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Abstract. A reliable
:::
This

::::::::
two-part

:::::
study

:::::::
explores

:::
the

:
quantification of greenhouse gas emissions is important for climate

change mitigation strategies.
::::
using

:::::::::::
atmospheric

::::::::::
observations

::
in

:::::
order

::
to

::::::
validate

:::::::
national

::::::::
emission

:::::::::
inventories.

:
Inverse methods

based on observations and atmospheric transport simulations can support emission quantification down to
:
at
:
the national scale

:::::
based

::
on

:::::::::::
observations

:::
and

::::::::::
atmospheric

::::::::
transport

::::::::::
simulations, yet, they are often limited by the observing systems

::::::::::
observation

:::::::
coverage, transport model uncertainties, and inversion methodologies. Here, we present

::::::::
introduce a system for observation-based,5

regional methane flux estimation , which has the potential for long-term operational support of national emission reporting.

We
:::::::
regional

:::::::::
estimation

::
of

:::::::
methane

:::::
fluxes

::::
and apply this to Central Europe in 2021 with

:::
with

::
a focus on Germany, where we

distinguish emissions from different anthropogenic sectors.
::
We

::::::::
evaluate

:::
the

:::::::::
robustness

::
of

:::
the

:::::::
method

:::::
using

:::::::::
sensitivity

::::
tests

::::
with

:::::
in-situ

:::::::::::
observations

:::::
from

:::
the

::::::::
Integrated

:::::::
Carbon

::::::::::
Observation

:::::::
System

:::::::
(ICOS).

:::::
Using

::::::::
synthetic

::::::::::
observation

:::::::::::
experiments,

::
we

::::::::
estimate

:::
the

::::::
impact

::
of

::::::::
transport

:::::
errors

:::
on

:::
the

:::
flux

:::::::::
estimates.

:
The atmospheric transport is calculated with

:::::::::
employing the10

numerical weather prediction model ICON–ART
:::::
ICON

::::
with

::
its

:::::::
module

::::
ART

:
at 6.5 km resolution, sampling the meteorological

uncertainty with a 12-member transport ensemble. We use a priori fluxes from national reporting to facilitate the validation of

reported fluxes.
:::
The

:::::
same

::::::::
transport

::::::::
ensemble

::
is

::::
used

::
to

:::::::
generate

:::::::::::::::::
pseudo-observations

::::
with

::
a
::::::::
simulated

::::::::
transport

::::::::::
uncertainty.

Posterior fluxes are estimated with a modified synthesis inversion method , relying on observations from the Integrated Carbon

Observation System (ICOS).
::
for

:::::
three

:::::::
different

:::::::::::::
approximations

::
of

:::
the

::::::::::::::::
model–observation

::::
error

::::::::::
covariance

::::::
matrix. Compared15

to the a priori, we find a significant increase in methane emissions in Germany and in the Benelux. We estimate German

methane emissions (32 ± 19)% higher than the anthropogenic emissions in the national inventory, and attribute this difference

mainly to the agricultural sector, although separation from Land Use, Land Use Change and Forestry (LULUCF) as well as

natural fluxes requires further research.
:::
We

:::
find

::::
that

::::
using

:::::::::::::::::
ensemble-estimated

:::::::
transport

:::::::::::
uncertainties

:::
can

:::::::::::
significantly

::::::
reduce

::
the

:::::::
random

:::::
error

::
of

::::::::
emission

::::::::
estimates.

:
The combination of an ensemble-enhanced numerical weather prediction model for20

atmospheric transport and good observation coverage paves the way to sector-specific
:::
Our

::::::
results

::::::::
highlight

:::
the

:::::::::
importance

:::
of

::::::::
analyzing

:::::
biases

::
in

::::
flux

::::::::
inversions

:::
for

:::::::
reliable, observation-based national emission estimates.
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1 Introduction

Reducing
:::::::::
Quantifying

:
greenhouse gas (GHG) emissions is crucial for mitigating current anthropogenic global warming.

UNFCCC (
:::::::
essential

:::
for

::::::::
effective

:::::::::
mitigation

:::
of

::::::::::::
anthropogenic

::::::
climate

:::::::
change.

:::::::::::
Atmospheric

::::::
GHG

::::::::
inversions

:::::::
provide

:::::
such25

:::::::::::
quantification

:::
by

:::::::::
connecting

:::
the

::::::::
observed

::::::::::
atmospheric

:::::::::::
composition

::
to

:::::::
surface

:::::
fluxes

:::::
using

::::::::
transport

:::::::
models.

::::
This

::::::::
so-called

:::::::::
“top-down”

::::::::
approach

::
is
::::::::::::::

complementary
::
to

:::::::::::
“bottom-up”

:::::::
emission

:::::::::
estimates,

::::::
which

:::
are

:::::
based

:::
on

::::::
activity

::::
data

::::
and

::::::::
emission

:::::
factors

:::::::::::::::::
(IPCC et al., 2019).

::::::::
Top-down

::::::::
emission

::::::::
estimates

:::
can

::
be

::::
used

::
to

:::::::
validate

:::::::
national

:::::::::
bottom-up

::::
GHG

::::::::::
inventories

:::::::
reported

::
to

:::
the United Nations Framework Convention on Climate Change ) compliant national inventories and /or process models

quantify anthropogenic GHG emissions for the purpose of monitoring the effectiveness of mitigation as planned, e. g., in30

the Paris Agreement. [. . . ]
:::::::::
(UNFCCC)

::::::::::::::::::::::::::::::::::::::::
(Manning et al., 2003, 2011; Henne et al., 2016).

:::::
Such

::::::::::::
national-scale

::::::::
estimates

::::
are

:::::::
typically

::::::
limited

::
by

:::
the

::::::::::
observation

:::::::
coverage

::::::::::::::::::::::
(Petrescu et al., 2023) and

::::::::::
uncertainties

::
in

::::::::::
atmospheric

::::::::
transport

::::::::
modeling

:::::::::::::::::
(Gerbig et al., 2008).

::::
This

::::::::
motivates

::::::::
estimating

::::::::
methane

::::::::
emissions

::
in

:::
the

:::::::::
comparably

::::::::::::
well-observed

::::::
Central

:::::::
Europe

::::
using

::
a

::::::::::::
high-resolution

::::::::
transport

:::::
model

::::
and

::::::::
applying

:::::::
methods

:::::
from

::::::::
numerical

:::::::
weather

::::::::
prediction

:::::::
(NWP)

::
to

:::::::
estimate

:::
the

::::::::
transport

:::::::::
uncertainty.

:

Regional top-down estimates of long-lived GHG can be based on different types of transport models. Lagrangian models35

calculate trajectories from selected locations by moving with air parcels transported by the wind. They have been widely used

for inversions of trace gases like halocarbons, nitrous oxide and methane (CH4) in European regions, see e.g., Stohl et al.

(2009); Ganesan et al. (2015); Henne et al. (2016). In contrast, Eulerian models – such as ICON–ART – continuously transport

trace gas concentrations through three-dimensional grid boxes. Although they are computationally more expensive for cases

where a relatively small number of trajectories would suffice, they become superior when the amount of data grows and, as40

Engelen et al. (2002) pointed out, open the road for data assimilation methods as used in numerical weather prediction.
:::::
NWP.

::::::
Among

:::
the

:::::::
Eulerian

:::::::
models,

::::
also

:::::
NWP

::::::
models

::::
have

:::::
been

::::
used

:::
for

:::::::
regional

:::
flux

:::::::::
inversions

::
of

::::
CO2::::::::::::::::::::::

(Lauvaux et al., 2013) and

::::
CH4 ::::::::::::::::::

(Steiner et al., 2024b). Regardless whether Lagrangian or Eulerian or even combined approaches (Rigby et al., 2011) are

applied, the top-down estimation requires solving an inverse problem (Enting, 2002). Eulerian transport model based inversions

may employ emission ensembles, as in Steiner et al. (2024b) with a localized Kalman filter, and other data assimilation methods45

:::::::::::::::::::::::::
(see, e.g., Meirink et al., 2008). Alternatively, the method of synthesis inversion scales a set of a priori emission categories

(Kaminski et al., 2001). Note that Meirink et al. (2008) compare 4D-Var and synthesis inversion methods.

In this work, we present a modular system for regional
:::::::
introduce

::
a
::::::
system

:::
for

::::::::::::
national-scale top-down estimates of CH4

fluxes designed to validate national inventories, including the discrimination of economic sectors such as agriculture and

industry. [. . . ]
::::::::
estimation

::
of

::::
CH4:::::::::

emissions
:::::
based

::
on

:::::::::
modeling

:::::::::
experience

::::
from

:::::
NWP.

::::
We

::::::
analyze

:::
the

::::::
benefit

::
of

:::::::::::
constraining50

::
the

::::::::
transport

::::::::::
uncertainty

:::::
using

::
a
::::::::::::
meteorological

:::::::::
ensemble

::
as

::::::::
proposed

:::
by

::::::::::::::::::::
Ghosh et al. (2021) and

::::::::::::::::::
Steiner et al. (2024a).

::
A

:::::::
synthesis

::::::::
inversion

:::::::
method

:
is
:::::
used

::
to

:::::::
estimate

::::::::
emissions

::::
with

::
a

::::
focus

:::
on

::::::::
Germany

:::::
based

::
on

:::::::::::::
high-resolution

:
a
:::::
priori

:::::::::
emissions

::::
from

:::::::
national

::::::::
reporting

:::
and

::
in

:::
situ

:::::::::::
observations

::
of

::::::::::
atmospheric

:::::
CH4 ::::::::::::

concentrations.
:

::
In

::
the

:::::::
present

:::
Part

::
1

::
of

:::
this

:::::::
two-part

:::::
study,

:::
we

:::::::
describe

:::
our

::::
new

:::::::
inversion

::::::
system

::::
and

::::::
evaluate

:::
its

:::::::::::
performance.

::::::::::::::::
Section 2 introduces

::
the

:::::::
method

::::
with

::
a

::::::
detailed

::::::::::
description

::
of

:::
the

::::::::::
uncertainty

:::::::::
estimation.

::::
The

:::::::::
description

::
of

:::
the

::::::::
inversion

::::::
system

::
is
:::::::::
completed

:::
by55

::
the

:::::
input

::::
data

::::::::
described

::
in

::::::
Sect. 3.

:::
In

::::::
Sect. 4,

:::
we

::::::
analyze

:::
the

:::::::::::
performance

:::::
using

:::::::
synthetic

::::::::::
observation

::::::::::
experiments

::::
and

:::
test

:::
the

2



::::::::
sensitivity

::
to

::::::
tuning

:::::::::
parameters

:::::
with

:::
real

:::::::::::
observations.

::::
We

:::::::
conclude

:::
in

:::::::::
Sect. 5 and

::::
refer

:::
to

:::
Part

::
2
::::::
(Bruch

::
et

:::
al.,

::::::
2025a)

:::
for

::
a

::::::::
discussion

::
of
:::

the
::::::::
emission

::::::::
estimates

:::::::
obtained

:::::
using

::::
real

:::::::::::
observations.

2 Method

In the employed offline scaling inversion , we categorize the a priori fluxes and scale each flux category60

:::
We

:::
use

:
a
::::::::
synthesis

::::::::
inversion

:::::::
method

::::::::::::::::::::::
(Kaminski et al., 2001) that

::::::
scales

:::
the

::::
CH4 :::::

fluxes
:
to optimize the agreement between

model prediction
::
of

:::::
model

::::::::::
predictions

:
and observations. We start by defining flux categorieswhich

::
In

:::
this

:::::::
method,

:::
the

::::::
fluxes

::
are

:::::::
initially

:::::::
grouped

::::
into

:
a
::::::::::
manageable

:::
set

::
of

::::
flux

:::::::::
categories.

:::::
Here,

:::::
these

:::
are

::
46

:::::::::
categories

:::
that

:
subdivide the fluxes by region

and sector.
:::::::
emission

::::::
sector.

:
With the Eulerian transport model, the concentrations

:::::::::::
concentration from each flux category are

:
is
:

calculated separately at all grid cells and time points. At the location and time of the observations, the model writes out65

the predicted concentrations from the flux category contributions and their sum is compared to the observed concentration.

Our inversion makes
:::
The

::::::::
inversion

::::
then

:::::::::
minimizes

:::
the

::::::::
mismatch

::::::::
between

:::::
model

:::::::::
prediction

:::
and

:::::::::::
observations

::
by

:::::::
scaling

::::
each

::
of

:::
the

::::
flux

:::::::::
categories

::
by

::::
one

:::::::
number

::
–

:::
the

::::::
scaling

::::::
factor

::
–

::::::
making

:
use of the linear relation between surface fluxes and

concentrations in the atmosphere. The categorized fluxes are scaled to minimize the mismatch between model prediction and

observed concentrations. Thus, the inversion result consists of one scaling factor for each flux category. The
::
By

::::::::::
multiplying

:::
the70

a priori fluxes multiplied by
:::
with

:
the scaling factors yield

::
we

::::::
obtain the a posteriori fluxes.

::::
This

::::::
scaling

::::::
method

::::::
cannot

:::::::
provide

:
a
:::::::::
correction

:::::
where

:
a
:::::
priori

::::::
fluxes

:::
are

:::
zero

:::::::::::::::::::::
(Kountouris et al., 2018).

::::::::
However,

::::
this

::
is

:::
less

::
of

::
a

:::::::
problem

:::
for

::::
CH4,

::
as

::::::::::
inventories

:::
can

::::::
collect

:::::
where

:::::::::::::::
methane-emitting

::::::::
activities

:::
are

::::::::
normally

:::::::
located,

::::
but

:::::::
emission

:::::::
factors

:::::
which

::::::::
translate

:::
the

::::::::
activities

::::
into

::::::::
bottom-up

:::::::::
emissions

:::
are

::::::::
uncertain

:::::::::::::::::::
(Dammers et al., 2024).

:

The described method relies on high quality model predictions as well as accurate concentration observations. Furthermore,75

we need to estimate the model uncertainty and error correlations to assess whether deviations between model and observations

contain information on the fluxes. To match these requirements, we have carefully chosen the configuration of the transport

model (Sect. 2.1) . Also, selected
::::::::
Sect. 2.1)

:::
and

::::::::
consider

:::
the

:::::::
specific

:::::::::
difficulties

::
in

::::::::
modeling

::::::
strong

::::::
plumes

:::::
(2.2).

::::::::
Selected

observational data are employed to remedy model boundary effects and therefore improve the overall model predictions

(Sect. 2.2
:::::::
Sect. 2.3). In this section, we further

::::::::
Sect. 2.4,

:::
we

:
introduce the Bayesian inversion framework(Sect. 2.3), the80

model uncertainties (Sect. 2.4), and our strategy for dealing with strong plumes (Sect. 2.5). .
:::

To
::::::
assess

:::::::
whether

:::::::::
deviations

:::::::
between

:::::
model

::::
and

::::::::::
observations

:::::::
contain

::::::::::
information

::
on

:::
the

::::::
fluxes,

:::
we

:::::::
estimate

:::
the

::::::
model

:::::::::
uncertainty

::::
and

::::
error

:::::::::::
correlations.

:::
We

:::::::
compare

:::::
three

:::::::
different

::::::::
methods

:::
for

:::::::::
estimating

::::
these

:::::::::::
uncertainties

::::
and

::::::::::
correlations

:::::::::::::::::::
(Sections 2.5 and 2.6).

:::::::::::
Furthermore,

::
we

::::::
define

:::
the

::::
time

:::::::
window

::::
and

:
a
:::::
priori

:::::::::::
uncertainties

::
of

:::
the

::::::::
inversion

:::::::::::::::::::
(Sections 2.7 and 2.8).

::
A

::::::::
summary

:::
of

:::
the

::::::
method

::::
and

:::
data

:::::::
streams

::::
will

::
be

::::::::
provided

::
in

::::::::
Sect. 3.5.85

2.1 Transport model
:::::::::
simulation
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2.1.1
:::::::::
Transport

:::::
model

The atmospheric transport is simulated using the numerical weather prediction
::::
NWP

:
model ICON (Zängl et al., 2015) with the

ART module (Rieger et al., 2015; Schröter et al., 2018).
:
in

::
a

:::::::::::
configuration

::::
close

::
to

:::::::::
operational

:::::
NWP

::
at

:::::::::
Germany’s

:::::::::::::
Meteorological

::::::
Service

:::::::
(DWD),

:::::::
extended

::::
with

:::
the

:::::::
module

::
for

:::::::
Aerosol

:::
and

::::::::
Reactive

::::
Trace

:::::
gases

::::::
(ART)

::::::::::::::::::::::::::::::::::
(Rieger et al., 2015; Schröter et al., 2018).90

The model is run in limited area mode for a domain covering large parts of the European continent (latitudes 34° N to 70° N,

longitudes 21° W to 59° E, see Fig. 1) with a horizontal resolution of 6.5km (ICON grid R3B8) and 74 vertical levels up to a

maximal height of 22.77km. The
:::
The

::::::
ICON

:::::
model

::::::::
simulates

:::
the

:::::::::::
meteorology

:::
and

:::
the

:::::
tracer

::::::::
transport.

::::::::::::::
Re-initialization

::
of

:::
the

::::::::::::
meteorological

:::::
fields

:::::
every

:::
24h

:::::
with

:::::::::::
operationally

:::::::
produced

:::::::
analysis

:::::
fields

:::::::
ensures

:::
that

:::
the

:::::::::::
meteorology

::::
stays

:::::
close

::
to

::::::
reality.

:::
The

:
surface CH4 fluxes are provided to the transport model using the online emission module (Jähn et al., 2020; Steiner et al.,95

2024b).
::
We

:::
do

:::
not

:::::::
simulate

:::
any

::::::::
chemical

::::::::
reactions,

:::::::
because

:::
the

::::::
typical

:::::::
lifetime

::
of

::::
CH4 ::

in
:::
the

:::::::::
atmosphere

::
is
:::::
much

::::::
longer

::::
than

::
the

::::
time

::::
that

::
an

:::
air

:::::
parcel

::::::::
typically

::::::
spends

::
in

:::
our

::::::::
modeling

:::::::
domain.

:

For long living tracers like methane, the correct treatment of the lateral boundary concentrations is of importance. Therefore,

we extended the model by implementing lateral boundary nudging for ART tracers in order to obtain smooth fields and avoid

strong gradients
:::::
spatial

::::::::
gradients.

::::
The

:::::::
nudging

::
is

::::::
limited

::
to

:
a
::::::::
boundary

:::::
zone

::
of

:::::
width

::::::::
< 250km. Further, so-called meteogram100

output has been implemented for ART tracers, providing model output in the vicinity of observation locations with high

temporal resolution.

2.1.2
:::::::::::::
Meteorological

::::::::
ensemble

For improved uncertainty estimates, we run a meteorological ensemble of 12 members. Each ensemble member uses slightly

different but equally likely parametrizations and
:::::::
different

:
meteorological initial and boundary conditions. The construction105

of this ensemble follows the operational weather prediction at DWD(Schraff et al., 2016).
:::::
lateral

::::::::
boundary

:::::::::
conditions

:::::
from

::
the

::::::::::
operational

::::::::
ensemble

::::
data

::::::::::
assimilation

::::
used

:::
for

::::::
global

:::::
NWP

:
at
::::::
DWD

::::::::::::::::::::::::::::::::::
(Schraff et al., 2016; Reinert et al., 2025).

:::::
Since

:::
our

::::::::::::
meteorological

:::::
input

:::::
fields

:::
and

:::
the

::::::::
transport

:::::
model

:::::
setup

:::
are

:::::
taken

::::
from

::::::::::
operational

:::::
NWP

::
at

::::::
DWD,

:::
the

::::::::
ensemble

:::::::
provides

::
a

:::::::::
reasonable

:::::::
estimate

:::
for

:::
the

::::::::::::
meteorological

::::::::::
uncertainty

::
in

::::
our

::::::
model,

::::::::
including

:::::::::::
uncertainties

::
in

:::
the

::::::::
simulated

:::::
wind

::::
field

::::
and

::::::::::
atmospheric

:::::::
stability.

:
110

In the following, we therefore distinguish a so-called deterministic model run providing the best estimate of the modeled

CH4 concentration, and the ensemble runs providing 12 different CH4 concentrations to estimate the uncertainty.
:::
The

::::::::
ensemble

:::
will

::::
only

:::
be

::::
used

::
to

::::::::
estimate

:::::
model

:::::::::::
uncertainties

::::
and

::::
error

::::::::::
covariances

::::
(see

:::::::::
Sect. 2.5),

:::
and

::
to

::::::::
generate

:::::::::::::::::
pseudo-observations

:::::::::
(Sect. 3.4).

2.2 Implementation of CH4 fluxes (Sect. 4.1)115

2.1.1
::::::::
Definition

:::
of

:::
flux

:::::::::
categories

4



Figure 1. Model domain, colored to distinguish 35 patches defining regional flux categories. Observation sites (dots) are colored by the choice

of model equivalent height (see Table C1). Dark blue at the domain boundary indicates regions for which emissions are not categorized and

therefore not modified in the inversion. Other colors only distinguish neighboring patches. In white hatched regions, natural fluxes are also

categorized and scaled. A white ellipsis
:::::
ellipse marks the Upper Silesian Coal Basin, in which fugitive emissions define their own flux

category. In Germany, the map shows the six regions used for the agricultural sector. For other sectors in Germany, we use four regions:

south (yellow and light green), west (dark blue), north (light green), and east (dark green and yellow).

:::::::::
Estimating

::::
CH4:::::

fluxes
:::

in
:::::
> 105

::::
grid

::::
cells

::::::
based

::
on

:::
50

::::::::::
observation

::::
sites

::::::
seems

:::::::::
impossible

:::::::
without

:::::::
reducing

::::
the

::::::
number

:::
of

::::::
degrees

::
of

::::::::
freedom

::
of

:::
the

::::::
fluxes.

:::::
Here,

:::
we

::::::
reduce

:::
the

::::::
degrees

:::
of

:::::::
freedom

:::::::::
drastically

::
by

::::::::::::
parametrizing

:::
the

::::::
fluxes

:::::
using

::::
only

::
46

:::::
basis

:::::::
vectors.

::
A

::::
basis

::::::
vector

::
in

::::
this

:::::::::::::
parametrization

::
is

::
a

:::
flux

::::::::
category

::::
that

:::::::
contains

:::
all

:::::
fluxes

:::::
from

:::
one

::::::
region,

::::::::
possibly

::::::
limited

::
to

::::::
specific

::::::::
emission

:::::::
sectors.

:::
For

::::::::
example,

:::
we

:::::
define

:::
all

::::::::::::
anthropogenic

::::::::
emissions

:::::
from

::::::::
Denmark

::
as

:::
one

::::
flux

::::::::
category.120

:::
We

::::::
thereby

:::::::
assume

:::
that

:::
the

::::::::::
distribution

::
of

::::::::::::
anthropogenic

:::::::::
emissions

:::::
within

::::::::
Denmark

::
is
:::::::
correct

::
in

:::
the

:
a
:::::
priori

::::
and

::::
only

:::::
allow

::
the

::::::::
inversion

::
to

::::::
adjust

:::
the

::::
total

::::::::
emissions

::::
from

:::::::::
Denmark.

For the inversion, we
:::
We define the flux categories based on sector and region with the primary aim of providing an accurate

estimate for
:
of

:
emissions from Germany, resolving federated states where possible, to address the user requirements of potential

stakeholders.125

2.1.2 Definition of flux categories (Sect. 4.1.1)

:::::
When

::::::::::::
distinguishing

:::::::
emission

:::::::
sectors,

:::
we

:::
stay

:::::
close

::
to

:::
the

:::::::
national

:::::::
reporting

:::
by

:::::
using

:::::::::
definitions

::::
from

:::
the

:::::::
gridded

:::::::::
aggregated

:::::::::::
nomenclature

:::
for

:::::::
reporting

::::::::::::::::::::::::::
(GNFR, Veldeman et al., 2013).

:
For the agricultural sector (GNFR sectors K+L), which contributes

roughly two thirds of all German CH4 emissions, we distinguish six regions within Germany as depicted in Fig. 1. We

furthermore try to distinguish the sectors waste (GNFR sector J) and public power (GNFR A) from the
:::
For

:::
the sum of all130

remaining sectors (“other”, GNFR B–I). However, we will only present results in which these sectors are combined (see

discussion in Sect. 6.3 and Appendix I). For the sectors waste, public power, and other
::::
other

::::::
sectors

::
–

::::::::
excluding

:::::::
natural

:::
and

::::::::
LULUCF

::::::
fluxes

:
–
:

we distinguish four regions, i.e., the federated states south: Baden-Wuerttemberg and Bavaria, west:
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Table 1.
:::::::
Overview

::
of

:::::
sectors

::::::::::
distinguished

::
in
:::
the

:::::::
inversion

:::
and

::::::
number

::
of
::::

flux
::::::::
categories.

:::
We

::::::::
distinguish

:::
the

::::
focus

::::::
region,

:::::::::::
well-observed

:::::
regions

::::
near

::
the

:::::
focus

:::::
region,

:::
and

::::::
regions

::
in

::::
large

::::::
distance

::::
from

:::
the

::::
focus

:::::
region

:::::::::
(“remote”).

:::
The

::::
latter

:::
are

:::
split

::
in

::::
very

::::
large

:::
flux

::::::::
categories

:::
with

:::
low

::
a
:::::
priori

:::::::::
uncertainty.

::::::
Natural

:::
plus

::::::::
LULUCF

:::::
fluxes

:::
are

:::::::
separated

::::
from

::::
other

:::::::::::
anthropogenic

::::::::
emissions

::::
only

::
in

::::::
regions

:::::
where

:::
the

:::::
natural

:::::
fluxes

::
are

:::::
strong

:::
and

::
in
::::::::
Germany.

:::
One

::::
extra

:::::::
category

::
in

:::
the

::::::::::
well-observed

::::::
regions

::
is

::
the

:::::
Upper

::::::
Silesian

::::
Coal

:::::
Basin

:::::::
(marked*

::
in

:::
the

:::
last

::::::
column).

:::
See

::::::::
Fig. 1 for

::
the

::::::::
definition

::
of

:::
flux

::::::::
categories

::
on

::
the

::::
map.

:

::::::::::
Classification

:::::::
Countries

:::
and

::::::
regions

:::::
Sectors

: :
#
::
of

::::
areas

:
#
::
of

:::
flux

:::::::
categories

:

::::
focus

:::::
region

:::::::
Germany

::::::::
agriculture,

:::::::::::::::::
LULUCF + natural,

::::
other

:
6
::::
agr.,

:
4
:::::
other,

:
1
:::::::
LULUCF

:

::
11

::::
focus

:::::
region

:::::::::
Netherlands

::::::::
agriculture,

::::
other

: :
1

:
2
:

:::
well

:::::::
observed

::::::
Sweden,

::::::
Norway

: ::::::::::::::
LULUCF + natural,

:::::::::::
anthropogenic

:
2

:
4
:

:::
well

:::::::
observed

:::
DK,

:::
PL,

:::
CZ,

::::
AU,

:::
SK,

:::
HU,

:::
SV,

::::
HR,

:::
BA,

:::
CH,

:::
FR,

:::
BE,

:::
LU,

::::
UK,

::
IE,

:::::::
northern

::
IT,

:::::
North

:::
Sea

::::::::::
anthropogenic

:::::
(excl.

::::::::
LULUCF)

::
16

: :::
17*

:

:::::
remote

::::::
Finland,

::::::::::
north-western

::::::
Russia

::::::::::::::
LULUCF + natural,

:::::::::::
anthropogenic

:
2

:
4
:

:::::
remote

::::
other

::::::::::
anthropogenic

:::::
(excl.

::::::::
LULUCF)

:
8

:
8
:

North Rhine-Westphalia, Hesse, Rhineland-Palatinate and Saarland, north: Lower Saxony, Bremen, Hamburg and Schleswig-

Holstein, as well as east: Mecklenburg-Western Pomerania, Brandenburg, Berlin, Saxony, Saxony-Anhalt and Thuringia. Nat-135

ural plus LULUCF fluxes in Germany are treated as a single flux category.

Outside Germany, we do not distinguish sectoral emissions, with one exception. Agriculture emissions in the Netherlands

form their own category, as we found that they strongly influence the CH4 concentrations in Germany, caused by the proxim-

ity and high emission rates in the Netherlands. We define
::
We

::::::
define

::::::
further categories by area for anthropogenic emissions

excluding LULUCF such that a comparably high resolution is obtained in regions near Germany with high observation cov-140

erage. These area-defined
:::
flux

:
categories follow borders as feasible for the inversion. Areas with small expected influence on

inversion results for Germany are combined in large categories, such as Spain plus Portugal, Türkiye plus Greece, and large

areas east of Poland. All area-defined categories are shown in Fig. 1 .
:::
and

:::
an

::::::::
overview

::
of

:::
the

::::::
sector

::::::::
resolution

::
is
:::::

given
:::

in

::::::
Table 1.

:
We mitigate and analyze the plume problem (Sect. 2.2) in our inversion system by defining a separate flux category

for the strongest CH4 plume in Central Europe. These are fugitive emissions from the Upper Silesian Coal Basin with yearly145

emissions of 567kt in our prior (white ellipsis in Fig. 1).
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We treat natural plus LULUCF fluxes separately and categorize them only in Germany, Scandinavia, and the north-eastern

part of our domain (hatched regions in Fig. 1). This is motivated by strong CH4 emissions from wetlands in summer in Scandi-

navia and northern Russia in our prior (Segers and Houweling, 2020). Uncategorized fluxes – whether natural or anthropogenic

– are not scaled in the inversion, but still included in the transport simulation such that no fluxes are discarded. To avoid strong150

:::::
spatial

:
gradients in the concentration fields, the boundaries between different area-defined categories are smoothened as visu-

alized in Fig. 1.

:::
We

::::::::::
furthermore

::::::
define

:
a
::::::::

separate
::::
flux

:::::::
category

::::
for

:::
the

::::::::
strongest

::::
CH4::::::

plume
:::
in

::::::
Central

:::::::
Europe

::
to

::::::::
mitigate

:::
the

::::::
plume

:::::::::
localization

:::::::
problem

:::::::::
described

:::::
below

:::::::::
(Sect. 2.2).

:::::
These

:::
are

:::::::
fugitive

::::::::
emissions

:::::
from

:::
the

:::::
Upper

:::::::
Silesian

::::
Coal

:::::
Basin

::::
with

::::::
yearly

::::::::
emissions

::
of

::::::
567kt

::
in

:::
our

::::
prior

::::::
(white

::::::
ellipse

::
in

::::::
Fig. 1).155

2.1.2 Tracer assignment in the transport model(Sect. 4.1.2)

In the transport simulation, we consider not only the categorized fluxes, but also the CH4 from lateral boundaries and from

uncategorized emissions. Overall, we simulate the transport of 58
::
50 tracer fields in the deterministic model run:1

(i) All
::::
Sum

::
of

:::
all anthropogenic emissions excluding LULUCF. This constitutes a single, common tracer.

(ii) All
::::
Sum

::
of

:::
all natural plus LULUCF fluxes. This constitutes another single, common tracer, which summed with (i)160

covers all a priori emissions in the domain.

(iii)
:::
Far

:::::
field.

:::
The

:::
far

::::
field

:::::::
contains

:::
the

::::
CH4:::::

from
:::::
initial

:::
and

::::::
lateral

::::::::
boundary

:::::::::
conditions.

:

:::
The

::::
sum

::
of

::::::
(i)–(iii)

::
is
:::
the

::::
total

::
a

:::::
priori

::::
CH4 :::::::::::

concentration.
::::
The

:
a
:::::::::
posteriori

:::::::::::
concentration

::
is

:::
not

::::::::
computed

:::::::
directly.

:::::::
Instead,

:::
we

::::
treat

:::
the

::::::::
deviation

::
of

:::
the

::::::::
posterior

:::::::::::
concentration

:::::
from

:::
the

::::
prior

::
as
::

a
:::::::::::
perturbation.

:::
To

:::::::
compute

::::
this

::::::::::
perturbation,

:::
we

::::::::
simulate

::
the

::::::::
transport

::
of

::::
each

::::
flux

::::::::
category:165

(iv) Flux categories. For each flux category
:
of
:::
the

:::
46

:::
flux

:::::::::
categories an own tracer field is defined. To avoid the accumulation

of
:::::::::
categorized

:
CH4 beyond the time scale on which we consider the modeled transport reliable, we set an artificial decay

rate of these concentrations. After emission, the concentration in these tracer fields decays
:::::::::::
exponentially

:
with a mean

lifetime of five days. In combination with (i) and (ii) this technical feature
:::
This

::::::::
technical

::::::
feature

:::::::::
constitutes

:
a
::::::::::
localization

::
in

::::
time

::::::
similar

::
to

:::
the

:::::::::
commonly

:::::
used

:::::::::
localization

:::
in

:::::
space

:::::::::::::::::::::::::
(e.g., Steiner et al., 2024b) and

:
allows a waning of sectoral170

:::
and

:::::::
regional

:
attribution over a few days– no CH4 is lost, though, as full CH4 transport is modeled without decay in

(i) and (ii). .
:
This regulates that any attribution of a CH4 anomaly to a certain region or sector is only attempted if the

emission was fresh or a few days ago. Furthermore, this allows us to save computing time by limiting
:::
the

:::::::
transport

:::
of

these flux category tracer fields to altitudes below 8km. In total, 49 categories for anthropogenic emission excluding

LULUCF are covered – including 18 sector-resolving categories in Germany, two sector categories in the Netherlands175

and one plume category – and complemented by five natural plus LULUCF flux categories.
:::
The

::::::::
artificial

:::::
decay

::::
rate

1Technically, the simulation includes 58 tracers in an attempt to split up the sector “other” in Germany in three sectors. Since we do not use these additional

data here, we describe the setup for the 50 tracers we actually used.
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:::::
affects

:::
the

::::::::
posterior

:::::::::::
concentration

::::
and

:::
the

:::::::::
sensitivity

::
of

:::
the

::::::::
inversion

::
to

:::::::
changes

::
in

:::
the

:::::::::
emissions.

:::::::::
However,

::::::::
assuming

:::
that

:::
the

::::::
typical

::::
time

:::::::
between

::::::::
emission

:::
and

::::::::::
observation

::
is

::::
short

:::::::::
compared

::
to

:::
the

:::::::
artificial

:::::::
lifetime

:::
and

::
in

:::
the

::::::::
presence

::
of

:::::::
transport

::::::
model

:::::
errors,

:::
we

::::::
expect

:::
that

::::
this

::::::
feature

::
of

:::
our

::::::::
inversion

::::::
system

:::::
leads

::
to

::::
more

::::::
robust

::::::
results.

(v) Far field. The far field contains the CH4 from initial and lateral boundary conditions.180

(vi) Auxiliary field for plume detection. For the purpose of investigating the model uncertainty due to the plume from the

Upper Silesian Coal Basin, an auxiliary tracer is added
:::
(see

:::::::::::
Sect. 2.6.1).

::::
This

:::::
tracer

::
is
:::::
never

::::::
added

::
to

:::
the

::::
total

:::::
CH4

:::::::::::
concentration

:::
but

::::
only

:::::
serves

:::
as

::
an

::::::::
indicator

::
for

:::
the

::::::
plume

:::::::
location.

In the post-processing of the model data, the categorized concentrations from (iii)are subtracted from the combined tracers (i)

or (ii).185

2.2 Plume localization problem(Sect. 2.2)

Plumes caused by
::
In

:::
our

::::::::
transport

:::::::::
simulation

::::
and

::::::::
inversion,

:::
we

:::::::
address

:::
the

:::::::
specific

::::::::
challenge

::::::
posed

::
by

:::::::
plumes

::::
from

:
high

emissions in a small area require special treatment to avoid a potential bias in the inversion
:::::
small

:::::
areas.

::::
The

::::::::
inversion

::::
may

::
be

::::::
biased

:::
for

::::
such

::::::
plumes

:
due to the so-called double penalty issue (Vanderbecken et al., 2023). In cases where our model

falsely predicts that the plume reaches an observation site, the inversion will reduce the emissions to improve the agreement190

with the observation. In the opposite case, when the model fails to predict that a plume reaches the observation, the inversion

will not change the plume emission amount but will wrongly increase emissions in other areas instead. This can cause
:
a

systematic underestimation of fluxes from localized plumes. In the posterior-R inversion, this problem is mitigated because the

underestimation of emissions is penalized by a lower model uncertainty. To avoid biases in the inversion results, we suggest to

treat strong plumes separately, with their own flux categories. This allows us to quantify the problem (see Sect. 5.6
:::::::
Sect. 4.2)195

and to limit the plume penalty influence on other flux categories.

2.3 The need for a far-field
:::::::
Far-field correction

For cases where the model predicts almost no influence from our categorized emissions (i.e., clean air cases), deviations

between model and observations point to the need for correcting the CH4 advected across the lateral boundaries – here referred

to as “far field”.2 For our regional inversion problem, it is essential to separate the CH4 emitted within the domain from the200

far field, in order to avoid model biases which would confound the aspired flux scaling .
:::::::::::::::::::::::::::::::
(see, e.g., Chen et al., 2019, for CO2).

To minimize potential biases arising from imperfect boundary conditions, we construct a correction field which is added to

the modeled far-field concentration in the whole domain after the transport simulation. We require this correction field to be

smooth on large length and time scales , chosen in our case as
:::::
spatial

:::
and

::::::::
temporal

:::::
scales

:
320km (horizontal), 1km (vertical)

:
,

and 16h (time).
::
We

::::::::
construct

::::
this

:::::::
far-field

:::::::::
correction

:::::
using

:
a
:::::::
Kalman

::::::::
smoother

:::
as

::::::::
described

::
in

:::::
detail

:::
in

::::::::::
Appendix A.

:::::
This205

::::::::::
construction

::::
uses

::::
only

:::::::
clean-air

:::::::::::
observations

::::
with

:
a
:::::::::
cumulated

:::::
signal

::
of
:::
all

::::
flux

::::::::
categories

::
of

::::::::
≤ 20ppb

::::
and

:
a
::::
total

:::::
signal

:::::
from

::::::::
emissions

::::::
within

:::
our

::::::
domain

::
of

:::::::::
≤ 50ppb.

2Technically, the far field also includes the initial CH4 concentration. But this is hardly relevant due to our generous spin-up period of 17 days.
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:

Figure 2.
::::::::
Statistical

:::::::
evaluation

::
of
:::

the
::::::
far-field

::::::::
correction

::
at

:::
the

::::::::
observation

:::::::::
coordinates

:::::
when

::::
using

:::::::
synthetic

::::::::::
observations

::::
(light

::::
blue

::::
area)

:
or
::::

real
:::::::::
observations

::::
(dark

:::
red

::::
line).

:::::::::
Considering

:::
all

:::
data

:::::
points

::::
used

:
in
:::
the

:::::::
inversion,

:::::::::
histograms

::
of

::
the

::::::
far-field

::::::::
correction

::::
show

:::
(a)

::
the

:::::
range

:
of
:::

the
::::::::
correction

:::
and

:::
(b)

::
its

:::::::
temporal

:::::::
variation.

:::
For

::::
each

::::::
station,

:::::
month,

:::
and

::::::::
realization

::
of

::::::::::::::::
pseudo-observations,

:::
we

::::::
compute

:::
the

:::
root

:::::
mean

:::::
square

:::::
(RMS)

:::
and

:::
the

::::
mean

:::
(or

::::
bias).

:::::::::
Histograms

::::::::
combining

::::
these

:::::
values

:::
for

::
all

::::::
stations

:::
and

::::::
months

::
are

:::::
shown

::
in
:::
(c)

:::
and

:::
(d).

The
:::::::::::::
Figure 2 shows

:
a
::::::::
statistical

::::::::
overview

::
of

::
the

:
far-field

::::::::
correction

::::
when

:::::
using

::::
real

::::::::::
observations

::::
(red

::::
line)

::
or

::::::::::::::::
pseudo-observations

::::::
(shaded

:::::
area).

::::
The

:::::::::
considered

:::::::::::::::::
pseudo-observations

:::
are

::::::::
generated

:::::
from

:::
the

::::::::
ensemble

::::::::
members

::
of

:::
the

:::::::
transport

:::::::::
simulation

::::
and

:::::::
represent

:::
the

::::
case

::::::
where

::::::::
simulated

::::::::
emissions

::::
and

::::::::
boundary

:::::::::
conditions

::
are

:::::::
perfect,

:::
i.e.,

:::::
equal

::
to

:::
the

:::::
truth.

::::
The

:::::::
far-field correc-210

tion range is usually limited to±10ppb (see Fig. 2for details) . Section 2.2 comprises the mathematical derivation, parameters,

and a statistical overview of the
:::::
when

::::
using

::::
real

:::::::::
observation

::::
data

:::
and

:::::::
±5ppb

::
in

:::
the

:::::::
synthetic

::::::::::
observation

::::::::::
experiments

::::::::
(Fig. 2 a)

::::
with

::::::::
variations

::
of

:
a
::::
few

:::
ppb

:::
per

::::
day

::::::::
(Fig. 2 b).

::::
The

:::::
broad

:::::::::
distribution

:::
of

:::
the

:::
root

:::::
mean

::::::
square

::::::
(RMS)

:::
for

:::::::
different

::::::::::
observation

::::
sites

:::
and

::::::
months

::
in
::::::::
Fig. 2 (c)

::::::::
indicates

:::::::::
significant

:::::::::
differences

::::::
among

:::
the

::::::
stations

:::::
when

:::::
using

::::
real

:::::::::::
observations.

:::::::::
Figure 2 (d)

::::::
shows

:::
that

:::
the

:::::::::
correction

:::
has

::
a
:::::
small

:::
bias

:::::::
towards

:::::::
positive

:::::::::
corrections

:::::
even

::::
when

:::::
using

::::::::
synthetic

:::::::::::
observations215

::::
with

:::::::
unbiased

:::::
fluxes

::::
and

::::::::
boundary

:::::::::
conditions.

::::
This

::
is

:::::::
partially

::::
due

::
to

:::
the

:::::::::::::::::
pseudo-observations,

:::::
which

:::
are

::::::
biased

:::
by

::::::::
+0.5ppb

::::::::
compared

::
to

:::
the

::::::::
simulated

:::::::::::::
concentrations

:::
due

::
to

::::::
details

::
of

:::
the

::::::::
transport

:::::
model

::::::::::::
configuration.

::::
The

:::::
other

:::
part

::
of

:::
the

::::
bias

:::::
hints

::
to

:
a
:::::
more

::::::
general

::::::::
problem.

::::
We

::::::::
construct

:::
the far-field

:::::::::
correction

:::::
using

::::::::::
observations

:::
for

::::::
which

:::
the

::::::
model

:::::::
predicts

:::::
clean

:::
air,

:::
i.e.,

:
a
::::
low

:::::
signal

:::::
from

:::
the

::::::::
emissions.

:::::
Since

:::
the

::::::::
transport

::::::
model

:
is
:::
not

:::::::
perfect,

:::
this

:::::::::
introduces

::
a
::::::::
sampling

::::
bias:

:::
We

:::::
select

:::::
more

::::::::::
observations

:::
for

::::::
which

:::
the

:::::
model

:::::::::::::
underestimates

:::
the

::::::::::::
concentrations

::::
and

::::::
thereby

:::::::
increase

:::
the

::::
bias

::
to
::::::::
1.2ppb.

::
In

::::::::
response

::
to220

:::
this

::::
bias,

:::
the

:::::::
far-field correction

:::::::
increases

:::
the

:::::::::
simulated

::::::::::::
concentrations

::
by

:::::::
1.0ppb.

:::
The

::::::::
sampling

::::
bias

:::
will

:::::
likely

::::
also

:::::
occur

:::::
when

:::::::
working

::::
with

::::
real

:::::::::::
observations.

:::
But

:::
the

::::::::
estimated

:::::::::
correction

::::
bias

::
of

:::::::
0.6ppb

:::
due

::
to

:::
the

:::::::
sampling

::
is

:::::
small

::::::::
compared

::
to

:::
the

:::::::
accuracy

::
of

:::
the

::::::::::
Copernicus

::::::::::
Atmosphere

:::::::::
Monitoring

:::::::
Service

:::::::
(CAMS)

::::::::::::::::
inversion-optimized

:::
data

:::::::
product

::::
used

:::
for

::::
our

::::::::
boundary

:::::::::
conditions

::::::::::::::::::::
(Segers et al., 2023) (see

:::::::::
Sect. 3.1).

::::
We

:::::::
therefore

:::
do

:::
not

::::::
expect

::
a
:::::::::
significant

:::::
impact

:::
on

:::
the

:::::::
emission

:::::::::
estimates.225
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2.4 Inversion
::::::
General

:::::::::
approach

::
of

:::
the

:::::::::
inversion

::::::::::
framework

We use a Bayesian inversion to optimize the agreement of model and observationsby scaling the flux categories. This is

formulated in the
:
.
:::
We

:::::
define

::
a

:::::
vector

::
of

::::::
scaling

::::::
factors

::
–

::
in

:::
our

:::::::::
application

:::::::
s ∈ R46

:
–
:::::::::
consisting

::
of

::::
one

:::::::
prefactor

:::
for

::::
each

::::
flux

:::::::
category.

::::
This

::::::::::::::
low-dimensional

:::::::::::::
parametrization

::
of

:::
the

::::::
fluxes

::::
leads

::
to

:::
the

:
optimization problem

spost = argmin
s

{
1
2 (y−Hs−xff)>R−1(y−Hs−xff) + 1

2 (s− sprior)>B−1(s− sprior)
}

(1)230

for the posterior scaling factors spost. Here, the first term penalized
::::::::
penalizes the deviation from the concentration observations

:::::::
observed

::::::::::::
concentrations, and the second term penalizes the deviation from the prior fluxes. In the first term, the vector y of observed con-

centrations is compared to the model prediction, which consists of the transported fluxes
:::::::::
contribution

:
Hs

::
of

:::::
fluxes

::::::
within

:::
the

:::::
model

:::::::
domain and the modeled far field xff .

::::::::
including

:::
the

:::::::
far-field

:::::::::
correction.

:::
All

:::::
model

::::::::::
predictions

:::
(xff

:::
and

::::
Hs)

:::
are

:::::::
already

:::::::
projected

::
to
:::
the

::::::::::
observation

:::::
space.

:
The transported

::::::::::
contribution

::
of fluxesHs depend

::::::
depends

:
linearly on the vector sof scaling235

factors for the flux categories, which is optimized.
:
. The difference between modeled and observed values is weighted by the

error covariance matrix R describing the combined uncertainty of the transport model and the observations. With the second

term we constrain
::
the

::::::::
deviation

:::
of s by defining

::::
from

:
a priori scaling factors sprior (sprior

i = 1 for all i
:::::::
sprior
k = 1

:::
for

::
all

::
k) with

an error covariance matrix B characterizing the a priori uncertainty
::::
(see

::::::::
Sect. 2.8).

In Eq. (1), the fluxes are parametrized by the vector s of scaling factors. The flux categories thereby define the low-dimensional240

space in which the inversion can optimize the fluxes. The
:::
the model observation operatorH connects the space of scaling factors

(vectors sprior, spost) to the observation space (vectors y, xff). Computing H requires the transport model which distinguishes

the flux categories. The setup is designed for optimizing a low-dimensional vector spost of scaling factors (∼ 102 degrees of

freedom) using a large number of observations (∼ 104), but an extension to more degrees of freedom and/or more observations

is possible.245

2.5 Computation of model uncertainties
::::::::::::::
Approximations

:::
for

:::
the

:::::
error

::::::::::
covariance

::::::
matrix

:::
R′

The inversion in Eq. (1) requires an estimate of the model–observation mismatch uncertainties described by
:::
The

:::::::::
definition

::
of

::
the

:::::
error

:::::::::
covariance

::::::
matrix

::
R

::
in

:::::::
Eq. (1) is

::::::
crucial

:::
for

:::
the

::::::::
inversion.

:
R
::::::::
describes

:::
the

:::::::::
combined

::::::::::
uncertainties

::::
and

::::::::::
correlations

::
of

::::::::::
observations

:::
and

::::::
model

:::::::::
predictions. In our case, the measurement error is negligible in comparison to the model error, and the

non-negligible representativity error is part of
:::::::::
observation

::::::::::
uncertainty

:::::::
(usually

:::::::
. 1ppb,

::::::::::::::
ICOS RI (2020))

::
is
:::::
small

:::::::::
compared250

::
to

:::
the

:::::::::::::::::
ensemble-estimated

:::::::
transport

::::::::::
uncertainty

::::::::
(typically

:::::
5ppb

::
to

:::::::
10ppb).

::::
We

:::::::
therefore

:::::
focus

:::
on

:::
the

:::::
model

::::::::::
uncertainty.

:::::
Many

:::::
works

::::
have

:::::
used

:::::::
diagonal

:
R

:::::::
matrices

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Bergamaschi et al., 2010; Petrescu et al., 2023; Steiner et al., 2024b) and

:::::
others

:::::
found

:::::::::::
non-diagonal

:::::::::::::
approximations

:::
for

:::
R

::::::::::::::::::::::::::::::::::
(Ghosh et al., 2021; Steiner et al., 2024a).

:::::
Here,

:::
we

:::
use

:::
the

::::::::
diagonal

::
R

:::
for

:::::::::
comparison

::
to

::::
two

:::::::
different

:::::
ways

::
of

::::::::::
constructing

:
a
:::::::::::
non-diagonal

::
R
::::::
matrix

::::
from

::::
our

:::::::
transport

:::::::::
ensemble.

:::
We

:::::::
therefore

::::::::
compare

::::
three

:::::
ways

::
of

::::::::::
constructing

:::
R:255

::::::::
Diagonal

:::
R:

:::
This

:::::::
baseline

:::::::
scenario

::::::::
considers

::
a
:::::::
diagonal

::
R

::::::
matrix

:::
and

:::::::
discards

:::
all

::::::::::
information

::::
from

:::
the

::::::::
transport

::::::::
ensemble.

:

:::::
Prior

::
R:

::
In

::
a

:::::::
standard

::::::::
ensemble

::::::::
approach,

:::
we

::::::::
construct

::
R

:::::
using

:::
the

:::::::
transport

::::::::
ensemble

::::
with

::
a
:::::
priori

:::::
fluxes.

:
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::::::::
Posterior

:::
R:

::
We

::::::
extend

:::
the

:::::::
standard

::::::::
approach

:::
by

:::::::::
estimating

::
R

::::
using

:::
the

::::::::
posterior

:::::
fluxes

::
in

:::
the

::::::::
transport

::::::::
ensemble.

:

:::
The

:::::::::::
construction

::
of

:::
the

::::::::
different

::
R

:::::::
matrices

:::::::
consists

:::
of

:::
two

:::::
steps

:::
that

::::
are

::::::::
described

::::::
below.

:::::
First,

:::
we

::::::::
construct

:
a
::::::
matrix

:::
R′

:::
that

::::::::
estimates

:::
the

::::::::
dominant

:::::::::::
uncertainties

::::
and

::::::::::
correlations

:::::
using

:::
one

:::
of

:::
the

::::
three

::::::::
methods.

:::::::
Second,

:::
we

::::::
obtain

::
R

::::
from

:::
R′

:::
by260

:::::::
inflating

:::
and

::::::
adding

::::::::
additional

:::::::::::
uncertainties

::
to

:::::::::
mitigating

:::::
some

::::::
known

:::::
issues

::
of

:::
the

::::::::
inversion

:::::::::
(Sect. 2.6).

:

2.5.1
::::::::
Diagonal

::
R

::
In

:::
the

:::::::
baseline

::::::::
scenario

::
of

::
a
:::::::
diagonal

:::
R

::::::
matrix,

:::
all

::::::::::
observation

::::
and

::::::
model

:::::::::::
uncertainties

:::
are

:::::::
assumed

:::
to

::
be

::::::::::::
uncorrelated.

::::::::
However,

::
it

::
is

::::::
known

::::
that

:::::
model

::::::::::
predictions

:::
for

:::::::::::
observations

:::::::::
separated

::
by

:::::
only

:::
one

:::::
hour

::::::
usually

:::::
have

:::::::::
correlated

::::::
errors.

::
To

:::::
avoid

::::::::::::::
underestimating

:::
the

:::::::
overall

:::::::::
uncertainty

:::::::
without

::::::::::
introducing

:::::::::::
correlations

::
in

:::
R,

:::
we

:::::::
assume

::::
high

:::::::::::
uncertainties

:::
of265

::::
each

::::::::::
observation. We simply refer to this as “model error” below. We estimate this uncertainty and the cross-correlations of

model equivalents at the observation locations using an
::::::::
Following

::::::::::::::::::
Steiner et al. (2024b),

:::
we

::::::
assume

::::
that

:::
the

:::::
signal

:::::
from

::::
CH4

::::::::
emissions

:::::
within

::::
our

::::::
domain

::::
will

::::::::
generally

:::::::
increase

:::
the

:::::
model

::::::::::
uncertainty

::
in

:::
the

::::::::
predicted

::::
CH4 ::::::::::::

concentration.
::::
This

::::::::
motivates

:::::::
defining

:::::::::::::::::::::
R′ii = σ2

const + (βHsprior)2i::::::
where

:::::::::::::
σconst = 10ppb

:::
and

:::::::
β = 0.5

::::
are

:::::
scalar

::::::
tuning

:::::::
factors.

:::::
Index

:
i
::::::

labels
::::::::::
observation

:::
data

::::::
points

::::
that

:::
are

::::::::
typically

::::::::::::
distinguished

::
by

::::::::
location,

:::::
time,

::::
and

::::::::
sampling

::::::
height.

::::
The

::::::::
diagonal

:::
R

:::::::
scenario

::::
uses

::::::
crude270

::::::::::::
approximations

:::::::
because

:::
the

::::::::
selection

::
of

:::::::::::
observations

::
is

::::::::
designed

:::
for

::
an

::::::::
inversion

::::
that

:::
can

::::::
handle

:::::::::::
correlations.

::::::::
However,

:::
we

:::
will

::::::
obtain

::::::::
qualitative

:::::::
insights

:::::
from

:::
the

:::::::::
comparison

::
to
:::
the

:::::
other

:::::::::::::
approximations

:::
for

::
R.

:

2.5.2
:::::
Prior

::
R

::::
This

::::::::::::
approximation

::
of

::
R

::
is

:::::
based

::
on

:::
an ensemble of M = 12 different transport model realizations.

::::::::::
realizations. The potential

of using a small transport ensemble for estimating model uncertainties was demonstrated by Steiner et al. (2024a).
::
We

::::
can275

:::
use

:::
the

:::::::::
covariance

::
of

:::
the

::::::::
ensemble

::::::::
members

::
to

:::::::
estimate

:::
the

:::::::
transport

::::::::::
uncertainty.

:
The main contribution R′ of the uncertainty

matrix is
::
We

::::::
define

R′ij = Cij
1

M − 1

M∑

m=1

(xmi − x̄i)(xmj − x̄j) + δijσ
2
const, (2)

where xmi is the prediction of ensemble memberm for observation yi ::::::::
assuming

:
a
:::::
priori

:::::
fluxes, x̄i = 1

M

∑
mx

m
i is the ensemble

mean, and σconst = 10ppb is a constant uncertainty added to each observationaccounting for any representativity error.
::::
With

::::
this280

::::::::::
uncorrelated

::::::::::
uncertainty

:::::
σconst, :::

we
::::::
account

:::
for

:::::::::
additional

:::::::::::
uncertainties,

::::
such

::
as

:::::::::::::
representativity

:::::
errors

:::::::
inherent

::
to
::
a
:::::::::
simulation

:
at
:::::

finite
:::::::::
resolution. Indices i, j label observation data pointsthat are typically distinguished by location, time, and sampling

height.
:
. By Cij we denote a localization in space and time such that Cii = 1 and Cij = 0 for any observations i and j

:::
that

we expect to be uncorrelated because of their temporal or spatial separation.
:
In
:::

the
::::::::::
application

::
to

::::::::
Germany,

:::
we

::::::
choose

::::
Cij ::

to

::
be

:
a
::::::::

Gaussian
::::::::::
localization

::::::
matrix

::::
with

::::::::
standard

:::::::::
deviations

:::
6h

::::::
(time),

::::::
319km

:::::::::::
(horizontal),

:::
and

::::::
400m

::::::::
(vertical).

:
We use the285

notation δij = 1 if i= j and δij = 0 if i 6= j.
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2.5.3 Uncertainty inflation
::::::::
Posterior

::
R

The transport ensemble may not necessarily include the full uncertainty of the transport model
:::::::
posterior

:::
R

::::::::::::
approximation

::
is

:
a
:::::::
variation

:::
of

:::
the

::::
prior

::
R

:::::::::::::
approximation.

::
In

:::::::
Eq. (2),

::
we

::::
use

:::::
model

::::::::::
predictions

:::
for

::
the

:::::::::::::
concentrations

:::
xmi .

:::::::
Instead

::
of

:::::
using

:::
the

::::
prior

::::::::::::
concentrations

:::
as

::
in

:::
the

::::
prior

::
R
::::::::::::

construction,
:::
we

:::
can

:::::
define

::::
xmi ::

as
:::
the

::::::::
posterior

::::::::::::
concentrations

::::
and

::::::
thereby

:::::
allow

::::
xmi290

::
to

::::::
change

::
as

:::
the

::::::::
inversion

:::::::
changes

::::
the

:::::
fluxes.

:::::
This

::::
leads

:::
to

:
a
::::::::::::
self-consistent

::::::::
estimate

::
of

:::
R′

::
in

:::
the

:::::::::
inversion.

::::::::::::
Consequently,

::::::::::::
Eq. (2) remains

:::::
valid

:::
but

:::
xmi , and the localization Cij further reduces the simulated uncertainty by suppressing correlations.

This motivates an inflation of the uncertainty to avoid overconfidence in the model prediction. We inflate the uncertainty by a

factor fi > 1 depending on the observation site of observation i, leading to the matrix fifjR′ij . In the application below, we

choose fi = 2 except for some stations with known difficulties, for which fi = 3 (see Table C1).
::
R′,

::::
and

::
R

:::::::
become

::::::::
functions295

::
of

:::
the

::::::
scaling

::::::
factors

::
s.

:::::
Since

::
R

::
is

::::::::
estimated

:::::
using

::::::::
posterior

::::::
scaling

::::::
factors,

:::
we

::::
call

:::
this

:::::::
method

:::
the

:::::::
posterior

:::
R

:::::::
inversion

:::
as

:::::::
opposed

::
to

:::
the

::::
prior

::
R

::::::::
estimate.

::
To

::::::::
compute

::
the

::::::::
posterior

:::::::::::
concentration

::::::
xmi (s)

:::
for

::::
each

::::::::
ensemble

:::::::
member

:::::::
without

:::::::::
prohibitive

:::::::::::
computational

::::::
effort,

:::
we

:::
use

::
an

::::::::::::
approximation

:::::::::
described

::
in

:::::::::::
Appendix B1.

:

::
As

:::::::
opposed

::
to
:::
the

::::::::
diagonal

::
R

:::
and

::::
prior

::
R
::::::::
inversion

::::
with

:::::
fixed

::
R,

:::
the

::::::::
posterior

::
R

::::::::
inversion

::::
does

:::
not

:::::
allow

::
for

::
a
:::::
closed

:::::
form

::::::
solution

:::
of

::::::
Eq. (1).

:::
To

::::
solve

:::
the

:::::::::::
minimization

:::::::
problem

::
in

:::::::::::::::::
Eq. (1) numerically,

::
we

:::::
used

::::::
SciPy’s

:::::::::::
“trust-exact”

:::::::::::::
implementation

::
of300

:
a
::::::::::
trust-region

::::::
method

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Virtanen et al., 2020; Moré and Sorensen, 1983; Conn et al., 2000).

::::::
Within

::::
each

:::::::
iteration,

:::
the

:::::::::
incomplete

:::
LU

::::::::::::
decomposition

:::::::::::::::::::::::::::::::
(Li et al., 1999; Li and Shao, 2011) of

:::
the

::::::
sparse

::::::
matrix

::::
R(s)

::
is
:::
the

:::::
most

:::::::::::::
computationally

:::::::::
expensive

::::
task

::::
when

:::
the

:::::::
number

::
of

:::::::::::
observations

:
is
:::::
large.

:

2.6
:::::::::

Additional
:::::::::::
uncertainties

::::
and

::::
final

:::::
error

::::::::::
covariance

::::::
matrix

::
R

:::
The

:::::::::
previously

::::::
derived

:::::::::::::
approximations

:::
for

:::
the

::::
error

:::::::::
covariance

:::::::
matrices

:::
R′

:::::::
describe

:::
our

:::::::::
knowledge

::
of

:::
the

:::::::
transport

::::::::::
uncertainty305

:::
and

:::
the

:::::::::
observation

::::::::::
uncertainty.

::
In

:::
the

::::
next

:::
four

:::::
steps,

:::
we

:::::::
increase

:::::::::::
uncertainties

:::
and

::::::
include

:::::
other

:::::::
possible

::::::
sources

::
of

:::::::::
uncertainty

::
to

:::::
obtain

:::::::::::::
approximations

:::
for

::
R

:::
that

:::
are

:::::::
suitable

:::
for

:::
the

::::::::
inversion.

:

2.6.1
:::::::::
Mitigating

::::
the

::::::
plume

::::::::::
localization

::::::::
problem

::
To

::::::
reduce

:::
the

::::
bias

::::::
which

:::
we

::::::::
predicted

:::
for

::::::
strong

::::::
plumes

::
in

::::::::
Sect. 2.2,

:::
we

::::::::
increase

:::
the

::::::::::
uncertainty

:::
for

::
all

:::::::::::
observations

::::
that

::
are

::::::
likely

:::::::
affected

::
by

::
a
::::::
plume.

::::
The

:::::::
transport

::::::::
ensemble

::::
will

:::::::
already

::::
lead

::
to

::
an

:::::::::
increased

:::::::::
uncertainty

:::::
when

:::
the

::::::
model

::::::
cannot310

::::::
predict

::::::
reliably

:::::::
whether

::
a
::::::
plume

:::
hits

:::
an

::::::::::
observation

:::
site.

::::
But

::::
with

:::
an

::::::::
ensemble

::
of

::::
only

:::
12

:::::::::
members,

:::
this

::::
will

:::
not

:::::
cover

:::
all

::::
cases

::::::
where

:::::
model

:::
and

:::::::::::
observations

:::::::
deviate.

:::
We

:::::::
therefore

::::::::
introduce

:::
an

:::::::
auxiliary

:::::
tracer

::::
that

:::::::
contains

::::::::
emissions

::::
from

:::
the

::::::
Upper

::::::
Silesian

:::::
Coal

:::::
Basin,

:::::::
spatially

:::::::::::
smoothened

::
on

:
a
::::::
length

::::
scale

:::
of

::::
0.4◦

::::
(one

:::::::
standard

::::::::
deviation

::
of

::
a

:::::::
Gaussian

::::::
filter).

::::::::
Denoting

:::
the

:::::::::::
concentration

::
of

:::
this

:::::
tracer

::
at
::::::::::
observation

:
i
:::
by

:::
ρi, ::

we
:::::::
increase

:::
the

:::::::::::
uncertainties

::
to

:::::::::::::::::::::
Rstep 1 =R′ij + 0.25ρ2i δij .:

2.6.2
::::::::
Dynamic

::::::::::
uncertainty

::::::::
inflation315

To avoid potential biases through site-specific small-scale features not captured in the model, we aim to base our inver-

sion on many observations. To this end, we limit the influence of individual data points on the inversion result by inflat-
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ing the uncertainty further in the case of a very large disagreement between model and observation. This is achieved by

replacing fi with f ′i ≥ fi to increase the uncertainty
::
an

::::::::::
uncertainty

:::::::
inflation

:
of individual observations until the deviation

µ= y−Hsprior−xff between model and observations is at most three standard deviations of the resulting error covariance320

matrix Rij = f ′if
′
jR
′
ij :::::::::::::::
Rstep 2
ij = gigjR

step 1
ij , i.e., f ′i = max{fi, |µi|

3
√
R′

ii

)}.
:::::::::::::::::::
gi = max{1, |µi|

3
√
Rstep 1

ii

)}.
:
This is justified because large

deviations between model and observations, |µi|> 3
√
Rii:::::::::::::
|µi|> 3

√
Rstep 1
ii , are likely caused by local pollution or modeling

problems that are not captured appropriately in our uncertainty estimate. This correction makes sure that inversion results will

be based on many observations and no single measurement can have an extreme impact.
::
At

:::
the

::::
same

:::::
time,

:::
this

:::::::
method

::
it

::
is

:::
less

:::::::
sensitive

::
to
::::::
tuning

:::::::::
parameters

::::
than

:::::::::
discarding

:::::::
outliers

:::::::::
completely.

:
325

2.6.3 Flux dependence of model uncertainties

In Eq. (2), we estimate the model uncertainty utilizing the model concentration xmi , which itself depends on the fluxes. In

principle, one can compute xmi using either the a priori fluxes or the a posteriori fluxes. In the latter case, the error covariance

matrix

2.6.3
:::::
Static

::::::::::
uncertainty

::::::::
inflation330

:::
The

::::::::
transport

::::::::
ensemble

::
in

::
the

:::::
priorR depends on the scaling factors s, and the optimization problem Eq. (1) can only be solved

numerically (see Appendix D
:::
and

:::::::
posterior

:::
R

::::::::::
construction

::::
may

:::
not

::::::::::
necessarily

::::::
include

:::
the

::::
full

::::::::::
uncertainty

::
of

:::
the

::::::::
transport

::::::
model,

::::
and

:::
the

::::::::::
localization

:::
Cij::::::

further
:::::::
reduces

:::
the

::::::::
simulated

::::::::::
uncertainty

::
by

::::::::::
suppressing

:::::::::::
correlations.

::::
This

::::::::
motivates

:::::::
another

:::::::
inflation

::
of

:::
the

::::::::::
uncertainty

::
to

:::::
avoid

:::::::::::::
overconfidence

:::
in

:::
the

::::::
model

:::::::::
prediction.

:::
We

::::::
inflate

:::
the

::::::::::
uncertainty

:::
by

:
a
::::::

factor
::::::
fi > 1

::::::::
depending

:::
on

:::
the

::::::::::
observation

:::
site

::
of

::::::::::
observation

::
i,

::::::
leading

::
to

:::::::::::::::::
Rstep 3
ij = fifjR

step 2
ij .

:::
We

::::::
choose

::::::
fi = 2

:::::
except

:::
for

:::::
some

:::::::
stations335

::::
with

::::::
known

:::::::::
difficulties,

:::
for

::::::
which

:::::
fi = 3

::::
(see

:::::::::
Table C1).

:::
To

::::
keep

:::
the

:::::::
methods

:::
for

:::::::::::
constructing

::
R

::::::::::
comparable,

:::
we

:::::
apply

::::
this

:::::::
inflation

:::
also

::
to
:::
the

::::::::
diagonal

::
R

::::::
matrix.

:

2.6.4
:::::::
Far-field

:::::::::::
uncertainty

:::
We

::::::::::
furthermore

:::::::
account

:::
for

:::
the

::::::::::
uncertainty

::
in

:::
the

::::::::
far-field

:::::::::
correction,

::::::::
although

:::
the

:::::
effect

:::
of

:::
this

:::::::::
additional

::::::::::
uncertainty

::
is

:::::
small.

:::
We

:::::
define

::::::::::::::::::::::::::::::
Rij =Rstep 4

ij =Rstep 3
ij + 0.5|cicj |C̃ij::::::

where
::
ci:::::::

denotes
:::
the

::::::
smooth

:::::::::
correction

::::
field

:::::::::
introduced

::
in

::::::::::
Sect. 2.3 at340

:::::::::
observation

::
i
:::
and

:::
C̃ij::

is
:::
the

::::::::
Gaussian

::::::::::
localization

::::::
matrix

::::::::::
constructed

::
by

:::
the

::::::
length

:::
and

::::
time

::::::
scales

::
of

:::
the

:::::::
far-field

:::::::::
correction

:::
(see

::::::::::::
Appendix A).

2.6.5
::
χ2

::::::::
analysis

::
To

:::::
assess

:::::::
whether

:::
the

:::::::::
estimated

::::::::::
uncertainties

:::
are

::::::::::
reasonable,

:::
one

::::
can

:::::::
compute

:::
the

:::::::
χ2/Ndof:::::

value
::::::::::::::
(Pearson, 1900).

::::
This

:::::
value

::::::::
compares

:::
the

:
a
::::::

priori
::::::::::::::::
model–observation

::::::::
mismatch

::
to
::::

the
:::::::::
uncertainty

::::::::
assumed

:::
for

::::
this

::::::::
mismatch

::::
(see

:::::::::::
Appendix D for de-345

tails). We will refer to these two variants of the inversion as the prior-
::
A

:::::
value

::
of

:::::::::::
χ2/Ndof > 1

:::::::
indicates

::::
that

:::::::::::
uncertainties

:::
are

:::::::::::::
underestimated,

:::::::
whereas

:::::
values

::::::
smaller

::::
than

:::
one

:::::::
indicate

:::
the

::::::::
opposite.

:::::
When

:::::::::
comparing

:::
the

::::::::::
observations

::
to

:::
the

:::::::::::::::
far-field-corrected
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Table 2.
::::::
Median

::
of

::::::
χ2/Ndof:::

for
:::::::
different

:::::::::::
configurations.

::::::
χ2/Ndof:::

for
::
the

::::
prior

::
R
:::::::
inversion

::::
also

:::::
serves

::
as

::
an

:::::::::::
approximation

::
for

:::
the

:::::::
posterior

:
R
::::::::
inversion.

:::::::
Synthetic

::::::::::
observations

::
are

::::::::
generated

::::
using

::
the

::::::::
ensemble

::::::::
simulation,

:::::::
assuming

:::
that

:::
the

:
a
:::::
priori

::::
fluxes

:::
and

:::
the

::::
CH4 ::::::::::

concentration

::
on

:::::
lateral

::::::::
boundaries

:::
are

:::::
known

::::::
exactly.

::::::::::
Observations

::::::
Far-field

::::::::
correction

: :::::::
χ2/Ndof, ::::::

diagonal
::
R

: :::::::
χ2/Ndof, ::::

prior
:
R
:

::
real

: ::
yes

: :::
0.18

: :::
0.16

::
real

: ::
no

:::
0.21

: :::
0.18

::::::
synthetic

: ::
yes

: :::
0.05

: :::
0.03

::::::
synthetic

: ::
no

:::
0.06

: :::
0.03

::::::
model,

:::
we

::::
find

:::::::::::::
χ2/Ndof ≈ 0.16

:::
for

:::
the

::::
priorR and posterior-R inversion.

:::::::
inversion

:::::
when

:::::
using

:::
real

:::::::::::
observations

:::
(see

::::::::
Table 2).

::
In

::
an

::::::::
idealized

:::::
setup,

::::
this

:::::::
indicates

::::
that

:::
the

:::::::::::
uncertainties

::
of

:::
the

::::::::::
model-data

::::::::
mismatch

:::
are

::::::::::::
overestimated

::
by

::
a
:::::
factor

::::
2.5.

::::
This

::::::
implies

::::
that

:::
our

::::::::::
uncertainty

::::::::
inflation

::
by

::
a
::::::
factor

:::::
fi = 2

::::
for

::::
most

:::::::::::
observations

::::::
seems

::::::::::
unnecessary

:::
in

:::
the

::::::::
idealized

::::::
setup.350

::::::::
However,

:::
our

::::
data

::::
can

::::::
contain

:::::::::
unknown

:::::
biases

:::
in

::::::::
transport

:::
and

:::::::::
boundary

:::::::::
conditions,

::::
and

::::::::::
simplifying

::::::::::
assumptions

::::::
about

::
the

:::::::::::::
representativity

:::
of

:::
the

::::::::::::::
low-dimensional

::::
state

:::::
space

:::
of

:::
the

::::::::
inversion.

:::
We

:::::::
contain

:::::
these

:::::::
potential

::::::
issues

::
of

::::::::
unknown

:::::
error

::::::::::
components

::
by

:::::::
inflating

:::
the

:::::::::::
uncertainties.

:

::
In

:::
the

:::::::
synthetic

:::::::::::
experiments,

:::
the

::::::::
idealized

:::::::
transport

::::::::::
uncertainty

:::
and

::::::
perfect

::
a
:::::
priori

::::::::
emissions

::::
lead

::
to

::::
even

:::::
lower

:::
χ2,

::::::
which

:
is
::::::::

expected
:::::::
because

:::
not

:::
all

:::::::::::
uncertainties

:::
are

:::::::::
contained

::
in

:::
the

:::::::::::::::::
pseudo-observations

::
of

:::::
these

::::::::
synthetic

:::::::::::
experiments.

:
Comput-355

ing posterior-R inversion exactly requires that each ensemble member distinguishes the various flux categories similar to

the deterministic modelrun. To enable the posterior-R inversion without significantly increased computational effort in the

ensemble run, we approximate the posterior-based concentration xmi in the ensemble members as described in Appendix B1.

The posterior-
:::::::
χ2/Ndof:::

for
:::
the

:::::::
posterior

:
R inversion generally yields slightly higher emission estimates because larger scaling

factors lead to higher model uncertainties and thereby reduce the first term in Eq. (1). To provide robust inversion results with360

cautionary uncertainty estimates, we compute the prior-
::
is

:::::
more

:::::::
difficult,

:::
but

:::
the

:::::
result

::
is
::::::::
expected

::
to

:::
be

::::::
similar

::
to

:::
the

:::::
prior

R inversionand posterior-.
::::

The
::::::
tuning

:::::::::
parameters

:::
of

:::
the

:::::::
diagonal

:
R inversion separately and interpret the difference of the

two methods as methodological uncertainty.
:::::
matrix

::::
were

::::::
chosen

:::::
such

:::
that

:::
the

::::::::
posterior

::::::::::
uncertainties

:::
are

::::::
similar

::
to
:::
the

:::::
prior

::
R

::::::::
inversion,

:::::
which

::::
also

:::::
leads

::
to

::::::
similar

:::::::
χ2/Ndof :::

(see
::::::::
Table 2).

:

2.7 Inversion time window and temporal aggregation(Sect. 4.3)365

We apply the inversion separately for each month in 2021. In each monthly time window, we start from fixed
::
We

::::::::
simulate

:::
the

:::::::
transport

:::
for

:::
the

:::::
whole

::::
year

:::::
2021

::::::
without

:::
any

:::::::::::
interruption.

:::
The

::::::::
inversion

::
is

::::
then

::::::
applied

::
to
:::::
each

:::::
month

:::::::::
separately

::
by

::::::::
selecting

::::
only

::::::::::
observations

::::::
within

:::
one

:::::::
month.

:::
The

:::::::
scaling

::::::
factors

::
of

:::
the

:::::::
months

:::
are

::::::
treated

::
as

:::::::::::
independent,

::::
each

::::::
month

:::::::
starting

::::
with

::
the

:::::
same

:
a priori scaling factors sprior

i = 1 and use observations within the time window to compute a posteriori scaling factors

as explained in Sect. 2.4.
::::::::
(sprior
k = 1

:::
for

:::
all

:::
k)

:::
and

:::
the

:::::
same

::
a
:::::
priori

::::::
scaling

:::::::::::
uncertainties

:::
(B

:::::::
matrix).

:
However, when

:::
The370

:::::::::
continuous

::::::::
transport

:::::::::
simulation

::::
over

:::
the

::::::
whole

::::
year

:::::::
implies

:::
that

::::
the

:::::
initial

::::
CH4::::::::::::

concentration
::
is
::::::
hardly

:::::::
relevant

:::::
after

:::
the
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:::::::
spin-up.

:::
At

:::
the

::::::::
beginning

:::
of

::::
each

::::::
month,

:::
the

:::::::
modeled

::::
CH4::::::::::::

concentration
::::::
already

:::::::
consists

::
of

:::
the

:::
far

::::
field

:
–
:::
the

:::::::::::
contribution

::
of

::
the

::::::
lateral

:::::::::
boundaries

::
–

:::
and

:::
the

::::::::::
contribution

::
of

:::
the

::::::
fluxes,

::::::
which

:::
will

:::
be

:::::::
adjusted

::
by

:::
the

::::::::
inversion.

:

::
In

::::::::
summary,

:::
we

:::::::
correct

:::
the

::::::::::
contribution

:::
of

:::
the

::::::
lateral

:::::::::
boundaries

:::
on

:::
the

:::::
time

:::::
scale

::
of

::::
16h

:::
by

:::
the

:::::::
far-field

::::::::::
correction,

:::
and

:::
the

::::::
fluxes

::
on

:::
the

:::::
time

::::
scale

:::
of

:::
one

::::::
month

:::::::
defined

:::
by

:::
the

::::::::
inversion

::::
time

::::::::
window.

:::
The

::::::::
inversion

::::::
results

:::::::
consist

::
of

::::
one375

:::::
vector

:::::::::
spost ∈ R46

::
of
:::::::

scaling
::::::
factors

:::
and

:::
the

::::::::::::
corresponding

:::::
error

:::::::::
covariance

:::::
matrix

:::
for

:::::
each

::::::
month.

:::::
When

:
aggregating results

for the whole year, we treat the uncertainties of the prior or posterior fluxes of different months as correlated because these

likely include systematic uncertainties and biases which we cannot fully separate from the statistical uncertainty. We therefore

aggregate by adding up absolute emissions and their uncertainties linearly.

2.8 Prior uncertainties(Sect. 4.4)380

In each inversion time window, we consider uncorrelated a priori scaling factors with a two standard deviation (2σ) uncertainty

of 80%
:::
0.8 for most flux categories, corresponding to a 95% confidence interval of ±80%

::::
±0.8. Throughout this paper,

uncertainties will denote two standard deviations or 95% confidence intervals. Categories resolving emission sectors have

a higher prior 2σ uncertainty of ±100%
:::
1.0, and within Germany categories describing the same sector have an a priori

uncertainty correlation of 50%
::
0.5

:
(e.g., uncertainties of agriculture emissions in the German states of Bavaria and Baden-385

Wuerttemberg are assumed to be correlated). Importantly, the previously defined sectors waste, public power and “other” are

combined and denoted “non-agr.” in the following. The±100% uncertainty applies to the combination.
:::
All

::::
other

:::::::::
categories

:::
are

:::::
treated

:::
as

::::::::::
uncorrelated

::
in

:::
the

:
a
:::::
priori.

:
For the Upper Silesian Coal Basin as well as regions

:::
with

::::
low

:::::::::
observation

:::::::
density outside

of our primary focus in Central Europe and with low observation density
:::::::
(marked

::::::::
“remote”

::
in

:::::::
Table 1), the 2σ uncertainty is

set to ±50%. Figure 4(b) shows these a priori uncertainties on a map. The sensitivity of our results to these choices and many390

more tuning parameters is tested in Appendix E.
:::
0.5.

:

3 Input data and processing

We apply the method to estimate CH4 fluxes in the year 2021 in Germany and in the surrounding European domain, relying

on input data for the transport simulationand ,
:
CH4 concentration on the lateral boundary (Sect. 3.1), a priori fluxes (Sect. 3.2),

and observations (Sect. 3.3).395

3.1 Initial and lateral boundary conditions

The meteorological initial and lateral boundary conditions used to drive our transport model are taken from the archive of

DWD’s operational numerical weather prediction (NWP)
::::
NWP, which also employs the ICON model. As we do not assimilate

meteorological data in our application, we re-initialize the meteorological fields every night at 0 UTC, using the analysis fields

from the operational NWP data assimilation. Lateral boundary conditions for the meteorological fields are taken from the NWP400

short term forecasts with hourly resolution.
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For the CH4 concentrations, we use initial and lateral boundary concentrations from the global CAMS
::::::
CAMS

::::::
global

inversion-optimized dataset (Segers and Houweling, 2020), version v22r2, in the variant based on surface air-sample data

for the inversion. The CAMS data have a resolution of 1◦× 1◦ and are interpolated onto our model grid. In contrast to the me-

teorological fields, the CH4 concentrations are only transported and never re-initialized.
::::
Each

::::::::
transport

::::::::
ensemble

:::::::
member

::::
uses405

::::::
slightly

:::::::
different

:::::
initial

::::
and

:::::
lateral

::::::::
boundary

:::::::::
conditions

::
for

:::::::::::::
meteorological

::::
fields

::::
(see

::::::::::
Sect. 2.1.2),

:::
but

:::::
equal

::::
CH4 ::::::::::::

concentrations

::
on

:::
the

:::::
lateral

::::::::::
boundaries.

:

3.2 A priori CH4 fluxes

For the inversion, we employ a priori CH4 fluxes that were compiled from six datasets of anthropogenic and natural fluxes,

as detailed in Table 3. We ensured mass conservation when interpolating to our model grid. We generally distinguish between410

anthropogenic emissions excluding LULUCF, and natural fluxes plus LULUCF. Anthropogenic fluxes excluding LULUCF are

split further into 12 GNFR sectors (gridded aggregated NFR, nomenclature for reporting , Veldeman et al. (2013)), but we only

use this separation in selected regions of interest.
::::
Since

:::
the

:::::
input

:::::::
datasets

:::
for

::::::::::::
anthropogenic

::::::::
emissions

:::
are

:::::
based

:::
on

::::::::
reporting

::
to

::
the

:::::::::
UNFCCC,

:::::
these

:::::::::
distinguish

:::::::
between

::::::
GNFR

::::::
sectors

::::::::
following

:::
the

::::::::
reporting

::::::::::
conventions

::::::::::::::::::::
(Veldeman et al., 2013).

:::
For

:::
the

::::::::
inversion,

:::
we

:::::::
combine

:::::
these

::::::
sectors

:::
and

:::::
only

:::::::::
distinguish

:::::::
between

:::::::::
agriculture

::::
and

:::
the

::::
sum

::
of

::
all

:::::
other

::::::
sectors

::
as

:::::::::
described

::
in415

:::::::::
Sect. 2.1.1. Natural plus LULUCF fluxes of CH4 are mostly dominated by wetland emissions, for which we do not distinguish

between natural and anthropogenic origin.

The datasets in Table 3 were chosen such that our
:::
For

:::::::::
Germany,

:::
we

::::::::
obtained a priori fluxes are based on the national

reporting to the UNFCCC. For Germany, the
::::::
directly

:::::
from

:::
the

:::::::
national

:::::::::
inventory

::::::::
agencies.

::::
The

:
a priori LULUCF fluxes

obtained from
::
the

:
Thünen Institute cover the emissions from mineral and organic soils. Notably, this excludes emissions from420

artificial water bodies
:
in

::::::::
Germany – such as ponds – amounting to 160kt or 8.5% of the total German emissions in the national

reporting, though these numbers are associated with large uncertainties (UBA, 2024, Table 399). These emissions are missing

in our a priori estimate
:
,
::::::
leading

::
to

::
a

:::
low

::::
bias

::
in

:::
the

:
a
:::::
priori.

3.3 Observations and applied pre-processing

We compare our model predictions to the high quality ground-based in situ observations
::
of

::::
CH4::::::::::::

concentrations
:
collected in the425

European Obspack (ICOS RI et al., 2024), which includes the ICOS stations among others. These observations are assumed

to be representative for a larger area (Storm et al., 2023). Table C1 lists all 53 available stations and Fig. 1 shows 50 stations

that were used for the inversion. For tower observations, we only consider sampling levels at least
::
use

:::
up

::
to

:::::
three

::::::::
sampling

::::::
heights

:::
per

::::::
station,

:::::::::
preferring

:::
the

::::::
highest

:::::
three

::::::::
sampling

::::::
heights

:::
and

:::::::::
discarding

:::::::::::
observations

:::::
below

:
50 m above ground level

to reduce the influence of very local emissions. For towers providing more than three sampling heights, we consider the three430

highest levels. Due to
:::
Due

::
to

:
significant model–observation mismatch, we exclude the IPR, FKL and LMP stations. For LUT,

BIR and HUN we only consider some seasons, specified in Table C1.

The model data are interpolated horizontally and vertically to the station sampling locations. The vertical sampling locations

in model coordinates is
:::
are derived from the station sampling height

::::::
heights and the modeled station elevation

::::::::
elevations,
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Table 3. Input data for a priori CH4 fluxes. The second column lists where these fluxes were considered. Here, “Germany” refers to all model

grid cells that lie fully within the German borders.
:::
The

::::::
national

:::::::
reporting

::::::::::
distinguishes

::::::::
emissions

::
by

:::::
GNFR

::::::
sectors

::
of

:::::
which

::::
A–M

::::::
include

::
all

:::::::::::
anthropogenic

:::::::
emissions

::::::::
excluding

:::
land

:::
use,

::::
land

:::
use

:::::
change

:::
and

:::::::
forestry

:::::::::
(LULUCF).

Data provider Domain Fluxes Original

grid

Time

profile

Remarks

Umweltbundesamt

(UBA)

Germany GNFR sectors

A–L

(excluding

LULUCF)

::::
A–M

native

(ICON)

constant
based

::::
Based

:
on reporting to the UNFCCC

(UBA, 2023), spatially distributed using the

Gridding Emission Tool for ArcGIS (GRETA

1.2.01) (Feigenspan et al., 2024)

Thünen Institute Germany organic and

mineral soils

:::
(part

::
of

::::::::
LULUCF)

100m×
100m

constant
emissions

::::::::
Emissions from organic and mineral

soils, including wetlands but excluding artifi-

cial ponds (approx. 160kt CH4 per year) (Fuß

and Akubia, 2024)

CAMS-REG-ANT,

v7.0

model domain

excl. Germany

GNFR sectors

A–L

(excluding

LULUCF)

::::
A–M

0.05◦×0.1◦ constant
based

::::
Based on data reported to the UNFCCC

for countries in Western and Central Europe

(incl. Finland and the Baltic states) (Kuenen

et al., 2021, 2022)

CAMS inversion

optimized, v22r2

model domain

excl. Germany,

excl. oceans

wetlands 1◦× 1◦ monthly

averages variant
:::::
Variant

:
using surface air-sample data

for the inversion (Segers and Houweling,

2020); Fluxes in model grid cells located over

the ocean are set to zero.

Rocher-Ros et al.

(2023), version 1.1

full model

domain

rivers and

streams

0.25◦×
0.25◦

monthly

averages

Weber et al. (2019) oceans (full

model domain)

oceans 0.25◦×
0.25◦

constant

depending on the station characteristics (column “mountain” in Table C1). For high mountain stations, the modeled station435

elevation is given by the real station elevation above mean sea level. For stations on smaller mountains, we consider the

arithmetic mean between real station elevation and model topography as proposed by Brunner et al. (2012) and Henne et al.

(2016), and for all other stations the modeled station elevation is set to the model topography.

To make use of observations which are likely well represented by the model, we filter the observations based on the local

time of day, wind speed, and model–data mismatch. Table 4 lists how the root mean square error (RMSE) of the model output440
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Table 4. Average root mean square error (RMSE
::
in

:::
ppb), mean absolute bias of the model prediction minus observation

::
(in

:::
ppb), and number

of available data points after each processing step (1–6)
::
for

:::::::
synthetic

::::
(left)

:::
and

:::
real

:::::::::
observations

::::::
(right). Each row adds a processing step to

all previous steps
::
and

:::::::
improves

:::
the

:::::
RMSE.

::::
Three

:::::::
numbers

::
for

::::
steps

:
7
:::
and

::
8
::::::::
distinguish

:::::::
diagonal

::
R,

::::
prior

::
R,

:::
and

:::::::
posterior

:
R
::::::::
inversion. Step

:
7

(uncertainty weighting) is not a processing step in the inversion since it uses only the diagonal of the uncertainty matrixR, but it underscores

the importance of accurate uncertainty estimation. Step 8 refers to the result of our
::
the inversion. RMSE and

::::::
absolute bias are computed

separately for each station, sampling height and month. The obtained values are weighted by the number of data points and averaged. By

taking the mean of multiple RMSEs for different stations, sampling heights and months, we obtain lower numbers than for the RMSE of

the combined dataset, which would average squared values and thereby would give higher weight to large deviations between model and

observations.

Step
:::::::
Synthetic

:::::::::
observations

:::::
(ppb)

::::
Real

:::::::::
observations

:::::
(ppb)

Mean RMSE Mean absolute bias

:::::
RMSE

:::::::
Absolute

:::
bias

:::::
Data

:::::
points

:::::
RMSE

: ::::::
Absolute

:::
bias Data points

1 horizontal and vertical inter-

polation

–
: :

–
:
– 27.6 ppb 9.6 ppb 6.02 · 105

2 time average (3 h)
::::
11.1

::
0.9

: :::::::
6.02 · 105 25.8 ppb 9.6 ppb 6.02 · 105

3 time window 11 h–17 h /

23 h–5 h
::::
10.2

::
1.1

: :::::::
1.48 · 105 23.5 ppb 9.8 ppb 1.48 · 105

4 minimal wind speed 2ms−1
::
9.6

: ::
1.0

: :::::::
1.30 · 105 22.4 ppb 9.7 ppb 1.30 · 105

5
extreme mismatch exclusion

::::::
exclude

::::::
extreme

::::::::
deviations

::
9.6

: ::
1.0

: :::::::
1.30 · 105 21.5 ppb 9.4 ppb 1.29 · 105

6 far-field correction
::
9.0

: ::
0.9

: :::::::
1.30 · 105 19.4 ppb 7.2 ppb 1.29 · 105

7 weight by inverse uncertainty
::
7.1,

::::
6.9,

::
6.9

: :::
0.7,

:::
0.8,

:::
0.8

:::::::
1.30 · 105

::::
14.4, 16.6 ppb

:
,
:::
16.6

: :::
5.7, 6.6 ppb

:
,
::
6.6

:
1.29 · 105

8 inversion (posteriorfluxes) 14.1 ppb
:::
6.9,

:::
6.8,

:::
6.8

:::
0.6,

:::
0.8,

:::
0.6

:::::::
1.30 · 105

::::
12.4,

::::
14.2,

:::
14.0

: :::
2.5,

:::
3.4,

:
3.0 ppb 1.29 · 105

changes during these pre-processing steps. We start by smoothening
::::::::
smoothing

:
both observations and modeled concentrations

in a time window of approximately±1.5h around each observation time as depicted in Fig. 3. This allows for some uncertainty

in the timing of modeled tracer transport. The resulting correlation of neighboring time steps is automatically considered in the

ensemble-based uncertainty estimate.

In the next steps, we filter the data by time in order to keep only observations expected to be representative for large regions.445

Observations within the planetary boundary layer are most representative in the afternoon hours whereas measurements at

high mountains have less local influence
:::
are

:::
less

:::::::::
influenced

:::
by

::::
very

:::::
local

:::::
fluxes

:
at night time(Bergamaschi et al., 2015). We

therefore use
:
.
:::::::::
Inversions

:::::::
therefore

::::::::::
commonly

:::
use

::::::::
afternoon

:::::::::::
observations

:::
for

:::
flat

::::
land

:::::::
stations

::::
and

::::
night

:::::
times

:::
at

::::::::
mountain
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Figure 3. Weighting function for time interpolation of model and observations. For example, an interpolated model point at 16:30 UTC

averages over all model output between 15:30 UTC and 17:30 UTC with full weight and another 1 h with linearly decreasing relative weight.

The model yields instantaneous values every 15 min, whereas observations are provided as hourly averages, three of which contribute to the

observational time average. Reference times are those times for which observations are available.

::::
sites

:::::::::::::::::::::::::::::::::::::::
(Bergamaschi et al., 2015; Steiner et al., 2024b).

:::
We

:::
use

:
the time windows 23 h to 5 h (local mean time) for stations on

high mountains and 11 h to 17 h for all other stations.450

We furthermore exclude times with no wind to avoid a strong influence of local emissions that are not resolved in the model,

motivated by Ganesan et al. (2015). All data points for which the model predicts a wind speed of < 2ms−1 are excluded,

which improves the overall agreement of model and observations as shown in Table 4 (step 4). Figure 4 shows that the RMSE

indeed increases significantly at low wind speeds. This increase is partially captured by an increase of the ensemble spread,

supporting the idea of an uncertainty estimate depending on wind speed as proposed by Bergamaschi et al. (2022).455

In the last filtering step – step 5 in Table 4 – we exclude data points with extreme mismatch between model and observationsof

more than 200ppb.
::::::
far-field

:::::::::
corrected

:
a
::::::

priori
:::
and

::::::::::::
observations,

::::::
where

:::::::::::::::::::::
|y−Hs−xff|> 200ppb.

:
Data points where the

observations are more than 20ppb below the model-predicted far field are
:::::::::::::::
y−xff <−20ppb

:::
are

:
also discarded. Since no

strong sinks of CH4 are expected, the contribution of CH4 from the lateral boundaries should not exceed the observations.

Thus, an observation below the model-predicted far field indicates an error in this far field. Steps 6–8 in Table 4 complete460

our processing chain by applying the far-field correction (Sect. 2.2
:::::::
Sect. 2.3), indicating the relevance of the model uncertainty

(Sect. 2.4
::::::::::::::::
Sections 2.5 and 2.6), and finally yielding

:::::
using the inversion results.

4 Application to Germany and neighboring areas for the year 2021

3.4
::::::::

Synthetic
:::::::::::

observation
:::::::::::
experiments

::
To

:::
test

:::
our

:::::
setup

::::
and

::::::
analyze

::::::
biases,

:::
we

:::
use

::::::::
synthetic

::::::::::
experiments

::
in

:::::
which

::::::::::
observation

::::
data

:::
are

:::::::
replaced

:::
by

::::::::::::::
model-generated465

:::::::::::::::::
pseudo-observations.

:::::
These

::::::::
synthetic

::::::::::
experiments

:::
use

:::::::
exactly

:::
the

::::
same

:::::
setup

::::
and

::
the

:::::
same

::::::::::
observation

::::::::::
coordinates.

:::::
Only

:::
the

:::::::::
observation

::::::
values

:::
are

::::::::
replaced

:::
by

:::
the

:::::::::
simulation

:::::
result

::
of
::::

one
:::
of

:::
our

:::
12

::::::::
ensemble

:::::::::
members.

:::
We

::::
thus

::::::
obtain

::
12

::::::::
separate

::::::
datasets

:::
of

:::::::::::::::::
pseudo-observations,

::
in
::::::

which
:
a
::::::::

transport
:::::
error

::
is

::::::::
simulated

:::
by

:::::
using

:::
the

::::::::
transport

::::::::
ensemble

::::::::
members.

::::
The

::::
true

:::::
fluxes

:::::::
assumed

:::
for

:::::
these

:::::::
synthetic

:::::::::::
experiments

::
are

::::::::
identical

::
to

:::
the

::::
prior

::::::
fluxes.

::::
This

::::::
allows

::
us

::
to

:::::::
estimate

::
a

:::
bias

::::
and

:
a
:::::::
random
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Figure 4.
::::::::

Dependency
:::

of RMSE dependence
::
and

::::::
proxies

:::
for

::
the

::::::
model

::::::::
uncertainty

:
on wind speed (left axis). All data points from step 3

in Table 4 were ordered by the model-predicted wind speed and split into 100 bins, each containing approximately 1500 data points. The

blue line indicates the cumulative fraction of observations (right axis). The figure shows the RMSE difference of model and observation

(black line)and
:
, the mean ensemble spread multiplied by factor 4 (magenta

::
red line),

:::
and

:::
the

::::
mean

:
a
:::::
priori

::::::::::
concentration

:::
due

::
to

:::::::::
categorized

:::::::
emissions

:::::
(green

::::
line)

:
for each of these bins. The ensemble spread is the standard deviation of the model prediction in the 12 ensemble

members. It is a main contribution to our uncertainty estimate for the model–data mismatch
:
in

:::
the

::::
prior

::
R

:::
and

:::::::
posterior

::
R

:::::::
inversion.

:::
The

::::
signal

::
of

:::::::::
categorized

:::::::
emissions

::
is
::::
used

::
to

::::::
estimate

:::
the

::::::::
uncertainty

:::
for

::
the

:::::::
diagonal

::
R

::::::
matrix. Much of the larger RMSE at low wind speed is

well captured by the ensemble spread inflated by factor 4.
:
4

:::
and

::
by

::
the

:::::
mean

:
a
::::
priori

:::::::
emission

:::::
signal.

:
In the inversion, we discard data points

with wind speeds below 2ms−1 (gray vertical line).

::::
error

::
in

:::
the

::::::::
posterior

::::::
scaling

::::::
factor.

:::
We

::::
will

::::::
repeat

:::
this

:::::::::
procedure

::::
with

::::::::
modified

:::
true

::::::
fluxes

::
in

::::::::
Sect. 4.3.

:::
An

:::::::
analysis

:::
of

:::
the470

::::::::
sensitivity

::
to

:::::::
random

:::::::
changes

::
in

:::
the

:::
true

::::::
fluxes

:
is
::::::::
included

::
in

::::
Part

:
2
::::::
(Bruch

::
et

:::
al.,

:::::::
2025a).

3.5
::::::::
Summary

::::
and

::::::::
overview

:::
We

:::
can

::::
now

:::::::::
summarize

:::
the

:::::::
inversion

:::::::
method

::::::::
following

:::
the

:::::::
required

:::
data

:::::::
streams

::
in

:::::
Fig. 5.

:::::
After

::::::::
collecting

:::
the

::::
input

::::
data

:::
for

:::
the

:::::::
transport

:::::::::
simulation

::::::::::::::::::
(Sections 3.1 and 3.2,

:::
top

::
of

::::::
Fig. 5),

:::
we

:::::::
prepare

:::
the

:::::::
inversion

:::
by

::::::::::
categorizing

:::
the

:::::
fluxes

:::::::::::
(Sect. 2.1.1).

::::
The

:::::::
transport

::
is

::::::::
simulated

:::::::::
separately

::
for

:::
the

:::::::::::
deterministic

:::
and

::::::::
ensemble

:::
run

::::::::::
(Sect. 2.1.1,

:::::
white

:::::::
ellipses

::
in

::::::
Fig. 5).

:::::
Using

::::::::::
observation475

:::
data

:::::
from

:::
the

:::::
ICOS

::::::
carbon

:::::
portal

::::
and

:::
the

:::::::::
simulation

::::::
output,

:::
we

:::::::
compute

::::::
model

::::::::::
equivalents

:::
and

::::
filter

:::::
these

::
to

::::::
ensure

::
a

::::
high

::::::
quality

::
of

:::
the

:::::
model

::::::::::
predictions

:::::::::
(Sect. 3.3).

::::
The

::::
data

::::
from

:::
the

:::::::::::
deterministic

:::
run

:::
are

:::::
used

::
to

::::::::
construct

:
a
:::::::
far-field

:::::::::
correction

::
to

:::::::
mitigate

::::::::::
uncertainties

:::
in

:::
the

::::::::
boundary

:::::::::
conditions

:::::::::
(Sect. 2.3).

::::
The

::::::::
ensemble

::::
data

:::
are

::::
used

::
to

::::::::
construct

:::
the

::::::::::
uncertainty

::::::
matrix

::::
R(s)

::
as

:::::::
required

:::
for

:::
the

:::::
prior

::
R

:::
and

::::::::
posterior

::
R

::::::::
inversion

::::::::::
(Sect. 2.5.2).

::::
The

:::::::
far-field

::::::::
corrected

::::
data

:::
and

:::
the

::
R

::::::
matrix

:::::
serve

::
as

::::
input

:::
for

:::
the

::::::::
Bayesian

::::::::
inversion

:::::::::
(Sect. 2.4).

:::
By

:::::::::
combining

:::
the

::::::::
resulting

::::::::
posterior

::::::
scaling

::::::
factors

::::
with

:::
the

::::::::::
categorized

::::::
fluxes,480

::
we

::::::
obtain

:::::::
posterior

::::
flux

::::::::
estimates.

:

[. . . ]
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Figure 5.
:::::::
Overview

::
of
:::

the
:::::::
inversion

::::::
system

:::::::
including

::::
input

::::
data

::::::
sources.

::::::
Arrows

::::::
indicate

::::
data

::::::
streams.

::::::
Dashed

::::
lines

::::::
indicate

::::
data

::::::
streams

:::
with

:::::
small

::
or

::::::::
negligible

:::::
impact

:::
on

:::
the

:::::::
inversion

::::::
results.

::::::
Colored

::::
areas

:::::
group

:::
the

::::
input

::::
data

:::::
(top),

:::
the

::::::::::
deterministic

:::::
model

:::
run

:::
and

::::
data

::::::::
processing

::::
(left),

:::
and

:::
the

:::::::
ensemble

:::::
model

:::
run

:::::::
including

::::::::
processing

::
of

::
the

:::::::
resulting

::::
data

:::::
(right).

::::::
Colored

:::
text

:::::
boxes

::::::::
distinguish

::::::
gridded

:::::
fluxes

::::::
(green),

:::
data

::
in
:::::::::
observation

:::::
space

::::
(blue,

:::::::
matrices

::
in

::::::
purple),

::::
and

:::
data

::
in

:::
the

::::
space

:::
of

:::::
scaling

::::::
factors

::::
(red).

::::::::::
Observation

:::
data

:::
are

:::::::
included

::::
when

::::::
working

::
in

:::::::::
observation

::::
space

::::
(not

:::::::
explicitly

:::::::
marked).

::
At

:::
the

:::
end

::
of

::
the

:::::::::
processing

::::
chain

:::::::
(bottom),

:::
the

::::
three

::::::
methods

:::
for

::::::::
estimating

::
R

:::
lead

::
to

::::::
different

::::::
scaling

:::::
factors

::::
from

:::::
which

:::
we

:::
can

::::::
compute

:::::::
national

::::::
emission

::::::::
estimates.
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Figure 6. [. . . ]
::::
Mean

:::
(a,

:
c)
:::
and

:::::::
standard

:::::::
deviation

::
(b,

::
d)
::
of
:::::::
monthly

:::
flux

:::::::
estimates

::::::
relative

::
to

:::
the

:::
prior

::
in
:::::::
synthetic

::::::::::
experiments

::
for

:::::::
diagonal

:
R
::::::

(blue),
::::
prior

::
R

:::::::
(orange),

:::
and

:::::::
posterior

::
R
:::::::
inversion

:::::::
(green).

::::
Each

:::
bar

::::::::
represents

:::
the

:::::::
posterior

::::
fluxes

:::
for

:::
144

:::::::::
inversions,

:::::::
obtained

::::
from

::
12

::::::
datasets

::
of

::::::::::::::::
pseudo-observations,

::::
each

::::::
covering

:::
12

::::::
monthly

::::
time

::::::::
windows.

::::
Black

::::::::
horizontal

::::
lines

::::::
indicate

:::
the

:::
2σ

:::::::
statistical

:::::::::
uncertainty

::::::
estimate.

::::::
Panels

::
(a,

::
c)

::::
show

:::
the

:::
bias

::
as

:::
the

::::::
relative

:::::::
deviation

::
of

::
the

:::::
mean

:::::::
posterior

::::
from

::
the

:::::
prior,

:::::
which

:
is
:::::
equal

:
to
:::

the
:::::::
synthetic

::::
truth.

::::
The

::::::
standard

:::::::
deviation

:::
(b,

::
d)

:::::
among

:::
the

:::
144

:::::::
emission

:::::::
estimates

:::::::
indicates

::
the

::::::
random

::::
error

:::::::
expected

::
in

::::
each

::::::
monthly

::::::::
inversion.

::::::
Colored

::::
lines

::
in

::
(b,

::
d)

::::
show

:::
the

::::
mean

:::::::
posterior

::
1σ

:::::::::
uncertainty,

:::::
which

::
is

:::::
similar

:::
for

::
all

::::
three

:::::::
methods.

:

4 Results
:::
and

:::::::::
discussion

[. . . ]
::
In

::::
this

:::::::
section,

:::
we

:::::::
examine

:::
the

::::::::
presented

::::::::
inversion

:::::::
system

:::::
using

::::::::
synthetic

::::::::::
experiments

::::
and

:::::::::
sensitivity

::::
tests.

::::
We

::::
start

::
by

::::::::::
considering

::::::::
synthetic

:::::::::
observation

:::::::::::
experiments

::
in

:::::
which

:::
the

::::::::
synthetic

::::
truth

::
is
:::::
equal

::
to

:::
the

::
a
:::::
priori

::::::
fluxes.

::::::::::::
Figure 6 shows

::
a485

::::::::
statistical

::::::::
evaluation

::
of

::::::::
inversion

::::::
results

:::
for

:::
this

:::::
case,

:::::
which

:::
we

:::::::
analyze

::
for

::::::::
multiple

::::::
aspects.

:

4.1 Simulated transport error (Sect. 5.6)

[. . . ]

4.1
:::::::

Random
:::::
error

::
In

::::::
Fig. 6,

:::
we

:::
see

:::
the

::::
bias

:::::::
(panels

::
a,

::
c)

::::
and

:::::::
random

::::
error

:::
(b,

::
d)
:::

of
:::
the

::::::::
inversion

::::::
results

:::
for

:::::::
selected

::::::::
countries

:::
or

::::::::
emission490

::::::
sources

::::::
relative

:::
to

:::
the

:
a
:::::
priori

:::::::::
emissions,

::::::::::::
distinguishing

:::
the

:::::
three

:::::::
methods

:::
for

::::::::::
constructing

:::
R.

:::
The

:::::::
random

:::::
error

:
is
:::::::::

estimated

::
by

:::
the

:::::::
standard

:::::::::
deviation

:::::::
obtained

:::::
from

:::
144

:::::::::
inversions

:::
and

::::::::
indicates

:::
the

::::::::
precision

:::
or

::::::::
reliability

::
of

:::::
these

::::::
results

:::
for

:
a
::::::
single

::::::
month.

:::
The

::::::::::
comparison

:::
of

:::
the

::::
three

::::::::
methods

:::::
shows

::::
that

:::
the

:::::
prior

::
R

:::
and

::::::::
posterior

::
R

:::::::
method

::::
lead

::
to

::
a

::::
very

::::::
similar

:::::::
random

::::
error,

::::::
which

::
is

:::::::::::
considerably

:::::
lower

::::
than

:::
for

:::
the

:::::::
diagonal

:::
R

::
in

::
all

::::::::::
considered

:::::::
regions.

::::
This

:::::
leads

::
to

:::
the

:::::::::
conclusion

::::
that

:::::
using
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:
a
::::::::
transport

::::::::
ensemble

::
to

::::::::
estimate

:::::::::::
uncertainties

:::
and

:::::
their

::::::::::
correlations

:::
can

:::::::::::
significantly

::::::
reduce

:::
the

:::::::
random

:::::
error

::
in

::::::::
emission495

::::::::
estimates,

::::::::::
independent

::
of

:::
the

:::::::
far-field

:::::::::
correction.

:

::::
Since

:::
the

::::::::
diagonal

::
R

:::::::::::
construction

::::
uses

:::::::
different

::::::
tuning

:::::::::
parameters

::::
than

:::
the

:::::
prior

::
R

:::
and

::::::::
posterior

::
R

::::::::
inversion,

:::
we

:::::
need

::
to

::::
make

::::
sure

::::
that

:::
the

::::::
chosen

::::::::::::
configurations

:::
are

::::::::::
comparable.

::::
This

::
is
::::::::
achieved

::
by

::::::
aiming

:::
for

::
a
::::::
similar

::::::::
posterior

:::::::::
uncertainty

::
in

:::
all

:::::::
methods

:::
for

::::::::::
constructing

:::
R.

::::
Thin

::::
lines

::
in

::::::::
Fig. 6 (b,

::
d)

:::::
show

:::
the

:::::::
posterior

:::
1σ

:::::::::::
uncertainties

::
to

:::::::
validate

:::
the

::::::::
similarity.

:

::
By

::::::::::
comparing

:::::::
emission

:::::::::
estimates

::::::
without

:::::::
(panels

::
a,

::
b)

::::
and

::::
with

:::
the

:::::::
far-field

:::::::::
correction

:::
(c,

:::
d),

:::
one

::::
can

:::::::
identify

::::
that

:::
the500

::::::
far-field

:::::::::
correction

:::::::
changes

:::
the

::::
bias

:::
and

::::::
slightly

:::::::
reduces

:::
the

::::::
random

:::::
error.

:::::
Both

:::::
effects

:::
are

::::
very

::::::
similar

:::
for

:::
all

::::
three

:::::::
choices

::
of

::
R.

:::::
Since

:::
the

:::::::
far-field

::::::::
correction

:::::
pulls

:::
the

::::::::
simulated

::::
prior

:::::::::::::
concentrations

::::::
towards

:::
the

:::::::::::
observations,

:::
we

:::
can

::::::
expect

::::
that

:
it
::::::
brings

::
the

::::::::
emission

::::::::
estimates

::::::
closer

::
to

:::
the

:::::
prior.

:::
But

:::
we

:::
can

::::
see

::
in

::::::::
Fig. 6 (b,

::
d)

:::
that

:::
the

::::::::
resulting

::::::::
reduction

::
in
:::::::

random
:::::
error

::
is

::::
only

:::::
weak.

4.2
::::::::

Inversion
:::
bias505

:::
The

::::
bias

:::::
shown

::
in
::::::::
Fig. 6 (a,

::
c)

::::::
clearly

:::::::
depends

::
on

:::
the

:::::::
far-field

:::::::::
correction.

::::
The

:::::::::::::::::
pseudo-observations

::::::
without

:::::::
far-field

:::::::::
correction

::::
have

:
a
::::
bias

::
of

:::::::::
+0.5ppb.

:::
The

:::::::
far-field

:::::::::
correction

:::::
reverts

::::
this

::
to

:
a
:::::::
negative

::::
bias

::
of

::::::::
−0.5ppb

::::
due

::
to

:
a
::::::::
sampling

:::
bias

:::
as

::::::::
explained

::
in

:::::::
Sect. 2.3.

:::::::
Ideally,

::
we

::::::
would

:::::::
therefore

::::::
expect

:
a
:::::
small

:::::::
positive

:::
bias

::
in

::::::::
Fig. 6 (a)

:::
and

:::
an

::::::
equally

:::::
strong

:::::::
negative

::::
bias

::
in

:::::
panel

:::
(c).

:::
But

:::
the

::::
bias

:::::
differs

:::::::::
depending

:::
on

:::
how

::
R
::
is
:::::::::::
constructed.

:::
For

:::
the

:::::::
diagonal

:::
R

::::::::
inversion,

:::
we

:::
see

::::::
overall

::
a
:::::::
positive

::::
bias

:::
for

::::
most

:::::::
regions.

:::::
This

::::::::::::
approximation

:::
for

::
R

::::::::
assumes

:
a
:::::
large510

:::::::::
uncertainty

::
if

:::
the

:::::
model

:::::::
predicts

:
a
::::::
strong

:::::
signal

:::::
from

:::::::::
emissions.

:::
For

::
an

::::::::
imperfect

::::::::
transport

::::::
model,

:::
this

:::::::
implies

:::
that

:::
the

::::::
model

:::
will

::::
tend

::
to

::::
have

::
a
:::::
higher

::::::::::
uncertainty

:::::
when

:
it
::::::::::::
overestimates

:::
the

:::::::::::
concentration

::::
and

:
a
:::::
lower

::::::::::
uncertainty

:::::
when

:
it
:::::::::::::
underestimates

::
the

::::
real

::::::::
emission

::::::
signal.

::
As

:::
the

::::::
model

::
is

::::
more

::::::::
confident

:::::
when

:::::::::::
observations

:::
are

::::::
higher

::::
than

:::
the

:::::
model

:::::::::
prediction,

::
it
::::
will

::::
tend

::
to

::::::::::
overestimate

:::
the

:::::::::
emissions.

:

:::
For

:::
the

:::::
prior

::
R

:::::::::::::
approximation,

:::
we

::::
find

:
a
::::::::
negative

:::
bias

:::
in

:::
the

::::::::
emission

::::::::
estimates

::
in

:::::
many

:::::::
regions.

:::::
This

::::
may

::
be

::::
due

:::
do515

::
the

::::::
plume

::::
bias

:::::::
problem

:::::::::
introduced

::
in
:::::::::

Sect. 2.2.
:::
For

:::
the

::::::
Upper

::::::
Silesian

:::::
Coal

:::::
Basin

::
as

::
a
::::
very

:::::
strong

::::
and

::::::::
localized

::::::
source,

:::
all

:::::::
methods

:::::
show

:::
the

:::::::
expected

::::::::
negative

::::
bias.

:::::::
Notably,

::
a
:::::::::::
considerable

:::::::
negative

::::
bias

::
is

:::
also

::::::
found

:::
for

:::
the

::::::::::
Netherlands

::
as

::
a
:::::
small

::::::
country

::::
with

::::
high

::::::::
emission

:::::
rates.

::
In

:::
the

:::::::
posterior

:::
R

::::::::::::
approximation,

:::
the

::::::::
negative

:::
bias

:::
for

:::::::
plumes

::
is

:::::::
reduced,

:::
but

::::
also

:::
all

::::
other

::::::::
emission

::::::::
estimates

:::
are

::::::
higher

::::::::
compared

::
to

:::
the

:::::
prior

::
R

::::::::
inversion.

:::
To

:::::::::
understand

::::
this,

:::
we

:::::
recall

::::
that

:
a
::::::::
transport

:::::
error

::
in

:::
our

::::::
model

::::
only

::::
leads

:::
to

::
an

:::::
error

::
in520

::
the

::::::::
predicted

:::::
CH4 :::::::::::

concentration
::
if

:::
the

:::::::::::
concentration

::::
field

::::::::
contains

:::::
spatial

:::::::::
gradients.

::::
Such

::::::::
gradients

:::
are

::::::
caused

:::
by

:::::::::
emissions.

:::::::
Stronger

::::::::
emissions

:::::::
directly

:::::
cause

::::::
higher

::::::::::
uncertainty

::::::::
estimates

::
in

:::
the

::::::::::::
meteorological

:::::::::
ensemble.

::
In

:::
the

::::::::
posterior

::
R

:::::::::
inversion,

::
the

::::::::
inversion

::::
can

:::::
adjust

::::
the

::::::::
emissions

:::
of

:::
the

:::::::
transport

:::::::::
ensemble

:::
and

:::::::
thereby

::::::
change

::::
the

:::::::::::
uncertainties.

:::
As

:::
we

::::::::
optimize

:::
the

::::::::
agreement

::
of

::::::
model

:::
and

:::::::::::
observations

::::::
relative

::
to

:::
the

:::::::::::
uncertainties,

:::
the

:::::
system

::::
will

:::::
prefer

:::::
larger

:::::::::::
uncertainties.

:::::
Thus,

:::
the

::::::::
inversion

:::
will

::::
tend

::
to

:::::::::::
overestimate

::::::::
emissions

::
to

:::::
reach

:::::
higher

::::::::::::
uncertainties.

::::
This

:::::::::
counteracts

:::
the

:::::::
negative

::::::
plume

::::
bias,

:::
but

:
it
::::
may

::::
also

::::
lead525

::
to

:
a
:::::::
positive

::::
bias.

::
By

:::::::::
combining

::::
bias

:::
and

:::::::
random

:::::
error,

:::
we

:::::
obtain

:::
the

::::::
RMSE.

::::
For

::::::::
Germany,

:::
the

:::::::
monthly

::::::
results

::::
with

::::::
far-field

:::::::::
correction

:::::
show

::
an

::::::
RMSE

:::::::
between

:::::
2.4%

:::::::::
(posterior

:::
R)

:::
and

:::::
4.3%

:::::::::
(diagonal

:::
R).

:::
For

::::::
yearly

::::::
totals,

:::
this

:::::::
reduces

::
to

:::::
1.2%

:::
for

::::::::
posterior

::
R

::::
and
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Figure 7.
::::
Mean

::
(a,

::
c)
:::
and

:::::::
standard

:::::::
deviation

::
(b,

::
d)

::
of

::::::
monthly

:::
flux

:::::::
estimates

::::::
relative

::
to

::
the

::::
prior

::
in

:::::::
synthetic

:::::::::
experiments

::::
with

::::
20%

:::::::
increased

::::::::::
anthropogenic

::::::::
emissions

::
in

::
the

:::::::
synthetic

::::
truth

::
for

:::::::
diagonal

::
R

:::::
(blue),

::::
prior

::
R

:::::::
(orange),

:::
and

::::::
posterior

::
R

:::::::
inversion

::::::
(green).

::
In

::
(a,

:::
c),

::
the

:
a
:::::
priori

::
has

:::::
value

:::
1.0

:::
and

:
a
:::::
black

:::::
vertical

::::
line

:::::
shows

::
the

:::::::
synthetic

:::::
truth.

::::
Bars

::::::
connect

::
the

::::
prior

::
to
:::
the

:::::::
posterior.

::::
Like

::
in

:::::
Fig. 6,

::::
each

:::
bar

::::::::
represents

::
the

:::::::
posterior

:::::
fluxes

:::
for

:::
144

::::::::
inversions,

::::::::
combining

:::
12

:::::
months

::::
with

::
12

:::::::
datasets

::
of

:::::::::::::::
pseudo-observations.

:::::::::
Horizontal

::::
lines

::::
show

::
2σ

::::::::
statistical

:::::::::
uncertainties

:::
and

::::::
colored

::::
lines

::
in

::
(b,

::
d)

::::::
indicate

:::
the

:::::::
posterior

::
1σ

:::::::::
uncertainty.

:

::::
1.8%

:::
for

::::::::
diagonal

:::
R,

:::::
while

:::
the

:::::
prior

::
R

::::::::
inversion

::
is

:::::::::
dominated

:::
by

:::
the

::::
bias

:::
and

:::
has

:::
an

::::::
RMSE

::
of

::::::
2.9%.

::::
This

::::::::
indicates

::::
that

::
the

:::::::::
simulated

::::::::
transport

::::
error

::
in

:::
our

::::::::
synthetic

:::::::::::
experiments

::::
leads

::
to
:::

an
::::
error

:::
of

::::::::::::
approximately

:::
2%

:::
on

:::
the

:::::::
German

::::::
yearly

::::
total530

:::::::
emission

::::::::
estimate.

:::::::
Overall,

:::
the

::::::::
posterior

::
R

::::::::
inversion

::::::
shows

:::
the

:::
best

:::::::::::
performance

:::
as

:
it
::::
has

:
a
:::::
lower

:::::::
random

::::
error

::::
and

::::
only

::
a

::::
small

:::::
bias.

4.3 Sensitivity tests (Sect. 5.4)
:
to

:::::::::
increased

::::
true

::::::::
emissions

::
To

:::
test

:::
the

:::::::::
sensitivity

::
of

:::
the

::::::::
inversion

::
to
::::

true
::::::
fluxes,

:::
we

:::::
repeat

:::
the

::::::::
synthetic

::::::::::
experiments

:::::
with

::
an

:::::::
identical

:::::
setup

:::
but

::::::::
different

:::::::::::::::::
pseudo-observations.

:::
For

:::::
these

:::::
new

:::::::::::::::::
pseudo-observations,

:::
we

::::::::
increase

:::
all

::::::::::::
anthropogenic

:::::::::
emissions

:::
by

:::::
20%.

::::
The

:
a
::::::

priori535

::::::::
emissions

::::::
remain

:::::::::
unchanged

:::
and

:::
are

::::
thus

:::::
lower

::::
than

:::
the

::::::::
synthetic

::::
truth.

::::
The

::::::::
inversion

::::::
results

::
are

:::::::::::
summarized

::
in

:::::
Fig. 7,

::::::
which

:
is
:::::::::
analogous

::
to

::::::
Fig. 6.

:::::::
Figure 7

::
(a)

::::
and

::
(c)

:::::
show

:::
the

:::::
mean

:::::::
posterior

:::::
(bars)

:::::::::
compared

::
to

:::
the

:::::::
synthetic

:::::
truth

:::::
(black

::::::
vertical

:::::
line).

:::::::
Without

:::
the

:::::::
far-field

:::::::::
correction,

:::
the

:::::::
inversion

::
is
:::
too

::::::::
sensitive

::
in

:::::
many

::::::
regions,

:::
as

:
it
::::::::
increases

:::
the

::::::::
emissions

:::::::
beyond

:::
the

:::::::
synthetic

:::::
truth.

::::
This

:::::
leads

::
to

::
an

:::::::::::::
overestimation,

:::::
which

::
is
:::::
likely

::::
due

::
to

:::
the

:::::::
artificial

:::::::
lifetime

::
of

:::
the

::::
flux

:::::::
category

::::::
tracers

::::
(see

::::::::::
Sect. 2.1.2).

:::::
With

:::
the

:::::::
far-field540

::::::::
correction

::::::
(panel

::
c),

:::
the

::::::::
deviation

:::
of

:::
the

::::::::
posterior

::::
from

:::
the

::::
prior

::
is
:::::::
damped

:::
and

:::
we

::::::
obtain

:
a
::::
low

:::
bias

:::::::::
compared

::
to

:::
the

:::::
truth,

::
as

:::::::
expected

:::::
when

:::
the

:
a
:::::
priori

::::::::
emissions

:::
are

:::::::::::::
underestimated.

::::
The

:::::::
random

::::
error

:::
(b,

::
d)

:::::::
remains

::::::
similar

::
to

::
the

::::
case

::::
with

::::::
perfect

:::::
prior

::::::::
emissions,

:::::
albeit

::
a

::::
small

:::::::
increase

::::
can

::
be

::::
seen

::::::::
(compare

::::::
Fig. 6).

:::::
Like

::
for

:::
the

::::::
perfect

:::::
prior

:::::::::
emissions,

::
the

::::
best

:::::::::::
performance

::::
with

::
the

::::::
lowest

::::::
RMSE

::
is

:::::
found

:::
for

:::
the

:::::::
posterior

::
R
:::::::::
inversion.

4.4
::::::::
Sensitivity

:::
to

:::
bias

::::
and

:::::
noise

::
in

:::::::::::
observations545
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::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

   ID Explanation
00 reference case
01 global bias −5 ppb
02 global bias +5 ppb
03 global bias −5 ppb, no far-field correction
04 global bias +5 ppb, no far-field correction
10 uncorrelated noise (5 ppb)
11 spatially and temporally correlated noise (5 ppb)
12 correlated + uncorrelated noise
20 natural + LULUCF fluxes reduced by 40 %
21 anthrop. fluxes excl. LULUCF reduced by 20 %
22 anthrop. fluxes excl. LULUCF increased by 20 %00 01 02 03 04 10 11 12 20 21 22
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:

Figure 8.
:::
Total

::::::::
posterior

:::::::
emissions

::
in
:::::

2021
::
of

::::::
selected

::::::::
countries

:::
and

::::::
German

::::::
sectors

:::
for

:::::::
synthetic

::::::::::
experiments

:::
with

::::::
perfect

::::::::
transport.

::::::
Markers

::::
show

:::
the

::::::
average

::
of

:::
the

::::::
emission

::::::::
estimates

::::::
obtained

::::
from

:::
the

::::
prior

::
R

:::
and

:::::::
posterior

::
R

:::::::
inversion.

::::
Thin

::::::::
horizontal

::::
lines

::::::
indicate

:::
the

::::::
synthetic

:::::
truth.

::::::
Vertical

::::
lines

::::
show

::::::::::
uncertainties

::::
(95%

::::::::
confidence

::::::::
intervals).

:

:::
We

::::
now

::::
turn

::::
from

::::
the

:::::
focus

::
on

::::
the

:::::::
transport

:::::
error

::
to

:::::::::::
uncertainties

:::
in

:::
the

:::::::::::
observations.

:::
To

:::
this

:::::
end,

:::
we

:::::::
consider

::::::::
different

::::::::::::::::
pseudo-observations

:::::::
without

:::
any

::::::::
transport

::::
error

:::
that

::::::
follow

::::::::
scenarios

::::::
defined

::
in

::::::
Fig. 8.

::
To

:::::
avoid

:::
the

:::::::
transport

:::::
error,

:::
we

:::::::
generate

::::
these

:::::::::::::::::
pseudo-observations

:::::
based

:::
on

:::
the

:::::::::::
deterministic

:::::
model

::::
run.

:::
For

:::::::::
simplicity,

:::
we

::::
only

::::::::
consider

:::
the

::::::
average

:::
of

::::
prior

::
R

::::
and

:::::::
posterior

::
R

::::::::
inversion.

:

::
In

:::
the

::::
first

::::::::
scenarios,

:::
we

::::
shift

:::
all

:::::::::::::::::
pseudo-observations

:::
by

:::::::
−5ppb

:::::
(case

::
01

::
in
:::::::

Fig. 8)
:::
and

:::::::
+5ppb

:::::
(case

::::
02).

::::
This

::::
bias

::
is550

:::::
mostly

::::::::::::
compensated

::
by

:::
the

::::::::
far-field

::::::::
correction

:::::
with

:::::::
monthly

::::::::
averages

::
of

:::::::::
±2.75ppb

:::
to

::::::::
±3.8ppb,

::::
the

::::
sign

:::::::
depends

:::
on

:::
the

:::::::
scenario.

::::::::
Because

::
of

::::
this

:::::::::
correction,

:::
the

:::::
effect

:::
on

:::
the

:::::::::
estimated

:::::::
German

::::
total

:::::::::
emissions

:::::::
remains

::::
well

::::::
within

:::
the

::::::::
posterior

:::::::::
uncertainty.

::::
This

::
is
::
in
:::::
stark

:::::::
contrast

::
to

:::
the

::::
same

::::::::
scenarios

:::::::
without

:::
the

:::::::
far-field

:::::::::
correction

:::::
(cases

:::
03

:::
and

:::
04)

::::
and

:::::::::::
demonstrates

::
the

:::::::
benefits

::
of

:::
the

:::::::
far-field

:::::::::
correction.

:

:::
We

::::::::::
furthermore

:::
test

:::
the

:::::
effect

::
of

::::::::
correlated

:::
and

:::::::::::
uncorrelated

::::::::
Gaussian

::::
noise

:::::
added

::
to
:::
the

:::::::::::
observations

:::::
(cases

:::::::
10–12),

::::::
finding555

:::
that

:::
the

:::::
effect

:::
on

:::
the

:::::::
posterior

:::::::::
emissions

::
is

:::::
small

::::::::
compared

::
to

:::
the

::::::::
posterior

:::::::::::
uncertainties.

::::
The

:::::::::
correlated

::::::::
Gaussian

::::
noise

::
is
::
a

::::::::::::::
three-dimensional

::::::::
Gaussian

:::::::
random

::::
field

::
in

:::
flat

::::::::::
(longitude,

:::::::
latitude,

:::::
time)

:::::::::
coordinates

:::::
with

:
a
:::::
lower

:::::
cutoff

:::
for

::::::::::
fluctuations

:::
on

:::::
scales

::::::
. 2.5◦

::::::::::
(horizontal)

:::
and

:::::
. 12

::::
days

::::::
(time)

::::
such

::::
that

::
it

:::
acts

:::
as

:
a
::::::
slowly

:::::::
varying

:::::::
random

::::
bias.

::::
The

:::::
RMS

::
of

:::
the

:::::
noise

::
is

:::::::::
normalized

::
to

::::::
5ppb.

:::
For

:::
the

:::
last

::::
three

:::
test

:::::
cases

:::::::
(20–22),

:::
we

:::::
scale

:::::
either

:::
the

::::::
natural

:::
and

::::::::
LULUCF

:::::
fluxes

::
or

:::
all

::::
other

:::::::::
emissions

::
in

:::
the

:::::::
synthetic

:::::
truth

:::::
while

::::::
leaving

:::
the

:
a
:::::
priori

:::::::::
emissions

:::::::::
unchanged.

:::::::
Overall,

:::
the

::::::::
emission

::::::::
estimates

::::::
follow

:::
the

::::::
change

::
in

:::
the560

:::::::
synthetic

::::
truth

::::
well

:::
as

::::::
already

:::::
found

::
in

::::::::
Sect. 4.3.

:

4.5
::::::::
Sensitivity

:::
to

::::::::
inversion

::::::::::
parameters

Our inversion method has various tuning parameters. Above we have described the inversion and its results
:::::::
synthetic

:::::::::::
experiments

for one choice of these parameters. We analyzed the sensitivity of
::::::
analyze

:::
the

:::::::::
sensitivity

::
to

:
these parameters by repeating the
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inversion 48 times with
::
50

:::::
times

::::
with

::::
real

:::::::::::
observations

:::
and

:
modified parameters. Table E1 lists these test cases with their565

ID, parameters, and influence on the inversion results. An overview of the national emission estimates for each test case is

provided in Fig. E1. Here, we summarize the main results and refer to Table E1 for details.
::
We

:::
use

:::
the

:::::::
average

::
of

:::
the

:::::
prior

::
R

:::
and

:::::::
posterior

::
R
::::::::
inversion

::::::
results

:::
and

:::::
focus

::
on

:::
the

::::::::
influence

::
of

:::
the

:::::::::
parameters

:::
on

:::
the

:::::::
emission

:::::::::
estimates,

::::::
leaving

:::
the

:::::::::
discussion

::
of

:::
the

:::::::
inversion

::::::
results

:::
for

::::
Part

:
2
::::::
(Bruch

::
et

:::
al.,

:::::::
2025a).

4.5.1 Comparison to observations570

The filtering steps listed in Table 4
::::::
Before

:::::::::
comparing

:::::
model

::::
and

:::::::::::
observations,

:::
we

:::::
apply

:::::::
multiple

:::::::
filtering

::::
steps

::::
that influence

the inversion results significantly
::::::::::
considerably. Most prominently, selecting nighttime observations for high mountain stations

and afternoon hours for other stations strongly affects the inversion and improves the model representativeness (case 201 in

Table E1). This is one of only four
:::
five sensitivity tests with posterior fluxes deviating from the reference case by & 30% of

the posterior uncertainty, which we call a strong change in inversion results. Other filtering parameters such as the number575

of sampling heights
::::
used

:
per station (case 202) and the minimal wind speed (cases 203–205) affect the inversion results

noticeably, although changes are small compared to the uncertainties. Neglecting extreme outliers has only a small effect

(cases 206, 207), but limiting
:::::::
Limiting the influence of outliers

::::
with

::::::::::::::::
model–observation

::::::::
mismatch

::::::::::::
|µi|> 3

√
R′ii by increasing

their uncertainty
:::
(see

:::::::::
Sect. 2.6.2)

:
has a considerable impact (cases 208, 209).

:::::::::
Completely

:::::::::
neglecting

::::::
extreme

:::::::
outliers

:
–
:::::::
defined

::
by

:::::::::::::::::::::
|y−Hs−xff|> 200ppb

::
or

::::::::::::::::
y−xff <−20ppb

:
–
:::
has

::::
only

::
a
:::::
small

:::::
effect

:::::
(cases

::::
206,

:::::
207).580

The choice of observation sites is analyzed in cases 601 and 602, which select subsets of stations with good observation

coverage over the full year. When using only 27 stations (case 602), the results change strongly compared to the reference case

with 50 stations, also because some regions are hardly observed in case 602 (compare also Fig. 6 with Fig. A2).
::::
602. Varying

the elevation of high mountain stations has only little impact on the inversion results (case 100). The effect of time-averaging

over 3h (as chosen in step 2 of Sect. 3.3) is noticeable in the results, but small compared to the uncertainties (case 101).585

4.5.2 Uncertainty

The
:::::::
diagonal

::
R

::::::::
inversion

:::::::
deviates

:::::
from

:::
the

:::::::::
reference

::::
case

:::
by

:::
one

:::::
third

::
of

:::
the

::::::::
posterior

::::::::::
uncertainty

:::::
(case

:::::
311).

:::::
Also

:::
the

construction of the error covariance matrix R following Sections 2.4 and 4.2
:::::::::::::::::
Sections 2.5 and 2.6 contains numerous tuning

parameters. Key parameters are the overall uncertainty inflation factors fi (
:::::::::
Sect. 2.6.3, cases 302 and 303 in Table E1) and the

uncorrelated additive uncertainty σconst::::
(see

::::::
Eq. (2))

:
of each data point (cases 309, 310). Variations of these parameters change590

the inversion results considerably. The tuning parameter σconst illustrates the importance of hidden patterns in the considered

data. Increasing to σconst = 20ppb effectively reduces the weight of observations with a small ensemble-estimated transport

uncertainty. As observations with strong emission signals and high transport uncertainty become more relevant, the emission

estimate for Germany is increased by 5% (case 310 in Fig. E1).

Other important parameters are the correlation scales in the localization
:::::
matrix

:::
C for the ensemble-based uncertainty es-595

timate
:::
(see

::::::::::
Sect. 2.5.2). The overall effect of these scales on the posterior scaling factors is small (cases 304–308), but these

parameters also influence the posterior uncertainties. The sensitivity tests indicate that 12 ensemble members are sufficient
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to estimate the uncertainties and correlations even without a strong localization. In general, we expect that a larger transport

ensemble will yield better statistical estimates for uncertainties and their correlations. This reduces the need for a localization

which suppresses spurious correlations. The
:::::::::
considered

::::::::
additional

:
plume localization uncertainty (see Sect. 2.2

::::::::
Sect. 2.6.1,600

cases 300 and 301) arising from the Upper Silesian Coal Basin seems negligible when considering the full domain. How-

ever, the additional plume localization uncertainty reduces the negative bias for the plume emissions (see Sect. 5.6).
:::
that

::::
was

::::::::
discussed

::
in

::::::::
Sect. 2.2.

4.5.3 Far-field correction

The
::::::::
synthetic

::::::::::
experiments

::::::
already

:::::::
showed

:::
that

:::
the far-field correction explained in Sect. 2.2 strongly

::::::::
introduced

::
in

::::::::
Sect. 2.3 influences605

the results . Removing
::::::::::
considerably

::::
(see

::::::::::::
Figs. 6 and 7).

:::::
When

:::::
using

::::
real

:::::::::::
observations,

::::::::
removing

:
the correction field leads to

striking
:::::
strong changes in the inversion results , including unrealistic negative

::::
(case

:::::
400),

:::::
albeit

:::
the

::::::
results

::::::
remain

::::::
within

:::
the

:::::::
posterior

::::::::::
uncertainty

::::::
bounds.

::::::::
Without

:::
the

:::::::::
correction,

:::
the scaling factors for some natural flux categories (case 400).

:::::
fluxes

::
in

::::::::::
Scandinavia

::::
even

:::::::
become

:::::::
negative

:::
for

::::
some

:::::::
months

:
–
:
a
::::::
clearly

:::::::::
unrealistic

:::::
result

::::
that

::::::::
underlines

:::
the

::::::::::
importance

::
of

:::
the

:::::::
far-field

:::::::::
correction. However, changing various tuning parameters of the far-field correction within a reasonable range has much smaller610

effects. The selection of data points used for the far-field correction (cases 409, 410) and the overall correction strength (cases

401, 402) have modest influence, whereas correlation scales in the correction play a minor role (cases 403–408). The addi-

tional uncertainty added to R due to the far-field correction
:::
(see

::::::::::
Sect. 2.6.4) has little influence on the inversion results (cases

412–414). We draw the conclusions that (i) the far-field correction is important for the inversion and (ii) the inversion extracts

most information from signals that are hardly affected by the precise form of the far-field correction, especially from strong615

emission signals (� 20ppb).

4.5.4 A priori error covariance matrix

Modifying the a priori uncertainty or correlations of the scaling factors (B in Eq. (1)) changes the results quantitatively, but not

qualitatively
:::::
(cases

::::::::
500–502). We notice that a smaller a priori uncertainty (case 500)narrows the ability to discriminate sector

emissions, because the sector attribution tends to follow the a priori uncertainties. A coarser spatial resolution in Germany620

(case 504) and different choices of sectors (cases 503, 506) yield aggregated German sector emissions that agree well with the

reference case.

4.5.5 Inversion time windows

In the reference case, we considered each month independently. Increasing the inversion time windows to three months has a

considerable influence on the results (case 702). As the inversion time window increases, the overall weight of the observations625

in the inversion also increases. Thus, posterior uncertainties are reduced and the deviations between posterior and prior are

amplified.
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5 Discussion

[. . . ]

5 Conclusions630

We presented a novel system for regional flux inversion designed to validate national CH4 emission reporting. Applying this

method to Central Europe in 2021 with a focus on Germany
::::
This

:::::
study

:::::::::
introduced

:
a
::::
new

:::
flux

::::::::
inversion

::::::
system

::::
that

:::::::
explores

:::
the

:::::::
potential

::
of

::
a

:::::::
transport

::::::::
ensemble

:::::
from

:::::
NWP

:::
for

:::::::::::::::
observation-based

:::::::
regional

:::::::::
estimation

::
of

:::::::
methane

:::::::::
emissions.

::
In

:::::::::::
experiments

::::
with

:::::::::::::::::
pseudo-observations

:::
and

::::::::
simulated

::::::::
transport

:::::
error, we found a significant increase in emissions from Germany and the

Benelux. Careful estimation of posterior uncertainties revealed that total German posterior emissions are (32± 19)% higher635

than the anthropogenic emissions reported to the UNFCCC (submission 2024). This increase is most likely due to emissions

from the agriculture sector, possibly with contributions from LULUCF and natural sources.
:::
that

:::::
using

::
a
::::::::
transport

::::::::
ensemble

:::
can

::::::::::
substantially

::::::
reduce

:::
the

:::::::
random

:::::
error

::
of

:::
the

::::
flux

::::::::
estimates

::::::::
compared

::
to
::

a
::::::
simple

:::::::
baseline

:::::::
scenario

:::::::::
(“diagonal

:::::
R”).

::::
This

:
is
:::

in
:::
line

:::::
with

:::::::
findings

::
by

::::::::::::::::::::
Ghosh et al. (2021) and

:::
by

::::::::::::::::::
Steiner et al. (2024a),

::::
who

::::::::
estimated

::::
CH4:::::::::

emissions
::
in

:::::::
Europe

:::::
using

::
an

::::::::
ensemble

:::::::
Kalman

:::::::::
smoother.

:::
But

:::
in

:::::::
contrast

::
to

:::::::::::::::::
Ghosh et al. (2021),

::::
who

::::::
studied

:::::
CO2 ::

at
:::::
urban

:::::
scale

:::::
using

::
an

:::::::::
ensemble640

::::::::
transform

:::::::
Kalman

:::::
filter,

:::
we

::::::::
identified

::
no

:::::::::
significant

::::::::::::
improvement

::
in

:::
the

::::
bias

::
of

:::
the

::::::::
emission

:::::::::
estimates.

:::::::
Instead,

:::
our

::::::
results

::::::
indicate

:::::::::
systematic

::::::
biases

:::::::::
depending

::
on

:::
the

:::::::::
emissions

::::::::::::
characteristics.

:::::
Most

:::::::
notably,

::::::::
localized

::::::
sources

:::::::
causing

:::::
strong

:::::::
plumes

:::
can

::
be

::::::::::::::
underestimation

::
by

:::::
10%

::
by

:::
our

::::::::
synthesis

:::::::::
inversion.

::
To

::::::
benefit

:::::
from

:::
the

:::::::
transport

::::::::
ensemble

::::
and

::
to

::::::
reduce

::::
such

::::::
biases,

::
we

::::::::
proposed

:::
to

:::
use

:::
the

::::::::
posterior

::::::::::::
concentrations

:::
in

:::
the

::::::::
ensemble

:::::
when

:::::::::::
constructing

:::
R.

::::
This

::::::::
posterior

::
R

::::::::
inversion

:::::::
showed

::
the

::::
best

:::::::::::
performance

::
in

:::
the

::::::::
synthetic

:::::::::::
experiments. Our results were confirmed by an exhaustive range of sensitivity tests and645

by validation with independent observation sites. Synthetic experiments with known truth verified the ability to distinguish

emission sectors in Germany
:::::::
Overall,

:::
we

:::::
expect

:::
an

::::
error

:::
of

:::
2%

:::
for

:::
the

::::
total

:::::::
German

::::
CH4:::::::::

emissions
::
in

::::
2021

:::
in

:::
our

::::::::
inversion

::::::
system

:::
due

::
to

:::::::
random

:::::::
transport

:::::
errors.

Methodological comparison to other regional inversion systems highlights the advantages of our method for distinguishing

emission sectors and fitness for purpose for validation of national emission estimates. The qualitative gap between UNFCCC650

reporting and our estimates for Germany and the Benelux is consistent with earlier works (Petrescu et al., 2023; Bergamaschi et al., 2022, 2018; Steiner et al., 2024b).

We complement these studies by providing an emission estimate for the German agriculture sector that can be directly

compared to the national reporting, revealing a significant mismatch.

:::::
When

:::::::
applying

:::
our

:::::::
regional

::::::::
inversion

::::::
system

::
to

::::
real

:::::::::::
observations,

:::
we

:::
face

:::
the

:::::::::
challenge

::
of

::::::::
uncertain

::::
CH4 ::::::::::::

concentrations
::
at

::
the

::::::
lateral

::::::::::
boundaries.

:::::::
Different

::::::::::
approaches

::::
exist

::
to

::::::
correct

::::::
biased

::::::::
boundary

:::::::::
conditions.

::
In

:::::
some

:::::
cases,

:::::::
selected

::::::::::::
measurements655

:::
can

:::::::
provide

:
a
::::::::

baseline
:::::::::::::::::::
(Lauvaux et al., 2013).

:::
At

:::::::
national

:::
or

:::::::::
continental

::::::
scale,

::
a

::::::
coarse

:::::::::::
discretization

:::
of

:::
the

::::::::::
boundaries

:::::
allows

:::::::::::
optimization

:::::
along

::::
with

:::
the

:::::::::
emissions

:::::::::::::::::::::::::::::::::::
(Ganesan et al., 2015; Steiner et al., 2024b).

:::::
Here,

:::
we

::::::::
followed

:
a
::::::::
different

::::
path

::
by

::::::
adding

::
a
::::::
smooth

:::::::::
correction

:::::
field

:::
for

:::
the

::::::::
simulated

:::::::::::::
concentrations.

:::::
This

:::::::
allowed

::
us

:::
to

:::
use

::::::::
different

::::
time

:::::
scales

::::
for

:::
the

:::::::
inversion

::::
and

:::
the

:::::::
far-field

::::::::::
correction.

:::
The

:::::::
far-field

:::::::::
correction

::::::
causes

::
a
:::::
small

::::
bias

:::::::
towards

:::
the

:::::
prior

::::::
fluxes,

:::
but

:::::::
without

:::
the

::::::::
correction

:::
we

::::::
expect

:::::
errors

::::
from

::::::::
wrongly

::::::::
projecting

::::
any

::::::::
boundary

::::
bias

::::
onto

:::
the

:::::
fluxes.

::::
We

:::::::::::
demonstrated

:::
the

::::::::
potential

::
of

:::
the660
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::::::
far-field

:::::::::
correction

:::::
using

::::::
biased

:::::::::::::::::
pseudo-observations

:::
and

::::::::
analyzed

:::
its

:::::::::
importance

::
in
:::::::::

sensitivity
:::::
tests,

:::
for

:::::
which

:::
we

::::::::
repeated

::
the

::::::::
inversion

::::
with

::::::::
different

::::::
tuning

:::::::::
parameters.

::::::
These

::::
tests

::::
with

::::
real

::::::::::
observations

:::::
show

::::
that

:::::
switch

:::
on

:::
the

:::::::
far-field

:::::::::
correction

::::::
changes

:::
the

::::::
results

:::::::::::
considerably

:::::
within

:::
the

:::::::::
uncertainty

:::::::
ranges,

::
but

:::
the

:::::::
specific

::::::
choices

:::::
made

::
in

::::::::::
constructing

:::
the

:::::::::
correction

::::
field

::::
have

::::
only

:::::
minor

:::
or

::::::::
moderate

::::::
effects.

:::::
Also

::::
other

::::::
tested

:::::::
changes

::
in

::::::
tuning

:::::::::
parameters

::::
only

::::
lead

::
to

:::::::::
variations

::
of

:::
the

::::::::
full-year

:::
flux

::::::::
estimates

::::
well

::::::
within

:::
the

:::::::::
uncertainty

::::::
ranges,

:::::::::
indicating

:::
that

:::
we

:::::
found

::::::
robust

:::::::
settings

::
for

::::
our

:::::::::
application.

:::::
This

:::::::::
establishes665

:
a
::::
basis

:::
for

::::::::
applying

:::
our

::::::
system

::
to

:::::::
validate

:::
the

:::::::
German

:::::::
emission

::::::::
inventory

::
in
::::
Part

::
2

::::::
(Bruch

::
et

:::
al.,

::::::
2025a).

:

In this study we only presented the first application of an extensible, novel inversion system. Future developments may

include the integration of satellite data,
::::
The

::::::::
presented

:::::
novel

::::::::
inversion

::::::
system

::::::::
leverages

:::
the

::::::::
potential

::
of

:
the incorporation of

temporal profiles, a more comprehensive treatment of boundary conditions and flux uncertainties using ensemble methods,

and an extension of the state space. The close connections to operational numerical weather prediction – especially in the670

underlying transport simulation – and
::::::::::
ICON–ART

:::::
model

::::
and

:::
the

::::::::
ensemble

::::::::
modeling

::::::::::
capabilities

::::
from

::::::::::
operational

:::::
NWP

:::
for

::::::
national

:::::
scale

:::::::::
estimation

::
of

:::::
CH4 :::::

fluxes.
::

It
::
is
:::::::
tailored

::
to

:
the modular design establish the potential for long-term operational

support of national emissions reporting.
::::::::
validation

::
of
:::::::
national

::::::::::
inventories

::
by

:::::
using

:::::::::::::
high-resolution

:
a
:::::
priori

::::::::
emission

::::::::
estimates

::::
from

:::::::
national

::::::::
reporting

:::
and

:::::::
allowing

:::
for

::::::::::::
distinguishing

:::::::
emission

:::::::
sectors,

::
as

::::
will

::
be

::::::::
discussed

::
in

:::::
detail

::
in

::::
Part

::
2.

::::
With

::::::::
synthetic

::::::::::
experiments

:::
and

:::::::::
sensitivity

::::
tests

:::
we

:::::::::::
demonstrated

:::
the

::::::::
suitability

:::
for

:::::::::
estimating

:::::::
national

::::
CH4:::::::::

emissions.675

Data availability. A collection of model data, inversion results, and data for reproducing most figures in this work is available at https:

//doi.org/10.5281/zenodo.17414768 (Bruch et al., 2025b).

Appendix A: Far-field
::::::
Formal

:::::::::
definition

::
of

:::::::
far-field

:
correction

This appendix provides details for the far-field correction introduced in Sect. 2.2.
:::::::
Sect. 2.3.

:
We correct the computed far

field by a smooth field that may only vary on temporal scales & 16h and horizontal scales & 320km. This correction field is680

determined using all data points where the cumulated signal of all flux categories is at most 20ppb, the total concentration due

to all fluxes in the domain – including natural and uncategorized fluxes – is at most 50ppb, and natural plus LULUCF fluxes

contribute at most 20ppb. These criteria aim to select only measurements of sufficiently clean air for the far-field correction.

Figure 2 shows that this correction lies typically in the range±10ppb and has a bias of few ppb towards higher concentrations.

685
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Figure B1. Statistical evaluation of the far-field correction. Considering all data points used in the inversion (steps 5–8 in

Table 4), histograms of the far-field correction (a) and its time gradient (b) show that the correction is usually in the range
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±10ppb and can vary by a few ppb per day. For each station and month, we compute the RMS and the mean (or bias).

Histograms combining these values for all stations and months are shown in (c) and (d). The broad distribution of the RMS690

values indicates significant differences among the stations. The bias shows a tendency towards positive values, which implies

that the far-field correction tends to increase the modeled CH4 concentration. This increase in model concentrations leads to a

decrease in emission estimates.

The far-field correction is realized as a Kalman smoother on the selected data points.
:::
For

:::::::::
simplicity,

:::
we

::::
only

:::::::
provide

:::
the

::::::::
definition

::
of

:::
the

::::::::
correction

::
at

:::
the

::::::::::
observation

::::::::::
coordinates. Consider the vector of all model predictions x, which is aligned with695

the observation vector y. By P we denote the projector selecting those data points that shall be used to determine the far-field

correction. We aim to find a correction vector c aligned with x and y that minimizes

argmin
c

{
1
2 (x+ c− y)>P>

(
PR̃P>

)−1
P (x+ c− y) + 1

2c
>P>

(
PC̃P>

)−1
Pc
}
, (A1)

where R̃= 16I is a diagonal matrix and C̃ is an unnormalized (i.e. C̃ii = 1 for all i)
:
a
:

Gaussian localization matrix with

standard deviations 16h (time), 319km (horizontal) and 1km (vertical),
:::::::::
normalize

::
to

::::::
C̃ii = 1

:::
for

:::
all

:
i. The matrix C̃ ensures700

that the correction field c is smooth on these scales. For the under-determined Eq. (A1) we use the solution

c= C̃P>
[
P (C̃ + R̃)P>

]−1
P (y−x). (A2)

::::
This

::::
only

::::::
defines

::
c
::
at

:::
the

:::::::::::
observations,

::::
but

:::
we

:::
can

:::::::::
generalize

::::::::::
Eq. (A2) to

:::::::
arbitrary

::::::::
locations

::::
and

:::::
times

:::
by

::::::::
including

:::::
these

:::::::::
coordinates

::
in

:::
C̃.

::::::::
Formally,

:::
this

::::
then

:::::::
defines

:
a
::::::
smooth

:::::
field.

To prove that Eq. (A2) solves
::
is

:::
one

:::::::
possible

::
–

:::::
albeit

:::
not

::::::
unique

:
–
:::::::
solution

::
of

:
Eq. (A1), we use that Eq. (A1) is a quadratic705

form and compute its gradient with respect to c:

0
!
= 2P>

(
PR̃P>

)−1
P (x+ c− y) + 2P>

(
PC̃P>

)−1
Pc. (A3)

This can be solved by requiring

0
!
=
(
PR̃P>

)−1
P (x+ c− y) +

(
PC̃P>

)−1
Pc

=
[(
PR̃P>

)−1
+
(
PC̃P>

)−1]
Pc+

(
PR̃P>

)−1
P (x− y)710

=⇒ Pc=
[
1 +PR̃P>

(
PC̃P>

)−1]−1
P (y−x)

= PC̃P>
[
P (C̃ + R̃)P>

]−1
P (y−x).
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::::
Since

:::::
PP>

::::
has

:::
full

::::
rank,

::::
this

::::::
implies

::::
that

0
:

!
=
[(
PR̃P>

)−1
+
(
PC̃P>

)−1]
Pc+

(
PR̃P>

)−1
P (x− y)

::::::::::::::::::::::::::::::::::::::::::::::::

(A4)

=⇒ Pc
::::::

=
[
1 +PR̃P>

(
PC̃P>

)−1]−1
P (y−x)

:::::::::::::::::::::::::::::::::

(A5)715

= PC̃P>
[
P (C̃ + R̃)P>

]−1
P (y−x).

:::::::::::::::::::::::::::::::

(A6)

:
It
:::::::
follows

::::
that

:::::::::
Eq. (A2) is

::
a
:::::::
solution

::
of

::::::::::::
Eq. (A1) that

::
is

::::::::::
independent

:::
of

:::
the

:::::::::::
non-selected

::::
data

::::::
points.

::::
One

:::
can

:::::::::::
furthermore

::::
show

::::
that

:::::::::
Eq. (A2) is

::::::
optimal

::
in
:::
the

:::::
sense

::::
that

:
it
:::::::::
minimizes

:::::::
c>C̃−1c

:::::
under

:::::::::
constraint

:::
that

:
c
::
is

:
a
:::::::
solution

::
of
::::::::
Eq. (A1).

:::::
Thus,

::::
this

::::::
solution

::
is
::
as

:::::
close

::
as

:::::::
possible

::
to

:::
zero

:::::
under

:::
the

::::::::
constraint

:::
of

:::::::::
smoothness

:::::::::
(quantified

:::
by

:::
C̃).

::
By

:::::::
defining

:::::::::::::::::::::::::::
ξ =

[
P (C̃ + R̃)P>

]−1
P (y−x)

:::
and

::::::::::
introducing

::::::::
Lagrange

:::::::::
multipliers

::
λ,

:::
we

:::::
obtain

:
720

f(c,λ)
:::::

= c>C̃−1c+λ>(Pc−PC̃P>ξ), ∂f

∂ci
= 0,

∂f

∂λj
= 0,

::::::::::::::::::::::::::::::::::::::::::::

(A7)

c=−C̃P>λ from ∂cif(c,λ) = 0,
:::::::::::::::::::::::::::

(A8)

Pc
::

= PC̃P>ξ from ∂λj
f(c,λ) = 0.

:::::::::::::::::::::::::::
(A9)

::::
Since

:::::::
PC̃P>

:::
has

::::
full

::::
rank,

:::::::::
combining

:::::::::::::::::::::::
Eqs. (A8) and (A9) implies

:::
that

:::::::
λ=−ξ

:::
and

:::::::
thereby

:::::::::
c= C̃P>ξ

::
is

:::
the

::::::
unique

:::::::
solution

::
of

:::
the

::::::::::
optimization

:::::::
problem

::::::::::::::
argminc f(c,0)

:::::
under

:::
the

::::::::
constraint

::::
that

::::::::::::
Pc= PC̃P>ξ.

:
725

Appendix B: Posterior-based model uncertainty estimate
::::::::
Posterior

::
R

::::
with

::::::::
reduced

::::::::
ensemble

[. . . ]

B1 Reduced ensemble

When using a priori scaling factors to estimate the model uncertainty
::
in

::
R, we need only the total concentration xmi (sprior)

for each ensemble member
::
m

::::
and

::::
each

::::::::::
observation

:
i,
::::::
where

::::
sprior

::
is

::::::
known. Thus, only a single tracer field is required in the730

ensemble transport simulation. To fully compute xmi (s) as function of s, the tracer
::
for

::::::::
arbitrary

:::::::
s ∈ R46,

:::
the

::::
flux

:
categories

need to be distinguished for each ensemble member, resulting in > 40 tracer fields in the ensemble simulation. To avoid

wasting numerical resources, we chose to approximate xmi (s) by only a few tracer fields, using additional information from

the deterministic model run which distinguishes all tracer fields.

From the deterministic model run
:
, we know the operator H mapping scaling factors s to a model prediction Hs+xff for735

the concentrations. For ensemble member m
:
, we would ideally know Hm and xff,m yielding

:
to
::::::::

compute
:
a model prediction

Hms+xff,m. To avoid calculating the full matrix
::
In

::::
lack

::
of

::::::::::::
computational

::::::::
resources

::
to

:::::::
compute

:
Hm , we

:::
for

:::::
every

::::::::
ensemble

:::::::
member,

:::
we

::::::::
combine

::::::::::
information

::::
from

:::
the

:::::::::::
deterministic

::::
run

::::
(H)

:::
and

:::::::
selected

::::::
tracers

:::
for

:::
the

:::::::::
ensemble

:::
run

::
to

:::::::::::
approximate

31



::::
Hm.

:::
We group the flux categories into groups {g} and denote by Pg the projector of scaling vectors s on the subspace spanned

by the flux categories in group g. Using the
::
In

:::
the

::::::::
ensemble

:::::::::
members,

:::
we

:::::::
compute

::::
the total concentration from group g,740

xmgi = xmi (Pgs
prior), we

::::::::::::::::
xmgi =HmPgs

prior.
:::
We

::::::::
distribute

:::
the

:::
46

:::
flux

:::::::::
categories

::
to

::::
only

:::::
three

::::::
groups

:::
and

:::::::
thereby

::::::
reduce

:::
the

:::::::::::
computational

:::::
effort

:::::::::::
considerably.

:::
To estimate the full dependence on the scaling factors

::
in

:::
the

::::::::
ensemble,

:::
we

:::::::::::
approximate:

xmi (s)≈
∑

g

(HPgs)i
(HPgsprior)i

xmgi +xff,m
i . (B1)

Thus, we compute the transport ensemble for a few tracer groups and estimate xm(s) for arbitrary s by using the ratios of

tracer fields within the tracer groups from the deterministic run. Using the approximation in Eq. (B1), we estimate the posterior745

model uncertainties with only five tracer fields in an ensemble of 12 transport simulations:

1. far field (initial and lateral boundary conditions)

2. total anthropogenic fluxes

3. total natural fluxes

4. total anthropogenic fluxes from Germany with lifetime five days750

5. total anthropogenic fluxes from outside Germany with lifetime five days

Appendix C: Extended data tables and figures
::::::::::
Observation

::::
sites

[. . . ]
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Table C1. Observation stations from the European Obspack (ICOS RI et al., 2024). Column 6 (“mountain”) characterizes the stations as high

mountains, small mountains, and other stations. This serves as a reference for computing the station height in the model and for the daily

time window. We indicate the sampling heights used in the inversion (column 7) and mark those sampling heights with an asterisk that have

good observation coverage in each month (used in sensitivity test 602). Column 8 indicates times in which the station was excluded due to

modeling problems. Column 9 (“inflation”) defines the factor fi of the static uncertainty inflation (see Sect. 2.6.3).

Code Name Coun-

try

ICOS

class

Elevation

(m)

Mountain Sampling

heights (m)

Limitations Infla-

tion

BIK Białystok PL – 183 no 90, 180, 300 2

BIR Birkenes NO 2 219 no 75 excl. Apr–Aug 3

BIS Biscarrosse FR – 73 small 47* 2

BRM Beromunster CH – 797 no 72, 132, 212 2

BSD Bilsdale UK – 382 no 108, 248 2

CBW Cabauw NL 1 0 no 67, 127*, 207* 2

CMN Monte Cimone IT 2 2165 high 8 2

CRA Centre de Recherches

Atmosphériques

FR – 600 no 60* 2

CRP Carnsore Point IE – 9 no 14 2

ERS Ersa FR – 533 small 40 3

FKL Finokalia GR – 250 small – excluded –

GAT Gartow DE 1 70 no 132*, 216*, 341* 2

HEI Heidelberg DE – 113 no 30* 3

HEL Helgoland DE 2 43 no 110* 2

HPB Hohenpeissenberg DE 1 934 small 50, 93*, 131* 2

HTM Hyltemossa SE 1 115 no 70, 150 2

HUN Hegyhátsál HU 2 248 no 82, 115 incl. Mar–Oct 3

IPR Ispra IT 2 210 no – excluded –

JFJ Jungfraujoch CH 1 3571.8 high 13.9 2

JUE Jülich DE 2 98 no 120* 3

KAS Kasprowy Wierch PL – 1987 high 7* 2

KIT Karlsruhe DE 1 110 no 60*, 100*, 200* 2

KRE Křešín u Pacova CZ 1 534 no 50, 125, 250 2

LHW Laegern-Hochwacht CH – 840 small 32 3

LIN Lindenberg DE 1 73 no 98 2

LMP Lampedusa IT 2 45 no – excluded –

755
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Code Name Coun-

try

ICOS

class

Elevation

(m)

Mountain Sampling

heights (m)

Limitations Infla-

tion

LMU La Muela ES – 571 no 79 2

LUT Lutjewad NL 2 1 no 60 excl. Nov–Dec 2

MHD Mace Head IE – 5 no 24* 2

MLH Malin Head IE – 22 no 47 2

NOR Norunda SE 1 46 no 58*, 100* 2

OHP Observatoire de Haute

Provence

FR – 650 no 50, 100 2

OPE Observatoire pérenne

de l’environnement

FR 1 390 no 50*, 120* 2

OXK Ochsenkopf DE 1 1022 small 90, 163 2

PAL Pallas FI 1 565 no 12* 2

PDM Pic du Midi FR – 2877 high 28 2

PRS Plateau Rosa IT 2 3480 high 10 2

PUI Puijo FI 2 232 small 84* 2

PUY Puy de Dôme FR 2 1465 small 10* 2

RGL Ridge Hill UK 2 207 no 90* 2

ROC Roc’h Trédudon FR – 362 no 25, 80, 140 2

SAC Saclay FR 1 160 no 60*, 100* 2

SMR Hyytiälä FI 1 181 no 67.2*, 125* 2

SSL Schauinsland DE 2 1205 small 12, 35 2

STE Steinkimmen DE 1 29 no 127*, 187*, 252* 2

SVB Svartberget SE 1 269 no 85*, 150* 2

TAC Tacolneston UK – 64 no 54*, 100*, 185* 2

TOH Torfhaus DE 2 801 small 76*, 110*, 147* 2

TRN Trainou FR 2 131 no 50*, 100*, 180* 2

UTO Utö - Baltic sea FI 2 8 no 57* 2

WAO Weybourne UK 2 17 no 10* 2

WES Westerland DE 2 12 no 14 2

ZSF Zugspitze DE 2 2666 high 3* 2

Chi-square

Appendix D:
::
χ2

:
analysis

In this appendix, we provide the mathematical details for the χ2/Ndof analysis used in Sect. 4.2.
:::::::::::::::::::::::::::::::::::::
(see, e.g., Greenwood and Nikulin, 1996) used

::
in

:::::::::
Sect. 2.6.5.

:
The aim of this analysis is to quantify whether the data used in the inversion agree with the assumed uncertain-760
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ties. The inversionformally relies
:::
We

::::::
restrict

:::
this

:::::::
analysis

:::
to

:::
the

::::
prior

::
R

::::
and

:::::::
diagonal

::
R

:::::::::
inversion,

::
for

::::::
which

:::
the

::::::
matrix

::
R

::
is

:::::::
constant.

:::::
These

:::::::::
inversions

::::::::
formally

:::
rely

:
on the assumption of Gaussian probability distributions of the a priori scaling factors

(error covariance matrix B) and the model–observation mismatch (R). For the

:::
We

::::
start

::::
from

:::
the

:::::::::
probability

::::::
density

:::
of

::::::::::
observations

::
y

:::::
under

:::
the

:::::::::
assumption

::::
that

:
s
::::::::
describes

:::
the

::::
true

:::::::::
emissions:

P (y|s)∝ exp
[
− 1

2 (y−Hs−xff)>R−1(y−Hs−xff)
]
.

:::::::::::::::::::::::::::::::::::::::::::::
(D1)765

::::
Like

::
in

::
the

:::::::::
inversion,

::
R

:::::::
describes

:::::::::::
uncertainties

::
in

:::
the

::::::::
transport,

::
in

::
the

::::::::
corrected

:::::::
far-field

::::::::::
contribution

:::
xff,

:::
and

::
in
:::
the

:::::::::::
observations

::
y.

::
By

::
a

::::::
change

::
of

:::::::
variables

:::
we

:::::
obtain

:::
the

:::::::::
probability

:::
for

:::
the

:
a
:::::
priori

:
model–observation mismatch µ= y−Hsprior−xff this yields

the probability
::::::::::::::::::::
µprior = y−Hsprior−xff:

:::::::::::::::::::::::::::::::::::::
P (µprior|s)dµ= P (y|s)|y=Hsprior+xff+µpriordy.

::
To

:::::::
estimate

:::::::
whether

:
a
:::::
given

:::::
µprior

:
is
::::::::
realistic,

:::
we

::::
need

::
to

:::::::
integrate

:::
out

:::
the

::::::
scaling

::::::
factors

:
s
::
to
::::::
obtain

::::::::
P (µprior).

:::
We

::::::
denote

:::
the

::::::
integral

::::
over

:::
the

::::::
vector

::::
space

:::
of

::::::
scaling

::::::
factors

:
s
::::
with

::::::::::
probability

:::::::
measure

:::
dPs:::

by
::::::::::::::::::::

∫
s
•dPs =

∫
s
P (s) • dns

:::
for

::::::
s ∈ Rn.

::::::
Using770

::
the

::::::
above

:::::::::
definitions

::
in

::::::::
Eq. (D1),

::
we

::::::
obtain3

::::::::::::::::::
(Berchet et al., 2015)

P (µ= y−Hsprior−xff)

=

∫

s

P (y =Hs+µ+xffprior|s
::::

)dPs (D2)

∝
:

∫
τ s exp

[
− 1

2τ(y−Hs−xff)
:::::::::::

>R−1(y−Hs−xff)−
:::::::::::::::::

1
2 (s− sprior)>

:::::::::
B−1τ(s

:
− sprior)

::::

]
y=Hsprior+xff+µprior dns
::::::::::::::::

(D3)

τ=s−sprior

=

∫

τ

exp

:::::

[
−
:

1
2 (Hτ+µprior−Hτ

:::::::
)>R−1(Hτ+µprior−Hτ

:::::::
)−
:

1
2τ
>B−1τ

:::::::

]
dNdofn

:
τ (D4)775

∝ exp

[
− 1

2µ
prior
::

>(
R−1−R−1+

:
H(B−1+H>R

)−1
H)−1H>R−1µprior

::

]
(D5)

=: exp
(
− 1

2µ
prior
::

>
Qµprior

::

)
. (D6)

Such
:::
This

:::::
result

::
is
::
a
:
high-dimensional Gaussian probability distributions share various useful properties. Here, we use that

when sampling
::::::::::
distribution,

::::::::::::::::
µprior ∼N (0,Q−1).

::::::
When

:::::::
drawing

::
a

::::::
random

::::::
vector

::
µ

::::
from

::
a
::::::::::
probability

:::::::::
distribution

:
P (µ)

::
as

::
in

::::::::
Eq. (D6), it is very likely to find µ such that χ2 ≡ µ>Qµ≈Ndof where Ndof denotes the number of degrees of freedom,780

which is the dimension of vector µ. In our case, Ndof ∼ 104 is the number of observation data points used per one-month

time window. In the limit of large Ndof, one can approximate P (χ2)∼N (Ndof,2Ndof) ::
the

::::::::::
probability

:::::::::
distribution

:::
for

:::
χ2

:::
by

:::::::::::::::::
χ2 ∼N (Ndof,2Ndof):(Gaussian distribution with mean Ndof and variance 2Ndof) ::::::::::::::::::::::::::::::::::

(Abramowitz and Stegun, 1964, Sect. 26.4).

Thus, in an idealized setup we expect that χ2/Ndof = 1±0.03 (95% confidence interval). Values & 1.05 imply that uncertainties

were underestimated
:::
hint

::
at

:::::::::::::
underestimated

:::::::::::
uncertainties and χ2/Ndof . 0.95 indicates that uncertainties were too high. How-785

ever, in reality we may have biases and other problems
::
not

:::::
fully

::::::::
described

:::::
errors

:
such that the assumption of a Gaussian

3In Eq. (D5), we first solve the Gaussian integral to obtain exp
{
− 1

2
µprior>[R−1 −R−1H(B−1 +H>R−1H)−1H>R−1

]
µprior

}
and then use that

(R+HBH>)
[
R−1 −R−1H(B−1 +H>R−1H)−1H>R−1

]
= I .
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uncertainty in the model–observation mismatch becomes invalid and χ2/Ndof < 1 does not necessarily imply that uncertainties

should
:::
can

::::::
simply be reduced.

Appendix E: Sensitivity tests

Table E1 provides an overview of the sensitivity tests. For this table
:
, we quantify the impact of a parameter variation on the790

inversion results by the following, heuristic metric: Consider a fixed region, sector and inversion time window with posterior

fluxes F ,
:::::::
defined

::
as

:::
the

:::::::
average

::
of

:::
the

::::
prior

:::
R

:::
and

::::::::
posterior

::
R

::::::::
inversion

:::::
result. The normalized deviation from the reference

inversion is defined as ∆ = 2|F−F ref.|
F ref. upper−F ref. lower , where F ref. upper and F ref. lower denote the bounds of the posterior uncertainty range.

The overall impact is computed as the arithmetic mean of ∆ over the (usually monthly) time windows and a selection of

regions and sectors. In the regions UK+Ireland, France, Italy, Poland, Austria+Czechia, Netherlands, Belgium+Luxembourg,795

Switzerland, and Denmark we consider only total fluxes without distinguishing sectors. In Germany we include ∆ for the total

fluxes in four different regions (north, east, south, west) and additionally for national total fluxes distinguishing the three sectors

agriculture, natural plus LULUCF, and other sectors. Effectively, this counts all fluxes in Germany twice and gives them more

weight in the impact metric for Table E1.

800
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Table E1. Sensitivity tests for estimating the robustness of the inversion results with respect to tuning parameters. Modified numbers are

marked in bold font. The impact column quantifies the deviation of the inversion results relative to the uncertainties and shall qualitatively

indicate the relevance of the modified parameters (see explanation in the text). An impact of 100% means that the average deviation from the

reference case is as large as the posterior uncertainty. Overall, we see that most tests have an impact of . 15%, implying that the effect on

the inversion results is small compared to the uncertainty in the reference case. See also Fig. E1 for the posterior emissions in the sensitivity

tests.

ID Test case Explanation Impact

0 reference
:::::::
reference

::::
case as explained in Sect. 4

:::::::::::::::
Sections 2 and 3 and

:::::::
discussed

::
in

:::
Part

:
2
::::::
(Bruch

:
et
:::
al.,

::::::
2025a),

::::
uses

::::::
129117

:::::::::
observations

::
in

::::
2021

:

Model equivalent calculation (see Sect. 3.3)

100 station elevation for mountain stations treat all mountain stations like small mountains when computing model

heights, as proposed by Brunner et al. (2012); Henne et al. (2016); Bergam-

aschi et al. (2022),
::::
uses

::::::
127087

::::::::::
observations

5.3 %

101 no
:::::::
additional

:
time averaging average only over 1 h instead of over

::
like

::
in
:::

the
::::::::::

observations,
::::::

instead
::
of

:::::::
averaging 3 h

13 %

Filtering observations (see Sect. 3.3)

200 fewer hours of day use time window 12 h–16 h (0 h–4 h for high mountains),
::::::
85674

:::::::::
observations

::::::::
(reference

:::
case

::::
uses

:::::::
11 h–17 h

:
/
:::::::
23 h–5 h)

:

11 %

201 all hours of day no filtering by time of day, increase uncertainty inflation
::::::
(factors

::
fi::

in

::::::::
Sect. 2.6.3)

:
by factor 1.5,

::::
uses

::::::
508594

:::::::::
observations

:

38 %

202 one sampling height per station use only highest sampling height of each station
:::::
instead

::
of

::
up

::
to
::
3

:::::
highest

:::::
levels,

:::::
80132

:::::::::
observations

:

16 %

203 no filtering based on wind include data points with low wind speed,
:::::::
147019

:::::::::
observations

:
12 %

204 low min. wind speed minimum wind speed: 1.11ms−1
::::::::
(reference:

:::::::
2ms−1),

::::::
140650

:::
obs.

:
9.4 %

205 high min. wind speed minimum wind speed: 3.0ms−1
::::::::
(reference:

:::::::
2ms−1),

::::::
112275

::::
obs. 11 %

206 low max. model-obs. mismatch discard when absolute deviation exceeds 120ppb, or model far

field minus observation exceeds 12ppb
::::::::::::::::::::
|y−Hs−xff|> 120ppb

::
or

:::::::::::::::
y−xff <−12ppb,

::::::
127055

:::
obs.

::::::::
(reference

::::
case:

::::::
200ppb

:
/
::::::::
−20ppb)

3.5 %

207 high max. model-obs. mismatch discard when absolute deviation exceeds 300ppb, or model far

field minus observation exceeds 30ppb
::::::::::::::::::::
|y−Hs−xff|> 300ppb

::
or

:::::::::::::::
y−xff <−30ppb,

::::::
129706

:::
obs.

:

1.3 %

208 low max. data point influence increase uncertainty if |µi|> 2.5
√
Rii in Sect. 2.4.1

::::::::::::::
|µi|> 2.5

√
Rstep 1

ii :
in

:::::::::::::::
Sect. 2.6.2 (reference

:::::
value:

::
3)

:

11 %

209 high max. data point influence increase uncertainty if |µi|> 4
√
Rii in Sect. 2.4.1

::::::::::::
|µi|> 4

√
Rstep 1

ii ::
in

:::::::::::::::
Sect. 2.6.2 (reference

:::::
value:

::
3)

:

15 %
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ID Test case Explanation Impact

Uncertainty / error covariance matrix R (see Sections 2.5 and 2.6)

300 no plume uncertainty no extra uncertainty due to point-like emissions
::::::
localized

::::::::
emissions

:::::::::
(Sect. 2.6.1)

0.27 %

301 high plume uncertainty
uncertainty due to point-like emissions: use R′ij +0.5ρ2i δij in Sect. 4.2

::::
extra

:::::::::
uncertainty:

::::::::::::::::::
Rstep 1

ij =R′ij +0.5ρ2i δij::
in
:::::::::::::::::

Sect. 2.6.1 (reference:
::::
0.25)

0.56 %

302 low uncertainty inflation uncertainty inflation by (1.5, 2.25) instead of (2, 3)
::::::
fi = 1.5

::
or

::::
2.25

:::::
instead

:
of
::
2
::
or

:
3
::
in

:::::::::
Sect. 2.6.3

8.6 %

303 high uncertainty inflation uncertainty inflation by (3, 4.5) instead of (2, 3)
::::
fi = 3

::
or
:::
4.5

::::::
instead

::
of

:
2

:
or
::
3
::
in

::::::::
Sect. 2.6.3

13 %

304 small horizontal error correlation scale scale 191km instead of 319km
::
in

:::::::::
localization

:::::
matrix

:::
Cij:::::::::

(Sect. 2.5.2)
:

6.0 %

305 large horizontal error correlation scale scale 510km instead of 319km
::
in

:::::::::
localization

:::::
matrix

:::
Cij:::::::::

(Sect. 2.5.2)
:

8.3 %

306 small vertical error correlation scale scale 400m instead of 1km
:
in

:::::::::
localization

:::::
matrix

:::
Cij:::::::::

(Sect. 2.5.2)
:

2.3 %

307 short error correlation time scale scale 4 h instead of 6 h
:
in

:::::::::
localization

:::::
matrix

:::
Cij:::::::::

(Sect. 2.5.2)
:

2.5 %

308 long error correlation time scale scale 10 h instead of 6 h
:

in
:::::::::
localization

:::::
matrix

:::
Cij:::::::::

(Sect. 2.5.2)
:

2.8 %

309 low uncorrelated uncertainty σconst = 5ppb instead of 10ppb in Eq. (2) 21 %

310 high uncorrelated uncertainty σconst = 20ppb instead of 10ppb in Eq. (2) 22 %

:::
311

::::::
diagonal

::
R

::::::
without

:::::::
ensemble

: ::
see

:::::::::
Sect. 2.5.1 :::

33 %
:

height Far-field correction (see Sect. 2.3 and Appendix A)

400 no far-field correction 97
::
35 %

401 weak far-field correction R̃= 100I instead of 16I in Eq. (A1) 16 %

402 strong far-field correction R̃= 2.78I instead of 16I in Eq. (A1) 9.2 %

403 small horiz. far-field correction scale scale 191km instead of 319km
::
in

:::::::::
localization

:::::
matrix

:::
C̃ij::

in
::::::::::
Appendix A 6.8 %

404 large horiz. far-field correction scale scale 510km instead of 319km
::
in

:::::::::
localization

:::::
matrix

:::
C̃ij::

in
::::::::::
Appendix A 4.5 %

405 short far-field correction time scale time scale 10 h instead of 16 h
:
in
:::::::::

localization
:::::
matrix

::::
C̃ij :

in
::::::::::
Appendix A 3.7 %

406 long far-field correction time scale time scale 28 h instead of 16 h
:
in
:::::::::

localization
:::::
matrix

::::
C̃ij :

in
::::::::::
Appendix A 3.8 %

407
long

:::::::
extra-long far-field correction time

scale

time scale 48 h instead of 16 h
:
in
:::::::::

localization
:::::
matrix

::::
C̃ij :

in
::::::::::
Appendix A 7.1 %

408 low vertical far-field correction scale scale 400m
:::::
instead

::
of

::::
1km

::
in

:::::::::
localization

:::::
matrix

:::
C̃ij::

in
::::::::::
Appendix A 0.92 %

409 strict far-field observation selection
max. signal 10ppb, max. due to natural fluxes 10ppb

:::::::
construct

::::::
far-field

:::::::
correction

:::::
based

:::
on

:::::::::
observations

::::
with

::::::::
cumulated

:::::
signal

::::
from

:::::::::
categorized

::::
fluxes

::::::::
≤ 10ppb

:::::::::
(reference:

:::::::
20ppb)

:::
and

::::
from

::::::
natural

:::::
fluxes

::::::::
≤ 10ppb

::::::::
(reference:

::::::
20ppb)

20 %

38



ID Test case Explanation Impact

410 loose far-field observation selection
max. signal 30ppb, max. due to natural fluxes 30ppb, max. uncategorized

80ppb
::::::
far-field

::::::::
correction

:::
uses

::::::::::
observations

::::
with

::::::::
cumulated

:::::
signal

::::
from

::::::::
categorized

:::::
fluxes

:::::::
≤ 30ppb

::::
(ref.:

:::::::::
≤ 20ppb),

::::
from

:::::
natural

:::::
fluxes

:::::::
≤ 30ppb

::::
(ref.:

::::::
20ppb),

::::
and

::::
from

::
all

::::::::
emissions

:::::
within

:::
the

::::::
domain

::::::::
≤ 80ppb

::::
(ref.:

::::::
50ppb)

14 %

411 unrestricted iterative far-field correc-

tion
max. signal 50ppb, no other selection criteria; C̃

::::::
far-field

::::::::
correction

:::
uses

::
all

:::::::::
observations

::::
with

::::::::
cumulated

:::::
signal

::::
from

:::::::::
categorized

:::::
fluxes

::::::::
≤ 50ppb;

:::
C̃ij :::

uses
:

localization scales 10 h, 191km; iterate far-field correction and

inversion
:::
are

::::::
iterated

:
3 times,

:::
the

::::::::
correction

::::::
always

::::
uses

:::
the

:::::::
posterior

::::::::::
concentrations

:::::
from

:::
the

:::::::
previous

:::::::
iteration.

::::
This

::::::::::
aggressively

::::::::
suppresses

::::
large

::::
scale

:::::
signals

::::::
(biases)

::
in

:::
the

::::::::::
observations.

30 %

412 low correction uncertainty use Rij +0.25|cicj |C̃ij in Sect. 4.2
:::::::::::::::::::::::
Rstep 4

ij =Rstep 3
ij +0.25|cicj |C̃ij::

in

:::::::::::::::
Sect. 2.6.4 (reference

:::::
value:

:::
0.5)

:

2.5 %

413 high correction uncertainty use Rij +1.0|cicj |C̃ij in Sect. 4.2
::::::::::::::::::::::
Rstep 4

ij =Rstep 3
ij +1.0|cicj |C̃ij ::

in

:::::::::::::::
Sect. 2.6.4 (reference

:::::
value:

:::
0.5)

:

4.2 %

414 uncorrelated correction uncertainty use Rij +2c2i δij instead of Rij +0.5|cicj |C̃ij in Sect. 4.2

::::::::::::::::::
Rstep 4

ij =Rstep 3
ij +2c2i δij :

in
:::::::::
Sect. 2.6.4

3.6 %

A priori scaling factor error covariance matrix B (see Sect. 2.8)

500 low prior uncertainty 1σ prior uncertainty for most areas0.25,
::
set

:::
to

:::::
0.25

:::::
(ref.:

::::
0.4)

::
for

:::::::::::
well-observed

::::::
areas,

:::
0.2

:::::
(ref.:

:::::
0.25)

:::
for

:
remote and plume 0.2,

sector-resolved 0.33
:::::::
categories,

:::::
0.33

:::::
(ref.:

::::
0.5)

::::
for

::::::::::::
sector-resolving

:::::::
categories

:

14 %

501 high prior uncertainty in Germany
1σ prior uncertainty such that

::::::
national total sector emissions in Germany

have uncertainty 0.6
::
1σ

:::::::::
uncertainty

:::::
60%

:
for each distinguished sector

::::::::
(reference:

::::::
approx.

::::
40%)

:

8.6 %

502 uncorrelated prior, B is diagonal 1σ prior uncert.
::::::::
uncertainty

::
in sector categories in Germany: 0.75

::::
0.75;

:::::::::
uncertainty

::
on

:::::::
national

::::
total:

:::::
35%

:::
for

:::::::::
agriculture,

::::
39%

:::
for

::::
other

:::::::::::
anthropogenic)

6.3
:::
5.6 %

503 no sector distinction in prior four regions in Germany with uncorrelated 1σ prior uncertainty of 0.4
::
0.4

:
7.7 %

504 low spatial resolution in Germany two initially uncorrelated regions in Germany
::::::::
(south-west

::::
and

::::::::
north-east),

:::
each

:::::::::::
distinguishing

:::::
sectors

::::
like

:
in
:::
the

:::::::
reference

::::
case

15 %

506 distinguish 5 sectors in Germany
see Appendix I

:::
split

::::::::
“non-agr.”

:::
into

::::::
sectors

:::::
waste,

:::::
public

:::::
power,

:::
and

::::
other

:::::::
emissions

:

2.1 %

Station selection

601
stations covering

:::::
require

::::::::
full-year

::::::
coverage

:

:::::
require

:
≥ 10 days each month use

:::::::
coverage

::::
each

:::::
month:

:
35 of 50 stations,

::::::
105701

:::
obs.

:

13 %
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Figure E1. Posterior emissions and uncertainties of selected countries and German sectors for all sensitivity tests. Thin horizontal lines

indicate the posterior of the reference case 0.
::::::
Markers

::::
show

:::
the

::::::
average

::
of

::::
prior

:
R
:::
and

:::::::
posterior

::
R

:::::::
inversion.

:
Vertical lines show uncertainties

(95% confidence intervals) that are not extended by excluding stations
:::
and

::::
cover

:::
the

::::::::
uncertainty

:::::
range

::
of

::::
prior

:
R
:::
and

:::::::
posterior

::
R

:::::::
inversion.

The individual tests are listed in Table E1. One can clearly see the strongest deviations for cases 400 (no far-field correction), whereas
:::
For

all other test casesonly lead to changes
:
,
::
the

:::::::
emission

::::::::
estimates

::
for

:::
the

:::::
shown

:::::::
countries

::::::
remain

:
within the uncertainty ranges

::::
range

::
of

:::
the

:::::::
reference

:::
case.

ID Test case Explanation Impact

602
stations covering

:::::
require

::::
good

::::::
full-year

::::::
coverage

:

:::::
require

:
≥ 20 days each month use

::::::
coverage

::::
each

::::::
month: 27 of 50 stationsas

detailed
:
,
:::::
82912

:::::::::
observations

::::::::
(discussed

:
in Fig. A2

:
of

:::
Part

::
2)
:

33 %

Inversion time windows (see Sect. 2.7)

701 2 month inversion window
:::::::::
uncertainties

:::
are

:::
not

::::::
adjusted

::
to

:::
the

:::::
longer

::::::
window

12 %

702 3 month inversion window
:::::::::
uncertainties

:::
are

:::
not

::::::
adjusted

::
to

:::
the

:::::
longer

::::::
window

18 %

Appendix F: Additional synthetic experiments805
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J., Ottosson-Löfvenius, M., Philippon, C., Pitt, J., Ramonet, M., Rivas-Soriano, P., Scheeren, B., Schumacher, M., Sha, M. K., Spain, G.,

Steinbacher, M., Sørensen, L. L., Vermeulen, A., Vítková, G., Xueref-Remy, I., di Sarra, A., Conen, F., Kazan, V., Roulet, Y.-A., Biermann,

T., Delmotte, M., Heltai, D., Hermansen, O., Komínková, K., Laurent, O., Levula, J., Lunder, C., Marklund, P., Morguí, J.-A., Pichon,

J.-M., Schmidt, M., Sferlazzo, D., Smith, P., Stanley, K., Trisolino, P., Zazzeri, G., ICOS Carbon Portal, ICOS Atmosphere Thematic Cen-

tre, ICOS Flask And Calibration Laboratory, and ICOS Central Radiocarbon Laboratory: European Obspack compilation of atmospheric900

methane data from ICOS and non-ICOS European stations for the period 1984–2024; obspack_ch4_466_GVeu_v9.2_20240502,

https://doi.org/10.18160/9B66-SQM1, 2024.

43



IPCC, Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., and

Federici, S., eds.: 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, vol. 1, The Intergovernmental

Panel on Climate Change (IPCC), https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html, 2019.905

Jähn, M., Kuhlmann, G., Mu, Q., Haussaire, J.-M., Ochsner, D., Osterried, K., Clément, V., and Brunner, D.: An online emission module for

atmospheric chemistry transport models: implementation in COSMO-GHG v5.6a and COSMO-ART v5.1-3.1, Geosci. Model Dev., 13,

2379–2392, https://doi.org/10.5194/gmd-13-2379-2020, 2020.

Kaminski, T., Rayner, P. J., Heimann, M., and Enting, I. G.: On aggregation errors in atmospheric transport inversions, J. Geophys. Res.

Atmos., 106, 4703–4715, https://doi.org/10.1029/2000JD900581, 2001.910

Kountouris, P., Gerbig, C., Rödenbeck, C., Karstens, U., Koch, T. F., and Heimann, M.: Technical Note: Atmospheric CO2 inversions

on the mesoscale using data-driven prior uncertainties: methodology and system evaluation, Atmos. Chem. Phys., 18, 3027–3045,

https://doi.org/10.5194/acp-18-3027-2018, 2018.

Kuenen, J., Dellaert, S., Visschedijk, A., Jalkanen, J.-P., Super, I., and Denier van der Gon, H.: Copernicus Atmosphere Monitoring Service

regional emissions version 4.2 (CAMS-REG-v4.2), Copernicus Atmosphere Monitoring Service (CAMS) [publisher], ECCAD [distribu-915

tor], https://doi.org/10.24380/0vzb-a387, 2021.

Kuenen, J., Dellaert, S., Visschedijk, A., Jalkanen, J.-P., Super, I., and Denier van der Gon, H.: CAMS-REG-v4: a state-of-the-art high-

resolution European emission inventory for air quality modelling, Earth Syst. Sci. Data, 14, 491–515, https://doi.org/10.5194/essd-14-

491-2022, 2022.

Lauvaux, T., Miles, N. L., Richardson, S. J., Deng, A., Stauffer, D. R., Davis, K. J., Jacobson, G., Rella, C., Calonder, G.-P., and DeCola, P. L.:920

Urban Emissions of CO2 from Davos, Switzerland: The First Real-Time Monitoring System Using an Atmospheric Inversion Technique,

Journal of Applied Meteorology and Climatology, 52, 2654–2668, https://doi.org/10.1175/JAMC-D-13-038.1, 2013.

Li, X. S. and Shao, M.: A Supernodal Approach to Incomplete LU Factorization with Partial Pivoting, ACM Trans. Math. Softw., 37,

https://doi.org/10.1145/1916461.1916467, 2011.

Li, X. S., Demmel, J. W., Gilbert, J. R., Grigori, L., Shao, M., and Yamazaki, I.: SuperLU Users’ Guide, june 2018 edn., 1999.925

Manning, A. J., Ryall, D. B., Derwent, R. G., Simmonds, P. G., and O’Doherty, S.: Estimating European emissions of ozone-

depleting and greenhouse gases using observations and a modeling back-attribution technique, J. Geophys. Res. Atmos., 108,

https://doi.org/10.1029/2002JD002312, 2003.

Manning, A. J., O’Doherty, S., Jones, A. R., Simmonds, P. G., and Derwent, R. G.: Estimating UK methane and nitrous oxide emissions

from 1990 to 2007 using an inversion modeling approach, J. Geophys. Res. Atmos., 116, https://doi.org/10.1029/2010JD014763, 2011.930

Meirink, J. F., Bergamaschi, P., and Krol, M. C.: Four-dimensional variational data assimilation for inverse modelling of atmospheric methane

emissions: method and comparison with synthesis inversion, Atmos. Chem. Phys., 8, 6341–6353, https://doi.org/10.5194/acp-8-6341-

2008, 2008.

Moré, J. J. and Sorensen, D. C.: Computing a Trust Region Step, SIAM Journal on Scientific and Statistical Computing, 4, 553–572,

https://doi.org/10.1137/0904038, 1983.935

Pearson, K.: X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables

is such that it can be reasonably supposed to have arisen from random sampling, Philosophical Magazine Series 5, 50, 157–175,

https://doi.org/10.1080/14786440009463897, 1900.

Petrescu, A. M. R., Qiu, C., McGrath, M. J., Peylin, P., Peters, G. P., Ciais, P., Thompson, R. L., Tsuruta, A., Brunner, D., Kuhnert, M.,

Matthews, B., Palmer, P. I., Tarasova, O., Regnier, P., Lauerwald, R., Bastviken, D., Höglund-Isaksson, L., Winiwarter, W., Etiope, G.,940

44



Aalto, T., Balsamo, G., Bastrikov, V., Berchet, A., Brockmann, P., Ciotoli, G., Conchedda, G., Crippa, M., Dentener, F., Groot Zwaaftink,

C. D., Guizzardi, D., Günther, D., Haussaire, J.-M., Houweling, S., Janssens-Maenhout, G., Kouyate, M., Leip, A., Leppänen, A., Lugato,

E., Maisonnier, M., Manning, A. J., Markkanen, T., McNorton, J., Muntean, M., Oreggioni, G. D., Patra, P. K., Perugini, L., Pison, I.,

Raivonen, M. T., Saunois, M., Segers, A. J., Smith, P., Solazzo, E., Tian, H., Tubiello, F. N., Vesala, T., van der Werf, G. R., Wilson, C., and

Zaehle, S.: The consolidated European synthesis of CH4 and N2O emissions for the European Union and United Kingdom: 1990–2019,945

Earth Syst. Sci. Data, 15, 1197–1268, https://doi.org/10.5194/essd-15-1197-2023, 2023.

Reinert, D., Prill, F., Frank, H., Denhard, M., Baldauf, M., Schraff, C., Gebhardt, C., Marsigli, C., Förstner, J., Zängl, G., Schlemmer,

L., Blahak, U., and Welzbacher, C.: DWD Database Reference for the Global and Regional ICON and ICON-EPS Forecasting System,

https://www.dwd.de/DWD/forschung/nwv/fepub/icon_database_main.pdf, 2025.

Rieger, D., Bangert, M., Bischoff-Gauss, I., Förstner, J., Lundgren, K., Reinert, D., Schröter, J., Vogel, H., Zängl, G., Ruhnke, R., and950

Vogel, B.: ICON–ART 1.0 – a new online-coupled model system from the global to regional scale, Geosci. Model Dev., 8, 1659–1676,

https://doi.org/10.5194/gmd-8-1659-2015, 2015.

Rigby, M., Manning, A. J., and Prinn, R. G.: Inversion of long-lived trace gas emissions using combined Eulerian and Lagrangian chemical

transport models, Atmos. Chem. Phys., 11, 9887–9898, https://doi.org/10.5194/acp-11-9887-2011, 2011.

Rocher-Ros, G., Stanley, E. H., Loken, L. C., Casson, N. J., Raymond, P. A., Liu, S., Amatulli, G., and Sponseller, R. A.: Global methane955

emissions from rivers and streams, Nature, 621, 530–535, https://doi.org/10.1038/s41586-023-06344-6, 2023.

Schraff, C., Reich, H., Rhodin, A., Schomburg, A., Stephan, K., Periáñez, A., and Potthast, R.: Kilometre-scale ensemble data assimilation

for the COSMO model (KENDA), Q. J. R. Meteorolog. Soc., 142, 1453–1472, https://doi.org/10.1002/qj.2748, 2016.

Schröter, J., Rieger, D., Stassen, C., Vogel, H., Weimer, M., Werchner, S., Förstner, J., Prill, F., Reinert, D., Zängl, G., Giorgetta, M., Ruhnke,

R., Vogel, B., and Braesicke, P.: ICON-ART 2.1: a flexible tracer framework and its application for composition studies in numerical960

weather forecasting and climate simulations, Geosci. Model Dev., 11, 4043–4068, https://doi.org/10.5194/gmd-11-4043-2018, 2018.

Segers, A. and Houweling, S.: CAMS global inversion-optimised greenhouse gas fluxes and concentrations, v22r2, Copernicus Atmosphere

Monitoring Service [data set], https://ads.atmosphere.copernicus.eu/datasets/cams-global-greenhouse-gas-inversion, (last accessed: 18

April 2024), 2020.

Segers, A., Nanni, R., and Houweling, S.: Evaluation and Quality Control document for observation-based CH4 flux estimates for the period965

1979-2022, ECMWF Copernicus Report, https://atmosphere.copernicus.eu/supplementary-services#ptab-3-1-content, 2023.

Steiner, M., Cantarello, L., Henne, S., and Brunner, D.: Flow-dependent observation errors for greenhouse gas inversions in an ensemble

Kalman smoother, Atmos. Chem. Phys., 24, 12 447–12 463, https://doi.org/10.5194/acp-24-12447-2024, 2024a.

Steiner, M., Peters, W., Luijkx, I., Henne, S., Chen, H., Hammer, S., and Brunner, D.: European CH4 inversions with ICON-ART coupled to

the CarbonTracker Data Assimilation Shell, Atmos. Chem. Phys., 24, 2759–2782, https://doi.org/10.5194/acp-24-2759-2024, 2024b.970

Stohl, A., Seibert, P., Arduini, J., Eckhardt, S., Fraser, P., Greally, B. R., Lunder, C., Maione, M., Mühle, J., O’Doherty, S., Prinn, R. G.,

Reimann, S., Saito, T., Schmidbauer, N., Simmonds, P. G., Vollmer, M. K., Weiss, R. F., and Yokouchi, Y.: An analytical inversion method

for determining regional and global emissions of greenhouse gases: Sensitivity studies and application to halocarbons, Atmos. Chem.

Phys., 9, 1597–1620, https://doi.org/10.5194/acp-9-1597-2009, 2009.

Storm, I., Karstens, U., D’Onofrio, C., Vermeulen, A., and Peters, W.: A view of the European carbon flux landscape through the lens of the975

ICOS atmospheric observation network, Atmos. Chem. Phys., 23, 4993–5008, https://doi.org/10.5194/acp-23-4993-2023, 2023.

UBA: Submission under the United Nations Framework Convention on Climate Change 2023, German Environment Agency,

https://doi.org/10.60810/openumwelt-2570, 2023.

45



UBA: Submission under the United Nations Framework Convention on Climate Change 2024, German Environment Agency,

https://doi.org/10.60810/openumwelt-7441, 2024.980

Vanderbecken, P. J., Dumont Le Brazidec, J., Farchi, A., Bocquet, M., Roustan, Y., Potier, E., and Broquet, G.: Accounting for meteorological

biases in simulated plumes using smarter metrics, Atmos. Meas. Tech., 16, 1745–1766, https://doi.org/10.5194/amt-16-1745-2023, 2023.

Veldeman, N., van der Maas, W., van Aardenne, J., Goodwin, J., Mareckova, K., Adams, M., Ruyssenaars, P., Wankmüller,

R., and Pye, S.: 7. Spatial mapping of emissions, in: EMEP/EEA air pollutant emission inventory guidebook 2013,

European Environment Agency, https://www.eea.europa.eu/publications/emep-eea-guidebook-2013/part-a-general-guidance-chapters/985

7-spatial-mapping-of-emissions/view, 2013.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,

van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat,

I., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald,

A. M., Ribeiro, A. H., Pedregosa, F., and van Mulbregt, P.: SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat.990

Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020.

Weber, T., Wiseman, N. A., and Kock, A.: Global ocean methane emissions dominated by shallow coastal waters, Nat. Commun., 10, 1–10,

https://doi.org/10.1038/s41467-019-12541-7, 2019.

Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M:

Description of the non-hydrostatic dynamical core, Quart. J. Roy. Meteorol. Soc., 141, 563–579, https://doi.org/10.1002/qj.2378, 2015.995

46



German methane fluxes in 2021 estimated with an
ensemble-enhanced scaling inversion based on the

::::::::::::::
top-down

:::::::::
using

ICON–ART model
::
–

:::::::
Part

::::
2:

::::::::::::::
Inversion

:::::::::::
results

:::::
for

::::::::
2021

Valentin Bruch1, Thomas Rösch1, Diego Jiménez de la Cuesta Otero1, Beatrice Ellerhoff1,
Buhalqem Mamtimin1, Niklas Becker1, Anne-Marlene Blechschmidt1, Jochen Förstner1, and Andrea
K. Kaiser-Weiss1

1Deutscher Wetterdienst, Frankfurter Str. 135, 63067 Offenbach

Correspondence: Valentin Bruch (valentin.bruch@dwd.de) and Andrea K. Kaiser-Weiss (andrea.kaiser-weiss@dwd.de)

Abstract. A reliable quantification of greenhouse gas emissions is important for climate change mitigation strategies. Inverse

methods based on observations and atmospheric transport simulations can support emission quantification down to
::
at the

national scale, yet, they are often limited by the observing systems, transport model uncertainties, and inversion methodologies.

Here, we present
::::
This

:::::::
two-part

:::::
study

:::::::::
introduces a system for observation-based, regional methane flux estimation, which has

the potential for long-term operational support of national emission reporting. We apply this to Central Europe in 2021 with5

focus on Germany, where we distinguish emissions from different anthropogenic sectors. .
:::
In

:::
the

::::::
present

::::
Part

::
2,

::
we

:::::
apply

::::
this

::::::
system

::
to

:::::::
estimate

:::::::
German

:::::::
methane

:::::::::
emissions

::
in

:::::
2021.

:
The atmospheric transport is calculated with the numerical weather

prediction model ICON–ART at 6.5 km resolution, sampling the meteorological uncertainty with a 12-member
::::
ICON

:::::
with

::
its

::::
ART

:::::::
module

:::
for

::::
trace

:::::
gases

::
is

::::
used

::
to
::::::::

simulate
:::
the

::::::::::
atmospheric

::::::::
transport

:::::
while

:::::::::
estimating

:::::::::::
uncertainties

:::::
using

:
a
:
transport

ensemble. We use a priori fluxes from national reporting to facilitate the validation of reported fluxes. Posterior fluxes are10

estimated with a modified synthesis inversion method
:::::::::
introduced

::
in

:::
Part

::
1, relying on observations from the Integrated Carbon

Observation System (ICOS).
:::::
in-situ

:::::::::::
observations.

:
Compared to the a priori, we find a significant increase in methane emissions

in Germany and in the Benelux. We estimate German methane emissions (32± 19)% higher than the anthropogenic emissions

in the national inventory, and attribute
::
our

::::::::
inversion

::::::
method

::::::::
attributes

:
this difference mainly to the agricultural sector, although

separation from Land Use, Land Use Change and Forestry (LULUCF) as well as natural fluxes requires further research. The15

combination of an ensemble-enhanced numerical weather prediction model for atmospheric transport and good observation

coverage paves the way to sector-specific, observation-based national emission estimates.

1 Introduction

Reducing greenhouse gas (GHG) emissions is crucial for mitigating current anthropogenic global warming. UNFCCC (United

Nations Framework Convention on Climate Change) compliant national inventories and/or process models quantify anthro-20

pogenic GHG emissions for the purpose of monitoring the effectiveness of mitigation as planned, e.g., in the Paris Agreement.

In addition to so-called “bottom-up” methods, atmospheric GHG concentration observations are used in “top-down” flux es-

1



timations. The latter are complementary, as they are sensitive to the total fluxes (i.e., anthropogenic and natural) and provide

options for independent validation of a priori fluxes provided by inventories (IPCC et al., 2019). The usefulness of top-down es-

timates has been demonstrated, e.g., for the United Kingdom (Manning et al., 2011), Switzerland (Henne et al., 2016), Europe25

(Petrescu et al., 2023) and globally (Deng et al., 2022; Petrescu et al., 2024).

Although research foundations for top-down methods have been developed in recent decades ,
:
(see Janssens-Maenhout et al.

(2020) and references therein
:
), applications remain limited due to sparse observation coverage and representativeness, and

most critically, due to transport model uncertainties (Engelen et al., 2002; Gerbig et al., 2008). The latter is a well-known issue

not solved yet (Munassar et al., 2023). Inversions using satellite observations (e.g. Estrada et al., 2024) benefit from larger30

spatial observation coverage, but the uncertainties of the observations are larger compared to in situ data and the influence on

the inversion results was found smaller where in situ coverage is good (Thompson et al., 2025). The benefits of increased model

resolution (Agustí-Panareda et al., 2019; Bergamaschi et al., 2022) can be reaped with regional high resolution modeling , and

ensembles can cover parts of the meteorological uncertainty (Steiner et al., 2024a). At short time scales, the regional model

uncertainties will constitute the main uncertainty, while at longer time scales, the boundary conditions become critical for35

tracer transport (Chen et al., 2019).

Regional top-down estimates of long-lived GHG can be based on different types of transport models. Lagrangian models

calculate trajectories from selected locations by moving with air parcels transported by the wind. They have been widely used

for inversions of trace gases like halocarbons, nitrous oxide and methane (CH4) in European regions, see e.g., Stohl et al. (2009); Ganesan et al. (2015); Henne et al. (2016).

In contrast, Eulerian models – such as ICON–ART – continuously transport trace gas concentrations through three-dimensional40

grid boxes. Although they are computationally more expensive for cases where a relatively small number of trajectories

would suffice, they become superior when the amount of data grows and, as Engelen et al. (2002) pointed out, open the

road for data assimilation methods as used in numerical weather prediction. Regardless whether Lagrangian or Eulerian

or even combined approaches (Rigby et al., 2011) are applied, the top-down estimation requires solving an inverse problem

(Enting, 2002). Eulerian transport model based inversions may employ emission ensembles, as in Steiner et al. (2024b) with a45

localized Kalman filter, and other data assimilation methods. Alternatively, the method of synthesis inversion scales a set of

a priori emission categories (Kaminski et al., 2001). Note that Meirink et al. (2008b) compare 4D-Var and synthesis inversion

methods.

In this work, we present
::
we

::::::
present

::::
first

:::::
results

:::
of a modular system for regional top-down estimates of CH4 fluxes designed

to validate national inventories, including the discrimination of economic sectors such as agriculture and industry. We apply50

this method focusing on German inventories (provided by Umweltbundesamt and Thünen Institute) for the year 2021 using in

situ observations collected by ICOS (ICOS RI, 2024). Atmospheric transport is simulated using the numerical weather predic-

tion model ICON (Zängl et al., 2015) extended with the module for Aerosol and Reactive Trace gases (ART) (Rieger et al.,

2015; Schröter et al., 2018) with a spatial resolution of 6.5km. The model is combined with a synthesis inversion approach

(Kaminski et al., 2001) which is developed further to make use of the ensemble-estimated transport uncertainty. For minimiz-55

ing transport errors, we rely on the operational numerical weather prediction at Germany’s Meteorological Service (DWD)

for meteorological initial conditions, lateral boundaries and transport ensemble calculations. Further, we use the Copernicus

2



Atmospheric
::::::::::
Atmosphere Monitoring Service (CAMS) for boundary conditions of methane, and compensate possible biases

on the boundaries by deriving a correction field. Benefiting from the numerical weather prediction model and spatially highly

resolved a priori fluxes from the inventory agencies, we explore the basis for future operational top-down validation of national60

emission reporting, with special emphasis on further use in Germany.

In Sect. 2, we explain the transport model and the inversion methodology , while leaving some technical details for the

appendices. Section 3 contains an overview of the utilized initial and boundary data as well as the a priori fluxes. Further,

we describe the pre-processing of the observations used. Section 4 is dedicated to the details of the method concerning

its application for Germany. Section 5
:::::::::
summarize

:::
the

:::::::::::
methodology

::::::
which

::
is
::::::::::

introduced
::
in

:::::
detail

:::
in

::::
Part

::
1

::
of

::::
this

:::::
work65

:::::::::::::::::
(Bruch et al., 2025a).

:::::::::
Section 3 contains the results for our example year 2021, together with the results of the validation

and sensitivity tests . The potential of the method is demonstrated by model performance tests using pseudo-observations with

known true emissions. In Sect. 6
::::::::
validation

::::
tests

::::
and

::
an

:::::::
analysis

:::
of

:::
the

::::::
ability

::
to

:::::::::
distinguish

::::::::
emission

:::::::
sectors.

::
In

::::::
Sect. 4 we

discuss limitations and capabilities of the method and compare to other studies, followed by a conclusion in Sect. 7.
:::::
Sect. 5.

:

2 Method70

::::
This

::::::
section

::
is

:
a
:::::::::::
non-technical

::::::::
summary

::
of

:::
the

:::::::
detailed

:::::::
method

:::::::::
description

::
in

::::
Part

:
1
::::::
(Bruch

::
et
:::
al.,

:::::::
2025a).

[. . . ]

2.1 Transport model
::::::::::::::
Parametrization

::
of

:::::
fluxes

The atmospheric transport is simulated using the numerical weather prediction model ICON (Zängl et al., 2015) with the

ART module (Rieger et al., 2015; Schröter et al., 2018). The model is run in limited area mode for a domain covering large75

parts of
:::
We

::::
aim

::
to

:::::::
validate

:::
the

:::::::
national

:::::::::
reporting

::
of

:::::::
German

:::::
CH4 ::::::::

emissions
:::

to
:::
the

:::::::::
UNFCCC.

::
A
::::::

simple
:::::

way
::
to

:::::::
address

:::
this

:::::::::
validation

:::::::
problem

::
is

:
the European continent (latitudes 34° N to 70° N, longitudes 21° W to 59° E, see Fig. 1) with a

horizontal resolution of 6.5km (ICON grid R3B8) and 74 vertical levels up to a maximal height of 22.77km.
::::::::
following

:::::::
question:

:::
By

::::::
which

:::::
single

:::::::
number

::::::
should

:::
we

::::::::
multiply

:::
all

:::::::
reported

:::::::
German

::::
CH4:::::::::

emissions
:::::
based

:::
on

:::
the

::::::::::
information

:::::
from

:::::::
observed

::::
CH4:::::::::::::

concentrations?
:

The surface CH4 fluxes are provided to the transport model using the online emission module80

(Jähn et al., 2020; Steiner et al., 2024b)
:::
We

:::
can

::::::
extend

::::
this

:::::::
question

:::
and

::::::::
estimate

:::::::
different

::::::
scaling

::::::
factors

:::
for

:::::::
different

:::::::
regions

:::
and

:::::::
different

::::::::
emission

::::::
sectors.

::
In

::::
this

:::::
work,

::
we

:::::::
estimate

:::::::
scaling

:::::
factors

:::
for

:::
46

::::::::
categories

::
of

::::
CH4:::::

fluxes
:::
for

::::
each

::::::
month

::
in

:::::
2021.

:::
The

::::::
spatial

::::::::
definition

::
of

:::::
these

::::
flux

::::::::
categories

::
is
::::::
shown

::
in

::::::
Fig. 1.

::
In

::::::::
Germany,

:::
we

:::::::::
distinguish

:::
11

::::
flux

:::::::::
categories,

:::::::::
consisting

::
of

::
six

:::::::
regions

:::
for

:::
the

:::::::::
agriculture

::::::
sector,

::::
one

::::
flux

:::::::
category

:::
for

::::
land

::::
use,

::::
land

::::
use

::::::
change

::::
and

:::::::
forestry

:::::::::
(LULUCF)

::::
plus

:::::::
natural

:::::
fluxes,

::::
and

::::
four

::::::
regions

:::
for

:::
the

::::
sum

::
of

::
all

:::::::::
remaining

:::::::::
emissions.

::
In

::::::::
summary,

:::
the

:::::
state

:::::
space

::
of

:::
our

::::::::
inversion

::
is

::::::
defined

:::
by

:::
the85

:::
flux

:::::::::
categories

:::
and

:::::::
consists

::
of

::::
only

:::
46

:::::::
numbers.

For long living tracers like methane, the correct treatment of the lateral boundary concentrations isof importance. Therefore,

we extended the model by implementing lateral boundary nudging for ART tracers in order to obtain smooth fields and avoid
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::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Figure 1.
:::::::
Overview

::
of
:::
the

:::::
model

::::::
domain

::::::::
indicating

:::
flux

::::::::
categories

::::::
(colored

:::::
areas)

:::
and

:::::::::
observation

::::
sites

:::::
(white

::::
dots),

:::::::
modified

::::
from

:::
Part

::
1

:::::
(Bruch

::
et

:::
al.,

::::::
2025a).

::::
Each

::::::::
connected

:::
area

::
of
:::::

equal
::::
color

::::::
defines

:::
one

::::
flux

::::::
category

:::
for

:::::::::::
anthropogenic

::::::::
emissions,

:::::
except

::
in
::::::::
Germany

:::
and

::
the

::::::::::
Netherlands,

:::::
where

::
the

::::::::
categories

:::
are

::::
split

::
up

:::::
further

::
to
:::::::::
distinguish

::::::::
agriculture

::::::::
emissions

::::
from

::::
other

::::::
sectors.

::
In

::::
white

::::::
hatched

:::::::
regions,

:::::
natural

:::::
fluxes

::::
form

::::::::
additional

:::
flux

::::::::
categories

::::::
because

::::
large

:::::
natural

:::::
fluxes

:::
are

:::::::
expected.

:::::
Close

::
to

:::
the

:::::
eastern

:::
and

::::::
western

::::::
domain

::::::::
boundary

::::
(dark

::::
blue),

::::::::
emissions

:::
are

:::
not

::::::
adjusted

::
by

:::
the

::::::::
inversion.

::::::
Fugitive

::::::::
emissions

::::
from

::
the

:::::
Upper

:::::::
Silesian

::::
Coal

::::
Basin

:::::
(white

::::::
ellipse)

:::::
define

::::
their

:::
own

:::
flux

:::::::
category.

:

strong gradients. Further, so-called meteogram output has been implemented for ART tracers, providing model output in the

vicinity of observation locations with high temporal resolution.90

For improved uncertainty estimates, we run a meteorological

2.2
:

A
:::::
priori

::::::
fluxes

:::
For

:::
the

:
a
::::::

priori
:::::
fluxes

::::::
outside

:::::::::
Germany,

:::
we

::::::::
combine

:::::::::::
CAMS-REG

:::::::::::::::::::::::::
(Kuenen et al., 2021, 2022) for

::::::::::::
anthropogenic

:::::::::
emissions

::::
with

::::::
wetland

:::::::::
emissions

::::
from

:::
the

::::::
CAMS

::::::
global

::::::::::::::::
inversion-optimized

::::::
dataset

::::::::::::::::::::::::::
(Segers and Houweling, 2020),

::::::
version

:::::
v22r2.

::::
For

::::::::
Germany,

::
we

::::
use

::::::::
emissions

:::::::
obtained

::::
from

:::
the

::::::::
inventory

::::::::
agencies,

:::
that

::
is,

:::
the

::::::::::::::::
Umweltbundesamt

::::::::::::::::::::::::::::::::::::::::::::::::::
(German Environmental Agency, Feigenspan et al., 2024) and95

::
the

:::::::
Thünen

:::::::
Institute

::::::::::::::::::::
(Fuß and Akubia, 2024).

:::::::::
Moreover,

::
we

:::::::
consider

:::::::::
emissions

::::
from

:::::
rivers

:::
and

:::::::
streams

:::::::::::::::::::::
(Rocher-Ros et al., 2023),

::
as

::::
well

::
as

::::::
oceans

:::::::::::::::::
(Weber et al., 2019).

2.3
::::::::

Transport
::::::::::
simulation

::
To

:::::::
connect

:::::::
surface

:::::
fluxes

::::
and

:::::::::::
observations,

:::
we

:::::
need

::
to

:::::::
simulate

:::::::::::
atmospheric

::::::::
transport.

:::::
This

:::::::::
simulation

::
is

::::
done

::::::
using

:::
the

::::::::
numerical

:::::::
weather

:::::::::
prediction

:::::
model

::::::
ICON

::::::::::::::::::::
(Zängl et al., 2015) with

:::
the

::::::
module

:::
for

:::::::
Aerosol

:::
and

::::::::
Reactive

:::::
Trace

:::::
gases

::::::
(ART)100

:::::::::::::::::::::::::::::::::::
(Rieger et al., 2015; Schröter et al., 2018) at

::
a
::::::::
horizontal

:::::::::
resolution

::
of

:::::::
6.5km.

:::::
Initial

::::
and

::::::
lateral

::::::::
boundary

:::::::::
conditions

:::
for

:::
the

::::
CH4 ::::::::::::

concentrations
:::
are

::::::
taken

::::
from

::::
the

::::::
CAMS

::::::
global

:::::::::::::::::
inversion-optimized

::::::
dataset

::::::::::::::::::::::::::
(Segers and Houweling, 2020),

:::::::
version

:::::
v22r2.

:::
To

:::::::
mitigate

::
a
:::::::
possible

::::
bias

::
in

:::
the

::::::
lateral

::::::::
boundary

::::::::::
conditions,

:::
we

::::::::
construct

::
a
::::::
smooth

:::::::::
correction

::::
field

::::
that

::
is
::::::
added
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::
to

::
all

::::::
model

:::::::::
predictions

::
of

:::
the

::::::::
boundary

:::::::::::
contributions.

:::::
This

::::::
far-field

:::::::::
correction

::
is

:::::::::
constructed

::::::
based

::
on

:::::::::::
observations

::
for

::::::
which

::
the

::::::
model

:::::::
predicts

:::::
clean

:::
air

::::
with

:::::
small

::::::::
influence

::
of

:::::::::
emissions

::::
from

::::::
within

:::
our

::::::::
domain.

:::
We

:::::::
estimate

::::::::
transport

:::::::::::
uncertainties105

:::
and

::::
their

::::::::::
correlations

:::::
using

:::
an

:
ensemble of 12 members . Each ensemble member uses slightly different but equally likely

parametrizations and meteorological initial and boundary conditions. The construction of this ensemble follows the operational

::::
with

::::::
slightly

:::::::
different

:::::::::::
meteorology,

:::::::
derived

::::
from

:::
the

::::::::::
operational

::::::::
numerical

:
weather prediction at DWD (Schraff et al., 2016).

In the following, we therefore distinguish a so-called deterministic model run providing the best estimate of the modeled CH4

concentration, and the ensemble runs providing 12 different CH4 concentrations to estimate the uncertainty.110

[. . . ]

2.4
:::::::::::

Observations

:::
We

:::
use

::::
CH4::::::::::::

concentration
:::::::::::
observations

:::::
from

:::
the

::::::::
European

::::::::
Obspack

:::::::::::::::::::::
(ICOS RI et al., 2024) as

::::::::
provided

:::
on

:::
the

:::::::::
Integrated

::::::
Carbon

::::::::::
Observation

:::::::
System

::::::
(ICOS)

::::::
carbon

::::::
portal.

:::
The

::::::
hourly

:::::::::::
observations

:::
are

::::::
filtered

:::
by

::::
time

::
of

:::
day

::::
and

::::
wind

:::::
speed

:::
to

:::
use

::::
only

::::::::::
observations

::::
that

:::
can

:::
be

::::::::
predicted

::::
well

:::
by

:::
the

:::::::
transport

::::::
model.

::::
We

:::
use

:::::
night

::::
time

:::::::::::
observations

::::
(23 h

::
to

:::
5 h

:::::
local

:::::
mean115

::::
time)

:::
for

::::
high

::::::::
mountain

:::::::
stations

:::
and

::::::::
afternoon

:::::
hours

:::::
(11 h

::
to

::::
17 h

::::
local

:::::
mean

:::::
time)

:::
for

::
all

:::::
other

::::
sites,

:::::::::
discarding

:::::::::::
observations

:
at
:::::
wind

::::::
speeds

:::::
below

:::::::
2ms−1.

:

2.5 Inversion (Sect. 2.3)

We use a Bayesian inversion to optimize the agreement of model and observations by scaling

2.5
:::::::

Bayesian
:::::::::
Inversion120

::
To

:::::::
estimate

:::
the

::::::
scaling

::::::
factors

::
of

:
the flux categories. This is formulated in ,

:::
we

:::
use

::
a

:::::::
Bayesian

:::::::::
inversion.

::::::::
Denoting

:::
the

::::::
scaling

:::::
factors

:::
as

:
a
:::::
vector

::::::::
s ∈ R46,

:::
the

::::::::
inversion

:
is
::::::::::
formulated

::
as the optimization problem

spost = argmin
s

{
1
2 ([y−Hs−xffH ′(s

::::
)]>R−1([y−Hs−xffH ′(s

::::
)] + 1

2 (s− sprior)>B−1(s− sprior)

}
. (1)

for the posterior scaling factors spost. Here, the first term penalized the deviation from the concentration observations, and the

second term penalizes the deviation from the prior fluxes. In the first term, the vector
:::::
Here, y of observed concentrations is125

compared to
::::::
denotes

:
a
::::::
vector

::
of

::
all

:::::::::::
observations

::::
and

:::::
H ′(s)

::
is the model prediction , which consists of the transported fluxes

Hs and the modeled far field xff. The transported fluxes Hs depend linearly on the vector s of scaling factors for the flux

categories, which is optimized. The difference between modeled and observed values is weighted by
:::
for

:::::
these

:::::::::::
observations,

:::::
which

:::::::
includes

:::
the

::::::::::
previously

:::::::::
mentioned

:::::::
far-field

:::::::::
correction.

::
R
:::

is the error covariance matrix R describing the combined

uncertainty of the transport model and
:
of

:
the observations. With the second term we constrain s by defining a priori scaling130

factors sprior (sprior
i = 1 for all i) with an

:::::::::::::::
model–observation

::::::::
mismatch

::::
and

::
B

::
is

:::
the error covariance matrix B characterizing

::
of the a priori uncertainty.

In Eq. (1), the fluxes are parametrized by the vector s of scaling factors . The flux categories thereby define the low-dimensional

space in which the inversion can optimize the fluxes. The model observation operator H connects the space of scaling factors
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(vectors
::::::
scaling

::::::
factors sprior, spost) to the observation space (vectors y, xff). Computing H requires the transport model which135

distinguishes the flux categories. The setup is designed for optimizing a low-dimensional vector spost of scaling factors (∼ 102

degrees of freedom) using a large number of observations (∼ 104), but an extension to more degrees of freedom and/or more

observations is possible.

[. . . ]

3 Input data and processing (Sect. 3)140

[. . . ]

3 Application to Germany and neighboring areas for the year 2021 (Sect. 4)

[. . . ]

2.1 Prior uncertainties (Sect. 4.4)

In each inversion time window, we consider uncorrelated a priori scaling factors with a two standard deviation (2σ) uncertainty145

of 80% for most flux categories, corresponding to a 95% confidence interval of ±80%. Throughout this paper, uncertainties

will denote .
:::::
Since

::
s
::::::::
describes

:::::::::
prefactors

::
to

:::
the

:
a
:::::
priori

:::::::::
emissions,

:::
we

:::::::
initially

:::
set

::::::::
sprior
k = 1

:::
for

::
all

:::
k.

::
In

::
B

:::
we

:::::::
assume

::
an

::
a

::::
priori

::::::::::
uncertainty

::
of

::::::::
2σ = 0.8

:
(two standard deviations)

:::
for

:::
the

::::::
scaling

::::::
factors

::
of

::::
most

:::::::
regions.

::::
This

:::::
gives

:::
the

:::::::
inversion

:::::::
enough

:::::::
freedom

::
to

:::::
adjust

::::
the

::::::
scaling

:::::::
factors.

::
In

:::::
large

:::::::
distance

::::
from

:::::::::
Germany,

:::
the

::
a

:::::
priori

::::::::::
uncertainty

::
is

:::::::
reduced

::
to

::::::::
2σ = 0.5

::::
(see

:::::
Fig. 2

::
b),

::::
and

:::
for

:::::::
emission

::::::
sectors

::
in

::::::::
Germany

::::
and

:::
the

::::::::::
Netherlands

:::
we

:::
use

::::::::
2σ = 1.0.150

:::
The

::::::::::
construction

:::
of

::
R

:::::
based

::
on

:::
the

::::::::
transport

::::::::
ensemble

:
is
::::::::
discussed

::
in
:::::
detail

::
in
::::
Part

::
1

::::::
(Bruch

:
et
:::
al.,

:::::::
2025a).

::
In

::::::
Eq. (1),

::
R
::::
can

::
be

::::::::
estimated

:::::
using

:::::
either

::
a
:::::
priori or 95% confidence intervals. Categories resolving emission sectors have a higher prior 2σ

uncertainty of ±100%, and within Germany categories describing the same sector have an a priori uncertainty correlation of

50% (e. g., uncertainties of agriculture emissions in the German states of Bavaria and Baden-Wuerttemberg are assumed to be

correlated). Importantly, the previously defined sectors waste, public power and “other” are combined and denoted “non-agr.”155

in the following. The ±100% uncertainty applies to the combination. For the Upper Silesian Coal Basin as well as regions

outside of our primary focus in Central Europe and with low observation density, the 2σ uncertainty is set to±50%. Figure 2(b)

shows these a priori uncertainties on a map. The sensitivity of our results to these choices and many more tuning parameters is

tested in Appendix E.

2.1 Posterior uncertainty estimates (Sect. 4.5)160

Our inversion setup necessarily makes idealized assumptions on uncertainties of a priori and a posteriori fluxes. Based on these

assumptions, the inversion yields posterior statistical uncertainties as part of the posterior error covariance matrix.However,

these uncertainties neglect possible unknown biases and other systematic errors which we need to anticipate when working

6



with real data. We therefore use an enhanced notion of posterior uncertainty that combines statistical and methodological

uncertainties. The main contribution to the posterior uncertainties is the statistical uncertainty, which we provide as two165

standard deviations (95% confidence interval). Additionally, we combine the two variants of inversion (prior-R and posterior-R,

see Sect. 2.4.2) by taking the arithmetic mean of the two separate inversion results , arriving at the combined scaling factors.

Assuming that the difference
:::
This

::::::
defines

::::
two

::::::
slightly

::::::::
different

:::::::
methods

:::
that

:::
are

:::::::::
introduced

:::
in

::::
Sect.

:::
2.5

::
of

::::
Part

:
1
:::
as

:::::
“prior

:::
R”

:::
and

::::::::
“posterior

:::
R”

:::::::::
inversion.

:::::
Here,

:::
we

::::
only

:::::::
consider

:::
the

:::::::
average

::
of

:::
the

:::
two

::::::
results

:::
and

:::
the

::::::
union of the two variants indicates

an additional, methodological uncertainty , our combined uncertainty range includes the uncertainty rangesof both individual170

results
:::::::
posterior

::::::::::
uncertainty

::::::
ranges.

Furthermore, each observation site may have a bias due to very local pollution or topography that is not modeled properly.

We therefore only consider an inversion result reliable if it is robust with respect to the choice of used observations. To represent

this in the uncertainty estimate

2.6
:::::::

Posterior
::::::::::::
uncertainties175

::
To

::::::::
estimate

:::
the

:::::::::::
uncertainties

:::
of

::::::::
posterior

:::::
fluxes

:::::::::::::
conservatively, we repeat the inversions 50 times for both prior-R and

posterior-R, excluding each station once . The final posterior uncertainty range is spanned by the
:::::::
inversion

::::::
50× 2

:::::
times

::::
with

::::
each

::
of

:::
the

::
50

::::::::::
observation

::::
sites

::::::::
excluded

::::
once

:::
for

:::::
each

::
of

:::
the

:::
two

:::::::::::::
approximations

:::
for

:::
R.

::::
The lower and upper bounds of the

100 uncertainty ranges , each describing a
:::::::
resulting

:::::::
hundred

::
2σ

::::::::::
uncertainty

::::::
ranges

::::
form

::::
our

:::::::
posterior

:
95% confidence inter-

val. This method of compensating for possible methodological weaknesses in a cautionary uncertainty estimate implicates that180

the posterior uncertainty may not necessarily be smaller than the prior uncertainty. Such cases we interpret as no information

gain from the observation-based inversion with respect to the prior.
:::
This

:::::::
ensures

:::
that

::
a
:::::
result

::::
that

::
is

::::
only

:::::
based

:::
on

:
a
::::::
single

:::::::::
observation

::::
site

:::
will

:::
not

:::
be

:::::::::
considered

:::::::::
significant.

:

2.7 Inversion time windowand temporal aggregation (Sect. 4.3)

We apply the inversion
:::
The

::::::
scaling

::::::
factors

:::
are

::::::::
estimated separately for each month in 2021. In each monthly time window, we185

start from fixed a priori scaling factors sprior
i = 1 and use observations within the time window to compute a posteriori scaling

factors as explained in Sect. 2.3. However, when aggregating results for the whole year, we treat the uncertainties of the prior

or posterior fluxes of different months as correlated because these likely
::::
2021

::
by

:::::
using

::::
only

:::::::::::
observations

:::::
from

:::
the

:::::::
selected

::::::
month.

:::
The

::::::
results

:::
for

:::::::
different

:::::::
months

:::
are

:::
thus

:::::::::::
independent.

::::
But

::::
since

:::
the

::::::::
posterior

:::::::::
uncertainty

::::::::
estimates

:
include systematic

uncertaintiesand biases which we cannot fully separate from the statistical uncertainty. We therefore aggregate by adding up190

absolute emissions and their uncertainties linearly. ,
:::
we

:::::::
assume

:::
that

:::::::::::
uncertainties

::::
from

:::::::
different

:::::::
months

:::
are

:::::::::
correlated.

3 Results(Sect. 5)
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Figure 2. Full-year averages of (a) a priori fluxes, (b) a priori uncertainty on scaling factors, (c) a posteriori scaling factors, and (d) a posteriori

uncertainty on scaling factors. Multiplying the a priori emissions (a) with the scaling factors (c) yields the a posteriori emissions. (b) and

(d) show half of the 95% confidence interval of the fluxes relative to the a priori fluxes, i.e., a 2σ uncertainty of ±50%
::
0.5 on the a priori

appears as 0.5 (i.e., 50%)
::
0.5 on the color scale. The direct comparison indicates the uncertainty reduction.

:::
The

::::::
smooth

::::::::
boundaries

:::::::
between

:::
two

:::::
regions

::::
with

::::::
separate

::::::
scaling

:::::
factors

::::::
appear

:
as
::::::

darker
:::
lines

:::::::
because

::::
these

:::::
scaling

::::::
factors

::
are

:::::::
assumed

::
to

::
be

::::::
initially

::::::::::
uncorrelated.

This section presents the inversion results for Germany and the considered European regions, along with examinations of

the seasonal cycle, validation of the results, and sensitivity tests. All uncertainty estimates are presented as 95% confidence

intervals as detailed above.195

3.1 Resulting scaling factors

Figure 2 presents an overview of (a) the a priori CH4 fluxes ,
::::::::::
accumulated

::::
over

:::
the

::::
year

:::::
2021,

:
(c) the resulting scaling factors

:::::::
averaged

::::
over

:::::
2021, and the respective uncertainties (b, d), all accumulated over the year 2021. .

:
The a posteriori scaling

factors (Fig. 2 c) show the correction to the a priori emissions obtained in the inversion. A considerable increase in emissions

is found for Germany and the Benelux. Lower emissions compared to the a priori are predicted for Scandinavia (see discussion200

in Sect. 4.3). The scaling factors should be considered jointly with their uncertainties. The comparison of Fig. 2 (b) and (d)
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Figure 3. National CH4 emission estimates comparing reported (NIR), prior, and posterior fluxes for 2021 with horizontal lines indicating

95% confidence intervals. Countries are grouped by the expected robustness of their inversion results. Some neighboring countries are com-

bined to obtain more accurate results. For Germany, the inversions can resolve the agricultural sector, though the separation against natural

and LULUCF fluxes is difficult. All other anthropogenic sectors are combined in the category “other excl. LULUCF”
::::
“other

::::
excl.

::::::::
LULUCF”.

The inclusion of two inversion methods (prior-R
:::::
“prior

:::
R” and posterior-R

:::::::
“posterior

:::
R”, markers) yields

::::::
provides

:
an estimate of the

methodological uncertainty. Accumulated fluxes
:::::::

emissions from national inventory reports (NIR) to the UNFCCC submitted 2024 (includ-

ing LULUCF emissions) are shown for reference (light blue bars, UNFCCC, 2024). For France (Citepa, 2024) and the United Kingdom

(Department for Energy Security and Net Zero, 2024), the light blue bars show emission data from the respective inventory agencies ex-

cluding overseas territories and crown dependencies. Posterior uncertainties
:::
that

:::
are asymmetric with respect to flux estimates such as in

Switzerland indicate the strong influence of a single observation site.

shows a substantial uncertainty reduction for Germany and most of the surrounding countries, for which we chose a high a

priori uncertainty.

For a more detailed comparison of a priori and a posteriori emissions and uncertainties, we consider selected national

emission estimates in Fig. 3.205

Reliable inversion results are expected for countries or regions with sufficient observation coverage, strong emission signals,

representation in the respective flux categories, and only moderate issues due to complex topography. These criteria are met for

Germany, the Netherlands and the United Kingdom plus Ireland as grouped in Fig. 3. For Germany (first line
::::
entry

:
in Fig. 3),
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the total posterior CH4 emissions (red bar) are (32± 19)% higher than the anthropogenic emissions (including LULUCF )

::::::::
including

::::::::
LULUCF

:
reported to the UNFCCC in 2024 (light blue bar). The direct comparison to the reporting neglects the210

unreported natural fluxes, but for Germany these are expected to be small because all relevant soil emissions are included in

the LULUCF sector. The inversion significantly increases emission estimates from the agriculture sector while the combined

other sectors remain nearly unchanged. Note, however, that the uncertainty in the sector attribution is large (horizontal lines,

see further discussion in Sections 3.4.2 and 4.3).

For the Netherlands, we also find significantly higher emissions than in the inventory. Compared to Germany, the attribution215

to sectors has an even larger uncertainty, associated with fewer observations that could distinguish the sectors. Nevertheless,

the total emissions from the Netherlands are comparably well constrained by the observations. For the United Kingdom and

Ireland – which we combine to obtain more accurate results – the inversion yields a strong uncertainty reduction while hardly

changing the total emissions, indicating a good agreement of observations and national inventory.

In most countries, the observations do not cover the whole country, or the inversion results rely on few observations. In220

Fig. 3 (gray-shaded part) we provide emission estimates also for countries or regions affected by this issue, though these have

a large posterior uncertainty. Another issue arises from the definition of the flux categories, which do not necessarily follow

country borders (see Fig. 1). In France, Belgium, and Switzerland, the inversion scales flux categories overlapping
:::
that

:::::::
overlap

multiple countries1. This implies that national emission estimates derived for these countries have an additional uncertainty and

artificial correlations with neighboring countries. However, this is of no concern for our application for Germany. The national225

emission estimates are computed from the gridded posterior fluxes and precisely follow the country borders as shown in Fig. 2.

The scaling factors and uncertainties of all flux categories are listed in Fig. A1 for completeness.

3.2 Seasonal cycle

Although the national emission estimates are given for the full year, a closer examination of the seasonal cycle yields
:::::::
provides

additional insights. The posterior fluxes are computed independently for each month and region. Figure 4 shows the monthly230

emission rates for the countries considered in Fig. 3. While the seasonal cycle is strikingly different depending on the region,

we find some recurrent features. For Germany, Poland, the Netherlands, and Austria plus Czechia (panel (a) in Fig. 4), the

posterior emission rates have their minimum in May. A local minimum between April and June is also found for northern

France and Belgium plus Luxembourg, see panel (b). In most countries, this minimum is followed by a local maximum in July

or August, which is most prominent in the Netherlands and Austria plus Czechia (panel (a)).235

The differences between the regions become larger in autumn and winter. In September, posterior emission rates reach their

maximum in Germany and Italy, and their minimum in (northern) France. France and Belgium plus Luxembourg have their

highest emission rates in winter, when Switzerland and Spain plus Portugal have their minimum. For some regions – most

notably Italy and the United Kingdom plus Ireland – no clear pattern is found in the seasonal cycle for 2021 (panel (c) in

Fig. 4).240

1Technically, the issue also affects Italy because Corsica is combined with parts of Italy in one flux category. But the a priori emissions from Corsica are

so low that the effect on the national emission estimate is negligible.
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Figure 4. Monthly posterior emission rates for selected countries or regions. Colored areas show the posterior uncertainties, and dotted

lines with small markers indicate prior emission rates. In the prior, only the natural and LULUCF fluxes are time-dependent. The panels

show (a) countries with minimum in May, (b) countries with a maximum in winter, and (c) other countries and regions. For France and

Germany, selected regions are shown additionally (white markers). “DE, northwest” includes Rhineland-Palatinate, Saarland, Hesse, North

Rhine-Westphalia, Lower Saxony, Schleswig-Holstein, Bremen and Hamburg.

The seasonal cycle in the inversion results may be partially influenced by the observation coverage because many stations

lack data covering the whole year. To avoid this effect, we repeated the inversion using only stations which provide data for

at least 20 days of each month. The seasonal cycle in these results does not change significantly, see Fig. A2.
::::::::::::
supplementary

:::::::
Fig. A2. We further note that there is a seasonal cycle in the observations (East et al., 2024), which is captured well by the

far field in the model though (see Fig. A3).
::::
This

::::
“far

:::::
field”

::
is

::::::
defined

:::
as

::::
CH4::::::::::

transported
:::
into

::::
our

::::::
domain

:::::
from

:::
the

::::::
lateral245

:::::::::
boundaries.

:
A possible bias in the lateral boundary conditions determining the far field could also

:::::
could influence the seasonal

cycle in the estimated fluxes. Moreover, the different meteorology in summer and winter – especially influencing the planetary

boundary layer and vertical mixing (Seidel et al., 2012) – can lead to a seasonal bias in our transport model (Bessagnet et al.,

2016; Canepa and Builtjes, 2017). This highlights the need for careful interpretation of the seasonal cycle, as meteorological

differences could introduce biases that mask true emission patterns. Another potential contribution to the seasonal cycle could250

arise from neglecting the OH sink of CH4 in our limited domain .
::::::::::::::::
(Logan et al., 1981).

:

3.3 Validation

A straightforward validation of the inversion results is possible using independent validation stations. Having excluded each

station once in separate inversion runs, we can use every station as an independent validation site in the respective inver-
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Figure 5. Statistics of the relative (a) and absolute (b) improvement of the model–observation mismatch by the inversion at independent

validation stations. Each station and month is considered separately in its own (prior-R and posterior-R) inversion, with the validation

station excluded from the inversion to remain independent. The histograms show (a) 1− rpost/rprior and (b) rprior − rpost where rpost and rprior

refer to the RMSE of the model–observation comparison in the case of posterior scaling and prior scaling, respectively. Each time series

contributing to the histogram is weighted by the number of its data points. We consider all data points within the daily time window without

filtering for wind speed , extreme mismatch, uncertainty weighting or
::::::::::::::
model–observation

::::::::
mismatch

:::
and

:::::
without

:::
the

:
far-field correction (i.e.,

after step 3
::::::::
introduced in Table 2)

::
Part

::
1
:::::
(Bruch

::
et

:::
al.,

:::::
2025a) to keep the comparison as close as possible to the original data. Positive values

indicate an improvement in the model prediction due to the inversion.

sion run. Figure 5 shows histograms of the RMSE statistics evaluating
:::
root

:::::
mean

::::::
square

:::::
error

:::::::
(RMSE)

::::::::
statistics

::::::::
obtained255

::::
from

:
the model–data mismatch before and after the inversion. The validation stations agree on average significantly better

with observations when using a posteriori emissions compared to the a priori.
:
A
::::::::::
comparison

:::
of

:::
the

::::
same

::::::::::
histograms

:::
for

:::
the

:::::::
different

:::::::
methods

::
of
:::::::::

estimating
:::::::::::

uncertainties
:::::::::
introduced

:::
in

:::
Part

::
1
::::::
(Bruch

::
et

:::
al.,

::::::
2025a)

::::::
shows

:::
no

::::::::
significant

::::::::::
differences

::::
(see

::::::::::::
supplementary

::::::::
Fig. A4).

3.4 Sensitivity tests (Sect. 5.4)
:::::::
Potential

:::
for

::::::::
detecting

:::::::::
emissions260

[. . . ]

3.5 Potential for detecting emissions (Sect. 5.5)

In this section, we complement the uncertainty estimates of our inversion results by separate measures for the sensitivity of the

posterior to true emissions. The potential for detecting emissions from different sources can be identified using the posterior

error covariance matrix Bpost. However, the real error reduction is also influenced by the far-field correction and the filtering of265

observations , which is
::
as

:::::::
detailed

::
in

::::
Part

:
1
::::::
(Bruch

::
et
:::
al.,

:::::::
2025a).

:::::
These

:::::::
aspects

:::
are not fully captured in Bpost. We therefore

use experiments with a “synthetic”, i.e., define
::::::
defined truth and pseudo-observations to test the full inversion system.

3.4.1 National emission estimates

We first aim to verify that the inversion yields meaningful posterior emission estimates and uncertainties given a perfect trans-

port model. To this end, we generate 100 random vectors of scaling factors following the probability distribution assumed in270

the a priori uncertainty. These scaling factors define the
::::
Each

:::::
vector

:::
of

::::::
scaling

::::::
factors

::::::
defines

:
a
:
synthetic truth, and the model

12



0.0 0.2 0.4 0.6 0.8 1.0
uncertainty posterior / prior

0.0

0.2

0.4

0.6

0.8

1.0

RM
SE

 p
os

te
rio

r /
 p

rio
r

Germany

France (mainland)

Austria, Czechia
Belgium, Luxembourg

Spain, Portugal
UK, Ireland

Netherlands

Poland

Italy

Denmark

Switzerland

DE: agr.

DE: non-agr.

DE: natural + LULUCF

Figure 6. RMSE and mean uncertainty of CH4 emission estimates in synthetic experiments for selected countries, regions, and
::::::
German

::::::
emission

:
sectors. Each of the 100 synthetic experiments generates

:::
uses random true emissions. The vertical axis shows the root mean square

(RMS) deviation of the posterior from these true emissions, relative to the RMS deviation of the prior from the truth. Lower values indicate

that the inversion improves the emission estimate. The horizontal axis shows the posterior uncertainty relative to the prior uncertainty.

::::::::
Therefore,

::
the

::::::
bottom

:::
left

::::::
indicates

::::
best

::::::::::
performance. The disk size indicates the amount

:::::::
magnitude

:
of the prior emissions.

prediction for the observations obtained using these scaling factors defines our pseudo-observations. We further add uncor-

related Gaussian noise of standard deviation 2ppb to these pseudo-observations. Since the pseudo-observations are inferred

from the model data, there is no transport error in these synthetic experiments.
::::
This

::::::::::
construction

::
of

:::::::::::::::::
pseudo-observations

::::::
clearly

::::::::::::
underestimates

:::
the

::::
true

::::
error

::
in

:::
the

::::::::::::::::
model–observation

::::::::::
comparison,

:::
but

::
it
::::::
allows

::
us

::
to

:::
test

:::
the

::::::::
interplay

::
of

:::::::
far-field

:::::::::
correction275

:::
and

::::::::
inversion

::
in

:
a
:::::::::
controlled

:::::
setup.

::::::::
Synthetic

::::::::::
experiments

::::
with

:
a
:::::::::
simulated

:::::::
transport

::::::::::
uncertainty

::
are

:::::::::
discussed

::
in

:::
Part

::
1

::::::
(Bruch

:
et
:::
al.,

:::::::
2025a).

The quality of the model prediction for this synthetic truth is shown in Fig. 6 for selected countries and German sectors.

By comparing to the synthetic truth, we find the prior and posterior error. Their ratio (vertical axis in Fig. 6) shows a sig-

nificant improvement by the inversion for all considered regions and German sectors, with the exception of German natural280

and LULUCF fluxes. The uncertainty reduction of the inversion (horizontal axis) provides a realistic estimate of the real error

reduction (vertical axis) for the case of high quality observations, ideal transport modelingand perfect far field
:
,
::::
and

::::::
perfect

:::::
lateral

::::::::
boundary

:::::::::
conditions. In some cases (Netherlands, Switzerland, Belgium, and Luxembourg), the real error reduction is

significantly better than the uncertainty reduction suggests. This is no surprise because in this synthetic setup the transport
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Figure 7. Averaging kernel matrices of German sector emissions (a, c) and scaling factors (b, d). The kernel is estimated using either the

posterior covariance matrix (a, b) or 100 synthetic experiments with random truth (c, d). The small matrices on the bottom indicate what we

aim for (posterior equals truth). The value 0.96 in the first row (“total”), second column (“agriculture”) of panel (a) means that if in reality all

German agriculture emissions were 1kt higher than in our prior, then we would expect an increase in the posterior total German emissions

by 0.96kt. Similarly, the value 0.67 in the same cell of panel (b) means that increasing real agriculture emissions by 10% should increase

our posterior total emissions by 6.7%. All matrices are averaged over the whole year. Red lines separate the individual sectors from their

sum (“total”). By “non-agr.” we denote anthropogenic emissions excluding agriculture and LULUCF.

error as the main source of uncertainty is switched off. Overall, the synthetic experiments confirm the potential for a strong285

uncertainty reduction in Central Europe.

3.4.2 Distinguishing sectors in Germany

Within Germany, we distinguish agriculture from other emissions.
:::
The

::::::::::::
discrimination

:::
of

:::::::
emission

::::::
sectors

::::::
works

::
in

:::
the

:::::
same

:::
way

:::
as

:::
we

:::::::::
distinguish

::::::::
emissions

:::::
from

:::::::
different

::::::
areas.

::::
Each

::::::
sector

:::
has

::
a

::::::
specific

::::::
spatial

::::::::::
distribution

::
of

:::::::::
emissions,

::::::
which

:::
we

::::::
assume

::
to

::
be

::::::
correct

::
in
:::
the

::
a
:::::
priori.

::::
The

::::::::
predicted

::::
CH4 :::::::::::

concentration
::
at

:::
the

::::::::::
observation

::::
sites

:::
will

::::::::
therefore

::::::
depend

:::
on

::::
how

:::
the290

::::::::
individual

::::::
sectors

:::
are

::::::
scaled.

:::
In

:::
the

::::::::
inversion,

:::
the

::::::
sector

::::::::
emissions

:::
are

::::::
scaled

::
to

::::
find

::::::
optimal

:::::::::
agreement

::
of

::::::
model

:::::::::
prediction

:::
and

:::::::::::
observations.

The ability to distinguish sectors can be described by averaging kernel matrices which estimate the dependence of the

posterior on the true emissions, Aemis
ij = ∂epost

i /∂etruth
j where ei denotes emissions from sector i. Since the true emissions etruth

are generally unknown, the averaging kernels Aemis can only be estimated. Figure 7 shows such estimates for Aemis (panels a,295

c) and the averaging kernel for scaling factors, Ascaling factors
ij = ∂spost

i /∂struth
j (panels b, d). Assuming a perfect transport model
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and perfect far field, the averaging kernel matrix can be estimated by Aemis ≈ I−Bpost. emisB
−1
prior emis (Rodgers, 2000) using the

prior and posterior covariance matrices of the emissions from the prior-R
:::::
“prior

:::
R”

:
inversion (see Appendix B1). I denotes the

identity matrix. Figure 7 (a) shows this averaging kernel estimate for German sector emissions, extended by a row and column

for the total German emissions.300

The first row of Fig. 7 (a) indicates that the total German posterior emissions follow changes in every sector with high

accuracy (88% to 96%). The diagonal of Fig. 7 (a) signifies that changes in the agriculture will be detected very well and also

the attribution to the sum of all other anthropogenic sectors excluding LULUCF (“non-agr.”) will be mostly correct. However,

LULUCF plus natural fluxes will in large parts be falsely attributed to the agriculture (second row, last column). Note that

ideally, the first row and the diagonal elements would be close to 100% (color-coded in the small matrix bottom left). The305

averaging kernel Ascaling factors in Fig. 7(b) shows that the influence of LULUCF and natural emissions on the posterior scaling

factor for agriculture emissions remains low (second row, last column). But if all emissions are scaled by the same factor (first

column), the changes will be mostly attributed to the agriculture sector(as explained in Appendix C).
::::
This

:::::
effect

::
is

::::::::
expected

::::::
because

:::
the

::::::::::
agriculture

:::::
sector

:::
has

::::
the

::::::
highest

:::::::
absolute

::
a
:::::
priori

::::::::::
uncertainty,

:::::
which

::::::
makes

:::::::
changes

::
in
::::::::::

agriculture
:::::
more

:::::
likely

:::
than

:::::::
changes

::
in
::::
any

::::
other

::::::
sector.

::
A

::::::
formal

::::::::
derivation

:::
of

:::
this

::::::::
argument

::
is

::::::::
presented

::
in

:::::::::::
Appendix C.310

The averaging kernel matrices in Fig. 7 (a) and (b) are estimated based on the prior-R
:::::
“prior

:::
R”

:
inversion while neglecting

the far-field correction. We complement these by a statistical estimate of the averaging kernels using 100 synthetic experiments

with random truth (see Appendix B2), shown in Fig. 7 (c) and (d). Here, the far-field correction is applied as implemented in

our processing chain. While these statistical estimates reproduce all qualitative features in the averaging kernels, the matrix

entries estimated using synthetic experiments are generally lower. This is likely due to the far-field correction and indicates315

that deviations from the prior emissions may be underestimated by our inversion. Importantly, both presented strategies for

estimating the averaging kernels assume a perfect transport model. The real sensitivity of the posterior to the true emissions is

therefore expected to be lower.

3.5 Simulated transport error (Sect. 5.6)

[. . . ]320

4 Discussion(Sect. 6)

Our inversion system combines precise in situ observations, accurate a priori fluxes from national reporting, the ICON–ART

transport model at 6.5km resolution, and an ensemble-estimated transport uncertainty. We further rely on CAMS boundary

conditions and high-resolution meteorological fields from operational numerical weather prediction. This yields in general a

good agreement between the model prediction and filtered observations, allowing us robust emission estimates for countries325

with well-observed emissions
::::::::
countries, such as Germany. We compare top-down CH4 emission estimates to the reported

German inventory and its agriculture sector with enough accuracy to lay the technical foundations for a future long-term

observation-based national inventory verification. This section discusses our main results (Sect. 4.1), including a comparison
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with other studies (Sect. 4.2). We elaborate the limitations of our approach (Sect. 4.3) and its potential for the development of

observation-based national inventory verification to inform climate policy (Sect. 4.4).330

4.1 Key findings

Firstly, we find that our top-down CH4 emission estimates are significantly higher than reported for Germany. Secondly, we

identify the agriculture sector and possibly LULUCF and natural fluxes as the
:::::
likely main source of this discrepancy. Thirdly,

we estimated the transport uncertainty using a meteorological ensemble . The same ensemble allowed us to simulate the effect

of a transport error on the inversion results, which we estimate to be 2% for the total German emissions.335

Fourthly, our study points to the relevant tuning parameters.
::::
recall

:::::
from

::::
Part

::
1

::::::
(Bruch

::
et
:::

al.,
:::::::

2025a)
::::
that

:::
the

::::::::
transport

::::
error

::::::::
simulated

:::
in

:::
the

:::::::::::::
meteorological

::::::::
ensemble

:::::
leads

:::
to

::
an

::::::::::
uncertainty

:::
of

:::
2%

:::
on

::::
the

::::
total

:::::::
German

:::::
CH4 :::::::::

emissions.
:
The

far-field correction significantly impacts the inversion results, but the specific choices made in its setup have only minor or

moderate effects. Switching on the far-field correction lets us err slightly on the side of caution, i.e., our results will be biased

towards the prior flux estimates. Without far-field correction, on the other hand, we expect errors from wrongly projecting any340

boundary bias onto the fluxes. For the station observation filtering (e.g., time window selection, outlier identification), we found

a robust setting for our application because of sufficient observation coverage. However, this may become a problem for other

applications in less well-observed circumstances. Tuning the model–observation uncertainty parameters proved important, and

thus we chose them cautiously to avoid overfitting.

4.2 Comparison to other methods345

Our Eulerian approach with sectoral segregation differs from other studies on CH4 inversions for single countries, e.g., Henne

et al. (2016) for Switzerland and Ganesan et al. (2015) for the United Kingdom that use Lagrangian transport models. The

latter both qualitatively attribute deviations from the inventory reporting to the agriculture sector by comparing the spatial

and/or temporal patterns in the posterior fluxes to sectoral a priori fluxes. A similar strategy for sectoral segregation based on

spatial flux patterns
:
a
::::::
known

::::::
spatial

::::::::::
distribution

::
of

:::::
fluxes

:
is followed by Varon et al. (2022) and analyzed by Cusworth et al.350

(2021). For deriving sector estimates, some inversions assume a spatial correlation of gridded emissions within each sector

(Rödenbeck et al., 2003; Meirink et al., 2008b; Bergamaschi et al., 2010). Based on the same assumption, Steiner et al. (2024b)

and Tenkanen et al. (2025) construct ensembles of perturbed a priori fluxes to distinguish natural and anthropogenic fluxes

utilizing the CarbonTracker Data Assimilation Shell (van der Laan-Luijkx et al., 2017). Notably, Tenkanen et al. (2025) avoid

the lateral boundary problem by simulating transport globally with nested zoom in Europe to estimate Finnish CH4 emissions355

on a coarse resolution of 1◦× 1◦. In the present work, we take the next step by validating sectoral emissions reported to

UNFCCC and analyzing possible false attributions, making use of a significantly higher model resolution.

Our results are qualitatively in line with the discrepancy of top-down estimates and UNFCCC reporting for Germany and

the Benelux found in different regional inversions for the years 2018 and earlier (Petrescu et al., 2023; Bergamaschi et al.,

2022, 2018; Steiner et al., 2024b). Furthermore, it appears as a robust feature in our results that emissions from the UK plus360

Ireland agree well with reported emissions, in line with Bergamaschi et al. (2022) for the year 2018. For the French emissions,

16



our inversion shows a tendency towards slightly higher emissions similar to Steiner et al. (2024b), whereas other inversions

suggest significantly higher emissions (Petrescu et al., 2023; Bergamaschi et al., 2022).

4.3 Limitations

Though simulating
::::::::
Although

:::
we

:::::::
simulate emissions and transport in a large domain, we can only provide reliable emission esti-365

mates for selected countries (compare Fig. 3). Regions without notable uncertainty reduction and regions with known modeling

difficulties do not benefit from our model setup. In Scandinavia, we find strong wetland emissions with insufficiently modeled

fine-scale spatial and temporal variability. Combined with only small signals from non-LULUCF anthropogenic emissions, this

leads to a low signal-to-noise ratio, which prevents conclusive results for Scandinavia. Furthermore, the synthesis inversion

may be prone to underestimating large localized sources due to transport errors .
:
–
::
an

:::::
issue

:::
we

::::::
address

::
in
::::
Part

::
1

::::::
(Bruch

::
et

:::
al.,370

::::::
2025a).

:
We quantified this effect (see Sect. 5.6) and reduced the bias by introducing the posterior-R inversion as well as an

additional model uncertainty.

Another limitation comes from the challenges for the regional flux inversion caused by biases in the lateral boundary con-

ditions, motivating our .
::::

The
::::::::::
uncertainty

::
in

:::::
lateral

:::::::::
boundary

::::::::::::
concentrations

::::::::
motivates

:::
the

:
far-field correction. The correction

effectively reduces the influence of observations with low signal from categorized emissions, while leaving observations with375

strong signals mostly unchanged. This makes the estimation of well-observed emissions more robust . However, due to the

selection of observations for the
::::::::
correction

::::
that

::
is

::::::::
discussed

:::
in

::::
Part

:
1
:::::::

(Bruch
::
et

:::
al.,

:::::::
2025a).

:::
We

::::::
expect

::::
that

::::
the far-field

correction, this correction is more likely to increase the far field rather than decreasing it , leading to
:::::::::
correction

::::
leads

:::
to

::::
more

::::::
robust

::::::::
estimates

::
for

::::::::::::
well-observed

:::::::::
emissions,

:::
but

::
it

::::
may

::::
also

:::::
cause a bias towards

::
the

:::::
prior

:::
and

:::::::
towards

:
lower emission

estimates, as was proven with synthetic experiments. We expect similar difficulties as long as the bias correction of the lateral380

boundaries is based on the same observations as the flux estimation. This highlights the difficulty of determining fluxes in a

limited area when concentrations at the lateral boundaries cannot be directly inferred from dedicated observations. .
:

In our highly resolved transport simulation, every flux category is numerically expensive. Aiming to validate reported Ger-

man emissions, we could reduce the state space of the inversion to only 46 scaling factors with monthly time resolution. This

substantially limits the spatial and temporal variations that can be represented in the inversion. This approach is justified if the385

a priori fluxes already provide a realistic spatial distribution of all major CH4 sources within each flux category. While this

may be the case in Germany and neighboring countries, the constant scaling factors for large flux categories in more distant

regions may be oversimplified and could lead to less accurate results in these regions. Moreover, adjusting
:::
only

::
a few degrees

of freedom may not be sufficient to obtain realistic flux estimates in regions with limited or highly uncertain information on a

priori fluxes, such as Scandinavia. The scaling method would further fail to correct zero prior fluxes (Kountouris et al., 2018).390

However, this is less of a problem for CH4, as inventories can collect where CH4-emitting activities are normally located, but

emission factors which translate the activities into emissions are generally not well known (Dammers et al., 2024).

When constructing the state space, we unevenly distributed the 46 degrees of freedom on our model domain – using 11

degrees of freedom for Germany and only four for mainland France plus Belgium and Luxembourg. But the choice of flux

categories affects the results and can lead to biases depending on the location of the observations (Kaminski et al., 2001). In395
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our application, this effect is small because of the good observation coverage in Germany. Sensitivity tests with 5, 9 and 19

degrees of freedom in Germany (cases 503, 504, 506 in Table E1) indicate robust results for Germany and thereby confirm the

potential of the synthesis inversion when focusing on a well-observed region.
::::
This

::
is

:::::::
checked

::
in

::::
Part

:
1
:::::::
(Bruch

::
et

:::
al.,

::::::
2025a)

::::
using

:::::::::
sensitivity

:::::
tests.

We exploit the sectoral discrimination of emission in a well-observed region as a key feature of our inversion method. This400

relies heavily on an accurate spatial distribution and completeness of the a priori fluxes, which appears to be sufficient for

the major emitting sectors in Germany.
::::::::::
Furthermore,

:::
the

::::::
sector

::::::::::::
discrimination

:::::
relies

:::
on

::::::::
resolving

::::::::::
comparably

:::::
small

::::::
spatial

:::::
scales,

::::::
which

:::::
poses

:
a
:::::::::

challenge
::
to

:::
the

::::::::
transport

:::::::::
modeling. A general problem in sector attribution is that sectors with large

absolute uncertainty – such as agriculture – may be falsely blamed for any change in total emissions when the observations

do not clearly distinguish the sectors (see Appendix C). By quantifying this effect in the averaging kernels (see Fig. 7), we405

confirmed that in Germany agriculture can be distinguished from other anthropogenic emissions excluding LULUCF. Small

sectors like natural plus LULUCF fluxes could not be reliably distinguished from large sectors such as agriculture, and we

therefore combined smaller sectors like waste and public power into the larger category “non-agr.”.

4.4 Implications for future research

We chose the synthesis inversion for the first application of our modular inversion system, but designed this framework to410

be expandable to other inversion methods. For instance, most of the steps in the inversion can be applied with only minor

adjustments when replacing the flux categories by an ensemble of randomly perturbed surface fluxes, similar to Steiner et al.

(2024b), or by grid cell clusters as used by Estrada et al. (2024). Such applications with a larger state space are limited by

the computational effort of the transport simulation, which is much higher than the computational effort of the inversion itself.

Similar to the inversion method, the far-field correction can be replaced by a different strategy for mitigating a boundary bias.415

For example, one could construct the far field based on an ensemble of boundary concentrations.

Further possibilities of extension concern
::::::
involve other observation types, including satellite data. Our Eulerian system

allows in principle the handling of large observation datasets without prohibitive computational effort, albeit changes in the

construction and handling ofRmay be required when reaching & 105 observations per time window. This potential is leveraged

by many inversion systems that use Eulerian transport simulations (e.g., Varon et al., 2022; Meirink et al., 2008a; Bergamaschi420

et al., 2013). The increasing availability of satellite data is especially interesting for constraining concentrations and emissions

in less observed regions
::::::
regions

::::
with

:::
few

::
or

:::
no

:::::::::::
ground-based

:::::::::::
observations, such as near the boundaries of our domain,

::::::
which

:
is
:::
an

:::::
aspect

::
to

:::
be

::::::::
addressed

::
in

:::::
future

::::::
studies.

We identified potentials and risks in separating sectors based on highly resolved spatial flux patterns
::
the

::::::::
spatially

::::::
highly

:::::::
resolved

::::::::::
distribution

::
of

:::::
fluxes. Extending this by temporal profiles for a priori fluxes offers an

:
a
:::
yet

:
untapped potential for425

improvement.
:::::
future

:::::::::::
improvement

::
of

::::
our

::::::
system.

:
Moreover, our inversion would benefit from

::::
could

::::::
benefit

:::::
from

:::
an a pri-

ori emission ensembles
:::::::
ensemble

:
reflecting the uncertainty in

::
the

:
spatial and temporal distribution of the fluxes. Significant

improvements may become possible by distinguishing sectors at the observations
:
It
:::::::
remains

::
to

::
be

::::::::
explored

:::::::
whether

:::::::::::
improvements
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::
in

:::::::::::
distinguishing

::::::
sectors

:::
can

:::
be

:::::::
achieved

::
in

:::
our

::::::
system using co-tracers such as ethane for fossil CH4 emissions (Ramsden et al.,

2022; Mead et al., 2024) or by distinguishing carbon isotopes (Basu et al., 2022; Thanwerdas et al., 2024; Chandra et al., 2024).430

5 Conclusions

We presented
:::
first

::::::
results

::::
from

:
a novel system for regional flux inversion designed to validate national CH4 emission reporting.

Applying this method to Central Europe in 2021 with a focus on Germany, we found a significant increase in
::::::::::
significantly

:::::
higher

:
emissions from Germany and the Benelux .

::::::::
compared

::
to
:::

the
:::::::::

reporting.
:
Careful estimation of posterior uncertainties

revealed that
::
for

:::
the

::::::::::
investigated

::::
year

::::
that

::
the

:
total German posterior emissions are (32± 19)% higher than the

::::::::
respective an-435

thropogenic emissions reported to the UNFCCC (submission 2024). This increase is most likely due
:::
With

::::
our

:::::::
inversion

:::::::
method

::
the

:::::::::
difference

::
is

::::::::
attributed

:
to emissions from the agriculture sector, possibly with contributions from LULUCF

::
the

:::::::::
LULUCF

:::::
sector and natural sources. Our results were confirmed by

::::::::
validation

::::
with

::::::::::
independent

::::::::::
observation

::::
sites

::::
and

::
by

:
an exhaustive

range of sensitivity tests and by validation with independent observation sites
::::::::
presented

::
in

::::
Part

:
1
:::::::
(Bruch

::
et

:::
al.,

::::::
2025a). Syn-

thetic experiments with known truth verified the
:::::::
revealed

::
the

::::::::
method’s

:
ability to distinguish emission

:::
the

:::::::::
agricultural

:::::
from

:::
the440

:::::::::::::
non-agricultural

:
sectors in Germany

:
,
:::::::
whereas

:::::::::::
disentangling

::::::::
possible

::::::::
influences

:::::
from

::::::
natural

::::
and

::::::::
LULUCF

:::::::
sources

:::::::
requires

:::::
further

:::::
work

:::
and

::::::::
possibly

::::
more

:::::::::::
observations.

Methodological
::
A

:::::::::::::
methodological comparison to other regional inversion systems highlights the advantages of our method

for
::
the

::::::::
purpose

::
of

:
distinguishing emission sectors and fitness for purpose for validation of

::
its

:::::::::
suitability

:::
for

::::::::
validating

:
na-

tional emission estimates. The qualitative gap between UNFCCC reporting and our estimates for Germany and the Benelux445

is consistent with earlier works (Petrescu et al., 2023; Bergamaschi et al., 2022, 2018; Steiner et al., 2024b). We complement

these studies by providing an emission estimate for the German agriculture sector that can be directly compared to the national

reporting, revealing a significant mismatch.

In this study we only presented the first application of an extensible, novel inversion system. Future developments may

include the integration of satellite data, the incorporation of temporal profiles, a more comprehensive treatment of boundary450

conditions and flux uncertainties using ensemble methods, and an extension of the state space. The close connections to

operational numerical weather prediction – especially in the underlying transport simulation – and the modular design establish

the potential for long-term operational support of national emissions reporting.

Data availability. A collection of model data, inversion results, and data for reproducing most figures in this work is available at https:

//doi.org/10.5281/zenodo.17414768 (Bruch et al., 2025b).455

Appendix A: Extended data tables and
:::::::::::::
Supplementary

:
figures

[. . . ]
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102 103

AU+CZ

northern Africa*
BG+RO+MD

DE southwest, agr.

DE southeast, agr.

BE, LU, northern FR (partial)

central Italy+Corsica*

Switzerland

DE nat./LULUCF*

DE east, other

DE north, other

DE south, other

DE northwest, other

Denmark

eastern France

EL+TR*

eastern Poland

northeastern Scand.*

NE. Scand. nat./LULUCF

Baltic st., BY, western UA

Northeast (RU)

Northeast (RU) nat./LULUCF

Southeast (UA, RU, GE)

England+Wales
Spain+Portugal

DE northeast, agr.

DE northwest, agr.

northern Italy

northern Scandinavia*

northern Scand. nat./LULUCF

DE west, agr.

Netherlands, agr

Netherlands, rest

North Sea*

RS+ME+AL+MK+XK*

southern France

SI+HR+BA

southern Italy*

SK+HU

DE central east, agr.

southern Scandinavia

southern Scand. nat./LULUCF

Scotland+Ireland (island)

western France

western Poland

Upper Silesian Coal Basin*

(a)

nat. = natural
agr. = agriculture

Scand. = Scandinavia

Total emissions in 2021 (kt CH4)

prior
posterior

prior uncertainty
post. uncertainty
method. uncertainty

0 1 2

(b) Scaling factor

Figure A1. Prior and posterior emissions (a) and scaling factors (b) for all flux categories, ordered by prior emissions. Horizontal lines

indicate 95% confidence intervals. See Fig. 1 for the geographical definition of the flux categories and Fig. 2 for the resulting map of scaling

factors. (a) If no sector is explicitly specified, the flux categories contain all anthropogenic fluxes excluding LULUCF. For flux categories

marked with an asterisk, the inversion does not reduce the absolute uncertainty. Thus, reliable information is only gained by our inversion

for flux categories without asterisk (see Sect. 4.5
::::::
Sect. 2.6). Red color of the category names indicates a statistically significant increase of

emissions. (b) Scaling factors are the raw results of our inversion, though here they are already combined for the whole year. The posterior

scaling factor is defined as the mean
::::

center of the methodological uncertainty range indicated by brown boxes.
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Figure A2. (a–c) Seasonal cycle when using only observations from stations that were active during the whole year. We select those stations

and sampling heights, for which we used at least two data points per day on at least 20 days of each month in 2021 in our main inversion. This

yields
:::::
selects 27 stations shown in (d) with 8.3 · 104 data points for the inversion(step 5 in Table 2), compared to 50 stations with 1.29 · 105

data points in the reference case (compare Fig. 4). Colored areas show the posterior uncertainties (95% confidence intervals), which were

computed without excluding individual stations from the inversion and are therefore smaller than in Fig. 4. Prior emission rates are shown as

dotted lines with small markers.

1925
1950
1975
2000
2025

pp
b

(a)

flatland

observation
(b)

flatland

model (prior)

3 6 9 12
month

1925
1950
1975
2000
2025

pp
b

(c) mountain

3 6 9 12
month

(d) mountain

Figure A3. Seasonal cycle in observations at stations with elevation below 500m above sea level (a, b) and above 1000m (c, d), supple-

mentary to the discussion in Sect. 3.2. Thin blue lines represent the 10% quantile of each month, station, and sampling height for (a, c)

observations and (b, d) model predictions (prior). The 10% quantile is chosen to minimize the effect of local pollution. Thick black lines

indicate the mean of all selected stations and sampling heights. Thick red lines in (b) and (d) show the 10% quantile of the modeled far-field

concentration. The flatland stations show a pronounced seasonal cycle with minimum in summer for both model and observations. This cycle

is dominated by the contribution of the far field. The mountain stations have a weaker seasonal cycle.
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::::::::::::::::::::::::::::::::::::::::::::::::
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(a)
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RMSE ratio:  1 – posterior / prior
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(b)
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 RMSE difference:  prior – post. (ppb)

diagonal R
prior R
posterior R

:

Figure A4.
::::::
Statistics

::
of

:::
the

:::::
relative

:::
(a)

:::
and

::::::
absolute

:::
(b)

::::::::::
improvement

::
of

:::
the

::::::::::::::
model–observation

:::::::
mismatch

::
at

:::::::::
independent

::::::::
validation

::::::
stations

::
for

:::::::
different

::::::
choices

::
of

:::
the

::::
error

::::::::
covariance

::::::
matrix

::
R

:::::::
discussed

::
in

::::
Part

:
1
::::::
(Bruch

::
et

::
al.,

::::::
2025a).

::::
The

:::::
figure

::
is

:::::::
analogous

::
to
::::::

Fig. 5,
:::::
where

::
the

::::::::::
visualization

:::
and

:::
the

::::
data

:::::::
selection

:
is
::::::::
explained.

:::::
Here,

:::
we

::::::::
distinguish

::::
three

:::::::
inversion

:::::::
methods

:::
that

:::::
differ

::
in

::::
how

::
R

:
is
::::::::::
constructed,

::
as

::::::::
introduced

::
in

::::
Sect.

:::
2.5

::
of

:::
Part

::
1.

:::
No

::::
clear

::::::::
advantage

::
of

:::
one

::::::
method

:::
over

:::
the

:::::
others

:::
can

::
be

:::::
seen.

:::
The

:::::::
diagonal

::
R

:::::::
inversion

:::
has

:::
the

:::::
lowest

::::::
posterior

::::::
RMSE

:
at
::::::::

validation
::::
sites,

:::::::
followed

::
by

:::
the

:::::::
posterior

::
R

:::
and

::::
prior

:
R
::::::::

inversion,
:::
but

::
the

:::::::::
differences

::
are

:::
not

:::::::::
statistically

::::::::
significant.

:
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Appendix B: Averaging kernel matrices

As introduced in Sect. 3.4.2, the averaging kernel matrices Aemis and Ascaling factors estimate the change in the posterior when

changing the truth, Aemis = ∂epost/∂etruth where e denotes the vector of emissions. Here, we summarize how these matrices are460

estimated using either the prior and posterior error covariance matrices B and Bpost , or the statistics from inversion runs with

synthetic truth.

B1 Analytic estimate using error covariance matrices

We first estimate the sensitivity of the posterior scaling factor to the true emissions under the assumption that the transport

model, far field, and the flux pattern
::::::::::
observations,

::::
and

:::
the

:
a
:::::
priori

::::::
spatial

:::::::::
distribution

:
within each flux category are perfect. Un-465

der these idealized assumptions, the model–observation mismatch is µ= y−Hsprior−xff =H(struth− sprior)
:::
for

:::::
given

::::::
scaling

:::::
factors

::
s
::
is

::::::::::::::::::::::::::::::
µ(s) = y−Hs−xff =H(struth− s) where struth denotes the true scaling factors. Our prior-R

:::::
“prior

:::
R” inversion

will now maximize

P (s)∝ exp
[
− 1

2 (s− struth)>H>R−1H(s− struth)− 1
2 (s− sprior)>B−1(s− sprior)

]
(B1)

∝ exp
[
− 1

2 (s− spost)>B−1post(s− spost)
]
. (B2)470

This yields spost = sprior+A(struth−sprior) with the averaging kernelA= I−BpostB
−1 and

::
the

::::::::
posterior

::::
error

:::::::::
covariance

::::::
matrix

B−1post =H>R−1H+B−1 (Rodgers, 2000). Knowing B and Bpost, we can compute the averaging kernel
::
A to estimate how the

posterior scaling factors depend on the true scaling factors.

B2 Statistical estimate using synthetic experiments

We aim to
::
In

:::
the

::::::::
statistical

:::::::::
approach,

:::
we estimate the sensitivity of posterior scaling factors ξ := spost− sprior to changes in475

the synthetic truth ζ := struth− sprior
:::::
using

:::
100

::::::::
synthetic

::::::::::
experiments

::::
with

:::::::
random

::::::::
synthetic

::::
truth

:::::
struth. Given a sample of N

realizations {ξn}n and {ζn}n, we aim to find the scaling factor averaging kernel matrix A that solves

A= argmin
A′

N∑

n=1

‖ξn−A′ζn‖2 . (B3)

For ‖x‖2 =
∑

ix
2
i , differentiation by A′ij yields 0 =

∑N
n=1 ζ

n
j (ξn−Aζn)i for all i, j and thereby

A= ΞZ−1, Ξij =
N∑

n=1

ξni ζ
n
j , Zij =

N∑

n=1

ζni ζ
n
j . (B4)480

Equation (B4) was used to produce panels (c) and (d) of Fig. 7.

Appendix C: Relevance of absolute prior uncertainty in sector attribution

When observations can detect a change in total emissions but cannot distinguish between different emission sectors, the sector-

resolving inversion will change the sectoral distribution based on the prior uncertainties. To understand this problem quali-
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tatively, we consider the worst case: We assume that
:::::
fluxes

:::::
from all sectors are uncorrelated in the prior but 100% spatially485

correlated such that they cannot be distinguished in the inversion. The a priori probability
::::::
density for an emission vector e of

sector emissions ei is

P (e)∝ exp

[
− 1

2

∑

i

(ei− eprior
i )2σ−2i

]
, (C1)

where σi denotes the a priori standard deviation of ei. The inversion will yield a result for
::::::
estimate

:
the total emissions epost

tot that

maximizes the probability P (e) when including information from the observations
:::
such

::::
that

:::
the

:
a
::::::::
posteriori

:::::::::
probability

:::::::
density490

::::::
P (e|y)

::
is

:::::::::
maximized. But by assumption, these observations do not distinguish between sectors such that Eq. (C1) remains

valid
::
the

::
a
::::::::
posteriori

:::::::::
probability

::::::
density

::::::
fulfills

:::::::::::::
P (e|y)∝ P (e)

::
as

::::
long

::
as

:::::

∑
i ei::

is
::::
fixed. We thus obtain the posterior emissions

of the sectors by maximizing Eq. (C1) with the constraint
∑

i ei = epost
tot . By introducing a Lagrange multiplier, one can show2

that this yields
::::::
implies

:

ei− eprior
i = ασ2

i , α=
epost

tot − eprior
tot∑

iσ
2
i

. (C2)495

This shows that sectors with larger absolute a priori uncertainty are disproportionally stronger corrected. Applied to our emis-

sion estimates for Germany, this implies that if the observations were unsuitable for distinguishing sectors, the inversion would

attribute up to 95 % of the changes in total fluxes to the agriculture sector, which is responsible for 69 % of the total a priori

emissions. Fortunately, this worst case scenario is not realistic because the observations do contain information on the different

sectors as indicated e.g. by Figs. 6 and 7.
:::
But

::
a

:::::::
tendency

:::::::
remains

::
to

::::::
correct

:::
the

:::::::::
agriculture

:::::::
stronger

::::
than

:::
the

:::::
other

::::::
sectors.

:
500

Appendix D: Attempt to distinguish five sectors in Germany

Our setup for the transport simulation was designed to separte
::::::
separate

:
five sectors in Germany: agriculture, natural plus

LULUCF, waste, public power, and the sum of all other sectors (“other”). We test the separation of
::
try

:::
to

:::::::::
distinguish

:
these

sectors in sensitivity test
:
a
:::::::
separate

::::::::
inversion

::::
run,

::
in

::::::
which

::::
each

:::
of

::::
these

:::::::
sectors

::
is

:::::
scaled

:::::::::
separately

::::::::::
(sensitivity

::::
tests

:
506

(Table E1 and Fig. E1)and
::
in

:::
Part

::
1
::::::
(Bruch

::
et

:::
al.,

:::::::
2025a)).

::::
This

:::::::
inversion

::::
uses

:::
19

:::::::
separate

::::::
scaling

::::::
factors

::
in

::::::::
Germany

::::::
instead

::
of505

:::
11.

:::
We find no notable changes in the posterior emissions compared to our reference setup, in which we combined waste, public

power, and other into one larger sector “non-agr.” . However, the uncertainties and the averaging kernels change considerably.

We assume an a priori 2σ uncertainty of±100% for each sector-resolving flux category. Thus, splitting the total fluxes in more

uncorrelated flux categories reduces the a priori uncertainty of the total fluxes.

Figure D1 shows the averaging kernel matrices (introduced in Sect. 3.4.2 and Appendix B) for the inversion
::::
when

:
separating510

five sectors. These matrices indicate that waste, public power, and “other” cannot be distinguished: The corresponding columns

Fig. D1(a) are approximately equal. Thus, trying to distinguish these sectors does not yield
:::::::
provide any additional information.

By comparing the row and column for “non-agr.” to Fig. 7, we identify drawbacks of the attempt to distinguish smaller sectors.

2We define L(e,λ) =− 1
2

∑
i(ei− e

prior
i )2σ−2

i +λ(e
post
tot −∑

i ei) and require ∂L
∂ei

= 0, ∂L
∂λ

= 0.
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Figure D1. Averaging kernel matrices of German sector emissions
:::

(a)
:::
and

:::
the

:::::::::::
corresponding

:::::
scaling

::::::
factors

::
(b)

:
when trying to distinguish

sectors waste, public power and other, in
:::::::
estimated

::::
using

:
the same representation as in

:::::::
posterior

::::
error

::::::::
covariance

::::::
matrix.

::::
Small

:::::::
matrices

::
at

::
the

::::::
bottom

::::::
indicate

::
the

::::
ideal

:::::
result.

:::
See

:
Fig. 7 (a)–(b)

::
for

:::
an

::::::::
explanation

::
of
:::
the

:::::::::::
representation. Panel (a), third row, shows that increasing true

emissions in any sector is expected to cause higher posterior agriculture emissions
:::
with

:
a
::::
false

::::::::
attribution

::
of

::::
46%

::
to

::::
70%.

:::
The

::::
same

:::
row

::
in

::::
panel

:::
(b)

::::
shows

::::
that

::::
when

::::::
looking

::
at

::::::
relative

::::::
changes

::
in

:::
the

::::::::
emissions,

::
the

::::::::
influence

::
of

::
the

::::
false

::::::::
attribution

::
on

:::
the

::::::::
agriculture

:::::
sector

::
is

:::
not

:::
very

:::::
large.

When trying to distinguish five sectors, the false attribution of emissions to the agriculture sectors is more severe than when

distinguishing only three sectors (48% compared to 28%). Consequently, the expected error reduction in the combined non-515

agriculture sectors (excluding natural plus LULUCF) is better when considering only three sectors. Qualitatively, this is what

we expect from Appendix C for cases where the observations are insufficient to distinguish the considered sectors.
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