red vertical lines 178 

indicate the change periods. 179 

 180 

Table S2. The correlations between annual FCO2, -NEP, and hydroclimatic conditions (discharge, 181 

temperature) in each trophlux state 182 

CO2_NEP_state Parameters Days Discharge Temp FCO2 -NEP -NEP/CO2 

Autotrophic 

Sink 

Days   0.08 0.01 0.07 0.14 0.00 

Discharge 0.08   0.07 0.19 0.03 0.19 
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Temp 0.01 0.07   0.04 0.00 0.00 

FCO2 0.07 0.19 0.04   0.14 0.32 

-NEP 0.14 0.03 0.00 0.14   0.13 

-NEP/CO2 0.00 0.19 0.00 0.32 0.13   

Autotrophic 

Source 

Days   0.00 0.06 0.06 0.16 0.00 

Discharge 0.00   0.34 0.41 0.00 0.36 

Temp 0.06 0.34   0.14 0.00 0.21 

FCO2 0.06 0.41 0.14   0.13 0.32 

-NEP 0.16 0.00 0.00 0.13   0.01 

-NEP/CO2 0.00 0.36 0.21 0.32 0.01   

Heterotrophic 

Sink 

Days   0.01 0.21 0.00 0.03 0.05 

Discharge 0.01   0.40 0.67 0.00 0.16 

Temp 0.21 0.40   0.40 0.10 0.90 

FCO2 0.00 0.67 0.40   0.01 0.18 

-NEP 0.03 0.00 0.10 0.01   0.12 

-NEP/CO2 0.05 0.16 0.90 0.18 0.12   

Heterotrophic 

Source 

Days   0.00 0.69 0.01 0.30 0.07 

Discharge 0.00   0.04 0.36 0.11 0.11 

Temp 0.69 0.04   0.09 0.07 0.06 

FCO2 0.01 0.36 0.09   0.06 0.59 

-NEP 0.30 0.11 0.07 0.06   0.04 

-NEP/CO2 0.07 0.11 0.06 0.59 0.04   

 183 

 184 

Figure S7. Relationship of daily fluxes and annual discharge or annual water temperature 185 
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 186 

 187 

Figure S8. Relationship of annual fluxes and annual discharge or annual water temperature 188 

 189 

 190 

Figure S9. Multi-annual patterns of annual external CO2 source in Loire River (this study) and mean 191 

annual groundwater level in France (data extracted from Baulon et al., (2022)) 192 
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