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We thank the referee for the detailed reading, positive assessment and valuable comments.
Following a suggestion by the other referee and after consolidation with the editor, the manuscript
has been split into a Part 1 and Part 2. In this new structure, we address the questions raised by
the referee below.

The structure of this document follows the report of the referee. For transparency and conve-
nience, we added Sect. 3 below to explain a mistake we noticed in the initially submitted manuscript
during the review process.

1 Comparison to “standard” R values

Referee comment: “My main point is that I would like to see better visualised how the R matrix
as made in this paper improves the inversion. The calculation is quite complex, and covers a large
part of the paper. Nevertheless, some arbitrary choices remain (like the 10 ppb standard, and the
inflation factor). I now wonder if ‘standard’ R values (like in Steiner et al., 2024b (reference as
in manuscript): ‘we use a model-data mismatch of 2 ppb+ 40 % of the anthropogenic signal’) would
give similar results. [. . . ]”

This is a very interesting question, which is now discussed in detail in Section 4 of the new
Part 1. One main outcome of Part 1 is that the ensemble-based R matrix leads to a lower random
error in the inversion results than the described “standard” R. But for comparing the different
results, we choose a different focus than what the referee proposed:

Referee comment: “[. . . ] For this, the χ2-innovation can be used. χ2 is used to assess the
uncertainty, relative to the model-observation mismatch (i.e. ((y − Hx)2)/HPHT , where y are
observations, Hx are transported (prior mean) fluxes and P is the prior covariance matrix of the
fluxes). One would like the χ2-innovation to be as close as possible to 1.0 (which means uncertainty
and model error are balanced). It would help the paper to include a figure of the χ2-innovation
to show that the ‘new’ R is an improvement over e.g. Steiner et al., 2024b. A run with a fixed
(diagonal) R can also be included in Figure 7.”

We agree that comparing different methods for constructing the R matrix based on the χ2

innovation can be very helpful. But as pointed out by the referee, our method contains many
tuning parameters. A simple comparison of the χ2 innovation, as suggested by the referee, would
only highlight differences between two configurations of tuning parameters but provide little insight
into the method itself. Since we are interested in the potential of the ensemble method, we need
comparable configurations and a way of assessing the inversion quality.

In the submitted manuscript, we already considered two methods for constructing R (denoted
prior R and posterior R). In Part 1 of the revised manuscript, we add the “diagonal R” as a simple
approach as also proposed by the referee (now in Sect. 2.5.1). One main focus of Part 1 is the
comparison of these three ways of constructing R (prior R, posterior R, and diagonal R). However,
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we consider the χ2 method as not suitable for comparing the prior R and posterior R inversion.
In particular, these methods have a different bias, which is not detectable from the χ2 innovation.
We therefore focus on different ways of comparing the methods but also mention the χ2 innovation
(now in Sect. 2.6.5 of Part 1, see comment below).

We contrast the methods using synthetic experiments with a simulated transport uncertainty
(Sect. 5.6 and Appendix F in the first version, now Sections 4.2–4.4 of Part 1). Using these synthetic
experiments with a known truth, we can compare how well a method can estimate the synthetic
truth from pseudo-observations and thereby assess the quality of the inversion. We find that the
diagonal R approximation without any information from the ensemble leads to a significantly larger
random error in the inversion results. These results are visualized in the new Figures 6 and 7 of
Part 1, which replace Figures 10 and F2. To make the inversion results comparable, we choose the
tuning parameters such that all methods have approximately equal posterior uncertainties.

Referee comment: “It would help the paper to include a figure of the χ2-innovation to show that
the ‘new’ R is an improvement over e.g. Steiner et al., 2024b.”

As mentioned above, we discuss the χ2 innovation in Sect. 2.6.5 of Part 1. Instead of a figure,
we chose a table (Table 2 of Part 1) as the best format to summarize χ2 for the different methods
for real and synthetic observations:

Table 2. Median of χ2/Ndof for different configurations. χ2/Ndof for the prior R inver-
sion also serves as an approximation for the posterior R inversion. Synthetic observations
are generated using the ensemble simulation, assuming that the a priori fluxes and the
CH4 concentration on lateral boundaries are known exactly.

observations far-field correction χ2/Ndof, diagonal R χ2/Ndof, prior R

real yes 0.18 0.16
real no 0.21 0.18

synthetic yes 0.05 0.03
synthetic no 0.06 0.03

We find that the simple diagonal R has a larger χ2 than the prior R, while χ2 remains well below
1.0 for all cases. This result is closely linked to the constraint that the posterior uncertainties shall
be similar, on which we have based the tuning parameters for the diagonal R matrix. This result
indicates that our ensemble-based approach would allow for tuning to smaller posterior uncertainties
than the diagonal R, then leading to larger χ2. Nevertheless, this comparison does not imply the
superiority of any particular method.

Referee comment: “A run with a fixed (diagonal) R can also be included in Figure 7.”
We thank the referee for this constructive comment. Instead of adding only the diagonal R run to
Figure 7, we compare all three considered ways of constructing R in the newly added supplementary
Figure A4 in Part 2:
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Figure A4. Statistics of the relative (a) and absolute (b) improvement of the model–
observation mismatch at independent validation stations for different choices of the error
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covariance matrix R discussed in Part 1. The figure is analogous to Fig. 5 [previously
Fig. 7], where the visualization and the data selection is explained. Here, we distinguish
three inversion methods that differ in how R is constructed, as introduced in Sect. 2.5 of
Part 1. No clear advantage of one method over the others can be seen. The diagonal R
inversion has the lowest posterior RMSE at validation sites, followed by the posterior R
and prior R inversion, but the differences are not statistically significant.

In the new structure, suggested by the other referee, the discussion of the method is separated
from the discussion of the main results. Since the validation (Figure 7) belongs to the results in
Part 2, we have included this as a supplementary figure of Part 2 and not in the main text.

2 Other comments

1. Referee comment: “Almost all IDs tested are within 15 % in their flux-solution. To me, this
seems like the posterior uncertainty is under-estimated. Can the authors comment on this?”

The sensitivity tests typically show variations within 15 % of the posterior 2σ uncertainty.
This indicates that the uncertainty due to the choice of tuning parameters is small compared
to the posterior uncertainty. Based on this finding, we do not try to include the uncertainty
due to the tuning parameters when estimating the posterior uncertainties. We see no evidence
that the posterior uncertainty might be considerably underestimated.

2. Referee comment: “Can the authors explain to me the strange boundaries in Fig. 4b and d?
With this, I mean the darker lines that run through e.g. France.”

When defining flux categories by area, we used a smooth transition at boundaries between
different categories. For example, we split Poland into two flux categories (west and east),
but some emissions in the center are assigned to 50 % to western Poland and 50 % to eastern
Poland. This setup helps us reduce sharp spatial concentration gradients in our transport
simulation. However, when assuming uncorrelated a priori uncertainties for eastern and west-
ern Poland, this implies that emissions that belong to both categories have a lower relative
uncertainty. These boundaries between flux categories are therefore visible in the uncertain-
ties. We added a brief explanation in the figure caption: “The smooth boundaries between
two regions with separate scaling factors appear as darker lines because these scaling factors
are assumed to be initially uncorrelated.”

3. Referee comment: “in Section 5.5.1, a gaussian noise of 2 ppb random error is added to the
pseudo-observations. However, the σconst is already 10 ppb, which means the added white noise
is quite small compared to the uncertainty associated to these observations. Can the authors
explain this choice?”

In the synthetic experiments with randomized true emissions, we work with idealized pseudo-
observations that have an underestimated error. The simulation of a transport error for these
pseudo-observations would require an impractically high computational effort. Thus, these
pseudo-observations inevitably only include a very simplified error. But this merely impacts
the analysis, since the focus of these experiments lies on testing how the full inversion system
– including observation filtering and far-field correction – can determine the synthetic truth
from idealized pseudo-observations.

In lack of a good estimate for the error on the pseudo-observations, we choose the values 2 ppb
which is larger than the observation uncertainty (of usually < 1 ppb) but sufficiently small to
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not impact the outcome of the synthetic experiments. To clarify this aspect, we have extended
the explanation in Sect. 5.5.1 (now Sect. 3.4.1 of Part 2):

This construction of pseudo-observations clearly underestimates the true error in
the model–observation comparison, but it allows us to test the interplay of far-
field correction and inversion in a controlled setup. Synthetic experiments with a
simulated transport uncertainty are discussed in Part 1.

In this work, we consider different types of synthetic experiments which either consider a
simulated transport error or a random variation of the emissions. Combining both would be
an interesting extension, but goes beyond the focus of the current study.

3 Mistake in the manuscript

Figures 10, F2 and E1 in the submitted manuscript were affected by a mistake: Those inversions
for which the far-field correction was disabled used wrong tuning parameters with underestimated
uncertainties due to a bug in the code. In sensitivity test 400 and Figure 10, this led to an
overestimation of the relevance of the far-field correction. The mistake has been corrected and
the discussion of the far-field correction has been adjusted accordingly. The conclusions of our
manuscript remain unaffected.

(This paragraph is included in the replies to both referees.)
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