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Abstract. A—reliable-This two-part study explores the quantification of greenhouse gas emissions is—impertantforelimate
change-mitigation-strategies-using atmospheric observations in order to validate national emission inventories. Inverse methods
based-on-observations-and-atmospheric-transport-simulations-can support emission quantification dewn-te-at the national scale

based on observations and atmospheric transport simulations, yet, they are often limited by the ebserving-systemsobservation
coverage, transport model uncertainties, and inversion methodologies. Here, we presentintroduce a system for ebservation-based;

We-regional estimation of methane fluxes and apply this to Central Europe #-202+-with-with a focus on Germany, where we

distinguish emissions from different anthropogenic sectors. We evaluate the robustness of the method using sensitivity tests
with in-situ observations from the Integrated Carbon Observation System (ICOS). Using synthetic observation experiments

we estimate the impact of transport errors on the flux estimates. The atmospheric transport is calculated with-employing the
numerical weather prediction model FEON-ARTICON with its module ART at 6.5 km resolution, sampling the meteorologlcal

uncertainty with a 12-member transport ensemble. We-u

reported-fluxes—The same transport ensemble is used to generate pseudo-observations with a simulated transport uncertainty.
Posterior fluxes are estimated with a medified-synthesis inversion method ;relying-on-observationsfrom-the-Integrated-Carbon

Observation-System-1COS)—for three different approximations of the model—observation error covariance matrix. Compared

ﬂafufal—ﬂu*e%—feqﬂtfe%—fuffheﬁe%eafe}hWe find that using ensemble-estimated transport uncertainties can significantly reduce

the random error of emission estimates. Fhe

tfeOur results highlight the importance of
analyzing biases in flux inversions for reliable, observation-based national-emission estimates.
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1 Introduction

Redueing-Quantifying greenhouse gas (GHG) emissions is
essential for effective mitigation of anthropogenic climate change. Atmospheric GHG inversions provide such
quantification by connecting the observed atmospheric composition to surface fluxes using transport models. This so-called
“top-down” approach is complementary to “bottom-up” emission estimates, which are based on activity data and emission

factors (IPCC et al., 2019). Top-down emission estimates can be used to validate national bottom-up GHG inventories reported

to the United Nations Framework Convention on Climate Change »-compliant-national-inventories-and-/orprocess-models

qaa —a opog GHG O O purpose—o onitorine v S satton—as—pla d;

(X}

B —+—F(UNFCCC) (Manning et al., 2003, 2011; Henne et al., 2016). Such national-scale estimates are

typically limited by the observation coverage (Petrescu et al., 2023) and uncertainties in atmospheric transport modeling (Gerbig et al., 200:

This motivates estimating methane emissions in the comparably well-observed Central Europe using a high-resolution transport
model and applying methods from numerical weather prediction (NWP) to estimate the transport uncertainty.

Regional top-down estimates of long-lived GHG can be based on different types of transport models. Lagrangian models
calculate trajectories from selected locations by moving with air parcels transported by the wind. They have been widely used
for inversions of trace gases like halocarbons, nitrous oxide and methane (CH,4) in European regions, see e.g., Stohl et al.
(2009); Ganesan et al. (2015); Henne et al. (2016). In contrast, Eulerian models — such as ICON-ART - continuously transport
trace gas concentrations through three-dimensional grid boxes. Although they are computationally more expensive for cases
where a relatively small number of trajectories would suffice, they become superior when the amount of data grows and, as
Engelen et al. (2002) pointed out, open the road for data assimilation methods as used in rumerical-weather-prediction=-NWP.
CHy (Steiner et al., 2024b). Regardless whether Lagrangian or Eulerian or even combined approaches (Rigby et al., 2011) are
applied, the top-down estimation requires solving an inverse problem (Enting, 2002). Eulerian transport model based inversions
may employ emission ensembles, as in Steiner et al. (2024b) with a localized Kalman filter, and other data assimilation methods
(see, e.g., Meirink et al., 2008). Alternatively, the method of synthesis inversion scales a set of a priori emission categories
(Kaminski et al., 2001). +oe—hoi ebmnd ool 2000 eommaee o Db b e etho

In this work, we present-a-meodular-systemfor-regional-introduce a system for national-scale top-down estimates-of-CHy

industry—{—testimation of CHy emissions based on modeling experience from NWP. We analyze the benefit of constraining
the transport uncertainty using a meteorological ensemble as proposed by Ghosh et al. (2021) and Steiner et al. (2024a). A
synthesis inversion method is used to estimate emissions with a focus on Germany based on high-resolution a priori emissions
from national reporting and in situ observations of atmospheric CHy concentrations.

In the present Part 1 of this two-part study, we describe our new inversion system and evaluate its performance. Section 2 introduces

the method with a detailed description of the uncertainty estimation. The description of the inversion system is completed b
the input data described in Sect. 3. In Sect. 4, we analyze the performance using synthetic observation experiments and test the
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sensitivity to tuning parameters with real observations. We conclude in Sect. 5 and refer to Part 2 (Bruch et al., 2025a) for a
discussion of the emission estimates obtained using real observations.

2 Method

We use a synthesis inversion method (Kammskl et al., 2001) that scales the CHy fluxes to optimize the agreement between
model-prediction-of model predictions and observations. We-start-by-defining-flux-ecategorieswhich-In this method, the fluxes

are initially grouped into a manageable set of flux categories. Here, these are 46 categories that subdivide the fluxes by region
and seetor—emission sector. With the Eulerian transport model, the eoncentrations-concentration from each flux category are

is calculated separately at all grid cells and time points. At the location and time of the observations, the model writes out

the predicted concentrations from the flux category contributions and their sum is compared to the observed concentration.

Our-inverston-makes-The inversion then minimizes the mismatch between model prediction and observations by scaling each

of the flux categories by one number — the scaling factor — making use of the linear relation between surface—fluxes and
concentrations in the atmosphere.

observed-coneentrations—Thus, the inversion result consists of one scaling factor for each flux category. The-By multiplying the
a priori fluxes multipkied-by-with the scaling factors yield-we obtain the a posteriori fluxes. This scaling method cannot provide
a correction where a priori fluxes are zero (Kountouris et al., 2018). However, this is less of a problem for CHy, as inventories
can collect where methane-emitting activities are normally located, but emission factors which translate the activities into
bottom-up emissions are uncertain (Dammers et al., 2024).

The described method relies on high quality model predictions as well as accurate concentration observations. Farthermeore;

contain-information-on-the-fluxes—To match these requirements, we have carefully chosen the configuration of the transport
model (Seet—21H)—Alse;=seleeted-Sect. 2.1) and consider the specific difficulties in modeling strong plumes (2.2). Selected

observational data are employed to remedy model boundary effects and therefore improve the overall model predictions

(Seet—2—2§ggtAA2A§) In this—seetion;—we—further-Sect. 2.4, we introduce the Bayesian inversion framework(Seet—2:3)—the

. To assess whether deviations

between model and observations contain information on the fluxes, we estimate the model uncertainty and error correlations.
We compare three different methods for estimating these uncertainties and correlations (Sections 2.5 and 2.6). Furthermore,
we define the time window and a priori uncertainties of the inversion (Sections 2.7 and 2.8). A summary of the method and
data streams will be provided in Sect. 3.5

2.1 Transport medelsimulation



2.1.1  Transport model

The atmospheric transport is simulated using the numerical-weatherpredietionr- NWP model ICON (Zingl et al., 2015) with-the

ART-medule(Riegeretal;2015;-Sehréteret-al;2048)-in a configuration close to operational NWP at Germany’s Meteorological
90 Service (DWD), extended with the module for Aerosol and Reactive Trace gases (ART) (Rieger et al., 2015; Schroter et al., 2018).

The model is run in limited area mode for a domain covering large parts of the European continent (latitudes 34° N to 70° N,

longitudes 21° W to 59°E, see Fig. 1) with a horizontal resolution of 6.5km (ICON grid R3B8) and 74 vertical levels up to a

maximal height of 22.77km. Fhe-The ICON model simulates the meteorology and the tracer transport, Re-initialization of the
meteorological fields every 24 h with operationally produced analysis fields ensures that the meteorology stays close to reality.

95 The surface CHy fluxes are provided to the transport model using the online emission module (Jéhn et al., 2020; Steiner et al.,
2024b). We do not simulate any chemical reactions, because the typical lifetime of CH, in the atmosphere is much longer than
the time that an air parcel typically spends in our modeling domain.

For long living tracers like methane, the correct treatment of the lateral boundary concentrations is of importance. Therefore,

we extended the model by implementing lateral boundary nudging for ART tracers in order to obtain smooth fields and avoid

100 strong gradientsspatial gradients. The nudging is limited to a boundary zone of width < 250km. Further, so-called meteogram
output has been implemented for ART tracers, providing model output in the vicinity of observation locations with high

temporal resolution.

2.1.2 Meteorological ensemble

For improved uncertainty estimates, we run a meteorological ensemble of 12 members. Each ensemble member uses slightly

105 di#efeﬁ%bu{—eq&dthHeepr&mmemﬁ&eﬁs—dﬁekdlfferent different meteorological initial and boundary—cenditions—The-construction
~lateral boundary conditions from
the operational ensemble data assimilation used for global NWP at DWD (Schraff et al., 2016; Reinert et al., 2023). Since our
meteorological input fields and the transport model setup are taken from operational NWP at DWD, the ensemble provides a
reasonable estimate for the meteorological uncertainty in our model, including uncertainties in the simulated wind field and

110 atmospheric stability.
In the following, we therefere-distinguish a so-called deterministic model run providing the best estimate of the modeled

—

CHj concentration, and the ensemble runs providing 12 different CH4 concentrations to estimate the uncertainty. The ensemble

will only be used to estimate model uncertainties and error covariances (see Sect. 2.5), and to generate pseudo-observations
Sect. 3.4).

115 2.2 Implementation-of CHyfluxes(Seet—4-1)

2.1.1 Definition of flux categories
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Figure 1. Model domain, colored to distinguish 35 patches defining regional flux categories. Observation sites (dots) are colored by the choice
of model equivalent height (see Table C1). Dark blue at the domain boundary indicates regions for which emissions are not categorized and
therefore not modified in the inversion. Other colors only distinguish neighboring patches. In white hatched regions, natural fluxes are also
categorized and scaled. A white eltipsis-ellipse marks the Upper Silesian Coal Basin, in which fugitive emissions define their own flux
category. In Germany, the map shows the six regions used for the agricultural sector. For other sectors in Germany, we use four regions:

south (yellow and light green), west (dark blue), north (light green), and east (dark green and yellow).

Estimating CH, fluxes in > 10° grid cells based on 50 observation sites seems impossible without reducing the number of

degrees of freedom of the fluxes. Here, we reduce the degrees of freedom drastically by parametrizing the fluxes using only
46 basis vectors. A basis vector in this parametrization is a flux category that contains all fluxes from one region, possibly
limited to specific emission sectors. For example, we define all anthropogenic emissions from Denmark as one flux category.
We thereby assume that the distribution of anthropogenic emissions within Denmark is correct in the a priori and only allow.

the inversion to adjust the total emissions from Denmark.
Feor-the-inversion;-we-We define the flux categories based-on-sector-and-region-with the primary aim of providing an accurate

estimate for-of emissions from Germany, resolving federated states where possible, to address the tiserrequirements of potential
stakeholders.

2.1.2 Definition-of flux-eategories{(Seet-41-H

When distinguishing emission sectors, we stay close to the national reporting by using definitions from the gridded aggregated
nomenclature for reporting (GNFR, Veldeman et al., 2013). For the agricultural sector (GNFR sectors K+L), which contributes

roughly two thirds of all German CH4 emissions, we distinguish six regions within Germany as depicted in Fig. 1. We

he-For the sum of all

other sectors — excluding natural
and LULUCEF fluxes — we distinguish four regions, i.e., the federated states south: Baden-Wuerttemberg and Bavaria, west:
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Table 1. Overview of sectors distinguished in the inversion and number of flux categories. We distinguish the focus region, well-observed
regions near the focus region, and regions in large distance from the focus region (“remote”). The latter are split in very large flux categories
with low a priori uncertainty. Natural plus LULUCF fluxes are separated from other anthropogenic emissions only in regions where the

natural fluxes are strong and in Germany. One extra category in the well-observed regions is the Upper Silesian Coal Basin (marked* in the
last column). See Fig. 1 for the definition of flux categories on the map.

Classification  Countries and regions Sectors #ofarcas  #offlux
categories

focus region Germany agriculture, LULUCE + natural, 6 agr., 4 other, 11
other 1LULUCF.

focus region  Netherlands agriculture, other L 2

well observed  Sweden, Norway LULUCEF + natural, anthropogenic 2 4

well observed DK, PL, CZ AU, SK. HU, SV, HR, BA, CH,  anthropogenic (excl. LULUCF 16 17

remote Finland, north-western Russia. LULUCE + natural, anthropogenic 2 4
remote other anthropogenic (excl. LULUCF 8 8

North Rhine-Westphalia, Hesse, Rhineland-Palatinate and Saarland, north: Lower Saxony, Bremen, Hamburg and Schleswig-
Holstein, as well as east: Mecklenburg-Western Pomerania, Brandenburg, Berlin, Saxony, Saxony-Anhalt and Thuringia. Nat-
ural plus LULUCEF fluxes in Germany are treated as a single flux category.

Outside Germany, we do not distinguish sectoral emissions, with one exception. Agriculture emissions in the Netherlands
form their own category, as we found that they strongly influence the CH, concentrations in Germany, caused by the proxim-
ity and high emission rates in the Netherlands. We-define-We define further categories by area for anthropogenic emissions
excluding LULUCEF such that a comparably high resolution is obtained in regions near Germany with high observation cov-
erage. These area-defined flux categories follow borders as feasible for the inversion. Areas with small expected influence on
inversion results for Germany are combined in large categories, such as Spain plus Portugal, Tiirkiye plus Greece, and large

areas east of Poland. All area-defined categories are shown in Fig. 1 —and an overview of the sector resolution is given in

-‘----.~.~=.-.-' he-plume-problem(Seet—2- rour-nverston-—system-by-defining a-separateflux—category
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We treat natural plus LULUCF fluxes separately and categorize them only in Germany, Scandinavia, and the north-eastern
part of our domain (hatched regions in Fig. 1). This is motivated by strong CH4 emissions from wetlands in summer in Scandi-
navia and northern Russia in our prior (Segers and Houweling, 2020). Uncategorized fluxes — whether natural or anthropogenic
— are not scaled in the inversion, but still included in the transport simulation such that no fluxes are discarded. To avoid strong
spatial gradients in the concentration fields, the boundaries between different area-defined categories are smoothened as visu-
alized in Fig. 1.

We furthermore define a separate flux category for the strongest CHs plume in Central Europe to mitigate the plume
localization problem described below (Sect. 2.2). These are fugitive emissions from the Upper Silesian Coal Basin with yearl

emissions of 567kt in our prior (white ellipse in Fig. 1).

2.1.2 Tracer assignment in the transport model(Seet-4-1-2)

In the transport simulation, we consider not only the categorized fluxes, but also the CH4 from lateral boundaries and from

uncategorized emissions. Overall, we simulate the transport of 58-50 tracer fields in the deterministic model run:'
(i) AH-Sum of all anthropogenic emissions excluding LULUCEF. This constitutes a single, common tracer.

(ii) AH-Sum of all natural plus LULUCF fluxes. This constitutes another single, common tracer, which summed with (i)

covers all a priori emissions in the domain.

(iii) Far field. The far field contains the CH, from initial and lateral boundary conditions.

The sum of (i)

treat the deviation of the posterior concentration from the prior as a perturbation. To compute this perturbation, we simulate
the transport of each flux category:

—(iii) is the total a priori CH4 concentration. The a posteriori concentration is not computed directly. Instead, we

(iv) Flux categories. For each flux-category-of the 46 flux categories an own tracer field is defined. To avoid the accumulation
of categorized CH4 beyond the time scale on which we consider the modeled transport reliable, we set an artificial decay
rate of these concentrations. After emission, the concentration in these tracer fields decays exponentially with a mean
lifetime of five days. In-combination-with-(i)-and-(ii)-this-technical-feature- This technical feature constitutes a localization

in time similar to the commonly used localization in space (e.g., Steiner et al., 2024b) and allows a waning of sectoral
and regional attribution over a few days

{Hrand-(ii)— This regulates that any attribution of a CH4 anomaly to a certain region or sector is only attempted if the

emission was fresh or a few days ago. Furthermore, this allows us to save computing time by limiting the transport of

these flux category tracer fields to altitudes below 8km. }fﬁeeal—@eafegeﬂeﬁefﬂmhfepegemc—efmmefrexe}udiﬂg

ITechnically, the simulation includes 58 tracers in an attempt to split up the sector “other” in Germany in three sectors. Since we do not use these additional

data here, we describe the setup for the 50 tracers we actually used.
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affects the posterior concentration and the sensitivity of the inversion to changes in the emissions. However, assumin
that the typical time between emission and observation is short compared to the artificial lifetime and in the presence of
transport model errors, we expect that this feature of our inversion system leads to more robust results.

(v) Farfield

(vi) Auxiliary field for plume detection. For the purpose of investigating the model uncertainty due to the plume from the

Upper Silesian Coal Basin, an auxiliary tracer is added (see Sect. 2.6.1). This tracer is never added to the total CH.
concentration but only serves as an indicator for the plume location.
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2.2 Plume localization problem(Seet:2:2)

Plames-eaused-by-In our transport simulation and inversion, we address the specific challenge posed by plumes from high
emissions in a-small-arearequire-special-treatment-to-avoid-a-potential-bias-in-the-inversion-small areas. The inversion may
be biased for such plumes due to the so-called double penalty issue (Vanderbecken et al., 2023). In cases where our model
falsely predicts that the plume reaches an observation site, the inversion will reduce the emissions to improve the agreement
with the observation. In the opposite case, when the model fails to predict that a plume reaches the observation, the inversion
will not change the plume emission amount but will wrongly increase emissions in other areas instead. This can cause a

systematic underestimation of fluxes from localized plumes.

v—To avoid biases in the inversion results, we suggest to
treat strong plumes separately, with their own flux categories. This allows us to quantify the problem (see Seet—5-6Sect. 4.2)

and to limit the plume penalty influence on other flux categories.
2.3 Theneedfor-afar-field-Far-field correction

For cases where the model predicts almost no influence from our categorized emissions (i.e., clean air cases), deviations
between model and observations point to the need for correcting the CH4 advected across the lateral boundaries — here referred
to as “far field”.2 For our regional inversion problem, it is essential to separate the CH4 emitted within the domain from the
far field, in order to avoid model biases which would confound the aspired flux scaling —(see, e.g., Chen et al., 2019, for CO,).
To minimize potential biases arising from imperfect boundary conditions, we construct a correction field which is added to

the modeled far-field concentration in the whole domain after the transport simulation. We require this correction field to be

smooth on large-length-and-timeseales—-chosen-in-ourcase-as-spatial and temporal scales 320km (horizontal), 1 km (vertical),
and 16h (time). We construct this far-field correction using a Kalman smoother as described in detail in Appendix A. This
construction uses only clean-air observations with a cumulated signal of all flux categories of < 20ppb and a total signal from
emissions within our domain of < 50 ppb.

2Technically, the far field also includes the initial CH, concentration. But this is hardly relevant due to our generous spin-up period of 17 days.




overall correction time gradient RMS per station + month mean per station + month

(a) (b) (c) mm pseudo obs. (d)
— real obs.

-20 -10 0 10 20 -10 0 10 0 2 4 6 8 10 -5 0 5
far-field correction (ppb) correction time grad. (ppb/day) correction RMS (ppb) mean correction (ppb)

Figure 2. Statistical evaluation of the far-field correction at the observation coordinates when using synthetic observations (light blue area

or real observations (dark red line). Considering all data points used in the inversion, histograms of the far-field correction show (a) the range

of the correction and (b) its temporal variation. For each station, month, and realization of pseudo-observations, we compute the root mean

square (RMS) and the mean (or bias). Histograms combining these values for all stations and months are shown in (c) and (d).

TFhe Figure 2 shows a statistical overview of the far-field correction when using real observations (red line) or pseudo-observations
shaded area). The considered pseudo-observations are generated from the ensemble members of the transport simulation and
210 5@%@%
tion range is usually limited to =10 ppb i
wﬁmmmm@mwwm%mwm&m
with variations of a few ppb per day (Fig. 2b). The broad distribution of the root mean square (RMS) for different observation
sites and months in Fi
215 Figure 2(d) shows that the correction has a small bias towards positive corrections even when using synthetic observations
with unbiased fluxes and boundary conditions. This is partially due to the pseudo-observations, which are biased by +0.5pph
compared to the simulated concentrations due to details of the transport model configuration. The other part of the bias hints
to a more general problem. We construct the far-field correction using observations for which the model predicts clean air,
ie., alow signal from the emissions. Since the transport model is not perfect, this introduces a sampling bias: We select more
220  observations for which the model underestimates the concentrations and thereby increase the bias to 1.2ppb. In response to
this bias, the far-field correction increases the simulated concentrations by 1.0ppb.
The sampling bias will likely also occur when working with real observations. But the estimated correction bias of 0.6 ppb.
due to the sampling is small compared to the accuracy of the Copernicus Atmosphere Monitoring Service (CAMS) inversion-optimized

data product used for our boundary conditions (Segers et al., 2023) (see Sect. 3.1). We therefore do not expect a significant

225 1impact on the emission estimates.

. 2 (c) indicates significant differences among the stations when using real observations.




2.4 InversionGeneral approach of the inversion framework

We use a Bayesian inversion to optimize the agreement of model and observationsby—sealing-theflux—eategories—This—is
formulated-in-the-, We define a vector of scaling factors — in our application s € R*6 — consisting of one prefactor for each flux
category. This low-dimensional parametrization of the fluxes leads to the optimization problem

230 s"'=argmin{i(y— Hs— e TR Y y—Hs—a")+L(s—s") T B~ (s —sPr)} ()

for the posterior scaling factors sP**'. Here, the first term peralized-penalizes the deviation from the eoneentration-observationsobserved
concentrations, and the second term penalizes the deviation from the prior fluxes. In the first term, the vector y of observed con-

centrations is compared to the model prediction, which consists of the transported-fluxes-contribution H's of fluxes within the

model domain and the modeled far field 2 —including the far-field correction. All model predictions (z!f and Hs) are alread
235 projected to the observation space. The transported-contribution of fluxes H s depend-depends linearly on the vector sofsecaling
factorsfor-the-flux-—categories;-which-is-optimized—, The difference between modeled and observed values is weighted by the

error covariance matrix 12 describing the combined uncertainty of the transport model and the observations. With the second
term we constrain the deviation of s by-defining-from a priori scaling factors sPo" (ﬁW’r—:}%%M) with
an error covariance matrix B characterizing the a priori uncertainty (see Sect. 2.8).

240 InEq. (1), y v ofsealing : : 5 ’ ¥ sion
space-in-which-theinversion-can-optimize-the-fluxes—The-the model observation operator H connects the space of scaling factors

(vectors sPOT sPost) to the observation space (vectors ¥, 7). Computing H requires the transport model which distinguishes

the flux categories. The setup is designed for optimizing a low-dimensional vector sP*! of scaling factors (~ 102 degrees of
freedom) using a large number of observations (~ 10%), but an extension to more degrees of freedom and/or more observations

245 is possible.

2.5 Computation-of-medel-uneertaintiesApproximations for the error covariance matrix R’

the error covariance matrix 12 in Eq. (1) is crucial for the inversion, 12 describes the combined uncertainties and correlations of
observations and model predictions. In our case, the m § isnegheiblein tsen
250 non-neglgiblerepresentativity-error-is-partof—observation uncertainty (usually 5 1ppb, ICOS RI (2020)) is small compared
to the ensemble-estimated transport uncertainty (typically 5ppb to 10ppb). We therefore focus on the model uncertainty.
Many works have used diagonal R matrices (e. 2010, 2023; Steiner et al., 2024b) and
others found non-diagonal approximations for ¢ (Ghosh et al., 2021; Steiner et al., 2024a). Here, we use the diagonal 12 for
comparison to two different ways of constructing a non-diagonal /2 matrix from our transport ensemble. We therefore compare
255  three ways of constructing 12

>

. Bergamaschi et al. Petrescu et al.,

2

Diagonal R: This baseline scenario considers a diagonal /2 matrix and discards all information from the transport ensemble.

Prior R: In a standard ensemble approach, we construct /2 using the transport ensemble with a priori fluxes.

10
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Posterior R: We extend the standard approach by estimating R using the posterior fluxes in the transport ensemble.

The construction of the different R matrices consists of two steps that are described below. First, we construct a matrix R’
that estimates the dominant uncertainties and correlations using one of the three methods. Second, we obtain R from R’ b

inflating and adding additional uncertainties to mitigating some known issues of the inversion (Sect. 2.6).

25.1 Diagonal R

In the baseline scenario of a diagonal R matrix, all observation and model uncertainties are assumed to be uncorrelated.
However, it is known that model predictions for observations separated by only one hour usually have correlated errors.
To avoid underestimating the overall uncertainty without introducing correlations in /2, we assume high uncertainties of

each observation.

Following Steiner et al. (2024b), we assume that the signal from CHy
emissions within our domain will generally increase the model uncertainty in the predicted CHy concentration. This motivates
defining R'. = o2 ., + (BHs"")2 where geons =
data points that are typically distinguished by location, time, and sampling height. The diagonal R scenario uses crude
approximations because the selection of observations is designed for an inversion that can handle correlations. However, we
will obtain qualitative insights from the comparison to the other approximations for 2.

= 0.5 are scalar tuning factors. Index ¢ labels observation

252 Prior R

This approximation of R is based on an ensemble of M = 12 different transport modelrealizations—realizations. The potential
of using a small transport ensemble for estimating model uncertainties was demonstrated by Steiner et al. (2024a). We can

use the covariance of the ensemble members to estimate the transport uncertainty. Fhe-main-contributionR-of the-uneertainty
matrix-is-We define

1 o )
R;; =Ciigr— D (@ =) (@~ T5) + 6550 g 2)

m=1
where 2} is the prediction of ensemble member m for observation y; assuming a priori fluxes, z; = ﬁ Zm 27" is the ensemble

mean, and oconst = 10 ppb is a constant uncertainty added to each observationaceountingfor-any-representativity-error. With this

uncorrelated uncertainty o, we account for additional uncertainties, such as representativity errors inherent to a simulation
at finite resolution. Indices 4, j label observation data pointsthat-are-typically-distinguished-bylocationtime;and-sampling

height—, By C;; we denote a localization in space and time such that C;; = 1 and C;; = 0 for any observations ¢ and j that
we expect to be uncorrelated because of their temporal or spatial separation. In the application to Germany, we choose Cj; to

be a Gaussian localization matrix with standard deviations 6h (time), 319km (horizontal), and 400m (vertical). We use the
notation 6;; = 1if ¢ = j and §;; = 0if 7 # 3.

11
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2.5.3 Uneertainty-inflationPosterior R

osterior R approximation is

. (2), we use model predictions for the concentrations x”". Instead of using the

rior concentrations as in the prior R construction, we can define ! as the posterior concentrations and thereby allow z!”
to change as the inversion changes the fluxes. This leads to a self-consistent estimate of R’ in the inversion. Consequentl

of the scaling factors s. Since 2 is estimated using posterior scaling factors, we call this method the posterior 2 inversion as
opposed to the prior R estimate. To compute the posterior concentration 27" (s) for each ensemble member without prohibitive
computational effort, we use an approximation described in Appendix B1.

As opposed to the diagonal £ and prior R inversion with fixed R, the posterior R inversion does not allow for a closed form

3.,

S

solution of Eg. (1). To solve the minimization problem in Eq. (1) numerically, we used SciP trust-exact” implementation of

a trust-region method (Virtanen et al., 2020; Moré and Sorensen, 1983; Conn et al., 2000). Within each iteration, the incomplete

1999; Li and Shao, 2011) of the sparse matrix R(s) is the most computationally expensive task

LU decomposition (Li et al.,

when the number of observations is large.

2.6 Additional uncertainties and final error covariance matrix R

The previously derived approximations for the error covariance matrices R’ describe our knowledge of the transport uncertaint
and the observation uncertainty. In the next four steps, we increase uncertainties and include other possible sources of uncertaint
to obtain approximations for R that are suitable for the inversion.

2.6.1 Mitigating the plume localization problem

To reduce the bias which we predicted for strong plumes in Sect. 2.2, we increase the uncertainty for all observations that
are likely affected by a plume. The transport ensemble will already lead to an increased uncertainty when the model cannot
predict reliably whether a plume hits an observation site. But with an ensemble of only 12 members, this will not cover all
cases where model and observations deviate. We therefore introduce an auxiliary tracer that contains emissions from the Upper
Silesian Coal Basin, spatially smoothened on a length scale of 0.4° (one standard deviation of a Gaussian filter). Denoting the
concentration of this tracer at observation i by p;. we increase the uncertainties to B’ = Rj; +0.25070;._

2.6.2 Dynamic uncertainty inflation

To avoid potential biases through site-specific small-scale features not captured in the model, we aim to base our inver-

sion on many observations. To this end, we limit the influence of individual data points on the inversion result by inflat-

12



ing the uncertainty further in the case of a very large disagreement between model and observation. This is achieved by

an uncertainty inflation of individual observations until the deviation

320 p=y— HsP — 2 between model and observations is at most three standard deviations of the resulting error covariance
. tep 2 tep 1 ; i ..
matrix Ry —ff7R R = qigi R, e, fi—mex{fs lu RI, H- mWThls is justified because large

deviations between model and observations, W%m, are likely caused by local pollution or modeling

problems that are not captured appropriately in our uncertainty estimate. This correction makes sure that inversion results will

be based on many observations and no single measurement can have an extreme impact. At the same time, this method it is

325 less sensitive to tuning parameters than discarding outliers completely.

2.6.3 Flux-dependenece-of-model-uneertainties

330 2.6.3 Static uncertainty inflation

The transport ensemble in the prior R
numerieally-(see-Appendix-D-and posterior R construction may not necessarily include the full uncertainty of the transport

model, and the localization C;.; further reduces the simulated uncertainty by suppressing correlations. This motivates another
inflation of the uncertainty to avoid overconfidence in the model prediction. We inflate the uncertainty by a factor f; > 1

335 depending on the observation site of observation i, leading to RSP = f, f; R*P?. We choose f; = 2 except for some stations
with known difficulties, for which f; = 3 (see Table C1). To keep the methods for constructing /2 comparable, we apply this
inflation also to the diagonal R matrix.

2.6.4 Far-field uncertaint
We furthermore account for the uncertainty in the far-field correction, although the effect of this additional uncertainty is
340 small. We define R;; = RSP* = RP3 1 0 5|¢.c:|C,; where ¢; denotes the smooth correction field introduced in Sect. 2.3 at

observation i and C;; is the Gaussian localization matrix constructed by the length and time scales of the far-field correction
see Appendix A).

2.6.5 X analysis

To assess whether the estimated uncertainties are reasonable, one can compute the x”/Nyor value (Pearson, 1900). This value
345  compares the a priori model-observation mismatch to the uncertainty assumed for this mismatch (see Appendix D for de-

tails). We-will-refer-to-these-two-variants-of the-inversion-as-the-prior-A value of x2 /Ny > 1 indicates that uncertainties are

underestimated, whereas values smaller than one indicate the opposite. When comparing the observations to the far-field-corrected
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Table 2. Median of 2 /Nuo for different configurations. x2 /Nyt for the prior R inversion also serves as an approximation for the posterior
R inversion. Synthetic observations are generated using the ensemble simulation, assuming that the a priori fluxes and the CH4 concentration
on lateral boundaries are known exactly.

Observations  Far-field correction  x* /Ny, diagonal B y?/Nus, prior B

real yes. 018 0.16
real o 021 0.18
synthetic yes, 005 0.03

model, we find y2/Nyor 2 0.16 for the prior R and-pesterior-R-inversion—inversion when using real observations (see Table 2).
In an idealized setup, this indicates that the uncertainties of the model-data mismatch are overestimated by a factor 2.5. This

implies that our uncertainty inflation by a factor f; = 2 for most observations seems unnecessary in the idealized setup.

However. our data can contain unknown biases in transport and boundary conditions, and simplifying assumptions about
the representativity of the low-dimensional state space of the inversion. We contain these potential issues of unknown error
components by inflating the uncertainties.

In the synthetic experiments, the idealized transport uncertainty and perfect a priori emissions lead to even lower x?, which
is expected because not all uncertainties are contained in the pseudo-observations of these synthetic experiments. Comput-

for the posterior R inversion gen

cattionary-uneertainty-estimates;—we-compute-theprior-is more difficult, but the result is expected to be similar to the prior
R inversionand-pesterior-. The tuning parameters of the diagonal R inversion—separately-and-interpret-the-difference-of-the
two-methods-as-methodelogical-uneertainty-—matrix were chosen such that the posterior uncertainties are similar to the prior R
inversion, which also leads to similar 2 /Ny (see Table 2).

2.7 Inversion time window and temporal aggregation(Seet-—4:3)

We simulate the

transport for the whole year 2021 without any interruption. The inversion is then applied to each month separately by selectin
only observations within one month. The scaling factors of the months are treated as independent, each month starting with

prior
%

as-explained-in-Seet-2:4—(s>"” = 1 for all k) and the same a priori scaling uncertainties (B_matrix). However;when-The
continuous transport simulation over the whole year implies that the initial CH4 concentration is hardly relevant after the

the same a priori scaling factors
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spin-up. At the beginning of each month, the modeled CH, concentration already consists of the far field - the contribution of
the lateral boundaries — and the contribution of the fluxes, which will be adjusted by the inversion._

In_summary, we correct the contribution of the lateral boundaries on the time scale of 16h by the far-field correction,
and the fluxes on the time scale of one month defined by the inversion time window. The inversion results consist of one

vector sP*' € R4 of scaling factors and the corresponding error covariance matrix for each month. When aggregating results
for the whole year, we treat the uncertainties of the prior or posterior fluxes of different months as correlated because these

likely include systematic uncertainties and biases which we cannot fully separate from the statistical uncertainty. We therefore

aggregate by adding up absolute emissions and their uncertainties linearly.
2.8 Prior uncertainties(Seet-4.4)

In each inversion time window, we consider uneorrelated-a priori scaling factors with a two standard deviation (20) uncertainty
of 88%—0.8 for most flux categories, corresponding to a 95% confidence interval of +86%=0.8. Throughout this paper,
uncertainties will denote two standard deviations or 95% confidence intervals. Categories resolving emission sectors have
a higher prior 20 uncertainty of £3669%1.0, and within Germany categories describing the same sector have an a priori
uncertainty correlation of 56%-0.5 (e.g., uncertainties of agriculture emissions in the German states of Bavaria and Baden-

Wuerttemberg are assumed to be correlated).

—All other categories are
treated as uncorrelated in the a priori. For the Upper Silesian Coal Basin as well as regions with low observation density outside
of our primary focus in Central Europe and-with-lew-observation-density(marked “remote” in Table 1), the 20 uncertainty is

set to +=50-/—Fie

3 Input data and processing

We apply the method to estimate CHy fluxes in the year 2021 in Germany and in the surrounding European domain, relying
on input data for the transport simulationand-, CH4 concentration on the lateral boundary (Sect. 3.1), a priori fluxes (Sect. 3.2),

and observations (Sect. 3.3).
3.1 Initial and lateral boundary conditions

The meteorological initial and lateral boundary conditions used to drive our transport model are taken from the archive of
DWD’s operational ntmerical-weatherprediction(INWEPYNWP, which also employs the ICON model. As we do not assimilate
meteorological data in our application, we re-initialize the meteorological fields every night at 0 UTC, using the analysis fields
from the operational NWP data assimilation. Lateral boundary conditions for the meteorological fields are taken from the NWP

short term forecasts with hourly resolution.
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For the CHy4 concentrations, we use initial and lateral boundary concentrations from the global-CAMS-CAMS global
inversion-optimized dataset (Segers and Houweling, 2020), version v22r2, in the variant based on surface air-sample data
for the inversion. The CAMS data have a resolution of 1° x 1° and are interpolated onto our model grid. In contrast to the me-
teorological fields, the CH4 concentrations are only transported and never re-initialized. Each transport ensemble member uses

slightly different initial and lateral boundary conditions for meteorological fields (see Sect. 2.1.2), but equal CH4 concentrations

on the lateral boundaries.
3.2 A priori CHy fluxes

For the inversion, we employ a priori CH, fluxes that were compiled from six datasets of anthropogenic and natural fluxes,

as detailed in Table 3. We ensured mass conservation when interpolating to our model grid. We generally distinguish between

anthropogenic emissions excluding LULUCEF, and natural fluxes plus LULUCF. Anthropogenie-fluxes-exelading BUEUCF-are

H har 1nto NER <ceeto acatad NER _nomen a farra o \aldeman—e 0

st—Since the input datasets for anthropogenic emissions are based on reportin
to the UNFCCC, these distinguish between GNFR sectors following the reporting conventions (Veldeman et al., 2013). For the

inversion, we combine these sectors and only distinguish between agriculture and the sum of all other sectors as described in
Sect. 2.1.1. Natural plus LULUCEF fluxes of CH4 are mostly dominated by wetland emissions, for which we do not distinguish

between natural and anthropogenic origin.

The-datasets—in—Table 3-were-chosen—such-that-eur-For Germany, we obtained a priori fluxes are-based-on-the-national
reporting-to-the - UNFCCC—For-Germany;—the-directly from the national inventory agencies. The a priori LULUCF fluxes
obtained from the Thiinen Institute cover the emissions from mineral and organic soils. Notably, this excludes emissions from
artificial water bodies in Germany — such as ponds — amounting to 160kt or 8.5 % of the total German emissions in the national

reporting, though these numbers are associated with large uncertainties (UBA, 2024, Table 399). These emissions are missing

in our a priori estimate, leading to a low bias in the a priori.

3.3 Observations and applied-pre-processing

We compare our model predictions to the high quality ground-based in situ observations of CHy concentrations collected in the
European Obspack (ICOS RI et al., 2024), which includes the ICOS stations among others. These observations are assumed

to be representative for a larger area (Storm et al., 2023). Table C1 lists all 53 available stations and Fig. 1 shows 50 stations

that were used for the inversion. For tower observations, we enly-censidersamplinglevels-atdeast-use up to three samplin
heights per station, preferring the highest three sampling heights and discarding observations below 50 m above ground level

to reduce the influence of very local emissions. Fertewers-providing-mere-than-three-sampling-heights;-we-consider-the-thre

highesttevels—Bueto-Due to significant model-observation mismatch, we exclude the IPR, FKL and LMP stations. For LUT,

BIR and HUN we only consider some seasons, specified in Table C1.
The model data are interpolated horizontally and vertically to the station sampling locations. The vertical sampling locations

in model coordinates is-are derived from the station sampling height-heights and the modeled station elevationelevations,
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Table 3. Input data for a priori CHy fluxes. The second column lists where these fluxes were considered. Here, “Germany” refers to all model

grid cells that lie fully within the German borders. The national reporting distinguishes emissions by GNFR sectors of which A—M include
all anthropogenic emissions excluding land use, land use change and forestry (LULUCF).

Data provider Domain Fluxes Original Time Remarks
grid profile

Umweltbundesamt ~ Germany GNFR sectors  native constant

(UBA) AL (ICON) based—Based on reporting to the UNFCCC
(exeludi (UBA, 2023), spatially distributed using the
LULUCE Gridding Emission Tool for ArcGIS (GRETA
A-M 1.2.01) (Feigenspan et al., 2024)

Thiinen Institute Germany organic and 100m x constant
mineral soils 100m emisstons-Emissions from organic and mineral

soils, including wetlands but excluding artifi-

(part of
LULUCF cial ponds (approx. 160kt CH4 per year) (Fuf3

and Akubia, 2024)

CAMS-REG-ANT, model domain  GNFR sectors  0.05°x0.1°  constant
based-Based on data reported to the UNFCCC

v7.0 excl. Germany A-E
(exeludi for countries in Western and Central Europe
LULUCE) (incl. Finland and the Baltic states) (Kuenen
A-M et al., 2021, 2022)

CAMS inversion model domain ~ wetlands 1°x1° monthly

optimized, v22r2 excl. Germany, averages vartant-Variant using surface air-sample data

for the inversion (Segers and Houweling,
excl. oceans

2020); Fluxes in model grid cells located over

the ocean are set to zero.

Rocher-Ros et al. full model rivers and 0.25° x monthly

(2023), version 1.1 ~ domain streams 0.25° averages

Weber et al. (2019)  oceans (full oceans 0.25° x constant
model domain) 0.25°

435 depending on the station characteristics (column “mountain” in Table C1). For high mountain stations, the modeled station
elevation is given by the real station elevation above mean sea level. For stations on smaller mountains, we consider the
arithmetic mean between real station elevation and model topography as proposed by Brunner et al. (2012) and Henne et al.
(2016), and for all other stations the modeled station elevation is set to the model topography.

To make use of observations which are likely well represented by the model, we filter the observations based on the local

440 time of day, wind speed, and model-data mismatch. Table 4 lists how the root mean square error (RMSE) of the model output
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Table 4. Average root mean square error (RMSE in ppb), mean absolute bias of the model prediction minus observation (in ppb), and number

of available data points after each processing step (1-6) for synthetic (left) and real observations (right). Each row adds a processing step to
all previous steps and improves the RMSE. Three numbers for steps 7 and 8 distinguish diagonal 12, prior 12, and posterior 1 inversion. Step 7

(uncertainty weighting) is not a processing step in the inversion since it uses only the diagonal of the uncertainty matrix R, but it underscores
the importance of accurate uncertainty estimation. Step 8 refers to the result of eur-the inversion. RMSE and absolute bias are computed
separately for each station, sampling height and month. The obtained values are weighted by the number of data points and averaged. By
taking the mean of multiple RMSEs for different stations, sampling heights and months, we obtain lower numbers than for the RMSE of

the combined dataset, which would average squared values and thereby would give higher weight to large deviations between model and

observations.
Step Synthetic observations (ppb). Real observations (ppb).
RMSE ~ Absolutebias Datapoints ~ RMSE_ Absolute bias  Data points
1 horizontal and vertical inter- - - - 27.6 -ppb- 9.6 ppb- 6.02-10°
polation
2 time average (3 h) RINS 09 M 25.8 ppb- 9.6 ppb- 6.02-10°
3 time window 11h-17h / 102 L1 1.48-10° 23.5 ppb- 9.8 ppb- 1.48-10°
23h-5h
4 minimal wind speed 2ms ™" 9.6 1.0 1.30-10° 22.4 ppb- 9.7 ppb- 1.30-10°
5 9.6 1.0 1.30-10° 21.5 ppb- 9.4 ppb- 1.29-10°
6 far-field correction 9.0 09 1.30-10° 19.4 -ppb- 7.2 ppb- 1.29-10°
7 weight by inverse uncertainty ~ 7.1,6.9,6.9_ 0.7,0.8,0.8 1.30-10° 144, 16.6ppb- 16.6  5.7,6.6ppb- 6.6  1.29-10°

8 inversion (posteriorfluxes) — +4-+ppb6.9,6.8,6.8 0.6,0.8,0.6 M 124,142,140  2.5,3.4,3.0 ppb- 1.29-10°

changes during these pre-processing steps. We start by smoethening-smoothing both observations and modeled concentrations
in a time window of approximately £1.5h around each observation time as depicted in Fig. 3. This allows for some uncertainty
in the timing of modeled tracer transport. The resulting correlation of neighboring time steps is automatically considered in the
ensemble-based uncertainty estimate.

In the next steps, we filter the data by time in order to keep only observations expected to be representative for large regions.

Observations within the planetary boundary layer are most representative in the afternoon hours whereas measurements at

high mountains havelesstocal-influence-are less influenced by very local fluxes at night time(Bergamasehi-etal52045)—-We
therefore—use-. Inversions therefore commonly use afternoon observations for flat land stations and night times at mountain
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Figure 3. Weighting function for time interpolation of model and observations. For example, an interpolated model point at 16:30 UTC
averages over all model output between 15:30 UTC and 17:30 UTC with full weight and another 1 h with linearly decreasing relative weight.
The model yields instantaneous values every 15 min, whereas observations are provided as hourly averages, three of which contribute to the

observational time average. Reference times are those times for which observations are available.

sites (Bergamaschi et al., 2015; Steiner et al., 2024b). We use the time windows 23 h to 5h (local mean time) for stations on
high mountains and 11 h to 17 h for all other stations.
We furthermore exclude times with no wind to avoid a strong influence of local emissions that are not resolved in the model,

motivated by Ganesan et al. (2015). All data points for which the model predicts a wind speed of < 2ms™!

are excluded,
which improves the overall agreement of model and observations as shown in Table 4 (step 4). Figure 4 shows that the RMSE
indeed increases significantly at low wind speeds. This increase is partially captured by an increase of the ensemble spread,
supporting the idea of an uncertainty estimate depending on wind speed as proposed by Bergamaschi et al. (2022).

In the last filtering step — step 5 in Table 4 — we exclude data points with extreme mismatch between medel-and-observationsef

mere—than—200ppb—far-field corrected a priori and observations, where — 2'"| > 200ppb. Data points where the

ow—the-mode Mgwgg)w%also discarded. Since no
strong sinks of CHy are expected, the contribution of CHy from the lateral boundaries should not exceed the observations.

Thus, an observation below the model-predicted far field indicates an error in this far field. Steps 6-8 in Table 4 complete
our processing chain by applying the far-field correction (Seet-22Sect. 2.3), indicating the relevance of the model uncertainty
(Seet—24Sections 2.5 and 2.6), and finally yietding-using the inversion results.

3.4 Synthetic observation experiments

To test our setup and analyze biases, we use synthetic experiments in which observation data are replaced by model-generated
pseudo-observations. These synthetic experiments use exactly the same setup and the same observation coordinates. Only the
observation values are replaced by the simulation result of one of our 12 ensemble members. We thus obtain 12 separate
datasets of pseudo-observations, in which a transport error is simulated by using the transport ensemble members. The true
fluxes assumed for these synthetic experiments are identical to the prior fluxes. This allows us to estimate a bias and a random
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Figure 4. Dependency of RMSE dependenee-and proxies for the model uncertainty on wind speed (left axis). All data points from step 3
in Table 4 were ordered by the model-predicted wind speed and split into 100 bins, each containing approximately 1500 data points. The
blue line indicates the cumulative fraction of observations (right axis). The figure shows the RMSE difference of model and observation
(black line)and, the mean ensemble spread multiplied by factor 4 (magentared line), and the mean a priori concentration due to categorized
emissions (green line) for each of these bins. The ensemble spread is the standard deviation of the model prediction in the 12 ensemble
members. It is a main contribution to our uncertainty estimate for the model-data mismatch in the prior 12 and posterior I? inversion. The
signal of categorized emissions is used to estimate the uncertainty for the diagonal R matrix. Much of the larger RMSE at low wind speed is
well captured by the ensemble spread inflated by factor 4-4 and by the mean a priori emission signal. In the inversion, we discard data points

with wind speeds below 2ms~! (gray vertical line).

error in the posterior scaling factor. We will repeat this procedure with modified true fluxes in Sect. 4.3. An analysis of the
sensitivity to random changes in the true fluxes is included in Part 2 (Bruch et al., 2025a).

3.5 Summary and overview

We can now summarize the inversion method following the required data streams in Fig. 5. After collecting the input data for the

transport simulation (Sections 3.1 and 3.2, top of Fig. 5), we prepare the inversion by categorizing the fluxes (Sect. 2.1.1). The

transport is simulated separately for the deterministic and ensemble run (Sect. 2.1.1, white ellipses in Fig. 5). Using observation

data from the ICOS carbon portal and the simulation output, we compute model equivalents and filter these to ensure a high
uality of the model predictions (Sect. 3.3). The data from the deterministic run are used to construct a far-field correction to

mitigate uncertainties in the boundary conditions (Sect. 2.3). The ensemble data are used to construct the uncertainty matrix

R(s) as required for the prior R and posterior R inversion (Sect. 2.5.2). The far-field corrected data and the R matrix serve as

input for the Bayesian inversion (Sect. 2.4). By combining the resultin

we obtain posterior flux estimates.

osterior scaling factors with the categorized fluxes
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Figure 5. Overview of the inversion system including input data sources. Arrows indicate data streams. Dashed lines indicate data streams

with small or negligible impact on the inversion results. Colored areas group the input data (top), the deterministic model run and data

rocessing (left), and the ensemble model run including processing of the resulting data (right). Colored text boxes distinguish gridded fluxes

reen), data in observation space (blue, matrices in purple), and data in the space of scaling factors (red). Observation data are included

when working in observation space (not explicitly marked). At the end of the processing chain (bottom), the three methods for estimating R

lead to different scaling factors from which we can compute national emission estimates.
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Figure 6. —+1Mean (a, ¢) and standard deviation (b, d) of monthly flux estimates relative to the prior in synthetic experiments for diagonal

R (blue), prior R (orange), and posterior R inversion (green). Each bar represents the posterior fluxes for 144 inversions, obtained from

12 datasets of pseudo-observations, each covering 12 monthly time windows. Black horizontal lines indicate the 2¢ statistical uncertaint

estimate. Panels (a, ¢) show the bias as the relative deviation of the mean posterior from the prior, which is equal to the synthetic truth. The

standard deviation (b, d) among the 144 emission estimates indicates the random error expected in each monthly inversion. Colored lines in

b, d) show the mean posterior 1o uncertainty, which is similar for all three methods.

4 Results and discussion

+—FIn this section, we examine the presented inversion system using synthetic experiments and sensitivity tests. We start
by considering synthetic observation experiments in which the synthetic truth is equal to the a priori fluxes. Figure 6 shows a
statistical evaluation of inversion results for this case, which we analyze for multiple aspects.

4.1 Simulated-transpert-error{Seet-5:6)

4.1 Random error

In Fig. 6, we see the bias (panels a, ¢) and random error (b, d) of the inversion results for selected countries or emission
sources relative to the a priori emissions, distinguishing the three methods for constructing . The random error is estimated
by the standard deviation obtained from 144 inversions and indicates the precision or reliability of these results for a single
month. The comparison of the three methods shows that the prior /2 and posterior /2 method lead to a very similar random
error, which is considerably lower than for the diagonal 12 in all considered regions. This leads to the conclusion that using
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a transport ensemble to estimate uncertainties and their correlations can significantly reduce the random error in emission
estimates, independent of the far-field correction.

Since the diagonal 1? construction uses different tuning parameters than the prior /? and posterior [T inversion, we need to
make sure that the chosen configurations are comparable. This is achieved by aiming for a similar posterior uncertainty in all

methods for constructing R. Thin lines in Fi

By comparing emission estimates without (panels a, b) and with the far-field correction (¢, d), one can identify that the

far-field correction changes the bias and slightly reduces the random error. Both effects are very similar for all three choices of

R. Since the far-field correction pulls the simulated prior concentrations towards the observations, we can expect that it brings
the emission estimates closer to the prior. But we can see in Fig. 6 (b, d) that the resulting reduction in random error is onl

weak.

. 6 (b, d) show the posterior 1o uncertainties to validate the similarity.

4.2 Inversion bias

The bias shown in Fig. 6 (a, ¢) clearly depends on the far-field correction. The pseudo-observations without far-field correction
have a bias of +0.5 ppb. The far-field correction reverts this to a negative bias of —0.5ppb due to a sampling bias as explained
in Sect. 2.3. Ideally, we would therefore expect a small positive bias in Fi
But the bias differs depending on how 12 is constructed.

For the diagonal 1 inversion, we see overall a positive bias for most regions. This approximation for & assumes a large
uncertainty if the model predicts a strong signal from emissions. For an imperfect transport model, this implies that the model
will tend to have a higher uncertainty when it overestimates the concentration and a lower uncertainty when it underestimates
the real emission signal. As the model is more confident when observations are higher than the model prediction, it will tend

For the prior I approximation, we find a negative bias in the emission estimates in many regions. This may be due do
the plume bias problem introduced in Sect. 2.2. For the Upper Silesian Coal Basin as a very strong and localized source, all
methods show the expected negative bias. Notably, a considerable negative bias is also found for the Netherlands as a small

In the posterior 2 approximation, the negative bias for plumes is reduced, but also all other emission estimates are higher
compared to the prior R inversion. To understand this, we recall that a transport error in our model only leads to an error in
the predicted CHy4 concentration if the concentration field contains spatial gradients. Such gradients are caused by emissions.
Stronger emissions directly cause higher uncertainty estimates in the meteorological ensemble. In the posterior 2 inversion,
the inversion can adjust the emissions of the transport ensemble and thereby change the uncertainties. As we optimize the
agreement of model and observations relative to the uncertainties, the system will prefer larger uncertainties, Thus, the inversion
will tend to overestimate emissions to reach higher uncertainties. This counteracts the negative plume bias, but it may also lead

By combining bias and random error, we obtain the RMSE. For Germany, the monthly results with far-field correction show.
an RMSE between 2.4% (posterior R) and 4.3% (diagonal ). For yearly totals, this reduces to 1.2% for posterior /2 and

. 6 (a) and an equally strong negative bias in panel (c).
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Figure 7. Mean (a, ¢) and standard deviation (b, d) of monthly flux estimates relative to the prior in synthetic experiments with 20 % increased

anthropogenic emissions in the synthetic truth for diagonal R (blue), prior R (orange), and posterior R inversion (green). In (a, ¢), the a priori

has value 1.0 and a black vertical line shows the synthetic truth. Bars connect the prior to the posterior. Like in Fig. 6, each bar represents

the posterior fluxes for 144 inversions, combining 12 months with 12 datasets of pseudo-observations. Horizontal lines show 20 statistical

uncertainties and colored lines in (b, d) indicate the posterior 1o uncertainty.

1.8% for diagonal R, while the prior R inversion is dominated by the bias and has an RMSE of 2.9%. This indicates that

the simulated transport error in our synthetic experiments leads to an error of approximately 2% on the German yearly total

emission estimate. Overall, the posterior R inversion shows the best performance as it has a lower random error and only a

small bias.

4.3 Sensitivity tests(Seet:-5:4)to increased true emissions

To test the sensitivity of the inversion to true fluxes, we repeat the synthetic experiments with an identical setup but different
pseudo-observations. For these new_pseudo-observations, we increase all anthropogenic emissions by 20%. The a priori
emissions remain unchanged and are thus lower than the synthetic truth. The inversion results are summarized in Fig. 7, which

Figure 7 (a) and (c) show the mean posterior (bars) compared to the synthetic truth (black vertical line). Without the far-field
correction, the inversion is too sensitive in many regions, as it increases the emissions beyond the synthetic truth. This leads to
an overestimation, which is likely due to the artificial lifetime of the flux category tracers (see Sect. 2.1.2). With the far-field
correction (panel ¢), the deviation of the posterior from the prior is damped and we obtain a low bias compared to the truth, as
expected when the a priori emissions are underestimated. The random error (b, d) remains similar to the case with perfect prior
emissions, albeit a small increase can be seen (compare Fig. 6). Like for the perfect prior emissions, the best performance with
the lowest RMSE is found for the posterior R inversion.

4.4 Sensitivity to bias and noise in observations
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Figure 8. Total posterior emissions in 2021 of selected countries and German sectors for synthetic experiments with perfect transport.
Markers show the average of the emission estimates obtained from the prior R and posterior R inversion. Thin horizontal lines indicate the
synthetic truth. Vertical lines show uncertainties (95 % confidence intervals).

We now turn from the focus on the transport error to uncertainties in the observations. To this end, we consider different
pseudo-observations without any transport error that follow scenarios defined in Fig. 8. To avoid the transport error, we generate
these pseudo-observations based on the deterministic model run. For simplicity, we only consider the average of prior 1 and
posterior [? inversion.

In the first scenarios, we shift all pseudo-observations by —5ppb (case 01 in Fi
mostly compensated by the far-field correction with monthly averages of £2.75ppb to £3.8ppb, the sign depends on the
scenario. Because of this correction, the effect on the estimated German total emissions remains well within the posterior
uncertainty. This is in stark contrast to the same scenarios without the far-field correction (cases 03 and 04) and demonstrates
the benefits of the far-field correction.

We furthermore test the effect of correlated and uncorrelated Gaussian noise added to the observations (cases 10-12). finding
that the effect on the posterior emissions is small compared to the posterior uncertainties. The correlated Gaussian noise is a
three-dimensional Gaussian random field in flat (longitude, latitude, time) coordinates with a lower cutoff for fluctuations on
scales 55 2.5° (horizontal) and < 12 days (time) such that it acts as a slowly varying random bias. The RMS of the noise is
normalized to 5ppb. For the last three test cases (20-22), we scale either the natural and LULUCE fluxes or all other emissions
in the synthetic truth while leaving the a priori emissions unchanged. Overall, the emission estimates follow the change in the

synthetic truth well as already found in Sect. 4.3.

. 8) and +5ppb (case 02). This bias is

4.5 Sensitivity to inversion parameters

Our inversion method has various tuning parameters. Above we have described the inversion and #s+esults-synthetic experiments
for one choice of these parameters. We analyzed-the-sensitivity-of-analyze the sensitivity to these parameters by repeating the
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inversion 48-times-with-50 times with real observations and modified parameters. Table E1 lists these test cases with their
ID, parameters, and influence on the inversion results. An overview of the national emission estimates for each test case is

provided in Fig. E1. Here, we summarize the main results and refer to Table E1 for details. We use the average of the prior R

and posterior R inversion results and focus on the influence of the parameters on the emission estimates, leaving the discussion
of the inversion results for Part 2 (Bruch et al., 2025a).

4.5.1 Comparison to observations

Thefilteringstepstisted-in-Table-4-Before comparing model and observations, we apply multiple filtering steps that influence
the inversion results significanttyconsiderably. Most prominently, selecting nighttime observations for high mountain stations

and afternoon hours for other stations strongly affects the inversion and improves the model representativeness (case 201 in
Table E1). This is one of only feurfive sensitivity tests with posterior fluxes deviating from the reference case by 2 30% of
the posterior uncertainty, which we call a strong change in inversion results. Other filtering parameters such as the number
of sampling heights used per station (case 202) and the minimal wind speed (cases 203-205) affect the inversion results
noticeably, although changes are small compared to the uncertainties. Negleeting-extreme—outliers-has-enly—a—smal-effeet
(eases206;207) butlimiting Limiting the influence of outliers with model-observation mismatch |11;| > 3./R!, by increasing
their uncertainty (see Sect. 2.6.2) has a considerable impact (cases 208, 209). Completely neglecting extreme outliers — defined
by ly = Hs — | > 200ppb or y — 2" < —20ppb - has only a small effect (cases 206, 207).

The choice of observation sites is analyzed in cases 601 and 602, which select subsets of stations with good observation
coverage over the full year. When using only 27 stations (case 602), the results change strongly compared to the reference case
with 50 stations, also because some regions are hardly observed in case 662(eompare-also-Fig—6-with-Fig—A2)-602. Varying
the elevation of high mountain stations has only little impact on the inversion results (case 100). The effect of time-averaging

over 3h (as chosen in step 2 of Sect. 3.3) is noticeable in the results, but small compared to the uncertainties (case 101).

4.5.2 Uncertainty

The diagonal R inversion deviates from the reference case by one third of the posterior uncertainty (case 311). Also the

construction of the error covariance matrix R following Seetions—2-4-and-4-2-Sections 2.5 and 2.6 contains numerous tuning
parameters. Key parameters are the overall uncertainty inflation factors f; (Sect. 2.6.3, cases 302 and 303 in Table E1) and the
uncorrelated additive uncertainty oconst (s€€ Eq. (2)) of each data point (cases 309, 310). Variations of these parameters change
the inversion results considerably. The tuning parameter ooy illustrates the importance of hidden patterns in the considered
data. Increasing to o.onse = 20 ppb effectively reduces the weight of observations with a small ensemble-estimated transport
uncertainty. As observations with strong emission signals and high transport uncertainty become more relevant, the emission
estimate for Germany is increased by 5% (case 310 in Fig. E1).

Other important parameters are the correlation scales in the localization matrix C for the ensemble-based uncertainty es-
timate (see Sect. 2.5.2). The overall effect of these scales on the posterior scaling factors is small (cases 304-308), but these

parameters also influence the posterior uncertainties. The sensitivity tests indicate that 12 ensemble members are sufficient
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to estimate the uncertainties and correlations even without a strong localization. In general, we expect that a larger transport
ensemble will yield better statistical estimates for uncertainties and their correlations. This reduces the need for a localization
600 which suppresses spurious correlations. The considered additional plume localization uncertainty (see Seet—2:2Sect, 2.6.1,
cases 300 and 301) arising from the Upper Silesian Coal Basin seems negligible when considering the full domain. How-
ever, the additional plume localization uncertainty reduces the negative bias for the plume emissions {see-Seet—5-6)—that was

4.5.3 Far-field correction

605 The synthetic experiments already showed that the far-field correction explained-in-Seet-22stronghy-introduced in Sect. 2.3 influences
the results —Remeving-considerably (see Figs. 6 and 7). When using real observations, removing the correction field leads to
striking-strong changes in the inversion results -ineluding-unrealistie-negative-(case 400), albeit the results remain within the
posterior uncertainty bounds. Without the correction, the scaling factors for some natural flux-—categeries(ease-400)—fluxes in

Scandinavia even become negative for some months — a clearly unrealistic result that underlines the importance of the far-field
610 correction. However, changing various tuning parameters of the far-field correction within a reasonable range has much smaller

effects. The selection of data points used for the far-field correction (cases 409, 410) and the overall correction strength (cases
401, 402) have modest influence, whereas correlation scales in the correction play a minor role (cases 403—408). The addi-

tional uncertainty added to R due to the far-field correction (see Sect. 2.6.4) has little influence on the inversion results (cases

412-414).
615
4.5.4 A priori error covariance matrix
Modifying the a priori uncertainty or correlations of the scaling factors (B in Eq. (1)) changes the results quantitatively, but not
qualitatively (cases 500-502). ¥
620 1551 —A coarser spatial resolution in Germany

(case 504) and different choices of sectors (cases 503, 506) yield aggregated German sector emissions that agree well with the

reference case.
4.5.5 Inversion time windows

In the reference case, we considered each month independently. Increasing the inversion time windows to three months has a
625 considerable influence on the results (case 702). As the inversion time window increases, the overall weight of the observations
in the inversion also increases. Thus, posterior uncertainties are reduced and the deviations between posterior and prior are

amplified.
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5 Conclusions

method-to-Central Burope-in2021with-afeeus-on-GermanyThis study introduced a new flux inversion system that explores the

otential of a transport ensemble from NWP for observation-based regional estimation of methane emissions. In experiments
with pseudo-observations and simulated transport error, we found a-significant-inerease-in-emissionsfrom-Germany-and-the

tarior-eneUaRe a Q) 07 higha

s—that using a transport ensemble
can substantially reduce the random error of the flux estimates compared to a simple baseline scenario (“diagonal £7). This
is in line with findings by Ghosh et al. (2021) and by Steiner et al. (2024a), who estimated CH, emissions in Europe usin
an ensemble Kalman smoother. But in contrast to Ghosh et al. (2021), who studied CO, at urban scale using an ensemble
transform Kalman filter, we identified no significant improvement in the bias of the emission estimates. Instead, our results
indicate systematic biases depending on the emissions characteristics. Most notably, localized sources causing strong plumes
can be underestimation by 10% by our synthesis inversion. To benefit from the transport ensemble and to reduce such biases,
we proposed to use the posterior concentrations in the ensemble when constructing . This posterior R inversion showed
the best performance in the synthetic experiments. ' itivi

emisston-seetorsin-GermanyQverall, we expect an error of 2% for the total German CH, emissions in 2021 in our inversion
system due to random transport errors.

When applying our regional inversion system to real observations, we face the challenge of uncertain CH4 concentrations at
the lateral boundaries. Different approaches exist to correct biased boundary conditions. In some cases, selected measurements
can provide a baseline (Lauvaux et al., 2013). At national or continental scale, a coarse discretization of the boundaries

allows optimization along with the emissions (Ganesan et al., 2015; Steiner et al., 2024b). Here, we followed a different path

by adding a smooth correction field for the simulated concentrations. This allowed us to use different time scales for the
inversion and the far-field correction. The far-field correction causes a small bias towards the prior fluxes, but without the
correction we expect errors from wrongly projecting any boundary bias onto the fluxes. We demonstrated the potential of the
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far-field correction using biased pseudo-observations and analyzed its importance in sensitivity tests, for which we repeated

the inversion with different tuning parameters. These tests with real observations show that switch on the far-field correction
changes the results considerably within the uncertainty ranges, but the specific choices made in constructing the correction field
have only minor or moderate effects. Also other tested changes in tuning parameters only lead to variations of the full-year
flux estimates well within the uncertainty ranges, indicating that we found robust settings for our application. This establishes
a basis for applying our system to validate the German emission inventory in Part 2 (Bruch et al., 20252).

n n H N A n n N d M
Bay—wW O y —PIes G app atio O1—d STOTCS VA% vV 51O ¥ bty - ay

inelude-the-integration-efsateHite-data;-The presented novel inversion system leverages the potential of the inecerperation—of

afnta—ahn 1S1O O N a pa O ot O O—opcrationarHun ar—-wcea prea Ooh P a

underlying transportsimulation —and- ICON-ART model and the ensemble modeling capabilities from operational NWP for
national scale estimation of CHy fluxes. It is tailored to the modular-design-establish-the-potential-for long
supportof national-emissions reporting-validation of national inventories by using high-resolution a priori emission estimates
from national reporting and allowing for distinguishing emission sectors, as will be discussed in detail in Part 2. With synthetic
experiments and sensitivity tests we demonstrated the suitability for estimating national CH, emissions.

Data availability. A collection of model data, inversion results, and data for reproducing most figures in this work is available at https:

//doi.org/10.5281/zenodo.17414768 (Bruch et al., 2025b).

Appendix A: Far-field-Formal definition of far-field correction

This appendix provides details for the far-field correction introduced in Seet—2:2—Sect. 2.3. We correct the computed far
field by a smooth field that m i i

determined using all data points where the cumulated signal of all flux categories is at most 20 ppb, the total concentration due

to all fluxes in the domain — including natural and uncategorized fluxes — is at most 50 ppb, and natural plus LULUCF fluxes

contribute at most 20 ppb. These criteria aim to select only measurements of sufficiently clean air for the far-field correction.

__overall correction time gradient
~ ()
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The far-field correction is realized as a Kalman smoother on the selected data points. For simplicity, we only provide the
definition of the correction at the observation coordinates. Consider the vector of all model predictions x, which is aligned with
the observation vector y. By P we denote the projector selecting those data points that shall be used to determine the far-field

correction. We aim to find a correction vector c aligned with x and y that minimizes

argmin {4(z+c—y)TPT(PRPT) " P(s+c—y)+ 3T PT(PCPT) ' Pe}, (A1)
c
where R =161 is a diagonal matrix and C fs—&n»mmefmahzed—ﬁf—éﬁ%kfe%ﬁ& Gaussian localization matrix with

standard deviations 16 (time), 319km (horizontal) and 1km (vertical), normalize to C;; = 1 for all 4. The matrix C ensures

that the correction field c is smooth on these scales. For the under-determined Eq. (A1) we use the solution
~ - . -1
c=CP"|P(C+R)P"| P(y—uz). (A2)

This only defines ¢ at the observations, but we can generalize Eq. (A2) to arbitrary locations and times by including these

coordinates in C. Formall , this then defines a smooth field.
To prove that Eq. (A2) selves-is one possible — albeit not unique — solution of Eq. (A1), we use that Eq. (A1) is a quadratic

form and compute its gradient with respect to c:
0=2PT(PRPT) ' P(z+c—y)+2PT (PCPT) ™" Pe. (A3)
. ] -

0= (PRPT) ' P(z+c—y)+ (PCPT) ' Pc

_ [(P}%PT)‘1 n (PC*PT)‘l] Pe+ (PRPT) ' Pz —y)

= Pc= {1 +PRPT(PCPT) ’1} - P(y— )

= PCPT [P(C‘ + R)PT] T Py —a).
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Since PP has full rank, this implies that

0= [(PRPT) ™"+ (PCPT) ™| Pe+ (PRPT) ' P(a—y) (Ad)
— Pe= {1 +PRPT (PC*PT)”} T Ply—a) (AS)
=PCP’ [P(OH%)PT} _1P(yfx). (A6)

It follows that Eq. (A2) is a solution of Eq. (A1) that is independent of the non-selected data points. One can furthermore

show that Eq. (A2) is optimal in the sense that it minimizes cTC1

c under constraint that ¢ is a solution of Eq. (A1). Thus, this

and introducing Lagrange multipliers )\, we obtain

- - of of
_ T 1 T _ T I I
fle,N)=c' C77c+ X (Pc—PCP'¢), e, 0, , 0, (A7)
c=—CP"\ fromd,, f(c,\) =0, (A8)
Pe=PCPT¢  from 0y, f(c,\) =0. (A9)

Since PCP has full rank, combining Eqs. (A8) and (A9) implies that A\ = and thereby ¢ = CP "
of the optimization problem arg min . f(c,0) under the constraint that Pc = PCP €.

is the unique solution

Appendix B: Pesterior-based-model-uneertainty-estimatePosterior IR with reduced ensemble

B1 Redueced-ensemble

When using a priori scaling factors to estimate the model uncertainty in 12, we need only the total concentration x!" (sPi")
for each ensemble member 1m and each observation 4, where sP™" is known. Thus, only a single tracer field is required in the
ensemble transport simulation. To fulty-compute 27" (s) as-funetion-of-s-the-tracerfor arbitrary s € RS, the flux categories
need to be distinguished for each ensemble member, resulting in > 40 tracer fields in the ensemble simulation. To avoid
wasting numerical resources, we chose to approximate x*(s) by only a few tracer fields, using additional information from
the deterministic model run which distinguishes all tracer fields.

From the deterministic model run, we know the operator I mapping scaling factors s to a model prediction H's + zf for
the concentrations. For ensemble member m, we would ideally know H™ and 2™ yieldingto compute a model prediction
H™s + ™. Fo-avoid-ealeutating-thefull-matrixIn lack of computational resources to compute H™ wefor every ensemble
member, we combine information from the deterministic run (/) and selected tracers for the ensemble run to approximate
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H™. We group the flux categories into groups {g} and denote by P, the projector of scaling vectors s on the subspace spanned
by the flux categories in group g. Using-the-In the ensemble members, we compute the total concentration from group g,
= Py e = H'™ PysPi", We distribute the 46 flux categories to only three groups and thereby reduce the
computational effort considerably. To estimate the full dependence on the scaling factors in the ensemble, we approximate:

HOLDY <$;gpfii)ﬁ§"” +ai™ (B1)

g

Thus, we compute the transport ensemble for a few tracer groups and estimate ™ (s) for arbitrary s by using the ratios of
tracer fields within the tracer groups from the deterministic run. Using the approximation in Eq. (B1), we estimate the posterior

model uncertainties with only five tracer fields in an ensemble of 12 transport simulations:

. far field (initial and lateral boundary conditions)
. total anthropogenic fluxes
. total natural fluxes

. total anthropogenic fluxes from Germany with lifetime five days

AW N =

. total anthropogenic fluxes from outside Germany with lifetime five days

Appendix C: Extended-data-tables-and-figuresObservation sites
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Table C1. Observation stations from the European Obspack (ICOS Rl et al., 2024). Column 6 (“mountain”) characterizes the stations as high

mountains, small mountains, and other stations. This serves as a reference for computing the station height in the model and for the daily

time window. We indicate the sampling heights used in the inversion (column 7) and mark those sampling heights with an asterisk that have

good observation coverage in each month (used in sensitivity test 602). Column 8 indicates times in which the station was excluded due to

modeling problems. Column 9 (“inflation”) defines the factor f; of the static uncertainty inflation (see Sect. 2.6.3).

Code Name Coun- ICOS Elevation Mountain Sampling Limitations Infla-
try class (m) heights (m) tion
BIK  Biatystok PL - 183 no 90, 180, 300 2
BIR  Birkenes NO 2 219 no 75 excl. Apr—Aug 3
BIS  Biscarrosse FR - 73 small 47" 2
BRM  Beromunster CH - 797 no 72,132,212 2
BSD  Bilsdale UK - 382 no 108, 248 2
CBW  Cabauw NL 1 0 no 67, 127°,207" 2
CMN  Monte Cimone IT 2 2165 high 8 2
CRA  Centre de Recherches FR - 600 no 60" 2
Atmosphériques
CRP  Carnsore Point IE - 9 no 14 2
ERS  Ersa FR - 533 small 40 3
FKL  Finokalia GR - 250 small - excluded -
GAT  Gartow DE 1 70 no 132,216, 341" 2
HEI  Heidelberg DE - 113 no 30° 3
HEL  Helgoland DE 2 43 no 110° 2
HPB  Hohenpeissenberg DE 1 934 small 50,93, 131" 2
HTM  Hyltemossa SE 1 115 no 70, 150 2
HUN  Hegyhatsal HU 2 248 no 82, 115 incl. Mar—Oct 3
IPR  Ispra IT 2 210 no - excluded -
JF] Jungfraujoch CH 1 3571.8 high 13.9 2
JUE Jilich DE 2 98 no 120" 3
KAS  Kasprowy Wierch PL - 1987 high 7 2
KIT  Karlsruhe DE 1 110 no 60", 100", 200" 2
KRE Kiesin u Pacova CZ 1 534 no 50, 125, 250 2
LHW  Laegern-Hochwacht CH - 840 small 32 3
LIN  Lindenberg DE 1 73 no 98 2
LMP  Lampedusa IT 2 45 no - excluded -
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Code Name Coun- ICOS Elevation Mountain Sampling Limitations Infla-

try class (m) heights (m) tion
LMU La Muela ES - 571 no 79 2
LUT Lutjewad NL 2 1 no 60 excl. Nov—Dec 2
MHD  Mace Head IE - 5 no 24" 2
MLH Malin Head IE - 22 no 47 2
NOR  Norunda SE 1 46 no 58", 100" 2
OHP  Observatoire de Haute FR - 650 no 50, 100 2
Provence
OPE  Observatoire pérenne FR 1 390 no 50", 120" 2
de I’environnement

OXK  Ochsenkopf DE 1 1022 small 90, 163 2
PAL  Pallas FI 1 565 no 12" 2
PDM  Pic du Midi FR - 2877 high 28 2
PRS  Plateau Rosa IT 2 3480 high 10 2
PUI  Puijo FI 2 232 small 84" 2
PUY  Puy de Dome FR 2 1465 small 10° 2
RGL  Ridge Hill UK 2 207 no 90" 2
ROC  Roc’h Trédudon FR - 362 no 25, 80, 140 2
SAC  Saclay FR 1 160 no 60", 100° 2
SMR  Hyytiild FI 1 181 no 67.2°, 125" 2
SSL Schauinsland DE 2 1205 small 12, 35 2
STE  Steinkimmen DE 1 29 no 127", 1877, 252° 2
SVB  Svartberget SE 1 269 no 85", 150" 2
TAC  Tacolneston UK - 64 no 54%,1007, 185" 2
TOH  Torfhaus DE 2 801 small 76", 110", 147 2
TRN  Trainou FR 2 131 no 50°, 100", 180" 2
UTO  Uto - Baltic sea FI 2 8 no 57" 2
WAO  Weybourne UK 2 17 no 10" 2
WES  Westerland DE 2 12 no 14 2
ZSF  Zugspitze DE 2 2666 high 3" 2

Chi-square-

Appendix D: x? analysis

In this appendix, we provide the mathematical details for the x2 / Ngo analysis used-in-Seet—4-2-(see, e.g., Greenwood and Nikulin, 1996) u

760 in Sect. 2.6.5. The aim of this analysis is to quantify whether the data used in the inversion agree with the assumed uncertain-
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ties. The-inversionformally-relies-We restrict this analysis to the prior R and diagonal R inversion, for which the matrix R is
constant. These inversions formally rely on the assumption of Gaussian probability distributions of the a priori scaling factors

(error covariance matrix B) and the model-observation mismatch (R). For-the-

We start from the probability density of observations v under the assumption that s describes the true emissions:

765 P(y|s) ccexp[—3(y— Hs—a™) "R~ (y — Hs —2")]. (D1)

Like in the inversion, R describes uncertainties in the transport, in the corrected far-field contribution 2, and in the observations 1.

By a change of variables we obtain the probability for the a priori model-observation mismatch pt—4—H521" & this yields

_H Spnor _

770
the above definitions in Eq. (D1), we obtain® (Berchet et al., 2015)
P(u y— Hépnor p ,ff)
P(y = Hs+p+z™|s)dP, (D2)
oc/Té exp [—17'( —Hs—2")TR (y— Hs—a")—1(s— ") T B~ 17 (s spri"r)] = H spriory 11 prion ' S (D3)
775 = / exp [ (Tt — Hr)TR™ (Hr ™ — H T):ljﬁm} ety (D4)
o exp [ o (R — R_l—i—H(B_l—kHTR)_IH)_lHTR_lupff} (D5)
= exp ( prlor Qﬂprlor) ) (D6)

Sueh-This result is a high-dimensional Gaussian probability
when-sampling-distribution from a probability distribution P(y) as
780 in Eq. (D6), it is very likely to find x such that x? = ;1" Qu & Ngof Where Nyor denotes the number of degrees of freedom,
which is the dimension of vector . In our case, Ngor ~ 10% is the number of observation data points used per one-month
time window. In the limit of large Ngof, one can approximate {2} ~A{ PN 2Nqor}-the probability distribution for x2 by
X2~ N (Nyor: 2Nyor) (Gaussian distribution with mean Ngor and variance 2Nyo) (Abramowitz and Stegun, 1964, Sect. 26.4).
Thus, in an idealized setup we expect that 2 /Ngof = 140.03 (95 % confidence interval). Values > 1.05 imply-that uneertainties

—1

. When drawing a random vector

785 swere-underestimated-hint at underestimated uncertainties and x2 /Ngor < 0.95 indicates that uncertainties were too high. How-
ever, in reality we may have biases and etherpreblems—not fully described errors such that the assumption of a Gaussian

3In Eq. (D5), we first solve the Gaussian integral to obtain exp {—%,upm"T [R*I —~R'HB'+HT R*IH)*lHTRfl] ;L'“i"'} and then use that
(R+HBHT)[R"'—=R'H(B '+ HTRIH)"'HTR 1] =1
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uncertainty in the model—-observation mismatch becomes invalid and x?/Nyor < 1 does not necessarily imply that uncertainties

should-can simply be reduced.

Appendix E: Sensitivity tests

Table E1 provides an overview of the sensitivity tests. For this table, we quantify the impact of a parameter variation on the

inversion results by the following, heuristic metric: Consider a fixed region, sector and inversion time window with posterior

fluxes F', defined as the average of the prior R and posterior R inversion result. The normalized deviation from the reference
2|F—F™F|

FreT upper — et v » Where Frref-upper g prref.lower Jonote the bounds of the posterior uncertainty range.

inversion is defined as A =
The overall impact is computed as the arithmetic mean of A over the (usually monthly) time windows and a selection of
regions and sectors. In the regions UK+Ireland, France, Italy, Poland, Austria+Czechia, Netherlands, Belgium+Luxembourg,
Switzerland, and Denmark we consider only total fluxes without distinguishing sectors. In Germany we include A for the total
fluxes in four different regions (north, east, south, west) and additionally for national total fluxes distinguishing the three sectors
agriculture, natural plus LULUCE, and other sectors. Effectively, this counts all fluxes in Germany twice and gives them more

weight in the impact metric for Table E1.
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Table E1. Sensitivity tests for estimating the robustness of the inversion results with respect to tuning parameters. Modified numbers are
marked in bold font. The impact column quantifies the deviation of the inversion results relative to the uncertainties and shall qualitatively
indicate the relevance of the modified parameters (see explanation in the text). An impact of 100 % means that the average deviation from the
reference case is as large as the posterior uncertainty. Overall, we see that most tests have an impact of < 15 %, implying that the effect on

the inversion results is small compared to the uncertainty in the reference case. See also Fig. E1 for the posterior emissions in the sensitivity

tests.
ID  Testcase Explanation Impact
Model equivalent calculation (see Sect. 3.3)

100 station elevation for mountain stations  treat all mountain stations like small mountains when computing model 53%
heights, as proposed by Brunner et al. (2012); Henne et al. (2016); Bergam-
aschi et al. (2022), uses 127087 observations

101 no additional time averaging average onty-over 1h instead-of-everlike in the observations, instead of 13 %
ayeraging 3h

Filtering observations (see Sect. 3.3)

200 fewer hours of day use time window 12h-16h (0h—4h for high mountains), 85674 11%
observations (reference case uses 1Lh-17h/23h-5h)

201  all hours of day no filtering by time of day, increase uncertainty inflation (factors f; in 38 %
Sect. 2.6.3) by factor 1.5, uses 508594 observations

202  one sampling height per station use only highest sampling height of each station instead of up to 3 highest 16 %
levels, 80132 observations

203  no filtering based on wind include data points with low wind speed, 147019 observations 12 %

204  low min. wind speed minimum wind speed: 1.11ms ™" (reference: 2ms "), 140650 obs._ 9.4 %

205  high min. wind speed minimum wind speed: 3.0ms ™" (reference: 2ms "), 112275 obs. 11%

206  low max. model-obs. mismatch discard when abselute—deviation—exeeeds—120ppb—or—meodel—far 3.5%
field—minus—observation—exeeeds—12ppb—|y — Hs —z'| > 120ppb _or

207  high max. model-obs. mismatch discard when abselute—deviation—exeeeds—300ppb,—or—meodel—far 1.3%

208  low max. data point influence increase uncertainty if WWM@ 11%

209  high max. data point influence increase uncertainty if WMW 15 %
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ID Test case Explanation Impact
Uncertainty / error covariance matrix R (see Sections 2.5 and 2.6)
300 no plume uncertainty no extra uncertainty due to peint-tike—emisstons—localized emissions  0.27 %
301 high plume uncertainty 0.56 %
extra uncertainty: R\ = R!. 4+ 0.5p78;; in Sect. 2.6.1 (reference: 0.25)
302 low uncertainty inflation uncertainty inflation by (+-5:2:25instead-of(2:3)-f; = 1.5 or 2.25 instead 8.6 %
303 high uncertainty inflation uncertainty inflation by (3;--4-5)-instead-of(2:3)-f; = 3 or 4.5 instead of 2 13%
304 small horizontal error correlation scale  scale 191km instead of 319km in localization matrix C'; (Sect. 2.5.2) 6.0 %
305 large horizontal error correlation scale  scale 510km instead of 319km in localization matrix C; (Sect. 2.5.2) 8.3%
306 small vertical error correlation scale scale 400m instead of 1km in localization matrix C;; (Sect. 2.5.2) 23 %
307 short error correlation time scale scale 4 h instead of 6 h in localization matrix C;; (Sect. 2.5.2) 2.5%
308 long error correlation time scale scale 10 h instead of 6 h in localization matrix C;; (Sect. 2.5.2) 2.8%
309 low uncorrelated uncertainty Oconst = D ppb instead of 10 ppb in Eq. (2) 21 %
310 high uncorrelated uncertainty Oconst = 20 ppb instead of 10 ppb in Eq. (2) 22 %
height Far-field correction (see Sect. 2.3 and Appendix A)
400 no far-field correction 9735 %
401 weak far-field correction R = 1001 instead of 167 in Eq. (A1) 16 %
402 strong far-field correction R = 2.781 instead of 161 in Eq. (A1) 9.2 %
403 small horiz. far-field correction scale scale 191km instead of 319km %MA@EWM 6.8 %
404 large horiz. far-field correction scale scale 510km instead of 319km WM 4.5 %
405 short far-field correction time scale time scale 10 h instead of 16 h WMMM 3.7 %
406 long far-field correction time scale time scale 28 h instead of 16 h W\MMM 3.8%
407 long-extraclong far-field correction time time scale 48 h instead of 16 h MMMQM& 7.1 %
seale-
408 low vertical far-field correction scale scale 400m WMW&W 0.92 %
409 strict far-field observation selection 20 %

max—stgral1+0-pphbmax—due-to-natural-flaxes1+0ppb-construct far-field
fluxes < 10ppb (reference: 20ppb) and from natural fluxes < 10ppb
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ID

Test case

Explanation

Impact

410

411

412

413

414

loose far-field observation selection

unrestricted iterative far-field correc-

tion

low correction uncertainty

high correction uncertainty

uncorrelated correction uncertainty

categorized fluxes < 30ppb (ref.: < 20ppb), from natural fluxes < 30ppb
(tef.: 20ppb), and from all emissions within the domain < 80ppb (ref.:
50ppb)

maaﬁﬁg{ﬂ}%@ppbrﬂ&efheﬁe}ee&mwmeﬁafé@g:ﬁgl%m
all observations with cumulated signal from categorized fluxes < 50 ppb;

MIOCalization scales 10h, 191km; iterate—far-field correction and

inversion are iterated 3 times, the correction always uses the posterior
use Ri+0-25}erer}Cr—in-Seet—42-RP! = RP® 1 0.25|c;¢;|Cy; in
use R+ 1-0lererC—in—Seet—42—R

2 . ) . ~ =
use 2 7077 Z9] O1€C5 157

14 %

30 %

25%

42 %

3.6%

500

501

502

503
504

506

A priori scaling factor error covariance matrix B (see Sect. 2.8)

low prior uncertainty

high prior uncertainty in Germany

uncorrelated prior, B is diagonal

no sector distinction in prior

low spatial resolution in Germany

distinguish 5 sectors in Germany

lo prior uncertainty for—mest—areas6:25—set to_0.25 (ref.. 0.4)
for well-observed areas, 0.2 (ref.: 0.25) for remote and plume 6:2;

seetor-reselved—033—categories, 0.33 (ref.: 0.5) for sector-resolvin
categories

+e—prior uncertainty such that national total sector emissions in Germany
have uneertainty—0-6—10 uncertainty 60% for each distinguished sector
reference: approx. 40%)

lo prior uneert—uncertainty in sector categories in Germany: 675

0.75; uncertainty on national total: 35% for agriculture, 39 % for other
anthropogenic)

four regions in Germany with uncorrelated 1o prior uncertainty of 6:4-0.4

two initially uncorrelated regions in Germany (south-west and north-east),
each distinguishing sectors like in the reference case

see-Appendixt-split “non-agr.” into sectors waste, public power, and other

emissions

14 %

8.6%

6:35.6 %

7.7%
15 %

2.1%

601

Station selection

coverage

require > 10 days each-month-tise-coverage each month: 35 of 50 stations,
10570Lobs, 39

13%
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Figure E1. Posterior emissions and uncertainties of selected countries and German sectors for all sensitivity tests. Thin horizontal lines
indicate the posterior of the reference case 0. Markers show the average of prior |2 and posterior R inversion. Vertical lines show uncertainties

(95 % confidence intervals) that-are-notextended-by-exeluding-stationsand cover the uncertainty range of prior R and posterior R inversion.
The individual tests are listed in Table E1. a e-th ngest-deviationsfor-eases ar-fie ection

all ether-test casesonty Jead-to-changes-, the emission estimates for the shown countries remain within the uncertainty rangesrange of the

reference case.

ID  Testcase Explanation Impact
602 . . . . . 33%
stations-coveringrequire good full-year  require > 20 days each-month-use-coverage each month: 27 of 50 stationsas
coverage detatled-, 82912 observations (discussed in Fig. A2 of Part 2)
Inversion time windows (see Sect. 2.7)
701 2 month inversion window . . . 12 %
uncertainties are not adjusted to the longer window
702 3 month inversion window 18 %

uncertainties are not adjusted to the longer window

805 Appendix F: Additionalsynthetie-experiments

40



810

815

820

825

830

Author contributions. VB and TR conceptualized the inversion method. VB implemented the inversion method and wrote the original draft
together with AKW. TR configured the transport model. TR and BE interpolated the a priori flux data which BE collected. DJCO organized
data streams of CH4 concentrations and observations. JE, BM, AMB, DJCO, TR and VB contributed to testing and tuning the transport
model. NB contributed to the model-observation comparison. AKW supervised and coordinated the project. All authors reviewed and edited

the manuscript.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. In our simulations we use modified Copernicus Atmosphere Monitoring Service information and ECCAD products for
initial and lateral boundary conditions, and for a priori fluxes. We thank Stefan Feigenspan, Christian Mielke, Theo Wernicke, John Akubia
and Roland FuB for helpful discussions and providing a priori emission fields. We thank Roland Potthast, Frank-Thomas Koch, Christoph
Gerbig, Dominik Brunner, Michael Steiner, David Ho, Thomas Kaminski, Hannes Imhof and our partners in the ITMS project for very
helpful and inspiring discussions. We also wish to thank Peter Bergamaschi, Aurélie Colomb, Martine De Maziere, Lukas Emmenegger,
Dagmar Kubistin, Irene Lehner, Kari Lehtinen, Markus Leuenberger, Cathrine Lund Myhre, Michal V. Marek, Simon O’Doherty, Stephen
M. Platt, Christian Pla-Diilmer, Francesco Apadula, Sabrina Arnold, Pierre-Eric Blanc, Dominik Brunner, Huilin Chen, Lukasz Chmura,
Lukasz Chmura, Sébastien Conil, Cédric Couret, Paolo Cristofanelli, Grant Forster, Arnoud Frumau, Christoph Gerbig, Frangois Gheusi,
Samuel Hammer, Laszlo Haszpra, Juha Hatakka, Michal Heliasz, Stephan Henne, Arjan Hensen, Antje Hoheisel, Tobias Kneuer, Eric
Larmanou, Tuomas Laurila, Ari Leskinen, Ingeborg Levin, Matthias Lindauer, Morgan Lopez, Ivan Mammarella, Giovanni Manca, An-
drew Manning, Damien Martin, Frank Meinhardt, Meelis Molder, Jennifer Miiller-Williams, Steffen Manfred Noe, Jarostaw Necki, Mikaell
Ottosson-Lofvenius, Carole Philippon, Joseph Pitt, Michel Ramonet, Pedro Rivas-Soriano, Bert Scheeren, Marcus Schumacher, Mahesh Ku-
mar Sha, Gerard Spain, Martin Steinbacher, Lise Lotte Sgrensen, Alex Vermeulen, Gabriela Vitkovd, Iréne Xueref-Remy, Alcide di Sarra,
Franz Conen, Victor Kazan, Yves-Alain Roulet, Tobias Biermann, Marc Delmotte, Daniela Heltai, Ove Hermansen, Katefina Kominkov4,
Olivier Laurent, Janne Levula, Chris Lunder, Per Marklund, Josep-Anton Morgui, Jean-Marc Pichon, Martina Schmidt, Damiano Sferlazzo,
Paul Smith, Kieran Stanley, Pamela Trisolino and Giulia Zazzeri for providing the atmospheric observations for the stations listed in Ta-
ble C1. VB, DJCO, NB and AMB acknowledge funding by the German Federal Ministry for Education and Research (BMBF) in the ITMS
project (grant 01LK2102B) as well as BE (grant 01LK2104A). Map plots were made with Natural Earth.

41



References

Abramowitz, M. and Stegun, I. A.: Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, Applied Math-
ematics Series, United States Department of Commerce, National Bureau of Standards, Washington, D.C., 1964.
Berchet, A., Pison, 1., Chevallier, F., Bousquet, P., Bonne, J.-L., and Paris, J.-D.: Objectified quantification of uncertainties in Bayesian
835 atmospheric inversions, Geosci. Model Dev., 8, 1525-1546, https://doi.org/10.5194/gmd-8-1525-2015, 2015.
Bergamaschi, P., Krol, M., Meirink, J. F.,, Dentener, F., Segers, A., van Aardenne, J., Monni, S., Vermeulen, A. T., Schmidt, M., Ramonet, M.,
Yver, C., Meinhardt, F., Nisbet, E. G., Fisher, R. E., O’Doherty, S., and Dlugokencky, E. J.: Inverse modeling of European CH4 emissions
2001-2006, J. Geophys. Res. Atmos., 115, https://doi.org/10.1029/2010JD014180, 2010.
Bergamaschi, P.,, Corazza, M., Karstens, U., Athanassiadou, M., Thompson, R. L., Pison, 1., Manning, A. J., Bousquet, P., Segers, A.,
840 Vermeulen, A. T., Janssens-Maenhout, G., Schmidt, M., Ramonet, M., Meinhardt, F., Aalto, T., Haszpra, L., Moncrieft, J., Popa, M. E.,
Lowry, D., Steinbacher, M., Jordan, A., O’Doherty, S., Piacentino, S., and Dlugokencky, E.: Top-down estimates of European CH4 and
N, O emissions based on four different inverse models, Atmos. Chem. Phys., 15, 715-736, https://doi.org/10.5194/acp-15-715-2015, 2015.
Bergamaschi, P., Karstens, U., Manning, A. J., Saunois, M., Tsuruta, A., Berchet, A., Vermeulen, A. T., Arnold, T., Janssens-Maenhout,
G., Hammer, S., Levin, 1., Schmidt, M., Ramonet, M., Lopez, M., Lavric, J., Aalto, T., Chen, H., Feist, D. G., Gerbig, C., Haszpra, L.,
845 Hermansen, O., Manca, G., Moncrieff, J., Meinhardt, F., Necki, J., Galkowski, M., O’Doherty, S., Paramonova, N., Scheeren, H. A.,
Steinbacher, M., and Dlugokencky, E.: Inverse modelling of European CHy4 emissions during 2006-2012 using different inverse models
and reassessed atmospheric observations, Atmos. Chem. Phys., 18, 901-920, https://doi.org/10.5194/acp-18-901-2018, 2018.
Bergamaschi, P., Segers, A., Brunner, D., Haussaire, J.-M., Henne, S., Ramonet, M., Arnold, T., Biermann, T., Chen, H., Conil, S., Del-
motte, M., Forster, G., Frumau, A., Kubistin, D., Lan, X., Leuenberger, M., Lindauer, M., Lopez, M., Manca, G., Miiller-Williams,
850 J., O’Doherty, S., Scheeren, B., Steinbacher, M., Trisolino, P., Vitkovd, G., and Yver Kwok, C.: High-resolution inverse modelling of
European CHy4 emissions using the novel FLEXPART-COSMO TMS5 4DVAR inverse modelling system, Atmos. Chem. Phys., 22, 13 243—
13268, https://doi.org/10.5194/acp-22-13243-2022, 2022.
Bruch, V., Rosch, T., Jiménez de la Cuesta Otero, D., Ellerhoff, B., Mamtimin, B., Becker, N., Blechschmidt, A.-M., Forstner, J., and Kaiser-
Weiss, A. K.: German methane fluxes estimated top-down using ICON-ART — Part 2: Inversion results for 2021, submitted to ACP,
855 2025a.
Bruch, V., Rosch, T., Jiménez de la Cuesta Otero, D., Ellerhoff, B., Mamtimin, B., Becker, N., Blechschmidt, A.-M., Forstner, J., and Kaiser-
Weiss, A. K.: German methane fluxes in 2021 estimated with an ensemble-enhanced scaling inversion based on the ICON-ART model,
Zenodo [data set], https://doi.org/10.5281/zenodo.15083479, 2025b.
Brunner, D., Henne, S., Keller, C. A., Vollmer, M. K., Reimann, S., and Buchmann, B.: Estimating European Halocarbon Emis-
860 sions Using Lagrangian Backward Transport Modeling and in Situ Measurements at the Jungfraujoch High-Alpine Site, in: La-
grangian Modeling of the Atmosphere, pp. 207-222, John Wiley & Sons, Ltd., Chichester, England, UK, ISBN 978-1-11870457-8,
https://doi.org/10.1029/2012GM001258, 2012.
Chen, H. W., Zhang, F, Lauvaux, T., Davis, K. J., Feng, S., Butler, M. P., and Alley, R. B.: Characterization of Regional-
Scale CO; Transport Uncertainties in an Ensemble with Flow-Dependent Transport Errors, Geophys. Res. Lett., 46, 4049-4058,
865 https://doi.org/10.1029/2018GL081341, 2019.

42



870

875

880

885

890

895

900

Conn, A. R., Gould, N. I. M., and Toint, Ph. L.: Trust Region Methods, MOS-SIAM Series on Optimization, Society for Industrial and
Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), Philadelphia, PA, USA, ISBN 978-0-89871985-7,
2000.

Dammers, E., Tokaya, J., Mielke, C., Hausmann, K., Griffin, D., McLinden, C., Eskes, H., and Timmermans, R.: Can TROPOMI NO,
satellite data be used to track the drop in and resurgence of NOx emissions in Germany between 2019-2021 using the multi-source plume
method (MSPM)?, Geosci. Model Dev., 17, 4983-5007, https://doi.org/10.5194/gmd-17-4983-2024, 2024.

Engelen, R. J., Denning, A. S., and Gurney, K. R.: On error estimation in atmospheric CO, inversions, J. Geophys. Res. Atmos., 107,
ACL10-1-ACL10-13, https://doi.org/10.1029/2002JD002195, 2002.

Enting, I. G.: Inverse Problems in Atmospheric Constituent Transport, Cambridge University Press, Cambridge, England, UK, ISBN 978-0-
52181210-8, https://doi.org/10.1017/CBO9780511535741, 2002.

Feigenspan, S., Wernicke, T., and Mielke, C.: Personal communication, 2024.

Fuf}, R. and Akubia, J.: Personal communication, 2024.

Ganesan, A. L., Manning, A. J., Grant, A., Young, D., Oram, D. E., Sturges, W. T., Moncrieff, J. B., and O’Doherty, S.: Quantifying methane
and nitrous oxide emissions from the UK and Ireland using a national-scale monitoring network, Atmos. Chem. Phys., 15, 6393-6406,
https://doi.org/10.5194/acp-15-6393-2015, 2015.

Gerbig, C., Korner, S., and Lin, J. C.: Vertical mixing in atmospheric tracer transport models: error characterization and propagation, Atmos.
Chem. Phys., 8, 591-602, https://doi.org/10.5194/acp-8-591-2008, 2008.

Ghosh, S., Mueller, K., Prasad, K., and Whetstone, J.: Accounting for Transport Error in Inversions: An Urban Synthetic Data Experiment,
Earth Space Sci., 8, €2020EA001 272, https://doi.org/10.1029/2020EA001272, 2021.

Greenwood, P. E. and Nikulin, M. S.: A Guide to Chi-Squared Testing, Wiley Series in Probability and Statistics, Wiley, ISBN
9780471557791, 1996.

Henne, S., Brunner, D., Oney, B., Leuenberger, M., Eugster, W., Bamberger, 1., Meinhardt, F., Steinbacher, M., and Emmenegger, L.: Valida-
tion of the Swiss methane emission inventory by atmospheric observations and inverse modelling, Atmos. Chem. Phys., 16, 3683-3710,
https://doi.org/10.5194/acp-16-3683-2016, 2016.

ICOS RI: ICOS Atmosphere Station Specifications V2.0 (editor: O. Laurent), https://doi.org/10.18160/GK28-2188, 2020.

ICOS RI, Bergamaschi, P., Colomb, A., De Maziere, M., Emmenegger, L., Kubistin, D., Lehner, 1., Lehtinen, K., Leuenberger, M.,
Lund Myhre, C., Marek, M. V., O’Doherty, S., Platt, S. M., PlaB-Diilmer, C., Apadula, F., Arnold, S., Blanc, P.-E., Brunner, D., Chen, H.,
Chmura, L., Chmura, L., Conil, S., Couret, C., Cristofanelli, P., Forster, G., Frumau, A., Gerbig, C., Gheusi, F., Hammer, S., Haszpra, L.,
Hatakka, J., Heliasz, M., Henne, S., Hensen, A., Hoheisel, A., Kneuer, T., Larmanou, E., Laurila, T., Leskinen, A., Levin, 1., Lindauer,
M., Lopez, M., Mammarella, 1., Manca, G., Manning, A., Martin, D., Meinhardt, F., Molder, M., Miiller-Williams, J., Noe, S. M., Necki,
J., Ottosson-Lofvenius, M., Philippon, C., Pitt, J., Ramonet, M., Rivas-Soriano, P., Scheeren, B., Schumacher, M., Sha, M. K., Spain, G.,
Steinbacher, M., Sgrensen, L. L., Vermeulen, A., Vitkovd, G., Xueref-Remy, 1., di Sarra, A., Conen, F., Kazan, V., Roulet, Y.-A., Biermann,
T., Delmotte, M., Heltai, D., Hermansen, O., Kominkova, K., Laurent, O., Levula, J., Lunder, C., Marklund, P., Morgui, J.-A., Pichon,
J.-M., Schmidt, M., Sferlazzo, D., Smith, P., Stanley, K., Trisolino, P., Zazzeri, G., ICOS Carbon Portal, ICOS Atmosphere Thematic Cen-
tre, ICOS Flask And Calibration Laboratory, and ICOS Central Radiocarbon Laboratory: European Obspack compilation of atmospheric
methane data from ICOS and non-ICOS European stations for the period 1984-2024; obspack_ch4_466_GVeu_v9.2_20240502,
https://doi.org/10.18160/9B66-SQM1, 2024.

43



905

910

915

920

925

930

935

940

IPCC, Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., and
Federici, S., eds.: 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, vol. 1, The Intergovernmental
Panel on Climate Change (IPCC), https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html, 2019.

Jahn, M., Kuhlmann, G., Mu, Q., Haussaire, J.-M., Ochsner, D., Osterried, K., Clément, V., and Brunner, D.: An online emission module for
atmospheric chemistry transport models: implementation in COSMO-GHG v5.6a and COSMO-ART v5.1-3.1, Geosci. Model Dev., 13,
2379-2392, https://doi.org/10.5194/gmd-13-2379-2020, 2020.

Kaminski, T., Rayner, P. J., Heimann, M., and Enting, I. G.: On aggregation errors in atmospheric transport inversions, J. Geophys. Res.
Atmos., 106, 4703-4715, https://doi.org/10.1029/2000JD900581, 2001.

Kountouris, P., Gerbig, C., Rodenbeck, C., Karstens, U., Koch, T. F., and Heimann, M.: Technical Note: Atmospheric CO; inversions
on the mesoscale using data-driven prior uncertainties: methodology and system evaluation, Atmos. Chem. Phys., 18, 3027-3045,
https://doi.org/10.5194/acp-18-3027-2018, 2018.

Kuenen, J., Dellaert, S., Visschedijk, A., Jalkanen, J.-P., Super, I., and Denier van der Gon, H.: Copernicus Atmosphere Monitoring Service
regional emissions version 4.2 (CAMS-REG-v4.2), Copernicus Atmosphere Monitoring Service (CAMS) [publisher], ECCAD [distribu-
tor], https://doi.org/10.24380/0vzb-a387, 2021.

Kuenen, J., Dellaert, S., Visschedijk, A., Jalkanen, J.-P., Super, 1., and Denier van der Gon, H.: CAMS-REG-v4: a state-of-the-art high-
resolution European emission inventory for air quality modelling, Earth Syst. Sci. Data, 14, 491-515, https://doi.org/10.5194/essd-14-
491-2022, 2022.

Lauvaux, T., Miles, N. L., Richardson, S. J., Deng, A., Stauffer, D. R., Davis, K. J., Jacobson, G., Rella, C., Calonder, G.-P., and DeCola, P. L.:
Urban Emissions of CO2 from Davos, Switzerland: The First Real-Time Monitoring System Using an Atmospheric Inversion Technique,
Journal of Applied Meteorology and Climatology, 52, 2654-2668, https://doi.org/10.1175/JAMC-D-13-038.1, 2013.

Li, X. S. and Shao, M.: A Supernodal Approach to Incomplete LU Factorization with Partial Pivoting, ACM Trans. Math. Softw., 37,
https://doi.org/10.1145/1916461.1916467, 2011.

Li, X. S., Demmel, J. W., Gilbert, J. R., Grigori, L., Shao, M., and Yamazaki, I.: SuperLU Users’ Guide, june 2018 edn., 1999.

Manning, A. J., Ryall, D. B., Derwent, R. G., Simmonds, P. G., and O’Doherty, S.: Estimating European emissions of ozone-
depleting and greenhouse gases using observations and a modeling back-attribution technique, J. Geophys. Res. Atmos., 108,
https://doi.org/10.1029/2002JD002312, 2003.

Manning, A. J., O’Doherty, S., Jones, A. R., Simmonds, P. G., and Derwent, R. G.: Estimating UK methane and nitrous oxide emissions
from 1990 to 2007 using an inversion modeling approach, J. Geophys. Res. Atmos., 116, https://doi.org/10.1029/2010JD014763, 2011.
Meirink, J. F., Bergamaschi, P., and Krol, M. C.: Four-dimensional variational data assimilation for inverse modelling of atmospheric methane
emissions: method and comparison with synthesis inversion, Atmos. Chem. Phys., 8, 6341-6353, https://doi.org/10.5194/acp-8-6341-

2008, 2008.

Moré, J. J. and Sorensen, D. C.: Computing a Trust Region Step, SIAM Journal on Scientific and Statistical Computing, 4, 553-572,
https://doi.org/10.1137/0904038, 1983.

Pearson, K.: X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables
is such that it can be reasonably supposed to have arisen from random sampling, Philosophical Magazine Series 5, 50, 157-175,
https://doi.org/10.1080/14786440009463897, 1900.

Petrescu, A. M. R., Qiu, C., McGrath, M. J., Peylin, P, Peters, G. P., Ciais, P., Thompson, R. L., Tsuruta, A., Brunner, D., Kuhnert, M.,
Matthews, B., Palmer, P. 1., Tarasova, O., Regnier, P, Lauerwald, R., Bastviken, D., Hoglund-Isaksson, L., Winiwarter, W., Etiope, G.,

44



945

950

955

960

965

970

975

Aalto, T., Balsamo, G., Bastrikov, V., Berchet, A., Brockmann, P., Ciotoli, G., Conchedda, G., Crippa, M., Dentener, F., Groot Zwaaftink,
C. D., Guizzardi, D., Giinther, D., Haussaire, J.-M., Houweling, S., Janssens-Maenhout, G., Kouyate, M., Leip, A., Leppénen, A., Lugato,
E., Maisonnier, M., Manning, A. J., Markkanen, T., McNorton, J., Muntean, M., Oreggioni, G. D., Patra, P. K., Perugini, L., Pison, L.,
Raivonen, M. T., Saunois, M., Segers, A. J., Smith, P., Solazzo, E., Tian, H., Tubiello, F. N., Vesala, T., van der Werf, G. R., Wilson, C., and
Zaehle, S.: The consolidated European synthesis of CH4 and N>O emissions for the European Union and United Kingdom: 1990-2019,
Earth Syst. Sci. Data, 15, 1197-1268, https://doi.org/10.5194/essd-15-1197-2023, 2023.

Reinert, D., Prill, F.,, Frank, H., Denhard, M., Baldauf, M., Schraff, C., Gebhardt, C., Marsigli, C., Forstner, J., Zingl, G., Schlemmer,
L., Blahak, U., and Welzbacher, C.: DWD Database Reference for the Global and Regional ICON and ICON-EPS Forecasting System,
https://www.dwd.de/DWD/forschung/nwv/fepub/icon_database_main.pdf, 2025.

Rieger, D., Bangert, M., Bischoff-Gauss, 1., Forstner, J., Lundgren, K., Reinert, D., Schroter, J., Vogel, H., Zingl, G., Ruhnke, R., and
Vogel, B.: ICON-ART 1.0 — a new online-coupled model system from the global to regional scale, Geosci. Model Dev., 8, 1659-1676,
https://doi.org/10.5194/gmd-8-1659-2015, 2015.

Rigby, M., Manning, A. J., and Prinn, R. G.: Inversion of long-lived trace gas emissions using combined Eulerian and Lagrangian chemical
transport models, Atmos. Chem. Phys., 11, 9887-9898, https://doi.org/10.5194/acp-11-9887-2011, 2011.

Rocher-Ros, G., Stanley, E. H., Loken, L. C., Casson, N. J., Raymond, P. A., Liu, S., Amatulli, G., and Sponseller, R. A.: Global methane
emissions from rivers and streams, Nature, 621, 530-535, https://doi.org/10.1038/s41586-023-06344-6, 2023.

Schraff, C., Reich, H., Rhodin, A., Schomburg, A., Stephan, K., Peridfiez, A., and Potthast, R.: Kilometre-scale ensemble data assimilation
for the COSMO model (KENDA), Q. J. R. Meteorolog. Soc., 142, 1453—-1472, https://doi.org/10.1002/qj.2748, 2016.

Schréter, J., Rieger, D., Stassen, C., Vogel, H., Weimer, M., Werchner, S., Forstner, J., Prill, F., Reinert, D., Zingl, G., Giorgetta, M., Ruhnke,
R., Vogel, B., and Braesicke, P.: ICON-ART 2.1: a flexible tracer framework and its application for composition studies in numerical
weather forecasting and climate simulations, Geosci. Model Dev., 11, 4043-4068, https://doi.org/10.5194/gmd-11-4043-2018, 2018.

Segers, A. and Houweling, S.: CAMS global inversion-optimised greenhouse gas fluxes and concentrations, v22r2, Copernicus Atmosphere
Monitoring Service [data set], https://ads.atmosphere.copernicus.eu/datasets/cams-global-greenhouse- gas-inversion, (last accessed: 18
April 2024), 2020.

Segers, A., Nanni, R., and Houweling, S.: Evaluation and Quality Control document for observation-based CH4 flux estimates for the period
1979-2022, ECMWF Copernicus Report, https://atmosphere.copernicus.eu/supplementary-services#ptab-3-1-content, 2023.

Steiner, M., Cantarello, L., Henne, S., and Brunner, D.: Flow-dependent observation errors for greenhouse gas inversions in an ensemble
Kalman smoother, Atmos. Chem. Phys., 24, 12 447-12 463, https://doi.org/10.5194/acp-24-12447-2024, 2024a.

Steiner, M., Peters, W., Luijkx, L., Henne, S., Chen, H., Hammer, S., and Brunner, D.: European CH, inversions with ICON-ART coupled to
the CarbonTracker Data Assimilation Shell, Atmos. Chem. Phys., 24, 27592782, https://doi.org/10.5194/acp-24-2759-2024, 2024b.

Stohl, A., Seibert, P., Arduini, J., Eckhardt, S., Fraser, P., Greally, B. R., Lunder, C., Maione, M., Miihle, J., O’Doherty, S., Prinn, R. G.,
Reimann, S., Saito, T., Schmidbauer, N., Simmonds, P. G., Vollmer, M. K., Weiss, R. F., and Yokouchi, Y.: An analytical inversion method
for determining regional and global emissions of greenhouse gases: Sensitivity studies and application to halocarbons, Atmos. Chem.
Phys., 9, 1597-1620, https://doi.org/10.5194/acp-9-1597-2009, 2009.

Storm, 1., Karstens, U., D’Onofrio, C., Vermeulen, A., and Peters, W.: A view of the European carbon flux landscape through the lens of the
ICOS atmospheric observation network, Atmos. Chem. Phys., 23, 4993-5008, https://doi.org/10.5194/acp-23-4993-2023, 2023.

UBA: Submission under the United Nations Framework Convention on Climate Change 2023, German Environment Agency,

https://doi.org/10.60810/openumwelt-2570, 2023.

45



980

985

990

995

UBA: Submission under the United Nations Framework Convention on Climate Change 2024, German Environment Agency,
https://doi.org/10.60810/openumwelt-7441, 2024.

Vanderbecken, P. J., Dumont Le Brazidec, J., Farchi, A., Bocquet, M., Roustan, Y., Potier, E., and Broquet, G.: Accounting for meteorological
biases in simulated plumes using smarter metrics, Atmos. Meas. Tech., 16, 1745-1766, https://doi.org/10.5194/amt-16-1745-2023, 2023.

Veldeman, N., van der Maas, W., van Aardenne, J., Goodwin, J., Mareckova, K., Adams, M., Ruyssenaars, P., Wankmiiller,
R., and Pye, S.: 7. Spatial mapping of emissions, in: EMEP/EEA air pollutant emission inventory guidebook 2013,
European Environment Agency, https://www.eea.europa.eu/publications/emep-eea-guidebook-2013/part-a-general-guidance-chapters/
7-spatial-mapping-of-emissions/view, 2013.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,
van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat,
I., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald,
A. M., Ribeiro, A. H., Pedregosa, F., and van Mulbregt, P.: SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat.
Methods, 17, 261-272, https://doi.org/10.1038/s41592-019-0686-2, 2020.

Weber, T., Wiseman, N. A., and Kock, A.: Global ocean methane emissions dominated by shallow coastal waters, Nat. Commun., 10, 1-10,
https://doi.org/10.1038/s41467-019-12541-7, 2019.

Zi#ngl, G., Reinert, D., Ripodas, P., and Baldauf, M.: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M:
Description of the non-hydrostatic dynamical core, Quart. J. Roy. Meteorol. Soc., 141, 563-579, https://doi.org/10.1002/qj.2378, 2015.

46



10

15

20

German methane fluxes in 2021 estimated with-an

ensemble-enhaneed-sealing- inversion-based-on-the top-down using
ICON-ART meodel- Part 2: Inversion results for 2021

Valentin Bruch!, Thomas Rosch!, Diego Jiménez de la Cuesta Otero', Beatrice Ellerhoff!,
Buhalgem Mamtimin', Niklas Becker', Anne-Marlene Blechschmidt!, Jochen Forstner!, and Andrea
K. Kaiser-Weiss'

IDeutscher Wetterdienst, Frankfurter Str. 135, 63067 Offenbach

Correspondence: Valentin Bruch (valentin.bruch@dwd.de) and Andrea K. Kaiser-Weiss (andrea.kaiser-weiss @dwd.de)

Abstract. A reliable quantification of greenhouse gas emissions is important for climate change mitigation strategies. Inverse
methods based on observations and atmospheric transport simulations can support emission quantification down—te-at the
national scale, yet, they are often limited by the observing systems, transport model uncertainties, and inversion methodologies.

Here;we-present-This two-part study introduces a system for observation-based, regional methane flux estimation;-which-has

ocus-on - Germany, where we distinguish emissions-{rom- d A senic se s—. In the present Part 2, we apply this
system to estimate German methane emissions in 2021, The atmospherie-transportis-ealenlated-with-the-numerical weather

prediction model ¥EON-ART-at-6-5km—resolution;—samp

its ART module for trace gases is used to simulate the atmospheric transport while estimating uncertainties using a transport

ensemble. We use a priori fluxes from national reporting to facilitate the validation of reported fluxes. Posterior fluxes are

estimated with a modified synthesis inversion method introduced in Part 1, relying on ebservations-{rom-the-Integrated-Carbon
Observation-System(FCOS)-in-situ observations. Compared to the a priori, we find a significant increase in methane emissions

ne-meteorotogiear tneertatty-with-a member ICON with

in Germany and in the Benelux. We estimate German methane emissions (32 4 19) % higher than the anthropogenic emissions
in the national inventory, and attribute-our inversion method attributes this difference mainly to the agricultural sector, although
separation from Land Use, Land Use Change and Forestry (LULUCF) as well as natural fluxes requires further research. The
combination of an ensemble-enhanced numerical weather prediction model for atmospheric transport and good observation

coverage paves the way to sector-specific, observation-based national emission estimates.

1 Introduction

Reducing greenhouse gas (GHG) emissions is crucial for mitigating current anthropogenic global warming. UNFCCC (United
Nations Framework Convention on Climate Change) compliant national inventories and/or process models quantify anthro-
pogenic GHG emissions for the purpose of monitoring the effectiveness of mitigation as planned, e.g., in the Paris Agreement.

In addition to so-called “bottom-up” methods, atmospheric GHG concentration observations are used in “top-down” flux es-
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timations. The latter are complementary, as they are sensitive to the total fluxes (i.e., anthropogenic and natural) and provide
options for independent validation of a priori fluxes provided by inventories (IPCC et al., 2019). The usefulness of top-down es-
timates has been demonstrated, e.g., for the United Kingdom (Manning et al., 2011), Switzerland (Henne et al., 2016), Europe
(Petrescu et al., 2023) and globally (Deng et al., 2022; Petrescu et al., 2024).

Although research foundations for top-down methods have been developed in recent decades (see Janssens-Maenhout et al.
(2020) and references therein), applications remain limited due to sparse observation coverage and representativeness, and
most critically, due to transport model uncertainties (Engelen et al., 2002; Gerbig et al., 2008). The latter is a well-known issue
not solved yet (Munassar et al., 2023). Inversions using satellite observations (e.g. Estrada et al., 2024) benefit from larger
spatial observation coverage, but the uncertainties of the observations are larger compared to in situ data and the influence on
the inversion results was found smaller where in situ coverage is good (Thompson et al., 2025). The benefits of increased model
resolution (Agusti-Panareda et al., 2019; Bergamaschi et al., 2022) can be reaped with regional high resolution modeling --and
ensembles can cover parts of the meteorological uncertainty (Steiner et al., 2024a). At short time scales, the regional model

uncertainties will constitute the main uncertainty, while at longer time scales, the boundary conditions become critical for

tracer transport (Chen et al., 2019).

In this work, we-present-we present first results of a modular system for regional top-down estimates of CHy fluxes designed
to validate national inventories, including the discrimination of economic sectors such as agriculture and industry. We apply
this method focusing on German inventories (provided by Umweltbundesamt and Thiinen Institute) for the year 2021 using in
situ observations collected by ICOS (ICOS RI, 2024). Atmospheric transport is simulated using the numerical weather predic-
tion model ICON (Zingl et al., 2015) extended with the module for Aerosol and Reactive Trace gases (ART) (Rieger et al.,
2015; Schroter et al., 2018) with a spatial resolution of 6.5km. The model is combined with a synthesis inversion approach
(Kaminski et al., 2001) which is developed further to make use of the ensemble-estimated transport uncertainty. For minimiz-
ing transport errors, we rely on the operational numerical weather prediction at Germany’s Meteorological Service (DWD)

for meteorological initial conditions, lateral boundaries and transport ensemble calculations. Further, we use the Copernicus
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Atmespherie-Atmosphere Monitoring Service (CAMS) for boundary conditions of methane, and compensate possible biases
on the boundaries by deriving a correction field. Benefiting from the numerical weather prediction model and spatially highly
resolved a priori fluxes from the inventory agencies, we explore the basis for future operational top-down validation of national
emission reporting, with special emphasis on further use in Germany.

In Sect. 2, we

its—application—for-Germany—Seetion—>S-summarize the methodology which is introduced in detail in Part 1 of this work
Bruch et al., 2025a). Section 3 contains the results for eurexample—year-2021, together with the-results—of-the—validation

knewn-true-emissions—In-Seet—6-validation tests and an analysis of the ability to distinguish emission sectors. In Sect. 4 we
discuss limitations and capabilities of the method and compare to other studies, followed by a conclusion in Seet—7-Sect. 5.

2 Method

This section is a non-technical summary of the detailed method description in Part 1 (Bruch et al., 2025a).

2.1 ‘Franspert-modelParametrization of fluxes

parts-of-We aim to validate the national reporting of German CHy emissions to the UNFCCC. A simple way to address
this validation problem is the European-continent-(atitudes34°>N-to-70>N:-Jongitades 21> W—to-59>E;—see-Fig—H-with-a
question: By which single number should we multiply all reported German CHy emissions based on the information from
observed CHy concentrations? ' i ing-the-ontine-emissi

‘We can extend this question and estimate different scaling factors for different regions

and different emission sectors. In this work, we estimate scaling factors for 46 categories of CHy fluxes for each month in 2021,
The spatial definition of these flux categories is shown in Fig. 1. In Germany, we distinguish 11 flux categories, consisting of
six regions for the agriculture sector, one flux category for land use, land use change and forestry (LULUCE) plus natural
fluxes, and four regions for the sum of all remaining emissions. In summary, the state space of our inversion is defined by the
flux categories and consists of only 46 numbers.




Figure 1. Overview of the model domain indicating flux categories (colored areas) and observation sites (white dots), modified from Part 1

Bruch et al., 2025a). Each connected area of equal color defines one flux category for anthropogenic emissions, except in Germany and

the Netherlands, where the categories are split up further to distinguish agriculture emissions from other sectors. In white hatched regions,

natural fluxes form additional flux categories because large natural fluxes are expected. Close to the eastern and western domain bound

own flux category.

90

2.2 A priori fluxes

For the a priori fluxes outside Germany, we combine CAMS-REG (Kuenen et al,, 2021, 2022) for anthropogenic emissions
with wetland emissions from the CAMS global inversion-optimized dataset (Segers and Houweling, 2020), version v22r2. For
95  Germany, we use emissions obtained from the inventory agencies, that is, the Umweltbundesamt (German Environmental Agency. Feigensg
the Thiinen Institute (Ful and Akubia, 2024). Moreover, we consider emissions from rivers and streams (Rocher-Ros et al., 2023),
as well as oceans (Weber et al., 2019).

2.3 Transport simulation

To connect surface fluxes and observations, we need to simulate atmospheric transport. This simulation is done using the
100 numerical weather prediction model ICON (Zingl et al., 2015) with the module for Aerosol and Reactive Trace gases (ART

Rieger et al., 2015; Schroter et al., 2018) at a horizontal resolution of 6.5km. Initial and lateral boundary conditions for the

CH4 concentrations are taken from the CAMS global inversion-optimized dataset (Segers and Houweling, 2020), version
v22r2. To mitigate a possible bias in the lateral boundary conditions, we construct a smooth correction field that is added
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to all model predictions of the boundary contributions. This far-field correction is constructed based on observations for which
the model predicts clean air with small influence of emissions from within our domain. We estimate transport uncertainties
and their correlations using an ensemble of 12 members %&ehﬂﬁeﬁib}&mefnbeﬁﬁe%%hghﬂydﬁfereﬂ%bﬁkequa}}fhke}y

2.4 Qbservations

We use CHy concentration observations from the European Obspack (ICOS Rl et al.. 2024) as provided on the Integrated
Carbon Observation System (ICOS) carbon portal. The hourly observations are filtered by time of day and wind speed to use
only observations that can be predicted well by the transport model. We use night time observations (23h to Sh local mean
time) for high mountain stations and afternoon hours (11h to 17 h local mean time) for all other sites, discarding observations

1

at wind speeds below 2ms™".

2.5 Bayesian Inversion

To estimate the scaling factors of the flux categories—Fhis-is-fermulatedin-, we use a Bayesian inversion. Denoting the scalin

factors as a vector s € R*%, the inversion is formulated as the optimization problem

SPOSt — argmin{%([y — MH/(S)]TR—l([?J - MH'(S)] + %(S - SPriOr)TB—l(S - sprim)} . (1)

post

%WMMFMMQWMMM error covariance matrix -53-characterizing
of the a priori uneertainty-
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140 3 Inputdata-andprecessing(Seet-3)

145

prior

with-denote-, Since s describes prefactors to the a priori emissions, we initially set s;,__ = 1 for all k. In B we assume an a
priori uncertainty of 20 = 0.8 (two standard deviations) for the scaling factors of most regions. This gives the inversion enough
freedom to adjust the scaling factors. In large distance from Germany, the a priori uncertainty is reduced to 20 = 0.5 (see

150  Fig. 2 b), and for emission sectors in Germany and the Netherlands we use 20 = 1.0.
The construction of R based on the transport ensemble is discussed in detail in Part 1 (Bruch et al,, 2025a). In Eq. (1), R can

155

160 2.1 Pesterior-uneertainty-estimates{Seet-4-5)
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Assuming-that-the-differenee-This defines two slightly different methods that are introduced in Sect. 2.5 of Part 1 as “prior R”
and “posterior R” inversion. Here, we only consider the average of the two results and the union of the two variants-indicates

2.6 Posterior uncertainties

To estimate the uncertainties of posterior fluxes conservatively, we repeat the inversions—>50-times—for-both-—prier-R-and

posterior-fi-excluding-each-station-onee—The-final-posterior-uneertainty range panned-by-the-inversion 50 x 2 times with

D <)

each of the 50 observation sites excluded once for each of the two approximations for R. The lower and upper bounds of the
+00-uneertainty-ranges—each-deseribingaresulting hundred 20 uncertainty ranges form our posterior 95 % confidence inter-

val. This-method-ef-compensating-forpossible-methodological-weaknesses-in-acautionary-uneertainty-estimate-implicatestha

observation site will not be considered significant.

2.7 Inversion time windowand-temperal-aggregation(Seet-4:3)

We-apply-the-inversion-The scaling factors are estimated separately for each month in 202+--1n-each-monthly-time-window;we

prior

72021 by using only observations from the selected
month. The results for different months are thus independent. But since the posterior uncertainty estimates include systematic

uncertaintiess e sl mapnas el s mmns Sen e e e a-unecertamty—we-theretore-aggregate-by—aaag

abselute-emissions-and-theiruneertainties tinearly—, we assume that uncertainties from different months

are correlated.

3 Results(Seet-5)
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Figure 2. Full-year averages of (a) a priori fluxes, (b) a priori uncertainty on scaling factors, (c) a posteriori scaling factors, and (d) a posteriori
uncertainty on scaling factors. Multiplying the a priori emissions (a) with the scaling factors (c) yields the a posteriori emissions. (b) and
(d) show half of the 95 % confidence interval of the fluxes relative to the a priori fluxes, i.e., a 20 uncertainty of +56%-0.5 on the a priori
appears as 9-5-(e--56%)-0.5 on the color scale. The direct comparison indicates the uncertainty reduction. The smooth boundaries between

two regions with separate scaling factors appear as darker lines because these scaling factors are assumed to be initially uncorrelated.

3.1 Resulting scaling factors

Figure 2 presents an overview of (a) the a priori CH, fluxes --accumulated over the year 2021, (c) the resulting scaling factors
averaged over 2021, and the respective uncertainties (b, d);-alt-aceumulated-over-the-year202+—, The a posteriori scaling
factors (Fig. 2 ¢) show the correction to the a priori emissions obtained in the inversion. A considerable increase in emissions
is found for Germany and the Benelux. Lower emissions compared to the a priori are predicted for Scandinavia (see discussion

in Sect. 4.3). The scaling factors should be considered jointly with their uncertainties. The comparison of Fig. 2 (b) and (d)
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Figure 3. National CH4 emission estimates comparing reported (NIR), prior, and posterior fluxes for 2021 with horizontal lines indicating
95% confidence intervals. Countries are grouped by the expected robustness of their inversion results. Some neighboring countries are com-
bined to obtain more accurate results. For Germany, the inversions can resolve the agricultural sector, though the separation against natural
and LULUCEF fluxes is difficult. All other anthropogenic sectors are combined in the category “etherexel EHEEEF‘other excl. LULUCE”.
The inclusion of two inversion methods (prier-2—"prior IR” and pesterior-+2 ‘posterior I2”, markers) yields—provides an estimate of the
methodological uncertainty. Accumulated fluxes-emissions from national inventory reports (NIR) to the UNFCCC submitted 2024 (includ-
ing LULUCF emissions) are shown for reference (light blue bars, UNFCCC, 2024). For France (Citepa, 2024) and the United Kingdom

(Department for Energy Security and Net Zero, 2024), the light blue bars show emission data from the respective inventory agencies ex-

cluding overseas territories and crown dependencies. Posterior uncertainties that are asymmetric with respect to flux estimates such as in

Switzerland indicate the strong influence of a single observation site.

shows a substantial uncertainty reduction for Germany and most of the surrounding countries, for which we chose a high a
priori uncertainty.

For a more detailed comparison of a priori and a posteriori emissions and uncertainties, we consider selected national
emission estimates in Fig. 3.

Reliable inversion results are expected for countries or regions with sufficient observation coverage, strong emission signals,
representation in the respective flux categories, and only moderate issues due to complex topography. These criteria are met for

Germany, the Netherlands and the United Kingdom plus Ireland as grouped in Fig. 3. For Germany (first fine-entry in Fig. 3),
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the total posterior CH4 emissions (red bar) are (32 +19) % higher than the anthropogenic emissions ¢neluding EHEHCEEY
including LULUCEF reported to the UNFCCC in 2024 (light blue bar). The direct comparison to the reporting neglects the
unreported natural fluxes, but for Germany these are expected to be small because all relevant soil emissions are included in
the LULUCEF sector. The inversion significantly increases emission estimates from the agriculture sector while the combined
other sectors remain nearly unchanged. Note, however, that the uncertainty in the sector attribution is large (horizontal lines,
see further discussion in Sections 3.4.2 and 4.3).

For the Netherlands, we also find significantly higher emissions than in the inventory. Compared to Germany, the attribution
to sectors has an even larger uncertainty, associated with fewer observations that could distinguish the sectors. Nevertheless,
the total emissions from the Netherlands are comparably well constrained by the observations. For the United Kingdom and
Ireland — which we combine to obtain more accurate results — the inversion yields a strong uncertainty reduction while hardly
changing the total emissions, indicating a good agreement of observations and national inventory.

In most countries, the observations do not cover the whole country, or the inversion results rely on few observations. In
Fig. 3 (gray-shaded part) we provide emission estimates also for countries or regions affected by this issue, though these have
a large posterior uncertainty. Another issue arises from the definition of the flux categories, which do not necessarily follow
country borders (see Fig. 1). In France, Belgium, and Switzerland, the inversion scales flux categories everlapping-that overlap
multiple countries'. This implies that national emission estimates derived for these countries have an additional uncertainty and
artificial correlations with neighboring countries. However, this is of no concern for our application for Germany. The national
emission estimates are computed from the gridded posterior fluxes and precisely follow the country borders as shown in Fig. 2.

The scaling factors and uncertainties of all flux categories are listed in Fig. A1 for completeness.
3.2 Seasonal cycle

Although the national emission estimates are given for the full year, a closer examination of the seasonal cycle yields-provides

additional insights.

—Figure 4 shows the monthly
emission rates for the countries considered in Fig. 3. While the seasonal cycle is strikingly different depending on the region,
we find some recurrent features. For Germany, Poland, the Netherlands, and Austria plus Czechia (panel (a) in Fig. 4), the
posterior emission rates have their minimum in May. A local minimum between April and June is also found for northern
France and Belgium plus Luxembourg, see panel (b). In most countries, this minimum is followed by a local maximum in July
or August, which is most prominent in the Netherlands and Austria plus Czechia (panel (a)).

The differences between the regions become larger in autumn and winter. In September, posterior emission rates reach their
maximum in Germany and Italy, and their minimum in (northern) France. France and Belgium plus Luxembourg have their
highest emission rates in winter, when Switzerland and Spain plus Portugal have their minimum. For some regions — most
notably Italy and the United Kingdom plus Ireland — no clear pattern is found in the seasonal cycle for 2021 (panel (c) in
Fig. 4).

ITechnically, the issue also affects Italy because Corsica is combined with parts of Italy in one flux category. But the a priori emissions from Corsica are

so low that the effect on the national emission estimate is negligible.
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Figure 4. Monthly posterior emission rates for selected countries or regions. Colored areas show the posterior uncertainties, and dotted
lines with small markers indicate prior emission rates. In the prior, only the natural and LULUCF fluxes are time-dependent. The panels
show (a) countries with minimum in May, (b) countries with a maximum in winter, and (c) other countries and regions. For France and
Germany, selected regions are shown additionally (white markers). “DE, northwest” includes Rhineland-Palatinate, Saarland, Hesse, North

Rhine-Westphalia, Lower Saxony, Schleswig-Holstein, Bremen and Hamburg.

The seasonal cycle in the inversion results may be partially influenced by the observation coverage because many stations
lack data covering the whole year. To avoid this effect, we repeated the inversion using only stations which provide data for
at least 20 days of each month. The seasonal cycle in these results does not change significantly, see Fig-—A2-supplementary
Fig. A2. We further note that there is a seasonal cycle in the observations (East et al., 2024), which is captured well by the
far field in the model though (see Fig. A3). This “far field” is defined as CHy transported into our domain from the lateral
boundaries. A possible bias in the lateral boundary conditions determining-the-farfield-could-atse-could influence the seasonal
cycle in the estimated fluxes. Moreover, the different meteorology in summer and winter — especially influencing the planetary
boundary layer and vertical mixing (Seidel et al., 2012) — can lead to a seasonal bias in our transport model (Bessagnet et al.,
2016; Canepa and Builtjes, 2017). This highlights the need for careful interpretation of the seasonal cycle, as meteorological
differences could introduce biases that mask true emission patterns. Another potential contribution to the seasonal cycle could

arise from neglecting the OH sink of CHy4 in our limited domain —(Logan et al., 1981).
3.3 Validation

A straightforward validation of the inversion results is possible using independent validation stations. Having excluded each

station once in separate inversion runs, we can use every station as an independent validation site in the respective inver-
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Figure 5. Statistics of the relative (a) and absolute (b) improvement of the model-observation mismatch by the inversion at independent
validation stations. Each station and month is considered separately in its own {(prier-R-and-pesterier-f2)-inversion, with the validation
station excluded from the inversion to remain independent. The histograms show (a) 1 — rP*/ P and (b) 7P — PO where 7P and PO
refer to the RMSE of the model-observation comparison in the case of posterior scaling and prior scaling, respectively. Each time series
contributing to the histogram is weighted by the number of its data points. We consider all data points within the daily time window without
filtering for wind speed -extreme-mismateh;-tneertainty-weighting-or model—observation mismatch and without the far-field correction e
afterstep-3-introduced in Fable-2)-Part 1 (Bruch et al., 2025a) to keep the comparison as close as possible to the original data. Positive values

indicate an improvement in the model prediction due to the inversion.

sion run. Figure 5 shows histograms of the RMSE-statisties-evaluating-root mean square error (RMSE) statistics obtained

from the model-data mismatch before and after the inversion. The validation stations agree on average significantly better
with observations when using a posteriori emissions compared to the a priori. A comparison of the same histograms for the

different methods of estimating uncertainties introduced in Part 1 (Bruch et al.,

supplementary Fig. A4).

2025a) shows no significant differences (see

3.4 Sensitivity-tests(Seet—5:4)Potential for detecting emissions

3.5 Potentialfor-detecting-emissions(Seet-—5:5)

In this section, we complement the uncertainty estimates of our inversion results by separate measures for the sensitivity of the
posterior to true emissions. The potential for detecting emissions from different sources can be identified using the posterior

error covariance matrix Bp,s. However, the real error reduction is also influenced by the far-field correction and the filtering of

observations -which-is-as detailed in Part 1 (Bruch et al., 2025a). These aspects are not fully captured in Bpo. We therefore

use experiments with a “synthetic”, i.e., define-defined truth and pseudo-observations to test the full inversion system.
3.4.1 National emission estimates

We first aim to verify that the inversion yields meaningful posterior emission estimates and uncertainties given a perfect trans-

port model. To this end, we generate 100 random vectors of scaling factors following the probability distribution assumed in

the a priori uncertainty. These-sealing-factors-define-the-Each vector of scaling factors defines a synthetic truth, and the model
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Figure 6. RMSE and mean uncertainty of CHy emission estimates in synthetic experiments for selected countries, regions, and German
emission sectors. Each of the 100 synthetic experiments generates-uses random true emissions. The vertical axis shows the root mean square
(RMS) deviation of the posterior from these true emissions, relative to the RMS deviation of the prior from the truth. Lower values indicate

that the inversion improves the emission estimate. The horizontal axis shows the posterior uncertainty relative to the prior uncertainty.

Therefore, the bottom left indicates best performance. The disk size indicates the ameount-magnitude of the prior emissions.

prediction for the observations obtained using these scaling factors defines our pseudo-observations. We further add uncor-
related Gaussian noise of standard deviation 2ppb to these pseudo-observations. Since the pseudo-observations are inferred

from the model data, there is no transport error in these synthetic experiments. This construction of pseudo-observations clearl

underestimates the true error in the model—observation comparison, but it allows us to test the interplay of far-field correction

and inversion in a controlled setup. Synthetic experiments with a simulated transport uncertainty are discussed in Part 1 (Bruch

The quality of the model prediction fer-this-synthetietrath-is shown in Fig. 6 for selected countries and German sectors.
By comparing to the synthetic truth, we find the prior and posterior error. Their ratio (vertical axis in Fig. 6) shows a sig-
nificant improvement by the inversion for all considered regions and German sectors, with the exception of German natural
and LULUCEF fluxes. The uncertainty reduction of the inversion (horizontal axis) provides a realistic estimate of the real error
reduction (vertical axis) for the case of high quality observations, ideal transport modelingand-perfectfarfield, and perfect
lateral boundary conditions. In some cases (Netherlands, Switzerland, Belgium, and Luxembourg), the real error reduction is

significantly better than the uncertainty reduction suggests. This is no surprise because in this synthetic setup the transport
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Figure 7. Averaging kernel matrices of German sector emissions (a, ¢) and scaling factors (b, d). The kernel is estimated using either the
posterior covariance matrix (a, b) or 100 synthetic experiments with random truth (c, d). The small matrices on the bottom indicate what we
aim for (posterior equals truth). The value 0.96 in the first row (“total”), second column (“agriculture”) of panel (a) means that if in reality all
German agriculture emissions were 1kt higher than in our prior, then we would expect an increase in the posterior total German emissions
by 0.96kt. Similarly, the value 0.67 in the same cell of panel (b) means that increasing real agriculture emissions by 10 % should increase
our posterior total emissions by 6.7 %. All matrices are averaged over the whole year. Red lines separate the individual sectors from their

sum (“total”). By “non-agr.” we denote anthropogenic emissions excluding agriculture and LULUCF.

error as the main source of uncertainty is switched off. Overall, the synthetic experiments confirm the potential for a strong

uncertainty reduction in Central Europe.
3.4.2 Distinguishing sectors in Germany

Within Germany, we distinguish agriculture from other emissions. The discrimination of emission sectors works in the same

way as we distinguish emissions from different areas. Each sector has a specific spatial distribution of emissions, which we
assume to be correct in the a priori. The predicted CH4 concentration at the observation sites will therefore depend on how the
individual sectors are scaled. In the inversion, the sector emissions are scaled to find optimal agreement of model prediction
and observations.

The ability to distinguish sectors can be described by averaging kernel matrices which estimate the dependence of the
posterior on the true emissions, Af-;-“is = 6650“ / aetj‘”‘h where e; denotes emissions from sector 4. Since the true emissions e™®

are generally unknown, the averaging kernels A°™ can only be estimated. Figure 7 shows such estimates for A°™* (panels a,
scaling factors

¢) and the averaging kernel for scaling factors, A,

= 00" /05 (panels b, d). Assuming a perfect transport model
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and perfect far field, the averaging kernel matrix can be estimated by A°™ & I — Boq. emisB};i})r emis (Rodgers, 2000) using the
prior and posterior covariance matrices of the emissions from the prier-#2-"‘prior I2” inversion (see Appendix B1). I denotes the
identity matrix. Figure 7 (a) shows this averaging kernel estimate for German sector emissions, extended by a row and column
for the total German emissions.

The first row of Fig. 7 (a) indicates that the total German posterior emissions follow changes in every sector with high
accuracy (88 % to 96 %). The diagonal of Fig. 7 (a) signifies that changes in the agriculture will be detected very well and also
the attribution to the sum of all other anthropogenic sectors excluding LULUCF (“non-agr.”) will be mostly correct. However,
LULUCEF plus natural fluxes will in large parts be falsely attributed to the agriculture (second row, last column). Note that
ideally, the first row and the diagonal elements would be close to 100 % (color-coded in the small matrix bottom left). The
averaging kernel Asaing factors in Fig 7(b) shows that the influence of LULUCF and natural emissions on the posterior scaling
factor for agriculture emissions remains low (second row, last column). But if all emissions are scaled by the same factor (first
column), the changes will be mostly attributed to the agriculture sector(as-explained-in-Appendix-C). This effect is expected
because the agriculture sector has the highest absolute a priori uncertainty, which makes changes in agriculture more likely
than changes in any other sector. A formal derivation of this argument is presented in Appendix C.

The averaging kernel matrices in Fig. 7 (a) and (b) are estimated based on the prier-£-"prior R inversion while neglecting
the far-field correction. We complement these by a statistical estimate of the averaging kernels using 100 synthetic experiments
with random truth (see Appendix B2), shown in Fig. 7 (c) and (d). Here, the far-field correction is applied as implemented in
our processing chain. While these statistical estimates reproduce all qualitative features in the averaging kernels, the matrix
entries estimated using synthetic experiments are generally lower. This is likely due to the far-field correction and indicates
that deviations from the prior emissions may be underestimated by our inversion. Importantly, both presented strategies for
estimating the averaging kernels assume a perfect transport model. The real sensitivity of the posterior to the true emissions is

therefore expected to be lower.

3.5 Simulated-transpert-error{Seet-5:6)

4 Discussion(Seet—6)

Our inversion system combines precise in situ observations, accurate a priori fluxes from national reporting, the [CON-ART
transport model at 6.5km resolution, and an ensemble-estimated transport uncertainty. We further rely on CAMS boundary
conditions and high-resolution meteorological fields from operational numerical weather prediction. This yields in general a
good agreement between the model prediction and filtered observations, allowing us robust emission estimates for eountries
with-well-observed emissionscountries, such as Germany. We compare top-down CH, emission estimates to the reported
German inventory and its agriculture sector with enough accuracy to lay the technical foundations for a future long-term

observation-based national inventory verification. This section discusses our main results (Sect. 4.1), including a comparison
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with other studies (Sect. 4.2). We elaborate the limitations of our approach (Sect. 4.3) and its potential for the development of

observation-based national inventory verification to inform climate policy (Sect. 4.4).
4.1 Key findings

Firstly, we find that our top-down CH,4 emission estimates are significantly higher than reported for Germany. Secondly, we

identify the agriculture sector and possibly LULUCF and natural fluxes as the likely main source of this discrepancy. Thirdly,

Fourthly,—eur—studypoints—to—therelevanttuningparameters—recall from Part 1 (Bruch et al., 2025a) that the transport
error simulated in the meteorological ensemble leads to an uncertainty of 2% on the total German CH, emissions. The

4.2 Comparison to other methods

Our Eulerian approach with sectoral segregation differs from other studies on CHy inversions for single countries, e.g., Henne
et al. (2016) for Switzerland and Ganesan et al. (2015) for the United Kingdom that use Lagrangian transport models. The
latter both qualitatively attribute deviations from the inventory reporting to the agriculture sector by comparing the spatial
and/or temporal patterns in the posterior fluxes to sectoral a priori fluxes. A similar strategy for sectoral segregation based on
spatial-flux-patterns-a known spatial distribution of fluxes is followed by Varon et al. (2022) and analyzed by Cusworth et al.
(2021). For deriving sector estimates, some inversions assume a spatial correlation of gridded emissions within each sector
(Rodenbeck et al., 2003; Meirink et al., 2008b; Bergamaschi et al., 2010). Based on the same assumption, Steiner et al. (2024b)
and Tenkanen et al. (2025) construct ensembles of perturbed a priori fluxes to distinguish natural and anthropogenic fluxes
utilizing the CarbonTracker Data Assimilation Shell (van der Laan-Luijkx et al., 2017). Notably, Tenkanen et al. (2025) avoid
the lateral boundary problem by simulating transport globally with nested zoom in Europe to estimate Finnish CH4 emissions
on a coarse resolution of 1° x 1°. In the present work, we take the next step by validating sectoral emissions reported to
UNFCCC and analyzing possible false attributions, making use of a significantly higher model resolution.

Our results are qualitatively in line with the discrepancy of top-down estimates and UNFCCC reporting for Germany and
the Benelux found in different regional inversions for the years 2018 and earlier (Petrescu et al., 2023; Bergamaschi et al.,
2022, 2018; Steiner et al., 2024b). Furthermore, it appears as a robust feature in our results that emissions from the UK plus

Ireland agree well with reported emissions, in line with Bergamaschi et al. (2022) for the year 2018. For the French emissions,
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our inversion shows a tendency towards slightly higher emissions similar to Steiner et al. (2024b), whereas other inversions

suggest significantly higher emissions (Petrescu et al., 2023; Bergamaschi et al., 2022).
4.3 Limitations

TFhoeugh-simulating-Although we simulate emissions and transport in a large domain, we can only provide reliable emission esti-
mates for selected countries (compare Fig. 3). Regions without notable uncertainty reduction and regions with known modeling
difficulties do not benefit from our model setup. In Scandinavia, we find strong wetland emissions with insufficiently modeled
fine-scale spatial and temporal variability. Combined with only small signals from non-LULUCF anthropogenic emissions, this
leads to a low signal-to-noise ratio, which prevents conclusive results for Scandinavia. Furthermore, the synthesis inversion

may be prone to underestimating large localized sources due to transport errors — an issue we address in Part 1 (Bruch et al.,
2025a). W

sdditonalmodel i

Another limitation comes from the challenges for the regional flux inversion caused by biases in the lateral boundary con-

ditions;-metivating-eur-, The uncertainty in lateral boundary concentrations motivates the far-field correction—The-correction

In our highly resolved transport simulation, every flux category is numerically expensive. Aiming to validate reported Ger-

man emissions, we could reduce the state space of the inversion to only 46 scaling factors with monthly time resolution. This
substantially limits the spatial and temporal variations that can be represented in the inversion. This approach is justified if the
a priori fluxes already provide a realistic spatial distribution of all major CH, sources within each flux category. While this
may be the case in Germany and neighboring countries, the constant scaling factors for large flux categories in more distant
regions may be oversimplified and could lead to less accurate results in these regions. Moreover, adjusting only a few degrees
of freedom may not be sufficient to obtain realistic flux estimates in regions with limited or highly uncertain information on a

priori fluxes, such as Scandinavia.

When constructing the state space, we unevenly distributed the 46 degrees of freedom on our model domain — using 11

degrees of freedom for Germany and only four for mainland France plus Belgium and Luxembourg. But the choice of flux

categories affects the results and can lead to biases depending on the location of the observations (Kaminski et al., 2001). In
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using sensitivity tests.

We exploit the sectoral discrimination of emission in a well-observed region as a key feature of our inversion method. This

relies heavily on an accurate spatial distribution and completeness of the a priori fluxes, which appears to be sufficient for

the major emitting sectors in Germany. Furthermore, the sector discrimination relies on resolving comparably small spatial
scales, which poses a challenge to the transport modeling. A general problem in sector attribution is that sectors with large

absolute uncertainty — such as agriculture — may be falsely blamed for any change in total emissions when the observations
do not clearly distinguish the sectors (see Appendix C). By quantifying this effect in the averaging kernels (see Fig. 7), we
confirmed that in Germany agriculture can be distinguished from other anthropogenic emissions excluding LULUCF. Small
sectors like natural plus LULUCF fluxes could not be reliably distinguished from large sectors such as agriculture, and we

therefore combined smaller sectors like waste and public power into the larger category “non-agr.”.
4.4 TImplications for future research

We chose the synthesis inversion for the first application of our modular inversion system, but designed this framework to
be expandable to other inversion methods. For instance, most of the steps in the inversion can be applied with only minor
adjustments when replacing the flux categories by an ensemble of randomly perturbed surface fluxes, similar to Steiner et al.
(2024b), or by grid cell clusters as used by Estrada et al. (2024). Such applications with a larger state space are limited by
the computational effort of the transport simulation, which is much higher than the computational effort of the inversion itself.
Similar to the inversion method, the far-field correction can be replaced by a different strategy for mitigating a boundary bias.
For example, one could construct the far field based on an ensemble of boundary concentrations.

Further possibilities of extension eencern-involve other observation types, including satellite data. Our Eulerian system
allows in principle the handling of large observation datasets without prohibitive computational effort, albeit changes in the
construction and handling of R may be required when reaching = 10° observations per time window. This potential is leveraged
by many inversion systems that use Eulerian transport simulations (e.g., Varon et al., 2022; Meirink et al., 2008a; Bergamaschi

et al., 2013). The increasing availability of satellite data is especially interesting for constraining concentrations and emissions
in less-observed-regionsregions with few or no ground-based observations, such as near the boundaries of our domain, which

is an aspect to be addressed in future studies.
We identified potentials and risks in separating sectors based on highly-—resolved-spatial-flux—patternsthe spatially highl

resolved distribution of fluxes. Extending this by temporal profiles for a priori fluxes offers an-a yet untapped potential for
improvement—future improvement of our system. Moreover, our inversion would-benefitfrom-could benefit from an a pri-
ori emission ensembles-ensemble reflecting the uncertainty in the spatial and temporal distribution of the fluxes. Significant

s-It remains to be explored whether improvements
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in distinguishing sectors can be achieved in our system using co-tracers such as ethane for fossil CH4 emissions (Ramsden et al.,
2022; Mead et al., 2024) or by distinguishing carbon isotopes (Basu et al., 2022; Thanwerdas et al., 2024; Chandra et al., 2024).

5 Conclusions

We presented first results from a novel system for regional flux inversion designed to validate national CH,4 emission reporting.
Applying this method to Central Europe in 2021 with a focus on Germany, we found a-significant-inerease-in-significantly
higher emissions from Germany and the Benelux —compared to the reporting. Careful estimation of posterior uncertainties
revealed that-for the investigated year that the total German posterior emissions are (32 + 19) % higher than the respective an-
thropogenic emissions reported to the UNFCCC (submission 2024). Fhis-inerease-is-mostlikely-due-With our inversion method
the difference is attributed to emissions from the agriculture sector, possibly with contributions from EUEUEF-the LULUCF
sector and natural sources. Our results were confirmed by validation with independent observation sites and by an exhaustive
range of sensitivity tests and-by-validation—with-independent-observation-sitespresented in Part 1 (Bruch et al., 2025a). Syn-
thetic experiments with known truth verified-the-revealed the method’s ability to distinguish emisston-the agricultural from the
non-agricultural sectors in Germany, whereas disentangling possible influences from natural and LULUCE sources requires
further work and possibly more observations.

Methodological-A methodological comparison to other regional inversion systems highlights the advantages of our method
for the purpose of distinguishing emission sectors and fithess—for-purpese—for-validation-of-its suitability for validating na-
tional emission estimates. The qualitative gap between UNFCCC reporting and our estimates for Germany and the Benelux
is consistent with earlier works (Petrescu et al., 2023; Bergamaschi et al., 2022, 2018; Steiner et al., 2024b). We complement
these studies by providing an emission estimate for the German agriculture sector that can be directly compared to the national
reporting, revealing a significant mismatch.

In this study we enly-—presented the first application of an extensible, novel inversion system. Future developments may
include the integration of satellite data, the incorporation of temporal profiles, a more comprehensive treatment of boundary
conditions and flux uncertainties using ensemble methods, and an extension of the state space. The close connections to
operational numerical weather prediction — especially in the underlying transport simulation — and the modular design establish

the potential for long-term operational support of national emissions reporting.

Data availability. A collection of model data, inversion results, and data for reproducing most figures in this work is available at https:

//doi.org/10.5281/zenodo.17414768 (Bruch et al., 2025b).

Appendix A: Extended-data-tables-and-Supplementary figures
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Figure Al. Prior and posterior emissions (a) and scaling factors (b) for all flux categories, ordered by prior emissions. Horizontal lines
indicate 95 % confidence intervals. See Fig. 1 for the geographical definition of the flux categories and Fig. 2 for the resulting map of scaling
factors. (a) If no sector is explicitly specified, the flux categories contain all anthropogenic fluxes excluding LULUCEF. For flux categories
marked with an asterisk, the inversion does not reduce the absolute uncertainty. Thus, reliable information is only gained by our inversion
for flux categories without asterisk (see Seet—4-5Sect. 2.6). Red color of the category names indicates a statistically significant increase of
emissions. (b) Scaling factors are the raw results of our inversion, though here they are already combined for the whole year. The posterior

scaling factor is defined as the mean-center of the methodological uncertainty range indicated by brown boxes.
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Figure A2. (a—c) Seasonal cycle when using only observations from stations that were active during the whole year. We select those stations

and sampling heights, for which we used at least two data points per day on at least 20 days of each month in 2021 in our main inversion. This

yields-selects 27 stations shown in (d) with 8.3 - 10" data points for the inversion¢siep-5-n-Fable-2), compared to 50 stations with 1.29 - 10°

data points in the reference case (compare Fig. 4). Colored areas show the posterior uncertainties (95 % confidence intervals), which were

computed without excluding individual stations from the inversion and are therefore smaller than in Fig. 4. Prior emission rates are shown as

dotted lines with small markers.

observation

model (prior)

2025 A

2000 A
8 19754 &
o

19501 °

1925 4 flatland

B flatland

20254(c)  mountain

2000 -
Qo
&1975- v

1950 1\

1925 4

4(d) mountain

month

month

Figure A3. Seasonal cycle in observations at stations with elevation below 500m above sea level (a, b) and above 1000m (c, d), supple-

mentary to the discussion in Sect. 3.2. Thin blue lines represent the 10% quantile of each month, station, and sampling height for (a, c)

observations and (b, d) model predictions (prior). The 10% quantile is chosen to minimize the effect of local pollution. Thick black lines

indicate the mean of all selected stations and sampling heights. Thick red lines in (b) and (d) show the 10 % quantile of the modeled far-field

concentration. The flatland stations show a pronounced seasonal cycle with minimum in summer for both model and observations. This cycle

is dominated by the contribution of the far field. The mountain stations have a weaker seasonal cycle.
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Figure A4. Statistics of the relative (a) and absolute (b) improvement of the model-observation mismatch at independent validation stations

for different choices of the error covariance matrix R discussed in Part 1 (Bruch et al., 2025a). The figure is analogous to Fig. 5, where

the visualization and the data selection is explained. Here, we distinguish three inversion methods that differ in how R is constructed, as

introduced in Sect. 2.5 of Part 1. No clear advantage of one method over the others can be seen. The diagonal R inversion has the lowest

osterior RMSE at validation sites, followed by the posterior R and prior R inversion, but the differences are not statistically significant.

22



460

465

470

475

480

Appendix B: Averaging kernel matrices

As introduced in Sect. 3.4.2, the averaging kernel matrices A°™® and Ascaling factors egtimate the change in the posterior when
changing the truth, Aemis — fepost / de™th where e denotes the vector of emissions. Here, we summarize how these matrices are
estimated using either the prior-and-pesterior-error covariance matrices B and By, 5-or the statistics from inversion runs with

synthetic truth.
B1 Analytic estimate using error covariance matrices

We first estimate the sensitivity of the posterior scaling factor to the true emissions under the assumption that the transport

model, far field, and-the-flux-pattern-observations, and the a priori spatial distribution within each flux category are perfect. Un-

A= J st for given scaling
factors s is u(s) =y — Hs — 2" = H(s"™" — 5) where s™" denotes the true scaling factors. Our pries—=-"prior R inversion

prior

der these idealized assumptions, the model-observation mismatch i

will now maximize

P(S) x exp [—%(S _ struth)THTR—lH(s _ Struth) _ %(S _ sprior)TB—l(S _ sprior)} (Bl)
o exp [—3(s — ") T Byk(s — )] (B2)

This yields sPot = sPrior 4 (s'uth — gprior) with the averaging kernel A = I — By B~ and the posterior error covariance matrix
B[;)it = H"R™'H + B~ (Rodgers, 2000). Knowing B and Biost, We can compute the averaging kernel A to estimate how the

posterior scaling factors depend on the true scaling factors.
B2 Statistical estimate using synthetic experiments

We-aim-to-In the statistical approach, we estimate the sensitivity of posterior scaling factors ¢ := sP°' — sP1°" to changes in

truth

the synthetic truth ¢ := s™" — sPr using 100 synthetic experiments with random synthetic truth 5™, Given a sample of N

realizations {£{"},, and {¢"},,, we aim to find the scaling factor averaging kernel matrix A that solves
N
A=argminy_[[¢"—A'¢"|*. (B3)
A n=1
For [|z]|* = ), 7, differentiation by Aj; yields 0 = SV i (€™ — A¢™), for all i, and thereby

N N
A=EZ7", Ey=) ¢, Zii=Y ¢ (B4)
n=1 n=1

Equation (B4) was used to produce panels (c) and (d) of Fig. 7.

Appendix C: Relevance of absolute prior uncertainty in sector attribution

When observations can detect a change in total emissions but cannot distinguish between different emission sectors, the sector-

resolving inversion will change the sectoral distribution based on the prior uncertainties. To understand this problem quali-

23



485

490

495

500

505

510

tatively, we consider the worst case: We assume that fluxes from all sectors are uncorrelated in the prior but 100 % spatially
correlated such that they cannot be distinguished in the inversion. The a priori probability density for an emission vector e of

sector emissions e; is

Ple) xexp | -1 (e; — )02 (Cl)

assuch that the a posteriori probability densit
P(ely) is maximized. But by assumption, these observations do not distinguish between sectors such that Eq—+EHremains

validthe a posteriori probability density fulfills P(e|y) oc P(e) as long as > . e; is fixed. We thus obtain the posterior emissions
of the sectors by maximizing Eq. (C1) with the constraint ), e; = el By introducing a Lagrange multiplier, one can show?
that this yields-implies

) epost prior
rior tot  — “tot
e; — e = ao? o= . (C2)

' " P
This shows that sectors with larger absolute a priori uncertainty are disproportionally stronger corrected. Applied to our emis-
sion estimates for Germany, this implies that if the observations were unsuitable for distinguishing sectors, the inversion would
attribute up to 95 % of the changes in total fluxes to the agriculture sector, which is responsible for 69 % of the total a priori

emissions. Fortunately, this worst case scenario is not realistic because the observations do contain information on the different

sectors as indicated e.g. by Figs. 6 and 7. But a tendency remains to correct the agriculture stronger than the other sectors.

Appendix D: Attempt to distinguish five sectors in Germany

Our setup for the transport simulation was designed to separte-separate five sectors in Germany: agriculture, natural plus

LULUCEF, waste, public power, and the sum of all other sectors (“other”). We test-the-separation-of-{ry to distinguish these

sectors in sensitivity—test-a separate inversion run, in which each of these sectors is scaled separately (sensitivity tests 506
(Fable- El-andFig-Eband-in Part 1 (Bruch et al., 2025a)). This inversion uses 19 separate scaling factors in Germany instead of

11. We find no notable changes in the posterior emissions compared to our reference setup, in which we combined waste, public
power, and other into one larger sector “non-agr.” —However, the uncertainties and the averaging kernels change considerably.
We assume an a priori 20 uncertainty of 4100 % for each sector-resolving flux category. Thus, splitting the total fluxes in more
uncorrelated flux categories reduces the a priori uncertainty of the total fluxes.

Figure D1 shows the averaging kernel matrices (introduced in Sect. 3.4.2 and Appendix B) for the inversion when separating

five sectors. These matrices indicate that waste, public power, and “other” cannot be distinguished: The corresponding columns
Fig. D1(a) are approximately equal. Thus, trying to distinguish these sectors does not yietd-provide any additional information.

By comparing the row and column for “non-agr.” to Fig. 7, we identify drawbacks of the attempt to distinguish smaller sectors.

2We define L(e,\) = —% >iles— el;v’rim)QUi_2 + (P — >, ei) and require % =0, % =0.
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Figure D1. Averaging kernel matrices of German sector emissions (a) and the corresponding scaling factors (b) when trying to distinguish

sectors waste, public power and other, in-estimated using the same-representation-as-in-posterior error covariance matrix. Small matrices at

the bottom indicate the ideal result. See Fig. 7 ta)—tb)for an explanation of the representation. Panel (a), third row, shows that increasing true

emissions in any sector is expected to cause higher posterior agriculture emissions with a false attribution of 46 % to 70 %. The same row in

anel (b) shows that when looking at relative changes in the emissions, the influence of the false attribution on the agriculture sector is not

When trying to distinguish five sectors, the false attribution of emissions to the agriculture sectors is more severe than when
distinguishing only three sectors (48 % compared to 28 %). Consequently, the expected error reduction in the combined non-
agriculture sectors (excluding natural plus LULUCF) is better when considering only three sectors. Qualitatively, this is what

we expect from Appendix C for cases where the observations are insufficient to distinguish the considered sectors.
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