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Abstract. Developing and evaluating spatial efficiency metrics is essential for assessing how well climate or other models of

the Earth’s system reproduce the observed patterns of variables like precipitation, temperature, atmospheric pollutants, and

other environmental data presented in a gridded format. In this study, we propose a new metric, the Modified Spatial Effi-

ciency (MSPAEF), designed to overcome limitations identified in existing metrics, such as the Spatial Efficiency (SPAEF),

the Wasserstein Spatial Efficiency (WSPAEF), or the Spatial Pattern Efficiency metric (Esp). The performance of MSPAEF is5

systematically compared to these metrics across a range of synthetic data scenarios characterized by varying spatial correlation

coefficients, biases, and standard deviation ratios. Results demonstrate that MSPAEF consistently provides robust and intuitive

performance, accurately capturing spatial patterns under diverse conditions. Additionally, two realistic but synthetic case stud-

ies are presented to further evaluate the practical applicability of the metrics. In both examples, MSPAEF delivers results that

align with intuitive expectations, while the other metrics exhibit limitations in identifying specific features in at least one case.10

Finally, as a real-world application, we rank global Coupled Model Intercomparison Project phase 6 (CMIP6) model data ac-

cording to their skill in representing precipitation and temperature using the four different metrics. This application highlights

that the MSPAEF rankings are most similar with Esp with a normalized absolute ranking difference of 2.8 for precipitation,

and 3.8 for temperature. These findings highlight the added value of the MSPAEF metric in evaluating spatial distributions and

its potential to be used in climate or other environmental model evaluation or inter-comparison exercises.15

1 Introduction

An accurate and comprehensive evaluation of climate models is crucial for understanding their limitations, enhancing the

representation of processes, and distilling the most credible information on regional climate changes, impacts, and risks (Eyring

et al., 2019). Climate models and their output are essential tools for scientists, practitioners and policymakers. However, before

any application, it is important to use robust validation metrics to assess their performance and accuracy (Wagener et al.,20

2022). Traditional evaluation methods often emphasize temporal correlations or mean biases, while they often overlook crucial

spatial patterns that significantly affect the model performance assessment. Capturing these spatial distributions is particularly

important for environmental variables like precipitation and temperature, as the spatial variation greatly influences regional

processes and subsequent applications, such as impact assessments (Citrini et al., 2024; Ramirez-Villegas et al., 2013).
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::
In

:::
this

::::::
paper,

:::
the

::::
term

::::::
metric

::
is

::::
used

::
in

::
a

:::::
broad

:::::
sense

::
to

::::
refer

::
to

:::
all

:::::::::
indicators,

:::::::
statistics

:::
or

:::::::
distance

::::::::
measures

::::
that

:::
take

:::
as25

::::
input

::::
two

:::::::
datasets

:::
and

::::::
output

:
a
:::::
value

::::
that

::::::::
quantifies

::::
their

:::::::
relative

:::::::::::
performance

::
or

::::::::
similarity.

:::::
This

:::::::
includes,

:::
but

::
is
:::
not

:::::::
limited

::
to,

::::::::
quantities

::::
that

::::::
satisfy

::
the

::::::
formal

::::::::
definition

:::
of

:
a
::::::
metric.

:

Many studies focus their evaluation of climate models on more simple metrics such as the Normalized Mean Square Error

(NMSE) (Simpson et al., 2020), Bias (Mehran et al., 2014; Su et al., 2013), the Root Mean Square Error (RMSE) (Sillmann

et al., 2013; Kamworapan and Surussavadee, 2019; Srivastava et al., 2020; Li et al., 2021; Nishant et al., 2022; Kim et al.,30

2020b), the Mean Absolute Error or Deviation (MAE or MAD) (Zittis and Hadjinicolaou, 2017; Lovino et al., 2018), the

Relative Error (RE) (Kim et al., 2020a), or the Skill Score (Srivastava et al., 2020). For instance, for the evaluation and inter-

comparison of downscaling approaches for climate models, Maraun et al. (2015) used a variety of metrics such as the Relative

Error (RE) for the spatial evaluation of different downscaling methodologies, while for the temporal evaluation, performance

indicators such as the mean square error (MSE), the correlation coefficient, the bias and Relative Error were used. A different35

concept was introduced by Brands et al. (2011) who evaluated global General Circulation Models (GCMs) using the overlap

of the Probability Density function of the time series for each grid box between the model and the observational dataset. The

Kolmogorov-Smirnov test (KS test) is another metric that was used for the evaluation of models contributing to the Coupled

Model Inter-comparison Project (CMIP) (Brands et al., 2013). Kotlarski et al. (2014) evaluated a large ensemble of Regional

Climate Models (RCM) contributing to the EURO-CORDEX initiative using a multitude of metrics, including spatial efficiency40

ones. This selection includes the spatial pattern correlation coefficient of time-averaged values (PACO), and the ratio of the

spatial standard deviation (RSV) of time-averaged values between the model and the reference dataset. The Pearson Correlation

Coefficient can also be used in the time series of seasonal means of a variable of each grid-box of the data, to assess how well a

climate model represents the local location representativeness (Maraun and Widmann, 2015). While these metrics may perform

well
:::
can

::
be

:::::::
effective

:
for certain applications, their effectiveness

::::::::::
performance can vary significantly when applied to parameters45

with inhomogeneous spatiotemporal distribution or
:::::
based

::
on

:::
the

::::::::
statistical

::::
and

::::::
spatial

::::::::::::
characteristics

::
of

:::
the

::::
data.

:::
For

::::::::
instance,

::
the

:::::::
Pearson

::::::::::
correlation

:::::::::
coefficient

::
is

:::::
useful

:::
for

:::::::::
capturing

:::
the

:::::
linear

::::::::::
relationship

:::::::
between

::::
two

::::::::
datasets;

:::::::
however,

::
it
:::::
does

:::
not

::::::
account

:::
for

:::::::::
systematic

:::::
biases

::
in

:::
the

:::::
mean

::
or

:::::::::
differences

::
in

:::::::
variance

::::
(i.e.,

:::::
scale

::::::::::
differences).

:::::::::
Similarly,

::::
other

::::::
metrics

::::
like

::::::
RMSE

:::
and

:::::
MAE

:::
are

:::::::
sensitive

::
to

::::
both

:::::::::
magnitude

:::
and

::::::::::
distribution

::
of

::::::
errors,

:::
but

::::
they

:::
may

:::
be

:::::::::::::::
disproportionately

:::::::
affected

::
by

::
a

::::
large

::::
bias

::
in

:::
the

:::::
mean,

::::::
which

:::
can

::::
lead

::
to
::

a
:::::::::::::::
misrepresentation

::
of

::::::
spatial

::::::::
patterns.

::
In

:::::::
contrast,

::::
the

::::::::::::::::::
Kolmogorov-Smirnov

:::
test

:::::::::
compares50

::
the

::::::::::
underlying

::::::::::
distributions

:::
of

:::
two

:::::::
datasets

:::
but

:::::
lacks

::::::
spatial

:::::::
context,

:::::
which

::
is

:::::
often

::::::
crucial

::
in

:::::::::::
geoscientific

::::::::
modeling.

::::::
These

::::::
distinct

:::::::::
limitations

:::::::::
underscore

:::
the

:::::::::
challenges

::
of

:::::
using

::::::::
traditional

::::::
metrics

:::
on

:::::::
variables

::::
with

:::::::
uneven

::::::::::::
spatiotemporal

:::::::::::
distributions,

:::
like

:::::::::::
precipitation,

:::::
which

::
is
:::::
often

:::::::
sparsely

:::::::::
distributed

::
in

:::::
space.

:::::
They

::::
also

:::::::::
complicate

::::::::::
comparisons

::::::::
between

::::::
models

:::
that

:::::::
possess

differing statistical properties. Such inconsistencies can introduce challenges in conducting a comprehensive evaluation of

different climate model outputs
:
,
::::
such

::
as

:::::::
varying

:::::
means

::
or

:::::
levels

:::
of

:::::::
variation.55

Compound metrics that integrate several simpler approaches have been developed to assess the performance of geoscientific

models more accurately. A commonly used goodness-of-fit indicator is the Kling-Gupta Efficiency (KGE), which is a ro-

bust compound metric, commonly used in hydrological sciences for comparing simulations to observations (Gupta et al., 2009;

Deepthi and Sivakumar, 2022; Zittis et al., 2017). The SPAtial EFficiency metric (SPAEF)
:::::::
proposed

:::
by

::::::::::::::::::::
Demirel et al. (2018b, a)
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was inspired by KGE (Koch et al., 2018) and has emerged as a promising tool for evaluating hydrological models by consid-60

ering three key aspects of spatial pattern accuracy: correlation coefficient, relative variability, and distribution of values in

standardized space. This metric has also been applied to climate model evaluation, for the ranking of the performance of pre-

cipitation and temperature of different climate models (Lei et al., 2023; Deepthi and Sivakumar, 2022; Ahmed et al., 2019;

Verma et al., 2023), as well as for the evaluation of precipitation in reanalyses datasets (Gomis-Cebolla et al., 2023). SPAEF

combines various elements, equally weighted, into a single metric, offering a more comprehensive assessment of spatial distri-65

bution compared to traditional methods like mean-squared error or correlation alone. While SPAEF can be useful for evaluating

climate models, it has some limitations, for example, it is insensitive to the magnitude of biases. Although this feature can be

advantageous in certain contexts, an assessment of biases is crucial for a complete evaluation of a model and should be taken

into account.

An existing modification and improvement of SPAEF is the Wasserstein SPAEF (WSPAEF) (Gómez et al., 2024). Unlike the70

original version, WSPAEF is sensitive to model biases. However, its sensitivity is based on the absolute magnitude of the bias,

making it inherently dependent on the units of the variable used. This means that the metric’s response to bias may vary across

different variables or datasets with different scales, which should be considered when interpreting results. Another common

limitation shared by both approaches is that two out of their three components—the standard deviation and differences in

histogram values for SPAEF and the standard deviation and Wasserstein distance for WSPAEF—primarily describe the overall75

distribution of the parameter under evaluation rather than its spatial structure. This leaves only one component that evaluates

the model variable based on the pattern of the variable, which is the spatial correlation coefficient.

Another indicator that was inspired by SPAEF is the Spatial Pattern Efficiency Metric (Esp) (Dembélé et al., 2020). This

metric, like SPAEF, is bias-insensitive, and focuses on the spatial distribution of the patterns of a variable. This metric has been

used to evaluate the spatial patterns of the hydrological processes in gridded precipitation datasets (Dembele et al., 2020).
:::
The80

::::::
SPAEF

:::::
metric

::::
and

:::::
some

::
of

::
its

::::::::
proposed

:::::::::::
modifications

:::::
have

::::
been

::::::::::::::
comprehensively

::::::::
evaluated

::
by

:::::::::::::::::::
Yorulmaz et al. (2024).

:

Here, in response to the need for a comprehensive and multi-faceted evaluation of climate and other earth system models,

we propose a new metric. This is based on a modification of SPAEF and is designed to more precisely capture the spatial

distribution characteristics of climate model output. This new approach addresses certain limitations of existing metrics by

incorporating spatial components that improve sensitivity to the spatial distribution and the relative bias of the variable under85

evaluation. We apply this new metric to synthetic datasets that imitate statistical properties and possible distributions of two

types of climate variables, demonstrating its ability to offer improved insight into the spatial fidelity of model outputs. Through

this work, we aim to provide the climate modeling community with a refined tool for assessing spatial distribution accuracy,

contributing to more reliable model evaluations, improved climate model development, and, ultimately, more accurate pro-

jections. The proposed approach holds significant potential for applications in other scientific fields, including hydrology and90

environmental sciences.

:
It
::
is
:::::::::
important

::
to

:::::
stress

:::
that

:::
the

:::::::::
MSPAEF

:::::
metric

::
is
:::
not

::::::::
intended

::
to

::::::
replace

:::::::::
traditional

:::::::::::
multi-metric

:::::::::
evaluation

::::::::::
approaches.

::::::
Instead,

::
it
::
is

::::::::
designed

::
to

::::::::::
complement

:::::::
existing

::::::::
measures

:::
by

:::::::::
providing

:
a
::::::::
balanced

::::::::
indicator

:::
that

:::::::
captures

:::::
both

::::::
spatial

::::::
pattern

3



::::::::
similarity

:::
and

:::::::
relative

:::::
mean

:::
bias

::::::
within

::
a

:::::
single

::::::
metric.

::
In

::::
this

::::
way,

::::::::
MSPAEF

::::::
serves

::
as

::
a

:::::
useful

:::::::::
additional

::::
tool,

::::::::::
particularly

::::
when

::
a
::::::
unified

::::::::
summary

::::::
statistic

::
is
::::::::
desirable.

:
95

2 Data and Methods

2.1 Metrics

This study focuses on compound metrics specifically designed for the spatial evaluation of climate or other environmental

parameters. The four metrics evaluated and inter-compared in this work are presented below.

SPAEF metric100

The SPAEF (SPAtial EFficiency) metric by Koch et al. (2018)
::::::::::::::::::
Demirel et al. (2018b) is a robust metric that was originally

created for hydrological model evaluation, and it is used to characterize the performance of a model regarding the spatial

distribution of a variable. It is defined as:

SPAEF = 1−
√

(α− 1)2 +(β− 1)2 +(γ− 1)2 (1)

with:105

α= ρ(M,O) , β =
(σM

µM
)

(σO

µO
)

and γ =

∑n
j=1min(Kj ,Lj)∑n

j=1Kj
(2)

where ρ is the spatial correlation coefficient between the points of the model and the observations, σ and µ are the standard

deviation and mean value for each of the model and observation, K and L are the probability distributions
:::::::::
histograms

::::
with

::
n

:::::::
common

::::
bins,

:
of the standardized values (z-score) of the model and observations respectively, and γ is the histogram overlap of

the standardized values of the two datasets. This metric is bias-insensitive since none of its three terms are affected by present110

bias, and therefore the final metric conveys only the similarity in the patterns between the model and the observations. The

SPAEF metric takes values from −∞ to 1, with 1 indicating an excellent agreement of the model with the observations.

The Spatial Pattern Efficiency Metric (Esp)

The Esp metric by Dembélé et al. (2020) was designed to be a simple and robust metric for hydrological model evaluation,

and it is defined as:115

Esp = 1−
√
(rs − 1)2 +(γ− 1)2 +(α− 1)2 (3)

with:

rs = 1−
6
∑n

1 d
2

n(n2 − 1)
, γ =

(σM

µM
)

(σO

µO
)

and α= 1−ERMS(ZM ,ZO) (4)

where rs is the Spearman rank-order correlation coefficient, σ and µ are the standard deviation and mean value for each of

the model and observation, ZM and ZO are the standardized values (z-score) of the model and observations respectively, and120

4



ERMS is the root mean square error of the standardized values. A benefit of this metric is that it does not require any user-

defined parameters, such as the bins of the histograms, and that two of the three components take into account the spatial

distribution of the variable. It takes values between −∞ and 1, with 1 indicating excellent performance of the model.

WSPAEF Metric

An relatively newly developed modification of the SPAEF is the Wasserstein Spatial Efficiency (WSPAEF) by Gómez et al.125

(2024) and is defined as:

WSPAEF =
√
(α− 1)2 +(σ− 1)2 +(ϕ)2 (5)

with:

α= ρ(M,O) , σ =
σM

σO
and ϕ=WD = (

∑
n
i=1
::

|KiX(i)
:::

−LiY(i)
:::

|p)
1
p (6)

where ρ is the spatial correlation coefficient between the points of the model and the observations, σ is the standard deviation130

for each of the model and observation, K and L are the probability distributions of the model and observations
::::
WD

::
is

:::
the

::::::::::
Wasserstein

:::::::
distance

::
of

:::::
order

::::
p=2,

:::::
with

::::
X(i)::::

and
:::
Y(i)::::::

being
:::
the

:::
i-th

:::::
order

:::::::
statistic

::
of

::::
the

:::::::
samples

::
of

:::
the

:::::::::::
observations

::::
and

::::::
model,

:
respectively, and WD is the Wasserstein Distance, of order p= 2

:
n
::
is

:::
the

::::
total

:::::::
number

::
of

:::::::
samples

::
in

::::
each

:::::::
dataset.

::::
This

:::::
means

::::
that

::
the

::::::
values

::
of

:::
the

:::
two

:::::::
datasets

::::
have

::::
been

::::::::
arranged

::
in

::::::::
ascending

:::::
order,

::::
and

::::
X(i) ::

is
::
the

::::
i-th

::::
value

::
in

:::
the

::::::
sorted

::
list. WD

was calculated using the original distributions
:::::
values

:
of the two datasets , to explicitly account for the bias. This modification135

of SPAEF is sensitive to bias since the Wasserstein distance term is a measure of the minimum required effort that is needed

to change the histogram of one dataset to match the histogram of the other dataset. It takes values from 0 to ∞, with values

approaching zero indicating excellent agreement of the model with the observations.

MSPAEF Metric

According to these definitions, some limitations can be introduced when using the three previous metrics. For instance,140

SPAEF and WSPAEF only include one component that considers the spatial distribution of the variable’s values, which is the

correlation coefficient in the space domain, while their other two components take into consideration the overall distribution of

the parameter. Furthermore, SPAEF and Esp are bias-insensitive metrics. While this characteristic may be beneficial in certain

contexts, it is not ideal for a comprehensive assessment of climate models, where capturing both spatial patterns and biases is

essential for a thorough evaluation. In addition, all three of them are scale-dependent, meaning that their values change based145

on the units of the input variable.

Therefore, we propose a new metric, on the basis of SPAEF that is bias-sensitive, but at the same time scale-independent.

This metric conveys information not only about the spatial patterns but also the biases, like the WSPAEF. This is desired

because, for a more complete evaluation of the spatial characteristics of a modeled parameter, both the pattern information,

and the bias are essential. This metric, like SPAEF and Esp, takes values from negative infinity to 1, with 1 indicating a perfect150

agreement of the model compared to the observations. The proposed modification to the SPAEF is the following:

MSPAEF = 1− 1√
4

√
(α− 1)2 +(β)2 +(γ)2 +(δ)2 (7)
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with:

α= ρ(M,O) , β =NRMSE , γ =
|M −O|
IQRo

, δ =

√
(σ2 − 1)2 +(

σ2 − 1

σ2
)2 (8)

also:155

NRMSE =
1

IQRO

√∑n
i (Mi −Oi)2

n
and σ =

σM

σO
(9)

where ρ is the spatial correlation coefficient between the grid cells of the model and the observations, NRMSE is the Root

Mean Square Error calculated with the original data and normalized with the inter-quartile range of the observational data

(IQRO), while σO and σM are the standard deviations of the observations, and the model respectively.

This modification of the SPAEF metric is sensitive to the relative value of bias, while at the same time capturing the spatial160

pattern differences. The first two terms capture the spatial agreement between the model and observations, with α representing

the correlation coefficient and β incorporating the normalized RMSE (NRMSE). The third and fourth terms provide additional

insights into distributional differences, with γ accounting for the relative bias and δ capturing differences in variability. The

sensitivity of the metric to the relative bias is attributable to the β and γ terms. This formulation ensures that the metric

simultaneously evaluates spatial agreement, relative bias magnitude, and distributional characteristics.165

Specifically, the correlation coefficient (α term) ensures that the metric reflects the spatial agreement between model out-

put and observations. The normalized RMSE (β term) is computed using the interquartile range (IQR) of the observations rather

than the standard deviation, as IQR provides a more robust measure of variability
::::::::::::::::::::::::::::::::::::::::::::::::
(Rousseeuw and Hubert, 2011; Huber and Ronchetti, 2009)

. This term captures both spatial pattern agreement and bias, behaving differently depending on the magnitude of bias. When

bias is small, it emphasizes spatial differences, whereas, in cases of large bias, it is primarily driven by magnitude differences.170

The relative bias term (γ term) is also normalized by the interquartile range of the observations and is introduced to explicitly

quantify systematic differences in the mean. Finally, the δ term accounts for differences in the spread of values by incorporating

the standard deviation ratio between the model and observations. This final term comprises two components to ensure symme-

try around a value of 1, thereby ensuring the same result regardless of whether the standard deviation ratio or its reciprocal is

applied.175

An advantage of MSPAEF over SPAEF is that its definition does not rely on user-defined parameters. The MSPAEF metric

is formulated without such arbitrary choices, unlike SPAEF, which requires user-specified bins for the histogram overlap term.

This makes it more objective and consistent across different datasets, reducing the influence of subjective parameter selection

on the results.

:
A
::::::
further

:::::::::
advantage

::
of

::::::::::
normalizing

::
all

:::::::::::
components

::
by

::::
IQR

:::
and

:::::::::
expressing

::::
each

::::
term

::
in
::::::::::::
dimensionless

::::
form

::
is
::::
that

::::::::
MSPAEF180

:::::::
becomes

::::::::
relatively

:::::::::
insensitive

:::
to

::::::::::::
preprocessing

::::::::
decisions

::::
such

:::
as

:::
unit

:::::::::::
conversions,

:::::::
domain

::::::::
rescaling,

:::
or

:::::::
masking

:::
of

:::::
small

::::::
regions.

::::::
Unlike

:::::::::
WSPAEF,

::::::
whose

:::::
values

:::
are

:::::::
affected

:::
by

:::
the

::::
unit

::
of

::::::
choice,

::::::::
MSPAEF

::::
can

:::::::
produce

::::::::::
comparable

:::::
values

:::::
under

::
a

::::
wide

:::::
range

::
of

:::::::
analysis

:::::::
settings,

:::::
which

::::::::
increases

:::::::::::::
reproducibility

:::::
across

::::::
studies

::::
and

:::::::
domains.

:

::
An

:::::::::
important

:::::::::
motivation

:::
for

:::
this

::::::::
definition

::
of

::::::::
MSPAEF

::
is

::
to

:::::::
penalize

::::::::::
inconsistent

::::::
model

:::::::
behavior,

::::::
where

:
a
::::::
model

::::
with

::::
poor

:::::
spatial

:::::::::
correlation

:::
but

::
a
::::
very

:::::
small

:::
bias

:::
(or

::::
vice

:::::
versa)

:::
can

::::::
appear

:::::::::
artificially

::::
good

::
in
:::::::::
composite

:::::::
metrics.

:::::
Since

::::::::
MSPAEF

:::::
treats185

6



::::
each

::::::::::
discrepancy

::
in

:::::
either

:::
the

::::::
spatial

:::::::
patterns

:::
or

::
in

:::
the

:::::
mean

:::::::
relative

::::
bias

::
as

::
an

::::::::::
orthogonal

:::::::::
dimension,

::
it
:::::::
prevents

::
a
::::::
strong

::::::::::
performance

::
in

::::
one

:::::::::::
characteristic

:::::
from

:::::::
masking

::::::::::
deficiencies

::
in

:::
the

::::::
other.

::::
This

:::::::
provides

::
a
:::::
more

::::::::
complete

::::::::
evaluation

:::
of

::::
how

::::
each

:::::
model

::::::
differs

::::
from

:::::::::::
observations.

:

:::::
Based

:::
on

::
its

:::::::::
definition,

::::::::
MSPAEF

::
is

::::::::
sensitive

::
to

::::
both

::::::
spatial

::::::
pattern

:::::::::
agreement

::::
and

:::::
mean

::::
bias,

:::
and

::::
this

:::::::::
sensitivity

:::
can

:::
be

::::::
directly

:::::::::
interpreted

:::
in

:::
the

::::::::::::
corresponding

::::::
spatial

:::::
maps.

:::::
Each

:::::::::
component

:::
of

:::
the

::::::
metric

:::
can

:::
be

:::::::::
associated

::::
with

::
an

::::::::::
observable190

::::::
feature

::
in

:::
the

:::::
maps.

::::
The

::::::
spatial

:::::::::
correlation

:::::
term

::::::::
represents

::::
how

:::::
well

:::
the

::::::::
locations

:::
and

:::::::::
intensities

::
of

::::::
spatial

::::::::
gradients

:::::
align

:::::::
between

:::
the

::::::
model

:::
and

::::::::::::
observations.

::::
The

:::::::
NRMSE

::::::::
identifies

::::::::::
differences

::
in

:::::::::
grid-point

::::::::::
magnitudes

::::::
across

:::
the

:::::::
domain

::::
that

::
are

::::::
linked

::
to

:::::
both

:::
the

:::::::
location

:::
and

::::::::
intensity

::
of

:::::::::
gradients,

:::
but

::::
also

::
to

:::
the

:::::
mean

:::::
bias.

:::
The

:::::::
relative

:::::
mean

::::
bias

::::
term

:::::::::
quantifies

::::::::
systematic

::::::
offsets

:::
in

:::
the

::::::
average

::::::
values

::
of

:::
the

:::::
field.

:::::::
Finally,

:::
the

:::::::::
variability

::::
term

::::::
reflects

::::
how

:::::
well

:::
the

:::::
model

::::::::::
reproduces

:::
the

::::::::
amplitude

::
of

::::::
spatial

::::::::::
fluctuations.

:::::::::
Together,

::::
these

::::::::::
components

:::::
allow

:::::::
changes

:::
in

:::
the

::::::::
MSPAEF

:::::
value

::
to

::
be

:::::::
directly

::::::
linked

::::
with195

:::::
spatial

:::::::::::
mismatches.

2.2 Synthetic Data generation

For the development of MSPAEF and the comparison with existing metrics we used a methodology inspired by Gómez et al.

(2024). This approach uses synthetic data for both the observations and the model, in order to identify the behavior of the

metrics for a variety of predefined combinations of correlation, bias and standard deviation ratio between the two sets of data.200

A 10x10 matrix of random data that incorporates some spatial correlation between the different grid points was created using

a covariance model. To achieve that, a distance matrix was first created for the specific grid size, which holds the Euclidean

distance of all possible pairs of points. Then, the covariance matrix was calculated using this distance matrix and the Mattern

covariance function:

Mv(r) =
21−v

Γ(v)
∗ rvs
ls

∗Kv(rs) (10)205

with:

ls = 1.0 , v = 1.5 , Γ(v) =

∞∫
0

tv−1e−tdt and rs =
√
2 ∗ v ∗ r (11)

where v is the smoothing parameter, r is the distance matrix, rs is the scaled distance matrix, ls is a scaling factor, Γ(v) is the

gamma function and Kv is the modified Bessel function of the second kind.

To create the synthetic field with prescribed properties such as a specific standard deviation and mean value, the multivariate210

normal function was used. This function requires two inputs: a mean vector µ that specifies the expected value for each point

on the grid and a covariance matrix Σ encoding the relationships (e.g., variances and covariances) between the values at all

pairs of points on the grid. For the mean vector, a vector that holds the target mean values was created. As a covariance matrix

input, the following matrix was used in order to achieve the desired standard deviation:

C = (
σ

σM
)2 ∗Mv(r) (12)215
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with

σM =

√
Tr(Mv(r))

d
(13)

where σ is the target standard deviation, Mv(r) is the Mattern Covariance function calculated above and d is the number of

spatial points. The output of the multivariate normal function represents the spatial distribution of the observational dataset.

2.3 Correlated data generation220

A second gridded dataset was then created with some correlation, standard deviation ratio and bias target compared to the first

grid, to simulate the spatial distribution of the model dataset, using the following equation:

y = λt ∗
(
ρt ∗ (x−x)+

√
1− ρ2t ∗A ∗σx

)
+x+ δt (14)

where λt is the standard deviation ratio target, ρt is the correlation coefficient target, δt is the bias target, x is the original

matrix, x is the mean value of the original matrix x, σx is the standard deviation of the original matrix x and A is a matrix of225

the same dimensions as x, filled with random numbers drawn from the normal distribution.

2.4 Skewed data generation

The above data are meant to represent climate variables that have a normal distribution since the random data used follow

a normal distribution.
:::::::::::
Nevertheless,

::::::::
numerous

:::::::
climate

:::
and

:::::
other

:::::::::::
geoscientific

:::::
model

::::::
output

::::::::
variables

::
do

:::
not

::::::
follow

:
a
:::::::

normal

::::::::::
distribution,

:::
but

::::::
instead

::::::
exhibit

::::::
skewed

::
or

::::::::::
exponential

::::::::::
distributions,

::
as

::
is
:::
the

::::
case

::::
with

::::
daily

:::::::::::
precipitation

::::::::::::::::::::::
(Ensor and Robeson, 2008)230

:
. To simulate skewed distributions, the normally distributed observational values were transformed using exponentiation. A

corresponding model dataset was generated by first establishing a specific correlation and standard deviation ratio between

the underlying normally distributed values, and then introducing the desired bias after the exponentiation transformation was

applied to both datasets. A limitation of this approach is that even though the target correlation coefficient is generally well-

preserved through the exponentiation, the target standard deviation ratio and bias are not directly translated to the skewed data.235

Nevertheless, relative changes in the target standard deviation ratio and bias are reflected in the resulting skewed data.

Using the original observational grid defined above, the skewed observations and model grids are defined as:

xs = exrm

ys = e
λt∗

(
ρt∗(xrm)+

√
1−ρ2

t∗A∗σx

)
+ δt

(15)

with:

xrm = x−x (16)240

where x is the original matrix, xrm is the original matrix after removing the mean, λt is the standard deviation ratio target, ρt

is the correlation coefficient target, δt is the bias target, σx is the standard deviation of the original matrix x and A is a matrix
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of the same dimensions as x, filled with random numbers drawn from the normal distribution
:::
and

:::
the

::::
other

:::::
terms

:::
are

:::
the

:::::
same

::
as

::::::
defined

::
in

:::
Eq.

:::
14.

:

::::::::
Although

::
the

::::
data

::::::
created

::::
this

:::
way

::::::
follow

:
a
::::::
highly

::::::::
positively

::::::
skewed

::::::::::
distribution,

::::
their

:::::
shape

::::::
closely

::::::::
resembles

:::
an

:::::::::
exponential245

:::::::::
distribution

:::::
when

:::::::::
visualized

::::
with

::
an

::::::::::
insufficient

::::::
number

::
of

:::::::::
histogram

::::
bins,

::::
due

::
to

:::
the

::::::::
generation

:::::::
process,

:::
as

::::
seen

::
in

:::
Fig.

::
1.
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Figure 1.
:::::::
Examples

::
of

:::::::
synthetic

:::
data

:::::::::
generation.

:::::
Panels

:::
(a)

:::
and

:::
(b)

::::
show

:::
the

:::::
spatial

:::::::::
distribution

:::
and

:::::::::
probability

::::::
density

::::::
function

::::::
(PDF),

:::::::::
respectively,

::
of

:::::::
synthetic

:::
data

::::::::
generated

::::
with

:
a
::::::
normal

:::::::::
distribution.

:::::
Panels

::
(c)

::::
and

::
(d)

::::
show

:::
the

:::::::::::
corresponding

:::::
spatial

:::::::::
distribution

:::
and

::::
PDF

::
for

::::::
skewed

::::
data.

The four metrics were calculated for many combinations of bias, standard deviation ratio and correlation, for both the

normal and skewed distribution cases. For each combination of the aforementioned parameters,
:::
and

:::
for

::::
both

:::
the

:::::::
normally

::::
and

::::::
skewed

:::::::::
distributed

:::::
cases,

:
the procedure was repeated 200 times, and the median of the values

::::
value

::
of

::::
each

::::::
metric

::::
was

::::
used

::
to

:::::
ensure

:::::::::::
convergence

::
of

:::
the

:::::::
metrics.

:::::
While

:::
the

::::::::
synthetic

::::
data

:::
are

::::::::
generated

:::
to

:::::
match

:::::::
specific

:::::
target

:::::
values

:::
of

:::::::::
correlation,

:::::
bias,250

:::
and

:::::::
standard

::::::::
deviation

:::::
ratio

:::::::
between

:::::
them,

:::
the

:::::::::
stochastic

::::::
nature

::
of

:::
the

:::::::
process

:::::
means

:::::
these

::::::
targets

:::
are

:::::
only

::::::::::::
approximately

::::::::
achieved.

:::::::::::
Additionally,

:::::::::
non-trivial

:::::
spatial

:::::::::
variations

::::
may

::::
still

:::::
occur

:::::
across

:::::::::::
realizations,

:::::
which

:::
can

::::::
affect

:::::::
different

:::::::
metrics

::
in

::::::
distinct

:::::
ways.

::::
The

::::::::
repetition

:::
and

:::
the

:::
use

::
of
:::
the

:::::::
median

:::::
metric

::::::
values

::::
help

::::::
reduce

:::
the

::::::::
influence

::
of

::::
these

:::::::::
variations

:::
and

:::::::
provide

:
a
:::::
more

:::::
robust

:::::::
estimate

:
of each metricwas used

::
’s

:::::::
behavior

:::::
under

:::
the

::::::::
intended

:::::::::
conditions. To facilitate an easier comparison of

9



the performance of the metrics, these were modified slightly so that they take values equal to or greater than zero, with zero255

indicating perfect agreement with the observations
:::
(see

:::::::::
Appendix

::
A).

In these adjusted conditions, where zero indicates a perfect match with the observations, a well-behaved metric is expected

to show decreasing values as the correlation coefficient increases and the bias decreases. In the λ-δ
::::
λ-δ-ρ

:
plots, this is reflected

as the curves shifting
:::
shift

:
at lower coordinates values as one moves towards the right and upward parts of the subplots(e.g.,

in Figures 2 to 5)
:
,
::
as

:::::::::
illustrated

::
by

:::
the

::::::
purple

::::::
curves

::
in

::::
Fig.

:
2. Additionally, the lowest metric value for any combination of260

correlation and bias is anticipated at a standard deviation ratio of 1. This is reflected in the curve minimum being at a standard

deviation ratio of 1 for each subplot, with metric values increasing as the standard deviation ratio deviates from 1.
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Figure 2. Examples of metric behaviour curves for a given value
::::
range

:
of correlation and bias

::::
values. Black

:::
and

:::::
purple curves indicate a

well-behaved metric, while the blue curves indicate a poorly behaving metric. In the figure, λ is the standard deviation ratio target
:
,
:
δ
::
is
:::
the

:::
bias

:::::
target,

:::
and

:
ρ
::
is

:::
the

::::::::
correlation

::::
target

:
between the model and the observationsdataset.

In the examples of
:::
the

:::
top

:::
left

:::::::
subplot

:::
of Fig. 2, the black

:::
and

:::::
purple

:
curves indicate well-behaving metrics, since for

all of them, the minimum values are found at λ of 1, and the values increase monotonically as the standard deviation ratio

deviates from 1, even though some of the curves are not perfectly symmetric. The blue curves indicate poorly behaving metrics265

because, for curve e, the minimum value is not found at a standard deviation ratio of 1, while for curve d, the curve does not

monotonically increase to the left side of the minimum.
:
”
:
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2.5 Real climate data

The sixth phase of the Coupled Model Intercomparison Project (CMIP6) is the latest generation of CMIP, which is designed

to improve understanding of past, present, and future climate change driven by greenhouse gas emissions. Numerous research270

institutions worldwide contributed their climate models, following standardized protocols for radiative forcing and data format-

ting. CMIP6 models have generally shown improved performance in simulating various climate fields compared to previous

CMIP generations (Li et al., 2020). They also exhibit reduced biases in tropical regions, such as the double ITCZ bias (Tian

and Dong, 2020). In this study, 33 CMIP6 models were evaluated against the ERA5 reanalysis dataset (Hersbach et al., 2020).

For each model, the ensemble mean of all available variants was used, for precipitation and 2-meter temperature during the275

historical period from 1981 to 2010. The CMIP6 models and the ERA5 dataset were remapped to 1-degree resolution using

linear interpolation for the temperature variable and first-order conservative interpolation for the precipitation variable. For

precipitation, the mean annual total in millimeters was calculated over the period, while for temperature, the mean annual

value in Kelvin was computed.

::
To

::::::::
compute

::::::::
MSPAEF

::
or

:::
any

:::::
other

::::::
spatial

:::::::
metrics,

:::
the

:::::
model

::::
and

:::::::::::
observational

:::::::
datasets

:::::
need

::
to

::
be

::::::
placed

::::
into

:
a
::::::::
common280

::::
grid.

:::::::::
Regridding

::::
data

:::
can

::::::::
generally

:::::
affect

:::
the

:::::
values

::
of

::::::
metrics

::::
that

:::
rely

:::
on

::::::::
grid-point

::::::
values.

::::::::
However,

:::
the

::::::
relative

:::::::::::
performance

:::::::
rankings

::::::
among

::::::
models

:::
are

::::::::
expected

::
to

::::::
remain

::::::
largely

:::::::::
unchanged

:::::::
because

::
all

:::::::
models

:::::::
undergo

:::
the

::::
same

:::::::::
regridding

:::::::::
procedure

::
to

::
the

:::::
same

:::::
target

::::
grid.

:::::::::
Therefore,

:::
any

:::::::::
smoothing

::
or
:::::::::
distortion

:::
that

::::::
occurs

:::
due

::
to

:::
the

:::::::::::
interpolation

::
is

:::::::
expected

::
to

::::
have

::
a
::::::
similar

:::
and

:::::
small

:::::
effect

:::::
across

:::
the

:::::::
datasets,

::::::::
provided

::::
that

:::
the

::::::::
regridding

::::
does

::::
not

::::::
involve

:::::::
extreme

:::::::
changes

::
to

:::::::::
resolution.

3 Results and Discussion285

In Sect. 3.1 and 3.2, the MSPAEF, SPAEF and Esp metrics were modified slightly so that their best performance is indicated

at the zero value, like in the WSPAEF metric, for easier inter-comparison of their performance. Contrariwise, in Sect. 3.3, all

metrics were applied in their original form.

3.1 Metrics Behavior

For each of the four metrics examined, we calculated its value for a range of values of spatial correlation coefficient, bias and290

standard deviation ratio between the observational data and the model. The
:::::::::
correlation

:::::::::
coefficient,

::::
bias,

::::
and

:::::::
standard

::::::::
deviation

::::
ratio

::::
were

::::
each

::::::::
sampled

::
at

::::::
discrete

::::::::
intervals

:::::
within

:::
the

:::::::::
following

::::::
ranges:

:::::::::
correlation

:::::
(-0.9

::
to

::::
0.9),

::::
bias

::
(0

::
to

:::
3),

:::
and

::::::::
standard

:::::::
deviation

:::::
ratio

:::
(0.3

::
to
:::::
1.8).

:::
The

:
following plots show the behavior of the four metrics following the logic presented in Fig. 2,

using a mean of 10 and a standard deviation of 1 for the observational data.

For the SPAEF metric (Fig. 3), the values generally decrease with increasing correlation, which is the expected behavior295

of a well-defined spatial efficiency metric. In addition, a good behavior is observed for each curve in the cases where there

is no bias present, as the minimum of the curves in these cases is found at standard deviation ratios of 1. Nevertheless, as

the bias increases (δ = 1.0,3.0), the minimum of the curves generally shifts to values of a standard deviation ratio greater
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than 1. Specifically, for the skewed distributed variable, it moves for both cases where there is a bias present, while for the

normally distributed variable, the shift of the minimum to standard deviation ratios values greater than 1 is observed only for300

the cases of a large bias (δ = 3.0), with the shift of the normally distributed cases being more perceivable with a high correlation

coefficient (ρ= 0.9). This indicates that the metric does not perform as intended in larger biases, especially in the case of a

high correlation coefficient, where this shift of the minimum is more evident. In addition, the increasing bias does not directly

affect the magnitude of the SPAEF values, highlighting that this metric is bias-insensitive.
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Figure 3. SPAEF metric behavior (λ is the standard deviation ratio target, ρ is the correlation target and δ is the bias target between the model

and the observation dataset).

The behavior of the Spatial Pattern Efficiency Metric (Esp) (Fig. 4) is very similar to that of SPAEF. There is good per-305

formance in the case of no bias, across the values of the correlation coefficient, but it performs worse as the bias increases,

especially for the case of a high correlation coefficient (ρ= 0.9), as the minimum of the curves shifts to standard deviation

values greater than 1. Specifically, for the cases of a small bias (δ = 1.0) the metric performs well for the normally distributed

data, but for the skewed data, the minimum of the curves shifts to standard deviations greater than 1. Conversely, for the cases

12



of a large bias (δ = 3.0), while the skewed variables have their minimum shifted to standard deviation ratios larger than 1 for all310

correlation coefficients, the normally distributed cases also have a shift of the minimum to standard deviations greater than one

that is perceivable for the high correlation coefficient only (ρ= 0.9). This metric, like in the case of SPAEF, is bias-insensitive,

since different bias values do not directly reflect to changes in the values of the metric.
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Figure 4. Esp metric behavior (λ is the standard deviation ratio target, ρ is the correlation target and δ is the bias target between the model

and the observation dataset).

On the other hand, the WSPAEF metric (Fig. 5) exhibits a distinct behavior compared to the aforementioned metrics. Sim-

ilarly to the two previous metrics, a good performance is observed for both the normal and skewed distributed data in the315

absence of bias. However, for the normally distributed cases across all combinations of correlation coefficient and bias, the

minimum value of the curve is consistently at a standard deviation value of 1. For the skewed data, in the cases where there is

a small bias present (δ = 1.0) and the correlation coefficient is near 0 (ρ=−0.3,0.3), the minimum value of the curve shifts

at standard deviations ratio slightly below 1. When a substantial bias is present (δ = 3.0), the minimum value of the curve for
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the skewed distributed data shifts to a standard deviation ratio significantly below 1. Additionally, unlike SPAEF and Esp, this320

metric demonstrates sensitivity to bias, as the metric values generally increase with increasing values of bias.
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Figure 5. WSPAEF metric behavior (λ is the standard deviation ratio target, ρ is the correlation target and δ is the bias target between the

model and the observation dataset).

The MSPAEF metric, illustrated in Fig. 6, demonstrates a robust performance across all combinations of correlation coeffi-

cients and biases for both the normal and skewed distributed variables. Nonetheless, under conditions of large bias (δ = 3.0)

and negative correlation coefficients (ρ=−0.9,−0.3), the response curve for normally distributed data exhibits a near-plateau

around the standard deviation ratio of 1. This suggests a diminished sensitivity to variations in the standard deviation ratio325

within this specific range. Similar to WSPAEF, MSPAEF is sensitive to bias, with values generally increasing with increasing

bias. This trend is particularly pronounced for cases with a large positive correlation coefficient (ρ= 0.9). Generally, the metric

values decrease with increasing correlation and decreasing bias, which aligns with the expected behavior of a well-behaved

metric.
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Figure 6. MSPAEF metric behavior (λ is the standard deviation ratio target, ρ is the correlation target and δ is the bias target between the

model and the observation dataset).

3.2 Synthetic data examples330

Two examples are presented to illustrate the differences in the values and the interpretation of the four metrics, using
:::::::
normally

:::::::::
distributed synthetic data as described in the Methods section. These synthetic datasets are designed to realistically resemble

observations and climate model output for evaluation. The first example shown in Fig. 7a, presents the synthetic observations

and two different models with predefined statistical properties. The observations were generated with a mean value of 200 and a

standard deviation of 70, representing a scenario such as the mean annual precipitation in millimeters (mm) in a specific region335

of the planet.
::::::::
Although

::::
daily

:::::::::::
precipitation

:::::
often

::::::
follows

::
a
::::::
highly

::::::
skewed

::
or

::::::::::
exponential

::::::::::
distribution,

::::::
annual

::::::::
averages

:::
can

:::
be

::::::
closely

:::::::::::
approximated

::
to

:
a
::::::
normal

:::::::::::
distribution,

::::::::
especially

::::::
outside

::
of

:::::
polar

::::::
regions

::::
(see

::::::::
Appendix

:::
B). Model A was created using

a spatial correlation coefficient equal to 0.85, a standard deviation ratio of 1.1 and a domain-average bias of -10. In contrast,

Model B was created using a correlation coefficient of -0.4, a standard deviation ratio of 1.0, and a domain-average bias of
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0.
:::::
While

:::
the

::::
use

::
of

:::::::
negative

::::::
spatial

::::::::::
correlations

::::::
might

::::
look

:::::::
unusual,

:::::::::
especially

::
at

::::::
global

::::::
scales,

::::
they

:::
can

::::::
occur

:::::::::
regionally,340

::::::::
especially

::
in

:::::::::::
precipitation

::::
fields

::::
due

::
to

::::::
known

::::
large

:::::
biases

::::
near

:::
the

:::::::
equator,

::::
such

::
as

:::
the

::::::
double

:::::
ITCZ

::::
bias

::::::::::::::
(Ma et al., 2023).

::
M

:

Model A shows a spatial pattern that resembles the observations closely, with only minor differences. In contrast, Model B

displays a significantly different spatial pattern for the variable under evaluation. Intuitively, Model A should be considered the

better model due to its close alignment with the observations and its minimal relative bias. On the other hand, Model B should

be regarded as the less skillful model because its spatial pattern diverges considerably from the observations, even though it345

does not exhibit significant bias when looking at the domain average.

In Fig. 7b, the
:::::::
boxplots

:::::
show

:::
the

::::::::::
distribution

::
of

:::
the

:
values of the four metrics are shown for

::::
from

:
20 different variations

:::::::::
realizations

:::
of

:::
the

::::::::
synthetic

::::
data

::::::::
generated

:
with the aforementioned parameters. The WSPAEF metric indicates that Model

B has better performance compared to Model A, since it has the lower values for the metric, while the other three metrics

conclude that Model A illustrates a model with better performance compared to Model B, as our intuition suggests. The bad350

performance of WSPAEF in this example is attributed to its very high sensitivity to the actual values of the bias due to the

Wasserstein distance component, which overwhelms the contribution of the other two components on the final value of the

metric.
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Figure 7. (a) Example of spatial pattern of synthetic observations and Models A and B in Example 1 (Observations were to represent a

scenario of the mean annual precipitation in mm of a specific region. Model A represents a model with high correlation and a small relative

bias compared to the observations, while Model B represents a model with negative correlation and no bias compared to the observations),

(b) boxplots of the metric values for Models A and B. (SPAEF: Spatial Efficiency, WSPAEF: Wasserstein Spatial Efficiency, MSPAEF:

Modified Spatial Efficiency, Esp: Spatial Pattern Efficiency)

The second example is shown in Fig. 8. The observations of this example were generated with a mean of 6 and a standard

deviation of 1, representing a scenario such as the annual temperature in a region of the planet. Model A was created using a355

spatial correlation coefficient of 0.6, a standard deviation ratio of 1.1 and a domain-average bias of 0. Model B was created

using a spatial correlation coefficient of 0.8, a standard deviation ratio of 2.0 and a domain-average bias of 7.5.
:::::
While

:::
this

:::::
large
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:::
bias

:::::::
example

::::::
might

::::
seem

:::::::::
unrealistic

::
at

:::::
global

::::::
scales,

::
it

:::
can

:::::
occur

::
at

::::
local

:::::
scales

::::::
and/or

:::::::::::
momentarily

:::::::::::::::::::::
(McSweeney et al., 2015)

:
.

Model A spatial pattern exhibits some correlation compared to the original data but with no significant bias present. In360

contrast, Model B has a very similar spatial pattern for the variable, but with a very pronounced positive bias. Based on

these observations, intuitively, Model A should be considered the better of the two models. Although its correlation with the

observations is average, the lack of bias makes it more reliable. On the other hand, Model B should be considered the worst of

the two because, despite its similarity to the observed spatial pattern, it has a substantial bias compared to the observations.

Figure 8b presents
:
In
::::

Fig.
:::

8b
:::
the

::::::::
boxplots

:::::
show

:::
the

::::::::::
distribution

::
of

:
the values of the four metrics , for

::::
from 20 different365

variations with the same values of
:::::::::
realizations

:::
of

:::
the

:::::::
synthetic

::::
data

:::::::::
generated

::::
with

:::
the

:::::::::::::
aforementioned

:
parameters. The WS-

PAEF and MSPAEF metrics indicate that the Model A has far better performance compared to the Model B. This is expected,

since there is a large bias present in Model B which dramatically increases the values of these two bias-sensitive metrics,

contrariwise to Model A which has no bias present. On the other hand, the other two metrics indicate that Model B illustrates a

model with better performance compared to Model A, because these two metrics are bias-insensitive and therefore are affected370

more by the underlying patterns of the variable in the two models.
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Figure 8. (a) Example of the spatial pattern of observations and Models A and B in Example 2 (Observations were to represent a scenario of

the annual temperature in degrees Celsius of a specific region. Model A represents a model with medium correlation and no bias compared

to the observations, while Model B represents a model with high correlation and a large bias compared to the observations), (b) boxplots of

the metric values for Models A and B. (SPAEF: Spatial Efficiency, WSPAEF: Wasserstein Spatial Efficiency, MSPAEF: Modified Spatial

Efficiency, Esp: Spatial Pattern Efficiency)

3.3 Application to real data

In this section, the four metrics were used in their original form, where the value of 1 indicates the best performance for

MSPAEF, SPAEF and Esp, while for WSPAEF the best performance is indicated at a value of 0. The metrics were applied to

global CMIP6 model output, in order to benchmark them against the ERA5 reanalysis for annual precipitation totals and mean375

near-surface temperature. For both examples, we averaged over the 1981-2010 period.
:::::
These

:::::::::::
multi-decadal

::::::::
averages

:::::
were
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::::
used

::
to

::::::
reduce

::
the

:::::
short

::::
term

:::::::::
variability,

::::
and

:::::::
highlight

:::
the

::::
long

::::
term

::::::::::::
climatological

::::::
signal

:::::::::::::::::::::::::::::
(Du et al., 2022; Nooni et al., 2023)

:
. The performance of the CMIP6 models using the MSPAEF metric for the two variables is presented in Fig. 9. Some models

perform very well for the spatial distribution of both variables (e.g., CESM2), while others perform well for one of the two

variables, and much poorer for the other. For instance, the MIROC6 model is found to perform better than most other CMIP6380

models for precipitation, but it is the second worst-performing model in representing the spatial distribution of near-surface

temperature. On the other hand, ACCESS-ESM1-5 performs very well for the temperature, being in the top few models, but it

is the worst-performing model in representing precipitation. Then, there are models that perform badly for both variables, such

as MIROC-ES2L which performs below average in terms of the precipitation variable and is the worst-performing model by

far in the representation of temperature.385

::
In

:::
line

::::
with

::
a
:::::::
previous

:::::
study

:::::::::::::::
(Jun et al., 2008),

:::
we

::::::::
generally

::::::
expect

::::::
models

:::::
from

:::
the

:::::
same

:::::::::
developers

::
or

::::::
model

::::::
family

::
to

:::::
cluster

::::::::
together

::
in

:::::::::::
performance,

::::
and

:::
we

:::
do

:::::::
observe

:::
this

::::::::
behavior

:::
for

:::::
most

:::::::
groups.

::::::::
However,

::
a

:::
few

:::::
clear

:::::::
outliers

:::::::
emerge.

:::::
These

:::::::
outliers

:::::::
typically

::::::::::
correspond

::
to
:::::::

models
::::
with

:::::::::::
substantially

:::::::
coarser

::::::::::
atmospheric

:::::::::
resolution

::::
(see

:::::::::
Appendix

:::
C),

::::::
which

:::
can

::::::::
markedly

::::
alter

:::::::::::
precipitation

::::::::::::
characteristics

::::
and

:::::::
therefore

:::::::
degrade

:::::::
overall

::::::::::
performance

:::::::
relative

::
to

::::
their

:::::::::::::::
higher-resolution

::::::::::
counterparts.

:::::::::
Although

:::::::::
differences

:::
in

:::::::::::::::
parameterizations

::::
and

:::::::
internal

:::::::::
variability

::::
may

::::
also

::::
play

::
a
::::
role,

::::
the

:::::::::
systematic

::::
link390

:::::::
between

::::::::
resolution

::::
and

:::::::::::
performance

:::::
offers

:::
the

:::::
most

::::::::
plausible

::::::::::
explanation

:::
for

:::
the

:::::::::
departures

:::::
from

:::
the

::::::::
expected

:::::::::
clustering.

Regarding the actual values of the metric, all CMIP6 models except MIROC-ES2L, have values greater than 0.9 for the tem-

perature variable.
::::::::::::
MRI-ESM2-0

::
is

:::
the

:::::
model

::::
with

:::
the

::::
best

::::::::::
performance

:::
for

:::
the

::::::::::
temperature

::::::::
variable,

:::::
which

::::::::
indicates

:::
that

::::
this

:::::
model

:::::
better

:::::::::
represents

:::
not

::::
only

:::
the

:::::
spatial

::::::::
patterns,

:::
but

:::
also

:::
the

::::::
actual

:::::
values

::
of

::::::::::
temperature

::
at
::::
each

:::::::::
grid-point.

:
Contrariwise,395

all models except the two CESM2s and the NorESM2-MM models have values less than 0.85 for the precipitation variable.

This indicates that the CMIP6 models generally can capture well the spatial distribution and magnitude of the temperature,

while they struggle a lot more in the representation of the precipitation features. This is somewhat expected, as the

::::::::
Although

:::::::::
comparing

:::
the

::::::::
MSPAEF

:::::
values

:::
for

::::
two

:::::::
different

::::::::
variables

::
is

:::
not

:::::::::::::
straightforward,

:::::
some

::::::::::
conclusions

::
on

:::
the

::::::
nature

::
of

:::
the

::::::::
variables

:::
can

::
be

::::::::
deduced.

::::
The

:
spatial distribution of temperature is influenced by factors such as orography, latitude,400

and proximity to the oceans, which are easier to be represented in climate models. Modeling precipitation, on
:
,
:::
due

::
to
:::::

their

:::::::
generally

::::::::
smoother

::::
and

::::::::::
slow-varying

::::::
nature

::
in

:::::
space.

:::
On the other hand,

:::::::::::
precipitation

::::
tends

::
to

::::
have

::::::
steeper

:::::::::
gradients.

::::::::
Modeling

::::::::::
precipitation

:
is significantly more complex (Legates, 2014; Räisänen, 2007). It

:
,
::
as

:
it
:
is largely influenced by sub-grid-scale pro-

cesses like convection and cloud microphysics that are not explicitly resolved in the models, and they need to be parametrized

(Pieri et al., 2015)
:
,
:::::
which

::::::
makes

:
it
:::::
more

::::::
difficult

:::
for

:::::::
climate

::::::
models

::
to

:::::::
correctly

:::::::
capture

::
the

::::::::::
underlying

:::::::
gradients

::::
and

:::
the

:::::
actual405

::::::::
grid-point

:::::::
values.
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Figure 9. Scatter plot of the Modified Spatial Efficiency (MSPAEF) values for annual mean precipitation and 2-meter temperature derived

from 33 CMIP6 models during the historical period of 1981-2010.

Tables 1 and 2 present the values and the corresponding ranking of the models, based on the four metrics discussed in

this study, for annual precipitation and 2-meter temperature, respectively. The metrics generally exhibit a degree of consensus

regarding the identification of the best and worst-performing models for each variable. However, the precise ranking order of

the models varies across the different metrics.410

For precipitation (Table 1), the model rankings derived from the WSPAEF metric differ the most from those obtained from

the other three metrics, as illustrated in Fig. 10. The normalized sum of absolute rank differences between the CMIP6 models

exceeds the 7 units when comparing the WSPAEF metric with the other three metrics. This significant differentiation in the

WSPAEF rankings can be attributed to the very large values this metric attains as a consequence of its high sensitivity to the

inherent biases that arise from its Wasserstein distance component. Given that annual precipitation was the variable under415

consideration, a bias of just 30 mm in the globally averaged total annual precipitation can result in WSPAEF metric values

exceeding the 30 units, even if this bias represents only approximately 3% of the total annual global precipitation.

The MSPAEF metric rankings exhibit the most similarity to those of Esp with a rank difference value of 2.8 and the least

similarity to WSPAEF with a rank difference value of 7.9, with SPAEF demonstrating an intermediary level of similarity.
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This suggests that MSPAEF effectively captures the spatial distribution of precipitation while at the same time not being420

overwhelmed by existing bias.

For temperature (Table 2), the four metrics generally exhibit a greater degree of agreement regarding the ranking of the

models. However, more variability is observed in the identification of the top-performing models. Concerning the WSPAEF

metric in Table 2, its values exceed the 2 units only for three models. This is attributed to the considerably smaller absolute

values of the mean bias between the individual models and the observations, measured in Kelvin, which rarely exceed one425

or two degrees. This relatively small absolute value of the mean bias allows the other components of the WSPAEF metric,

like the correlation coefficient, to exert a greater influence in the final metric value. This enables WSPAEF to achieve greater

consistency in its rankings with the other three metrics for temperature than for precipitation, as depicted in Fig. 10.

The most substantial differences in temperature rankings are observed between WSPAEF and SPAEF, while the smallest

difference occurs between the Esp and SPAEF metric. The rankings of MSPAEF exhibit the greatest similarity to the Esp430

metric with rank differences value of 3.8, and the least similarity to SPAEF with rank differences value of 5.5.

:::
The

::::::::
similarity

::
of

::::::::
MSPAEF

::
to

:::
the

:::::::::::::
bias-insensitive

::::::
metrics

:::::
might

::::
look

:::::::
unusual

:
at
::::
first

:::::
glance

:::::::::
(compared

::
to

:::
the

:::::
other

:::::::::::
bias-sensitive

:::::::
metrics),

:::::
given

:::
that

:::::::::
MSPAEF

:
is
::
a
:::::::::::
bias-sensitive

::::::
metric.

:::::::::
However,

:::
this

::
is

:::
less

:::::::::
surprising

:::::
when

::::::::::
considering

:::
the

::::
large

:::::::::
sensitivity

::
of

::::::::
WSPAEF

:::
(the

:::::
other

:::::::::::
bias-sensitive

:::::::
metric)

::
to

:::
the

:::::::
absolute

::::
value

:::
of

:::
the

::::
mean

:::::
bias.

::::
This

::::::::
sensitivity

::
is

::::
what

::::::
causes

::::::::::
WSPAEF’s

::::::::::
performance

::
to

:::::::
diverge

::::::::::
significantly

:::::
from

::::
that

::
of

::::::::
MSPAEF

::::
(and

::::
the

::::
other

::::
two

:::::::::::::
bias-insensitive

::::::::
metrics),

::::::::::
particularly

:::
for

:::
the435

::::::::::
precipitation

::::::::
variable,

:::::
where

:::
the

::::
bias

::
in

:::
the

::::
mean

::::
can

::
be

:::::
large

::
in

:::::::
absolute

:::::
terms.

:

:::::
Using

:::::::
weights

:::
for

:::
the

:::::::
different

:::::::::::
components

:::::
could

:::::
serve

::
as

::
a

::::
way

::
to

:::::::
improve

:::
the

:::::::::::
performance

::
of

:::
the

:::::::
existing

:::::::
metrics,

:::
to

::::::
closely

:::::
match

::::
the

::::::::::
performance

:::
of

:::::::::
MSPAEF.

:::
For

::::::::
example,

::
in
::::

the
::::
case

::
of

:::::::::
WSPAEF,

:::::::::
achieving

:
a
::::::::

behavior
:::::
more

:::::::::
consistent

::::
with

::::::::
MSPAEF

::
in

:::
the

::::::::
presence

::
of

:::::::::
significant

:::::::
absolute

:::::
mean

::::
bias

::::::
would

::::::
require

:::::::
reducing

::::
the

::::::
relative

::::::::::
contribution

:::
of

:::
the

::::
WD

:::::::::
component.

::::
By

:::::::
contrast,

:::::::
SPAEF

:::
and

::::
Esp:::::::

already
:::::::
perform

::::::::
similarly

:::
to

::::::::
MSPAEF

:::::
when

::::
bias

::::::
values

:::
are

::::::
small,

:::
but

:::
as

::::
bias440

::::::::
increases,

::::
their

::::
lack

::
of

:::::::::::
bias-sensitive

::::::::::
components

::::
will

::::
limit

:::::
their

:::::
ability

::
to

:::::::
achieve

::::::
similar

::::::::::
performance

::
to
:::::::::
MSPAEF.

:::::
While

::
in

:::
this

::::::::::::
demonstration

:::
we

:::::::
evaluate

::::
and

::::
rank

::::::
models

:::::::::
separately

:::
for

::::
each

:::::::
variable

:::
and

:::::
each

::::::
metric,

::
in

:::::
many

:::::::::
real-world

::::::::::
applications,

:::
the

::::::
overall

::::::
model

:::::::::::
performance

:::
can

:::
be

:::::::
assessed

:::::
using

:::::::
multiple

::::::::
variables.

::::::
There

:::
are

:::::
many

::::::::::::
multi-criterion

::::::
model

::::::
ranking

:::::::::
techniques

:::
that

::::
can

::
do

::::
this,

::::
such

::
as

:::::::::::
Compromise

:::::::::::
Programming

::::
(CP)

:::::::::::::::::::::::::::::::::
(Refaey et al., 2019; Baghel et al., 2022),

:::::::::
Technique

::
for

::::::
Order

:::::::::
Preference

:::
by

:::::::::
Similarity

::
to

:::
an

::::
Ideal

::::::::
Solution

:::::::::
(TOPSIS)

::::::::::::::::::::
(Raju and Kumar, 2015)

:::
and

:::::::::::
Cooperative

:::::
Game

:::::::
Theory445

:::::::::::::::::::::::::
(Gershon and Duckstein, 1983)

:
.
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Figure 10.
::::::::
Normalized

::::
sum

::
of
:::::::

absolute
::::

rank
:::::::::
differences

:::::::
between

::::
pairs

::
of

::::::
metrics

:::
for

:::
the

:::
33

::::::
CMIP6

::::::
models,

:::::
based

::
on

:::::
mean

::::::
annual

:::::::::
precipitation

::::
and

:::::::::
temperature

::::::
during

:::
the

:::::::
historical

::::::
period

::
of

::::::::::
1981–2010.

:::::::
(SPAEF:

::::::
Spatial

::::::::
Efficiency,

::::::::
WSPAEF:

::::::::::
Wasserstein

::::::
Spatial

::::::::
Efficiency,

:::::::
MSPAEF:

:::::::
Modified

::::::
Spatial

::::::::
Efficiency,

::::
Esp:

:::::
Spatial

::::::
Pattern

::::::::
Efficiency)

:

Normalized sum of absolute rank differences between pairs of metrics for the 33 CMIP6 models, based on mean annual

precipitation and temperature during the historical period of 1981–2010. (SPAEF: Spatial Efficiency, WSPAEF: Wasserstein

Spatial Efficiency, MSPAEF: Modified Spatial Efficiency, Esp: Spatial Pattern Efficiency)

4 Conclusions450

Model evaluation plays a vital role in climate model development and is crucial for understanding the limitations of these

models, especially before conducting impact assessments. In this study, we present an inter-comparison exercise of several

performance metrics that focus on the spatial representation of model output.

The bias-insensitive metrics, SPAEF and Esp perform well in the cases of relatively low biases. With increasing bias,

their performance generally deteriorates, something that is evident by the shift of the curve’s minimum to values of standard455

deviation ratios greater than 1. Contrariwise, the WSPAEF metric generally has a better all-round performance than the two

bias-insensitive metrics. Nonetheless, it performs poorly for skewed distributed variables as the bias increases.
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Table 1. Values of the four metrics and CMIP6 model rank for the annual total precipitation, averaged over the 1981-2010 period. (SPAEF:

Spatial Efficiency, WSPAEF: Wasserstein Spatial Efficiency, MSPAEF: Modified Spatial Efficiency, Esp: Spatial Pattern Efficiency)

Model ID MSPAEF SPAEF WSPAEF Esp Rank

MSPAEF

Rank

SPAEF

Rank

WSPAEF

Rank

Esp

1 0.766 0.866 64.057 0.554 28 15 29 15

2 0.754 0.901 89.795 0.589 31 5 31 10

3 0.766 0.816 34.66 0.494 28 27 18 26

4 0.785 0.86 18.115 0.5 20 16 4 25

5 0.857 0.919 15.979 0.658 2 1 2 2

6 0.86 0.918 13.463 0.665 1 2 1 1

7 0.84 0.911 34.8 0.634 4 4 19 4

8 0.803 0.9 49.172 0.578 13 6 25 11

9 0.806 0.835 27.046 0.571 11 22 10 13

10 0.792 0.853 25.821 0.545 19 17 8 17

11 0.794 0.848 28.921 0.534 18 18 12 20

12 0.771 0.802 53.156 0.494 26 29 27 26

13 0.773 0.802 52.572 0.503 25 29 26 24

14 0.825 0.833 32.86 0.625 7 23 15 6

15 0.827 0.833 33.682 0.625 6 23 17 6

16 0.797 0.874 25.285 0.525 16 11 6 21

17 0.724 0.715 96.786 0.423 32 33 33 33

18 0.815 0.842 31.245 0.578 8 20 13 11

19 0.765 0.805 35.667 0.453 30 28 20 31

20 0.81 0.898 47.345 0.61 9 7 23 8

21 0.767 0.818 31.772 0.463 27 26 14 30

22 0.775 0.826 27.702 0.477 24 25 11 28

23 0.777 0.87 37.813 0.521 23 13 22 22

24 0.806 0.873 37.074 0.56 11 12 21 14

25 0.784 0.783 90.885 0.508 21 31 32 23

26 0.833 0.842 79.377 0.632 5 20 30 5

27 0.802 0.87 26.054 0.538 15 13 9 19

28 0.778 0.846 32.896 0.477 22 19 16 28

29 0.795 0.878 25.41 0.548 17 9 7 16

30 0.716 0.753 55.362 0.429 33 32 28 32

31 0.803 0.878 17.043 0.543 13 9 3 18

32 0.855 0.917 22.585 0.655 3 3 5 3

33 0.81 0.885 48.338 0.61 9 8 24 8

To address these limitations of the existing metrics, we introduced a new metric, the Modified Spatial Efficiency (MSPAEF).

MSPAEF has shown robust performance across a range of correlation, bias, and standard deviation ratio values, for variables

that follow either a normal or a skewed distribution. Nevertheless, it has a slightly reduced sensitivity to changes in the standard460

deviation ratio near 1 when a large bias is present, particularly for normally distributed variables. This reduced sensitivity arises

from the dominant influence of the large bias, primarily due to the NRMSE and relative bias components, in the final metric

value.
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Table 2. Values of the four metrics and CMIP6 model rank for the monthly 2m temperature variable averaged over the 1981-2010 period.

(SPAEF: Spatial Efficiency, WSPAEF: Wasserstein Spatial Efficiency, MSPAEF: Modified Spatial Efficiency, Esp: Spatial Pattern Efficiency)

Model ID MSPAEF SPAEF WSPAEF Esp Rank

MSPAEF

Rank

SPAEF

Rank

WSPAEF

Rank

Esp

1 0.934 0.861 0.772 0.888 24 23 13 22

2 0.963 0.857 1.06 0.896 6 26 20 18

3 0.966 0.921 0.404 0.93 4 4 1 1

4 0.95 0.86 1.172 0.884 16 24 25 25

5 0.955 0.935 0.539 0.925 11 2 4 4

6 0.965 0.936 0.543 0.926 5 1 5 3

7 0.962 0.908 1.226 0.918 7 7 29 7

8 0.961 0.892 1.074 0.902 8 14 21 15

9 0.961 0.904 1.113 0.905 8 9 23 12

10 0.935 0.876 1.117 0.904 23 16 24 13

11 0.953 0.876 0.744 0.903 14 16 11 14

12 0.929 0.846 1.088 0.878 26 28 22 27

13 0.931 0.85 1.006 0.879 25 27 18 26

14 0.912 0.871 1.181 0.867 28 20 27 29

15 0.909 0.872 1.224 0.868 30 19 28 28

16 0.94 0.888 0.969 0.89 20 15 17 21

17 0.855 0.818 2.001 0.806 32 32 31 32

18 0.954 0.893 0.641 0.921 13 13 8 6

19 0.928 0.896 0.886 0.894 27 12 16 19

20 0.937 0.859 0.864 0.899 21 25 15 17

21 0.937 0.841 1.174 0.86 21 31 26 30

22 0.948 0.87 1.025 0.888 17 22 19 22

23 0.944 0.912 0.776 0.912 18 6 14 8

24 0.953 0.874 0.653 0.9 14 18 9 16

25 0.828 0.793 2.187 0.788 33 33 33 33

26 0.907 0.844 2.034 0.847 31 29 32 31

27 0.968 0.914 0.529 0.929 3 5 3 2

28 0.97 0.897 0.546 0.91 2 11 6 10

29 0.971 0.905 0.462 0.925 1 8 2 4

30 0.943 0.9 0.594 0.891 19 10 7 20

31 0.959 0.926 0.751 0.911 10 3 12 9

32 0.955 0.871 0.693 0.908 11 20 10 11

33 0.911 0.843 1.341 0.887 29 30 30 24

The synthetic data examples of Sect. 3.2, demonstrate that bias-insensitive metrics are suboptimal for model evaluation when

bias is a critical factor, with this limitation being particularly evident in Example 2. (Fig. 8). Conversely, for variables with465

large absolute values, even a small bias relative to the mean observational value can have a substantial impact on the WSPAEF

metric. In contrast, the MSPAEF and the two bias-insensitive metrics are less affected, as demonstrated in Example 1 (Fig. 7).

Thus, in the two examples presented in Sect. 3.2, MSPAEF was the only metric whose values consistently aligned with the

intuitive assessment of model performance for both cases. This is attributed to MSPAEF being a bias-sensitive metric, unlike

SPAEF and Esp, while also accounting for the relative rather than absolute value of the mean bias, unlike the WSPAEF metric.470
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Additionally, a distinguishing characteristic of MSPAEF is its scale-independence, meaning it is unaffected by the units of the

variable, unlike the other three metrics.

In the real-world application of Sect. 3.3 using global CMIP6 models, it becomes obvious that for variables that can have

large absolute value of bias, such as the total annual precipitation, the WSPAEF metric is greatly affected by it and it differs the

most in the ranking compared to the other three metrics. The differences of WSPAEF with the other metrics are substantially475

reduced with the temperature variable, due to the smaller absolute values of the mean bias, which allows its the other compo-

nents to have a larger contribution to the final value of the metric. The MSPAEF rankings are the most similar to those of Esp

for both variables, highlighting the ability of MSPAEF to evaluate spatial patterns. However, some differences in the rankings

arise due to MSPAEF being a bias-sensitive metric.

:::::::
Through

:::
the

:::
use

::
of

:::::::::
appropriate

:::::::
weights,

:::
the

:::::::
existing

::::::
metrics

:::
can

:::
be

:::::::
adjusted

::
to

:::::
better

::::
align

::::
with

:::
the

::::::::::
performance

::
of

:::::::::
MSPAEF.480

:::::::::::
Nevertheless,

:::
on

:::::
many

:::::::::
occasions,

::::
such

:::
as

:::::
when

::::
there

:::
is

::::::::::
insignificant

:::::
bias,

::::
their

:::::::
original

::::::::::
unweighted

::::::
forms

:::::
often

:::::::
perform

:::::::::
sufficiently

::::
well,

::::::::
reducing

:::
the

::::
need

:::
for

::::
such

::::::::::::
modifications.

Although
:::
The

::::::::
MSPAEF

::::::
metric

:
is
:::
not

::::::::
proposed

::
as

::
a

::::::::
substitute

::
for

:::::::::::
multi-metric

:::::::::
evaluation,

:::::
which

:::::::
remains

:::::::
essential

::
in
:::::::
climate

:::::
model

::::::::::
assessment.

::
It

::::
was

::::::::
designed

::
as

::
a

::::::::::::
comprehensive

:::::::::
similarity

:::::::
measure

::::
that

::::::::::
incorporates

:::::
both

:::::
spatial

:::::::
pattern

:::::::::
agreement

:::
and

::::
bias.

::
It
::
is

:::::::
defined

::
in

:
a
::::

way
::::

that
::::::::::
emphasizes

::::::
spatial

::::::
pattern

::::::::
similarity

:::::
when

:::
the

:::::::
relative

::::
bias

::
is

:::::
small,

::::
but

:
it
:::::::::::
increasingly485

:::::::::
emphasizes

:::
the

::::
bias

:::
as

::
it

:::::::
becomes

:::::
more

::::::::::
significant.

::::
This

::::::
design

::::::
allows

::::::::
MSPAEF

:::
to

:::
act

::
as

::
a
::::::::
balanced

::::::::
indicator,

::::::::
adapting

::
its

::::::::
emphasis

:::::::::
depending

:::
on

:::
the

::::::::::::
characteristics

:::
of

:::
the

::::
data.

::::::
While

:
this metric was developed for evaluating gridded climate

model output, its underlying rationale and its inherent flexibility make it suitable for assessing the performance of other types

of geoscientific or environmental models where the spatial distribution of simulated variables is expected to follow certain

patterns in space.
::
Its

:::
use

:::::::::
alongside

::::::::::
established

::::::::
measures

:::
can

::::
help

:::::::
provide

::
a
::::::
clearer

::::
and

:::::
more

::::::::
consistent

:::::::
picture

::
of

::::::
model490

:::::::::::
performance.

Appendix A:
:::::::::::
Modification

::
of

:::::::
Metrics

:::
The

:::::::
SPAEF,

::::
Esp,

:::
and

::::::::
MSPAEF

:::::::
metrics

::::
were

::::::::
modified

::
to

::::
take

:::::
values

:::::
equal

::
to

::
or

::::::
greater

::::
than

:::::
zero,

::
for

:::
the

:::::::::::::::
inter-comparison

::
of

::
the

:::::::
metrics.

:

::::::::::
Specifically,

:::
the

::::::
SPAEF

::::::
metric

:::
was

::::::::
modified

::
as

:::::::
follows:

:
495

SPAEF =
√

(α− 1)2 +(β− 1)2 +(γ− 1)2
:::::::::::::::::::::::::::::::::::::

(A1)

:::
The

::::
Esp :::::

metric
::::
was

::::::::
modified

::
as

:::::::
follows:

Esp =
√
(rs − 1)2 +(γ− 1)2 +(α− 1)2

:::::::::::::::::::::::::::::::::
(A2)

:::
The

:::::::
MSPAF

::::::
metric

:::
was

::::::::
modified

::
as

:::::::
follows:

MSPAEF =
1√
4

√
(α− 1)2 +(β)2 +(γ)2 +(δ)2

:::::::::::::::::::::::::::::::::::::::::

(A3)500
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Appendix B:
:::::::::
Probability

::::::::::::
Distributions

::
of

::::::::::::
Precipitation

:::::
from

:::::::::
EC-Earth3

:::::::
CMIP6

:::::::::
Historical

::::
Run
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(a) Global Daily Precipitation Distribution
 (01/01/2014)
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(b) Global Annual Precipitation Distibution
 (2014)
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(c) Daily Precipitation Distribution for Tropics & Extra-Tropics
 (01/01/2014)
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(d) Annual Precipitation Distribution for Tropics & Extra-Tropics
 (2014)

Figure B1.
::::::::
Probability

::::::::::
distributions

::::
from

:::
the

:::::::
r1i1p1f1

::::::
variant

::
of

:::
the

:::::::
historical

::::
run

::
of

:::
the

::::::::
EC-Earth3

::::::
CMIP6

::::::
model.

:::
(a)

:::::
Global

:::::
daily

:::::::::
precipitation

:::
for

:
1
:::::::

January
::::
2014.

:::
(b)

:::::
Global

::::::
annual

::::::::::
precipitation

::
for

:::::
2014.

:::
(c)

::::
Daily

::::::::::
precipitation

:::
for

::
the

:::::::
Tropics

:::
and

::::::::::
Extra-tropics

::
on

::
1

::::::
January

::::
2014.

:::
(d)

:::::
Annual

::::::::::
precipitation

::
for

:::
the

::::::
Tropics

:::
and

::::::::::
Extra-tropics

::
in

::::
2014.
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Appendix C:
::::::
CMIP6

:::::::
models

Table C1.
:::::
CMIP6

::::::
models

::::
Model

:
ID
: ::::

Model
:::
name

::::
Parent

:::::::
Organization

: :::::::
Atmospheric

::::::
resolution

::::
Ocean

::::::
Resolution

::::::
References

:

:
1

:::::::::
ACCESS-CM2

::::::::::
CSIRO-ARCCSS

::::
250km

::::
100km

::::::::::
Dix et al. (2023)

:
2

::::::::::
ACCESS-ESM1-5

: ::::
CSIRO

::::
250km

::::
100km

:::::::::::
Ziehn et al. (2023)

:
3

::::::::::
AWI-CM-1-1-MR

: :::
AWI

::::
100km

:::
25km

: :::::::::::::
Semmler et al. (2023)

:
4

::::::::::
BCC-CSM2-MR

:::
BCC

::::
100km

:::
50km

: ::::::::::
Xin et al. (2023)

:
5

::::::::::
CESM2-WACCM

: ::::
NCAR

::::
100km

::::
100km

::::::::::::
Danabasoglu (2023b)

:
6

:::::
CESM2

::::
NCAR

::::
100km

::::
100km

::::::::::::
Danabasoglu (2023a)

:
7

::::
CIESM

: :::
THU

::::
100km

:::
50km

: ::::::::
Huang (2023)

:
8

::::::::::
CMCC-CM2-SR5

: ::::
CMCC

::::
100km

::::
100km

::::::::::::::
Lovato and Peano (2023)

:
9

:::::::::::
CNRM-CM6-1-HR

:::::::::::
CNRM-CERFACS

::::
100km

:::
25km

: ::::::::::
Voldoire (2023b)

:
10
: :::::::::

CNRM-CM6-1
:::::::::::
CNRM-CERFACS

::::
250km

::::
100km

::::::::::
Voldoire (2023a)

:
11
: :::::::::

CNRM-ESM2-1
: :::::::::::

CNRM-CERFACS
::::
250km

::::
100km

:::::::::
Seferian (2023)

:
12
: ::::::::::

CanESM5-CanOE
: :::::

CCCma
::::
500km

::::
100km

:::::::::::
Swart et al. (2023b)

:
13
: ::::::

CanESM5
:::::
CCCma

::::
500km

::::
100km

:::::::::::
Swart et al. (2023a)

:
14
: :::::::::

EC-Earth3-Veg
::::::::::::
EC-Earth-Consortium

: ::::
100km

::::
100km

:::::::
(EC-Earth)

:
15
: ::::::

EC-Earth3
::::::::::::
EC-Earth-Consortium

: ::::
100km

::::
100km

:::::::
(EC-Earth)

:
16
: ::::::::

FGOALS-f3-L
: :::

CAS
::::
100km

::::
100km

::::::
YU (2023)

:
17
: :::::::

FGOALS-g3
: :::

CAS
::::
250km

::::
100km

::::::
Li (2023)

:
18
: ::::::::

GFDL-ESM4
::::::::
NOAA-GFDL

::::
100km

:::
50km

: ::::::::::::
Krasting et al. (2023)

:
19
: ::::::::

GISS-E2-1-G
:::::::
NASA-GISS

: ::::
250km

::::
100km

:::::::::::::::::::
for Space Studies (NASA/GISS)

:
20
: :::::::::::

HadGEM-GC31-LL
: ::::

MOHC
: ::::

250km
::::
100km

:::::::::::
Ridley et al. (2023)

:
21
: :::::::

INM-CM4-8
: :::

INM
::::
100km

::::
100km

:::::::::::::
Volodin et al. (2023a)

:
22
: :::::::

INM-CM5-0
: :::

INM
::::
100km

:::
50km

: :::::::::::::
Volodin et al. (2023b)

:
23
: :::::::::

IPSL-CM6A-LR
: :::

IPSL
::::
250km

::::
100km

::::::::::::
Boucher et al. (2023)

:
24
: ::::::::

KACE-1-0-G
:::::::
NIMS-KMA

: ::::
250km

::::
100km

:::::::::::
Byun et al. (2023)

:
25
: ::::::::

MIROC-ES2L
: :::::

MIROC
::::
500km

::::
100km

::::::::::::
Hajima et al. (2023)

:
26
: :::::

MIROC6
: :::::

MIROC
::::
250km

::::
100km

::::::::::::::::
Tatebe and Watanabe (2023)

:
27
: ::::::::::

MPI-ESM1-2-HR
::::
MPI-M

: ::::
100km

:::
50km

: :::::::::::::
Jungclaus et al. (2023)

:
28
: ::::::::::

MPI-ESM1-2-LR
::::
MPI-M

: ::::
250km

::::
250km

::::::::::::
Wieners et al. (2023)

:
29
: ::::::::

MRI-ESM2-0
:::
MRI

::::
100km

::::
100km

:::::::::::::
Yukimoto et al. (2023)

:
30
: :::::

NESM3
::::
NUIST

::::
250km

::::
100km

:::::::::::::
Cao and Wang (2023)

:
31
: ::::::::

NorESM2-LM
: :::

NCC
::::
250km

::::
100km

:::::::::::
Seland et al. (2023)

:
32
: :::::::::

NorESM2-MM
:::
NCC

::::
100km

::::
100km

::::::::::::
Bentsen et al. (2023)

:
33
: :::::::::

UKESM1-0-LL
::::
MOHC

: ::::
250km

::::
100km

::::::::::
Tang et al. (2023)
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Code and data availability. The Python code used in this work can be obtained from https://doi.org/10.5281/zenodo.15094921 (Karpasitis,

2025). The CMIP6 data (ensemble mean of each model) can be downloaded from KNMI’s Climate Explorer at https://climexp.knmi.nl/

selectfield_cmip6_knmi23.cgi? (KNMI, 2022). The ERA5 data are publicly available from the Copernicus Climate Data Store (CDS) at505

https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels-monthly-means (ECMWF, 2019)
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