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Valentin Bruch

October 23, 2025

We thank the referee for the detailed reading and constructive comments which helped improve
the manuscript. To best address the referees’ comments and after consolidation with the editor, the
manuscript was split into a Part 1 and Part 2, explained below.

The structure of this reply follows the structure of document provided by the referee, but we
added Sect. 4 on a mistake we noticed in the initially submitted manuscript.

1 Overview

1. Referee comment: “The system description is not in the best order. The paper would benefit
from a system flow chart of the steps and a more logical order of descriptions.”

This is a very valuable comment. We have adjusted the order of the system description by
merging the Sections 2 and 4 of the manuscript in Section 2 of the new Part 1. We added a
flow chart of the data streams in Part 1 (Fig. 5).

2. Referee comment: “There is arguably too much information given in the appendices (there are
nine appendices). The work shown in some of the appendices is important, such as additional
experiments and sensitivity tests. In fact I think that the paper is too long. I would suggest
having a two-part paper, part I for the system description, and part II for the results. I feel
that the appendices should just contain things like derivations and supplementary tables. The
mixture of results between the main part of the paper and the appendices caused me to lose
track of the flow of the paper.”

We gladly took up this suggestion and split the paper into two parts. Part 1 now represents
the system description, as suggested. Here, we also included the sensitivity tests and most of
the synthetic experiments, addressing the uncertainties of the system. Moreover, we now also
discuss a diagonal R matrix, responding to a question by Referee #2. Part 2 presents the
results from the application of the system, as suggested. The appendices were reduced and
relevant information was included into the main text of both Part 1 and Part 2 as follows:

Appendix A is incorporated into the new appendices (Appendix C of Part 1 and Appendix A
of Part 2) since it only contains supplementary tables and figures.

Appendix B is now partially contained in Sect. 2.3 of Part 1, keeping only the purely tech-
nical part in what is now Appendix A of Part 1.

Appendix C is kept as Appendix D in Part 1, since it presents auxiliary technical derivations.

Appendix D is now partially contained in Sect. 2.5.3 of Part 1. Only the technical scheme
of tracers in the ensemble modeling is kept in what is now Appendix B of Part 1.

Appendix E is kept as Appendix E in Part 1, since it contains supplementary tables and
figures.

1



Appendix F is now contained in the results (Sect. 4) of Part 1, and has been rewritten in
response to the referees’ suggestions.

Appendices G, H, and I consist of technical derivations and are kept (now Appendices C,
B, and D of Part 2).

3. Referee comment: “There appears to be some contradictory statements made in the paper.
This may be just my misunderstanding, but an example is the description of how the model
uncertainties are found. There seems to be one explanation in Section 2.4, another one in
Sect. 4.2, and another in Sect. 5.4.2. See also detailed points 10, 20, and 27. More examples
are given in my detailed comments.”

We thank the referee for pointing out these inconsistencies. To improve clarity, we have now
merged the former Sections 2 and 4 into a single, coherent Section 2 in Part 1, describing the
system.

The mentioned reoccurring discussion of matrix R in Sect. 5.4.2 (now Sect. 4.5.2 of Part 1)
appears because the sensitivity tests are discussed separately from the system description. We
have added cross-references to ensure consistency and make a logical connection between text
passages where R is mentioned.

4. Referee comment: “I’m not completely sure how the ensemble comes into the main inversion.
I can see how an ensemble is used to help define the model uncertainties in Sect. 2.4, and in
some of the supplementary statistics, but I am not sure how it is used in the main inversion
(Eq. (1)), given the paper’s title suggests that the ensemble is used for that. See also detailed
points 8 and 10.”

We appreciate this question and specified that the ensemble improves the main inversion
through estimates of the model uncertainty. We have clarified this point when introducing
the ensemble in Sect. 2.1.2 of Part 1: “The ensemble will only be used to estimate model uncer-
tainties and error covariances (see Sect. 2.5), and to generate pseudo-observations (Sect. 3.4).”
The uncertainties and correlations in the error covariance matrix R are essential for the in-
version. The ensemble used to estimate R therefore plays a central role in the inversion. The
construction of the R matrix from the ensemble is also indicated in the newly added flow chart
(Fig. 5 of Part 1).

5. Referee comment: “I am unclear about the structure of the main control variable, s, especially
as these are called scaling factors. I cannot find what these factors actually multiply in order
to lead to predictions of the model’s observations via Hs. See also detailed points 2, 7e, 7f,
and 41a.”

We thank the referee for noting that there is a lack of clarity in this important aspect. We
added the formal definition of s at the beginning of Sect. 2.4 (Part 1): “We define a vector
of scaling factors – in our application s ∈ R46 – consisting of one prefactor for each flux
category.”

In the new Sect. 2.7 (Part 1) we summarize the inversion output: “The inversion results consist
of one vector spost ∈ R46 of scaling factors and the corresponding error covariance matrix for
each month.”

6. Referee comment: “I am unclear how individual flux categories can be distinguished from the
observations (apart from using information in the ratio of the background error statistics,
which divides the posterior fluxes according to how these are prescribed). See also detailed
points 29 and 40a.”
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This question is related to the previously mentioned scaling factors. The flux categories are the
basis vectors for the field of fluxes and the scaling factors are their coefficients. In the transport
simulation we compute the contribution of each flux category to the CH4 concentration of each
observation. We then scale each of these contributions to optimize the agreement between
model and observations. We do so by adjusting the vector s ∈ R46 of scaling factors using
approximately 104 observations per inversion time window. Thus, the flux categories are
distinguished based on the model-observation mismatch and the expected contribution of the
flux categories to the observations. We have adjusted the introduction of the method in Sect. 2
and Sect. 2.1.3 of Part 1 to make this point clearer.

This synthesis inversion method relies on the assumption that the a priori spatial distribu-
tion of fluxes within each category is realistic. This is especially important when trying to
distinguish different emission sectors. Formally, the separation of sectors is very similar to
separating different areas, but this does not guarantee that the results are meaningful. We
therefore include a detailed discussion of the sector discrimination (Sect. 5.5.2 in the first
version, now Sect. 3.4.2 of Part 2). This aspect is discussed further in the detailed point 29
below.

7. Referee comment: “It is not clear to me how the ICON model is used in the inversion itself,
and whether any chemical processes are simulated as part of the forward model, H.”

As now stated in Sect. 2.1.1 of Part 1: “The ICON model simulates the meteorology and
the tracer transport.” It is only used as a forward transport model that predicts how much
methane emitted from each flux category is transported to the observation sites. This defines
the matrix H. The inversion only uses the output of the transport simulation.

We agree that we missed an explanation of the involvement of chemical processes. We included
a sentence into Sect. 2.1.1 of Part 1 to clarify this: “We do not simulate any chemical reactions,
because the typical lifetime of CH4 in the atmosphere is much longer than the time that an
air parcel typically spends in our modeling domain.”

2 Scientific points

1. L49-51:

(a) Referee comment: “I’m just wondering how the ICON model is used to provide the trans-
port winds. As well as providing tracer transport winds, is the ICON model actually
simulating the winds (on-line) at the same time as advecting the methane, or is the
ICON model used to pre-determine winds, which are then used by the inversion system
to do the transport? The former would provide very high-temporal resolution winds (and
include sub-grid-scale transport), without the need to store them, which would be ideal,
but very expensive. If ICON is simulating the winds on-line, then it must be run with
a data assimilation scheme to keep them realistic. I think the authors could say a little
about how this is done (although see also point 12 below).”

We gladly take up this suggestion and extended Sect. 2.1 on the transport simulation
(now Sect. 2.1.1 in Part 1): “The ICON model simulates the meteorology and the tracer
transport. Re-initialization of the meteorological fields every 24 h ensures that the me-
teorology stays close to reality.”

Thus, ICON simulates the winds online. The transport is computed with the full tem-
poral resolution and includes sub-grid-scale parametrizations. To avoid using a data
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assimilation scheme for the meteorology, we update the meteorological fields at 0 UTC
every night using archived data from the operational numerical weather prediction at
DWD.

(b) Referee comment: “Are any chemical processes (such as the reaction with OH and
methane oxidation included? L398-399: ‘Another potential contribution to the seasonal
cycle could arise from neglecting the OH sink of CH4 in our limited domain.’ suggests
not. Could this be an issue over the timescale of the inversions? The authors should at
least say that this is an assumption made by their system”

We added to Sect. 2.1.1 of Part 1: “We do not simulate any chemical reactions, because
the typical lifetime of CH4 in the atmosphere is much longer than the time that an air
parcel typically spends in our modeling domain.”

Chemical processes are important in global simulations. But in our regional simulation,
we have a constant inflow of fresh air from the lateral boundaries. The relevance of
chemical processes is determined by the amount of methane that is removed while an
air parcel is transported from the lateral boundaries to an observation site. Assuming
that this transport usually takes less than 10 days and that methane in the atmosphere
has a typical lifetime of 10 years, we can expect an effect of less than 5.5 pbb at the
observation sites, given a background concentration of 2000 ppb. The possible bias due
to the neglected chemistry is further reduced by the far-field correction.

2. L72-74: Referee comment: “‘The categorized fluxes are scaled to minimize the mismatch be-
tween model prediction and observed concentrations. Thus, the inversion result consists of one
scaling factor for each flux category. The a priori fluxes multiplied by the scaling factors yield
the a posteriori fluxes.’ By ‘. . . one scaling factor for each flux category.’, do the authors mean
one for all positions and time, or one per flux category per position and per time (obviously
with relevant correlation scales)?”

We thank the referee for this point. The scaling factors are simply one number for each
flux categories. These numbers are computed independently for each inversion time window.
There is no position involved.

To clarify this, we added at the beginning of Sect. 2.4 (Part 1): “We define a vector space
of scaling factors – in our application s ∈ R46 – consisting of one prefactor for each flux
category.”, and in the new Sect. 2.7 (Part 1): “The inversion results consist of one vector
spost ∈ R46 of scaling factors and the corresponding error covariance matrix for each month.”

3. L91-92: Referee comment: “‘Each ensemble member uses slightly different but equally likely
parametrizations and meteorological initial and boundary conditions.’ Does each member use
slightly different driving winds too?”

The ensemble members have different winds because the initial and lateral boundary condi-
tions for the wind differ. We describe the ensemble in the new Sect. 2.1.2 (Part 1) with the
conclusion:

Since our meteorological input fields and the transport model setup are taken from
operational NWP at DWD, the ensemble provides a reasonable estimate for the
meteorological uncertainty in our model, including uncertainties in the simulated
wind field and atmospheric stability.

When checking the ensemble construction again, we noted a mistake in the configuration.
Differing from what we described in the initially submitted manuscript, the ensemble does
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not use any perturbation of physical model parameters. We have corrected this in the new
version. But even though every ensemble member used exactly the same transport model,
the differing meteorological initial and lateral boundary conditions are sufficient to provide a
reasonable ensemble spread with different winds leading to different transport.

4. Sect. 2.2 and Appendix B: Referee comment: “I’m not really sure what is meant by the far
field. I assume it’s a smooth correction to the methane field, determined before the inversion,
and is a function of space and time. Is that right? Looking at Eqs (1) and (B1), it looks like
it exists only at observation locations. See also point 35 below.”

We define the far field in Sect. 2.2 (now Sect. 2.3 of Part 1): “For cases where the model
predicts almost no influence from our categorized emissions (i.e., clean air cases), deviations
between model and observations point to the need for correcting the CH4 advected across the
lateral boundaries – here referred to as ‘far field’” Thus, the far field is the contribution of
CH4 from the lateral boundaries and defined in each grid cell, justifying the name “field”.

The far-field correction can be defined at each location in space and time, but we only compute
it at the observation locations. To simplify the notation and focus on the practical application,
the formal definition of the far-field correction in Appendix B (now Appendix A of Part 1)
assumes that this correction is only needed at the location of observations. But this definition
can be expanded to include arbitrary points in space and time. Note that the input vectors
x and y of Eqs. (B1) and (B2) are only evaluated in a projected space as P (y − x). In the
Gaussian localization matrix C̃, we can include arbitrary coordinates. When applying this
generalized definition of the far-field correction, one will indeed obtain a smooth field in space
and time.

Thus, the far-field correction is a smooth function of space and time that is determined and
added to the methane field before the inversion. But for simplicity we only compute it at the
observations.

5. L100-102: Referee comment: “[. . . ] The terms ‘far-field’ and ‘whole domain’ sound contra-
dictory to me.”

We define the far field as the contribution from outside the domain, interpreted as far distance.
The wind transports CH4 from outside the domain to every location in the domain. Since the
background concentration is much higher than the typical contribution of emissions within
the domain, the far field contributes the dominant part to the CH4 concentration everywhere
in the domain.

6. L102-103: Referee comment: “‘We require this correction field to be smooth on large length
and time scales, chosen in our case as . . . ’ This sounds like a tautology to me: surely ‘smooth’
means ‘large scale’?”

The referee is right that “smooth” implies large scales. We have adjusted the formulation
accordingly (now in Sect. 2.3): “We require this correction field to be smooth on spatial and
temporal scales 320 km (horizontal), 1 km (vertical), and 16 h (time).”

7. Sect. 2.3:

(a) Referee comment: “How is B determined as used in Eq. (1)?”

B is defined by the a priori uncertainties and correlations of the scaling factors. We have
added a link to the section describing the definition of B (which was 4.4 in the submitted
manuscript).
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(b) Referee comment: “How are the observations of? Appendix A lists the stations, but I
cannot find anywhere whether the observations are of methane or of the flux itself. What
are the instrument types and instrument precisions? This would be good to know even
though they are claimed to be negligible to the model error (L125). I think it should be
stated as early as possible in the paper that the observations are of methane.”

We use observations of methane concentrations and have added this information at mul-
tiple location of the manuscript, specifically when introducing the observations in the
introduction of Part 1. We thank the referee for this suggestion.

We use observations from the European Obspack, which is a collection of observations in a
standardized format curated by ICOS. These observations may use different instruments.
Most of the observation sites are ICOS sites, for which a precision and repeatability of
< 0.5 ppb is required under test conditions [ICOS RI (2020): ICOS Atmosphere Station
Specifications V2.0. ICOS ERIC. doi:10.18160/GK28-2188]. We added this citation to
the manuscript to support the claim of negligible observation error compared to the
model error.

(c) Referee comment: “What is the time window and how is information propagated from
one time window to the next?”

We use a time window of one month. No information from the inversion is propagated
from one time window to the next. However, the transport simulation is carried out
for the whole year plus spin-up. This is now explicitly stated in Sect. 2.7 of Part 1
(corresponds to old Sect. 4.3):

We simulate the transport for the whole year 2021 without any interruption. The
inversion is then applied to each month separately by selecting only observations
within one month. The scaling factors of the months are treated as independent,
always starting with the same a priori scaling factors [. . . ].

(d) Referee comment: “As the initial conditions of the methane field are not mentioned in
the cost function, Eq. (1), it looks like the initial conditions are not adjusted as part of
the inversion. Is that right? Perhaps this is the purpose of the far-field correction step?
If so, please make this clear. If the initial conditions are sufficiently wrong, then this
would have an impact on the quality of the inversion.”

We have extended the explanation of the inversion time windows (now Sect. 2.7 of Part 1)
to address these questions:

The continuous transport simulation over the whole year implies that the initial
CH4 concentration is hardly relevant after the spin-up. At the beginning of
each month, the modeled CH4 concentration already consists of the far field –
the contribution of the lateral boundaries – and the contribution of the fluxes,
which will be adjusted by the inversion.

Thus, we can discuss initial conditions from two perspectives: The initial CH4 concentra-
tion when starting the spin-up of the simulation is virtually irrelevant for the inversion.
The CH4 concentration at the beginning of each inversion time window is implicitly ad-
justed by the inversion, because it already consists of the far field and the categorized
fluxes. The adjustment of the initial concentration is implicit because we define inversion
time windows in observation space and thereby avoid any explicit dependence on the CH4

concentration at the beginning of the inversion time window.

(e) Referee comment: “Given that the control variable in Eq. (1) is s (a scaling factor), this
suggests that it should multiply something. What is the field that it multiplies? See also
point 41a below.”
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The scaling factors multiply the fluxes. More precisely, each entry sk ∈ R of the vector
s ∈ R46 of scaling factors is multiplied by one flux category.

(f) Referee comment: “What is the structure of the field s? Is it represented on a grid, or
does it multiply some basis functions? Field s must, presumably, be associated with the
different categories of source field (a number > 40 is mentioned in D2, e.g.).”

We consider a vector s ∈ R46 of 46 scaling factors. Thus, s is not a field. We parametrize
the field of fluxes using 46 basis vectors (called “flux categories”). The scaling factors
are the coefficients of these basis vectors.

To clarify this, we added an introduction to Sect. 2.1.3 of Part 1:

Estimating CH4 fluxes in > 105 grid cells based on 50 observation sites seems
impossible without reducing the number of degrees of freedom of the fluxes.
Here, we reduce the degrees of freedom drastically by parametrizing the fluxes
using only 46 basis vectors. A basis vector in this parametrization is a flux
category that contains all fluxes from one region, possibly limited to specific
emission sectors.

and extended Sect. 2.4 of Part 1:

We use a Bayesian inversion to optimize the agreement of model and observations
by scaling the flux categories. We define a vector of scaling factors – in our
application s ∈ R46 – consisting of one prefactor for each flux category.

8. Eq. (1): Referee comment: “Given that the title of the paper talks about an ensemble, is
Eq. (1) minimised with respect to each ensemble member? Or is the ensemble just used for
the procedure described in Sect. 2.4 (see point 10 below)?”

In the inversion, the transport ensemble is only used to construct the matrix R (old Sect. 2.4,
new Sect. 2.5.2 of Part 1). Eq. (1) is minimized for the so-called deterministic (i.e., non-
ensemble) simulation. Besides that, we use the ensemble to generate pseudo-observations for
synthetic experiments. This is now clarified when introducing the ensemble (Sect. 2.1.2 of
Part 1).

9. L111-112:

(a) Referee comment: “How can fluxes be transported? Do the authors mean ‘transported
methane emitted by the fluxes’?”

The correction “transported methane emitted by the fluxes” is indeed what we meant. We
now use the formulation (Sect. 2.4 of Part 1): “In the first term, the vector y of observed
concentrations is compared to the model prediction, which consists of the transported
fluxes Hscontribution Hs of fluxes within the model domain and the modeled far field
xff including the far-field correction.”

(b) Referee comment: “In Eq. (1) and in the above quote, xff is the ‘far field’. Is this the
same as field c in Appendix B? If so, I would recommend that the same symbol is used
in all parts of the paper. If not, I would recommend that they are not referred to as the
‘far field’.”

xff refers to the modeled far field including the far-field correction. This is now stated
explicitly after Eq. (1), as quoted in the previous point.

We distinguish the far field which could be called xff
uncorrected (not used in the manuscript)

and its correction c. For the inversion, we only need the corrected far field, xff =
xff

uncorrected + c.
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10. Sect. 2.4: Referee comment: “The R′ matrix in Eq. (2) is determined from an ensemble.”

(a) Referee comment: “Is this the same ensemble that is (possibly) used in the main inversion
(but see point 8 above)? How is it initialised?”

The ensemble is only used for the main inversion by generating R′ (aside from the con-
struction of pseudo-observations). See also the response to the referee’s point No. 4 in
Sect. 1 of this response. The initialization of the ensemble is now described in Sect. 2.1.2
of Part 1.

(b) L132: Referee comment: “‘. . . added to each observation accounting for any representa-
tivity error.’ I think representativity error is something different, unless sub-grid-scale
processes are included in the divergence of the ensemble members.”

By representativity error we mean the error in predicting the observation for a particular
observation site when assuming that the model works perfectly on the grid scale. This
can be because of local topography or other local effects. We currently do not have
a method to systematically estimate the representativity error. Instead, we include a
sufficiently large uncorrelated error for each observation data point when constructing
R′. This is a very simplified view and discards that the representativity error may be
correlated over long times.

To clarify this point, we adjusted the formulation (now in Sect. 2.5.2): “With this un-
correlated uncertainty σconst, we account for additional uncertainties, such as represen-
tativity errors inherent to a simulation at finite resolution.”

11. L163-168: Referee comment: “‘Plumes caused by high emissions in a small area [. . . ]’ I very
much like this interpretation.”

We thank the referee for the positive feedback.

12. L177-178: Referee comment: “‘The meteorological initial and lateral boundary conditions used
to drive our transport model are taken from the archive of DWD’s operational numerical
weather prediction (NWP), which also employs the ICON model.’ This statement partially
addresses point 1 above, but I am still unsure whether it is ICON itself – or another model
that just uses ICON-derived winds – that is used for the H operator in Eq. (1).”

We hope this question became sufficiently clear in point 1(a) above. We use ICON itself to
compute H.

13. L184-185: Referee comment: “‘In contrast to the meteorological fields, the CH4 concentra-
tions are only transported and never re-initialized.’ Is it just transportation, or are chemical
reactions included too?”

As stated for point 1(b), we do not include any chemical reactions in the simulation.

14. L188: Referee comment: “‘We ensured mass conservation when interpolating to our model
grid.’ How is this done? Is it by multiplying the interpolated fluxes by a factor to ensure that
the total flux is the same after interpolation?”

The interpolation algorithm ensures that mass is conserved. To determine the flux in one
target grid cell, we draw the target grid cell on the input flux data. The input flux field
within the target grid cell is then averaged to obtain the flux in the grid cell. This may
smoothen the input, but it will not change the mass on scales larger than the grid scale
as long as the output grid covers the input grid. We regard this algorithm as a technical
implementation detail that does not need to be described in the publication.
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15. L189-190: Referee comment: “‘Anthropogenic fluxes excluding LULUCF are split further
into 12 GNFR sectors (gridded aggregated NFR, nomenclature for reporting, Veldeman et
al. (2013)), . . . ’

(a) GNFR is not defined (I assume GNFR = Gridded NFR, but I don’t know what NFR
stands for).

(b) I don’t really understand the text in the brackets.

”

We agree that the abbreviation GNFR was not introduced properly. In the new structure, the
term “GNFR” is introduced in Sect. 2.1.3 of Part 1: “When distinguishing emission sectors,
we stay close to the national reporting by using definitions from the gridded aggregated
nomenclature for reporting (GNFR, Veldeman et al., 2013).”

Lines 189-190 of the old version are now part of Sect. 3.3 of Part 1, where we make clear that
we only use the convention named GNFR:

Since the input datasets for anthropogenic emissions are based on reporting to the
UNFCCC, these distinguish between GNFR sectors following the reporting con-
ventions (Veldeman et al., 2013). For the inversion, we combine these sectors and
only distinguish between agriculture and the sum of all other sectors as described
in Sect. 2.1.3.

16. L197: Referee comment: “‘These emissions are missing in our a priori estimate.’ Does this
represent a low bias in the a-priori?”

Yes, the missing natural fluxes in Germany represent a low bias in the a priori. We now
include this clarification: “These emissions are missing in our a priori estimate, leading to a
low bias in the a priori.” (Sect. 3.2 in Part 1)

17. L219-221: Referee comment: “‘Observations within the planetary boundary layer are most
representative in the afternoon hours whereas measurements at high mountains have less local
influence at night time (Bergamaschi et al., 2015). We therefore use the time windows 23 h to
5 h (local mean time) for stations on high mountains and 11 h to 17 h for all other stations.’
If observations on high mountains have less influence over night, why only use them during
23 h to 5 h?”

We aim to use observations that are representative on scales larger than the grid scale. When
observations on high mountains are influence by local emissions and convection during day
time, it is more likely that our model cannot correctly predict the concentrations. When
selecting observations, our aim is to used those observations that our model could predict
correctly if the modeled fluxes were correct.

To clarify that this is a standard procedure in atmospheric inversions, we have extended the
explanation (now Sect. 3.3 of Part 1):

Observations within the planetary boundary layer are most representative in the
afternoon hours whereas measurements at high mountains have less local influence
are less influenced by very local fluxes at night time. Inversions therefore commonly
use afternoon observations for flat land stations and night times at mountain sites
(Bergamaschi et al., 2015; Steiner et al., 2024b). We therefore use the time windows
23 h to 5 h (local mean time) for stations on high mountains and 11 h to 17 h for all
other stations.
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18. L227-229: “In the last filtering step – step 5 in Table 2 – we exclude data points with ex-
treme mismatch between model and observations of more than 200 ppb. Data points where the
observations are more than 20 ppb below the model-predicted far field are also discarded.”

(a) Referee comment: “I assume by ‘model’, the authors are referring to the a-priori?”

Yes, we now explicitly state that we use the far-field corrected a priori.

(b) Referee comment: “For the first (extreme) condition is this written mathematically as
|y−Hs−xff| > 200 ppb or |y−Hs| > 200 ppb to discard? Perhaps this is better explained
as an explicit inequality?”

We follow the suggestion to use the mathematical formulation, which is |y−Hs− xff| >
200 ppb (now included in Sect. 3.3 of Part 1)

(c) Referee comment: “For the second condition is this, mathematically y − xff < −20 ppb
to discard? Again, perhaps this is better explained as an explicit inequality?”

Also here we follow the suggestion and use the mathematical formulation, y − xff <
−20 ppb.

19. Section 4.1.2, point (ii):

(a) Referee comment: “By advecting a tracer, how is it possible to set a lifetime for that
tracer? One would know only the tracer concentration in any grid box, not how long it
has been since that tracer was released (and anyway is likely to be comprised of tracers
that have a variety of emission times).”

ICON-ART supports passive tracers that decay exponentially, similar to radioactive de-
cay. We use this feature to avoid the accumulation of categorized tracers over long times.
Since the exponential decay starts immediately, a small part of the emitted CH4 will
always be attributed to the background before reaching an observation site. This usually
small fraction of the CH4 concentration will not be scaled.

(b) Referee comment: “The statement that tracers have a lifetime and that ‘no CH4 is lost’
seem contradictory to me.”

We agree that this seems contradictory. We compute the total contribution of all fluxes
within our domain separately from the categorized fluxes. Thus, the a priori concentra-
tion is modeled without loosing any CH4. In the a posteriori concentration, the lifetime
of the categorized tracers leads to a small change in the total CH4 concentration. We
have clarified the statement accordingly.

As recommended and following point 3 in Sect. 3 of this response, we have rewritten
Sect. 4.1.2 (now Sect. 2.1.4 in Part 1) and emphasize that the prior concentration is
computed independent of the artificial lifetime. We furthermore include the following
explanation:

After emission, the concentration in these tracer fields decays exponentially with
a mean lifetime of five days. [. . . ] The artificial decay rate affects the posterior
concentration and the sensitivity of the inversion to changes in the emissions.
However, assuming that the typical time between emission and observation is
short compared to the artificial lifetime and in the presence of transport model
errors, we expect that this feature of our inversion system leads to more robust
results.

20. Section 4.2: Referee comment: “I’m very confused as there seems to be two prescriptions for
how the R-matrix is determined – this section and Sect. 2.4. See also point 27 below.”
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We have merged sections 2 and 4 to avoid this confusion. The description of determining R
is now contained in Sections 2.5 and 2.6 of Part 1. See also our reply to point 3 of Sect. 1 of
this response.

21. Section 4.3: Referee comment: “Is any cycling done between the monthly inversions? That is,
does the posterior of one month become the prior of the next?”

We do not use any cycling between the monthly inversions. The months are treated indepen-
dently as stated now in Sect. 2.7 of Part 1:

The inversion is then applied to each month separately by selecting only observations
within one month. The scaling factors of the months are treated as independent,

always each month starting with the same a priori scaling factors (sprior
k = 1 for all

k) and the same a priori scaling uncertainties (B matrix).

22. Section 4.4:

(a) Referee comment: “L316: ‘In each inversion time window, we consider uncorrelated a
priori scaling factors . . . ’ and L319-320: ‘. . . , and within Germany categories describing
the same sector have an a priori uncertainty correlation of 50 %’. These two statements
seem contradictory.”

We agree that our statement about the correlations in B, meant as an exception of
the otherwise diagonal B, can be misleading. We have adjusted the formulation to
avoid contradictory statements, for L316: “In each inversion time window, we consider
uncorrelated a priori scaling factors with [. . . ]” and for L319-320: “[. . . ], and within
Germany categories describing the same sector have an a priori uncertainty correlation
of 0.5 (e.g., [. . . ]). All other categories are treated as uncorrelated in the a priori.”

(b) L316-320: Referee comment: “‘In each inversion time window, we consider uncorrelated a
priori scaling factors with a two standard deviation (2σ) uncertainty of 80 % for most flux
categories, corresponding to a 95 % confidence interval of ±80 %. Throughout this paper,
uncertainties will denote two standard deviations or 95 % confidence intervals. Categories
resolving emission sectors have a higher prior 2σ uncertainty of ±100 %, and within
Germany categories describing the same sector have an a priori uncertainty correlation
of 50 % (e.g., . . . )’ There are (presumably) two quantities represented by percentages
here, the confidence intervals (which represent percentage of the PDF volume), and the
methane quantity itself (presumably represented as a percentage of some value). If this
is correct could there be a better way to describe these to avoid confusion?”

The interpretation of the referee is correct. We have adjusted the notation and now use
percentage values only to describe the confidence interval to avoid confusion.

23. L333-345: Referee comment: “‘Additionally, we combine the two variants of inversion (prior-
R and posterior-R, see Sect. 2.4.2) by taking the arithmetic mean of the two separate inversion
results, arriving at the combined scaling factors.’ The posterior error statistics should just be
a function of the inverse Hessian of the inversion. Why the need to refer to the R-matrices?
A similar mention of the R-matrices is made in L4-5 of the caption of Fig. 5.”

We use the terms “prior-R” and “posterior-R” as labels to distinguish two variants of the
inversion that differ by the construction of R. Both variants produce slightly different results.
In the new structure, we explicitly introduce the terms “prior R” and “posterior R” in Sect. 2.5
of Part 1 and use these terms more consequently throughout Part 1 to avoid similar confusion.
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24. L348-349: Referee comment: “‘Figure 4 presents an overview of (a) the a priori CH4 fluxes,
(c) the resulting scaling factors, and the respective uncertainties (b, d), all accumulated over
the year 2021.’ Presumably ‘averaged’ rather than ‘accumulated’.”

Yes, results are averaged over the year. We have adjusted the formulation accordingly: “Fig-
ure 2 presents an overview of (a) the a priori CH4 fluxes accumulated over the year 2021,
(c) the resulting scaling factors averaged over 2021, and the respective uncertainties (b, d),
all accumulated over the year 2021.” (Sect. 3.1 of Part 2, the numbering of the figures has
changed)

25. L416-417: Referee comment: “‘Other filtering parameters such as the number of sampling
heights per station (case 202) and . . . ’ I don’t understand what is meant by, ‘the number of
sampling heights per station’, given that the height of an observation station is (presumably)
fixed.”

Some observation sites are tall towers with up to five inlet heights. We use up to three of these
sampling heights per observation site. Using many observations can be beneficial, but when
using co-located observations, error correlations must be taken into account. The maximum
number of sampling heights used per observation site is therefore a tuning parameter of our
inversion system.

In response to the referee’s question, we have rewritten the explanation of this aspect in
Sect. 3.3 (now of Part 1): “For tower observations, we use up to three sampling heights per
station, preferring the highest three sampling heights and discarding observations below 50 m
above ground level to reduce the influence of very local emissions.”

26. L418-420: Referee comment: “‘Neglecting extreme outliers has only a small effect (cases 206,
207), but limiting the influence of outliers by increasing their uncertainty has a considerable
impact (cases 208, 209).’ One would expect that neglecting extreme outliers is just the limiting
case of increasing their uncertainty to infinity. It might be counterintuitive then that increas-
ing their uncertainties has a large impact, then a small impact when their uncertainties are
increased further to infinity.”

We define extreme outliers by |y −Hs− xff| > 200 ppb or y − xff < −20 ppb. This definition
differs from the definition of outliers, which are all observations which deviate from the a
priori model prediction by > 3 standard deviations. Since the latter definition affects more
data points, it has a stronger impact on the results. To avoid confusion, we have added these
definitions in the discussion (now in Sect. 4.5.1 of Part 1):
“Limiting the influence of outliers with model–observation mismatch |µi| > 3

√
R′ii by increas-

ing their uncertainty (see Sect. 2.6.2) has a considerable impact (cases 208, 209). Completely
neglecting extreme outliers – defined by |y −Hs− xff| > 200 ppb or y − xff < −20 ppb – has
only a small effect (cases 206, 207).”

To indicate how many observations are affected by neglecting extreme outliers, we have added
the total number of observations used by the inversion in the sensitivity tests in Table E1.

27. L428-429:Referee comment: “‘. . . and the uncorrelated additive uncertainty σconst of each data
point (cases 309, 310).’ Perhaps I have missed it, but I cannot find any reference to σconst in
Sects. 2.4 or 4.2. This adds to my confusion about how the R-matrix is determined. See also
point 20 above.”

We now refer to Eq. (2) to clarify where σconst was introduced. Following point 10(b) above,
the text below Eq. (2) now includes the explanation: “With this uncorrelated uncertainty
σconst, we account for any other source of uncertainties, including the representativity error.”
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28. L471: Referee comment: “‘These Each vector of scaling factors defines the a synthetic truth,
. . . ’ (These suggested changes distinguishes considering all scaling factors together in one
ensemble-based inversion.)”

We agree with the referee and use the suggested formulation (now in Sect. 3.4.1 of Part 2).

29. L484-485: Referee comment: “‘Within Germany, we distinguish agriculture from other emis-
sions. The ability to distinguish sectors can be described by averaging kernel matrices which
estimate . . . ’ Putting the B-matrix aside, how can different sectors be distinguished from
observations of methane? See also point 40a below.”

To distinguish sectors, we use their different a priori spatial distribution of emissions. This
involves large scales (e.g., strong agriculture emissions in the north west of Germany) and
smaller scales (e.g., different dominant sectors in urban and rural areas). For example, agri-
culture emissions in Western and North-Western Germany lead to strong signals at the ob-
servation sites Steinkimmen and Torfhaus, whereas other emissions from the same region lead
to stronger signals at Jülich, Heidelberg and KIT. The pattern of the model–observation mis-
match in space and time indicates where emissions are overestimated or underestimated. By
adjusting the scaling factors (prefactors) for the corresponding flux categories, we optimize
the agreement with observations and distinguish sectors.

We added the following explanation in Sect. 3.4.2 of Part 2:

The discrimination of emission sectors works in the same way as we distinguish emis-
sions from different areas. Each sector has a specific spatial distribution of emissions,
which we assume to be correct in the a priori. The predicted CH4 concentration at
the observation sites will therefore depend on how the individual sectors are scaled.
In the inversion, the sector emissions are scaled to find optimal agreement of model
prediction and observations.

One remaining challenge is that the described method has large uncertainties. This motivates
the detailed discussion of the ability to distinguish sectors in Part 2, Sect. 3.4.2 (Sect. 5.5.2
in the initial submission), which allows us to conclude that we can obtain some information
on the sector emissions.

30. Section 5.6: Referee comment: “This section is about simulated transport errors, but I cannot
find a description of how transport errors are simulated. Is noise added to the winds e.g.?”

To clarify this issue and because these synthetic experiments are now a central part of Part 1,
we introduce a new Sect. 3.4 on “Synthetic observation experiments” in Part 1:

To test our setup and analyze biases, we use synthetic experiments in which obser-
vation data are replaced by model-generated pseudo-observations. These synthetic
experiments use exactly the same setup and the same observation coordinates. Only
the observation values are replaced by the simulation result of one of our 12 ensem-
ble members. We thus obtain 12 separate datasets of pseudo-observations, in which
a transport error is simulated by the transport ensemble members.

As mentioned in the reply to point 3 above, the ensemble members have different winds as a
central component for different transport.

31. Figure 10: Referee comment: “I’d recommend adding the 1:1 line as a guide. See also point
39c below.”
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We agree that adding the 1:1 line improves the figure. To also address the point by Referee #2
on the comparison of our R matrix construction to a “standard approach”, we included ad-
ditional results into Figure 10 (now Fig. 6 of Part 1). This led to a new visualization, taking
all referee comments into account:

0.9 1.0
mean

Germany
Italy

UK, Ireland
France (mainland)

Spain, Portugal
Austria, Czechia

Netherlands
Belgium, Luxembourg

Denmark
Switzerland

Poland
Upper Silesian Coal Basin

(a)
diagonal R
prior R
posterior R

0.0 0.1
standard deviation

(b)
without far-field correction

0.9 1.0
mean

(c)

0.0 0.1
standard deviation

(d)
with far-field correction

Figure 6. Mean (a, c) and standard deviation (b, d) of monthly flux estimates
relative to the prior in synthetic experiments for diagonal R (blue), prior R (orange),
and posterior R inversion (green). Each bar represents the posterior fluxes for
144 inversions, obtained from 12 datasets of pseudo-observations, each covering 12
monthly time windows. Black horizontal lines indicate the 2σ statistical uncertainty
estimate. Panels (a, c) show the bias as the relative deviation of the mean posterior
from the prior, which is equal to the synthetic truth. The standard deviation (b, d)
among the 144 emission estimates indicates the random error expected in each
monthly inversion. Colored lines in (b, d) show the mean posterior 1σ uncertainty,
which is similar for all three methods.

In the figure, we also removed the German sector emissions because these are discussed in
Part 2.

32. L515-516: Referee comment: “‘Localized sources that cause a strong plume are underestimated
by both methods, though the bias is reduced in the posterior-R inversion as predicted . . . ’ I
assume it is the posterior fluxes that are plotted in Fig. 10, using the two R-inversion methods,
with and without the far-field correction (and not their errors). Figure 10 (and Fig. F2, see
point 39c below) therefore compares the posterior values for each relative to the prior. How
is it possible therefore to tell whether a strong plume is underestimated and what the biases
are?”

We thank the referee for this remark on Figure 10. The figure shows posterior emissions rela-
tive to the true emissions in a synthetic observation experiment. In the synthetic experiment,
we define the true emissions and compute pseudo-observations that agree with this defined
truth. The inversion only sees the pseudo-observations and tries to reconstruct the true emis-
sions. From the result we can then see whether emissions are underestimated compared to
the synthetic truth.

To prevent misinterpretation, we improved the visualization of the data and expanded the
explanation of the synthetic experiments in the new Sect. 3.4 of Part 1 (see also point 30
above).

33. L537: Referee comment: “‘Firstly, we find that our top-down CH4 emission estimates are
significantly higher than reported for Germany.’ Although, looking at Fig. 5, the NIR estimate
is well within the 95 % confidence interval of the posterior.”
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We appreciate this comment. While the uncertainty ranges of prior and posterior have some
overlap, the reported value for Germany (1.89 Mt, light blue/cyan in Fig. 5) is not within the
uncertainty range of the posterior (2.15 Mt to 2.88 Mt, red, 95 % confidence interval).

34. L619-620: Referee comment: “‘The increasing availability of satellite data is especially inter-
esting for constraining concentrations and emissions in less observed regions, such as near the
boundaries of our domain.’ This seems an obvious extension of the work given the wide range
of total column methane retrievals available from satellites. This may require careful tuning
though to remove potential biases.”

We fully agree with the referee’s comment. To emphasize this point and for clarification, we
have adjusted the text: “The increasing availability of satellite data is especially interesting
for constraining concentrations and emissions in less observed regionsregions with few or no
ground-based observations, such as near the boundaries of our domain, which is an aspect to
be addressed in future studies.”

35. Appendix B, Eq. (B2): Referee comment: “I am concerned that the formula (B2) is not
formally correct in one detail (in the final step). [. . . ]”

We thank the referee for spotting this. The arguments and calculations presented by the
referee are correct. We are aware that Eq. (B2) is one possible solution of Eq. (B1), but this
solution is not unique. We have adjusted the formulation in Appendix B to highlight this
aspect.

Referee comment: “I think this requires some attention in the paper.”

We have extended the appendix and included a short proof that the chosen (non-unique)
solution is optimal in the sense that it minimizes c>C̃−1c under the constraint that is solves
Eq. (B1).

We want to show that the following solution is optimal:

c = C̃P>
[
P (C̃ + R̃)P>

]−1
P (y − x). (A2)

As derived by the referee, we know that

Pc = PC̃P>
[
P (C̃ + R̃)P>

]−1
P (y − x). (A6)

The extended appendix (now Appendix A of Part 1) continues:

One can furthermore show that Eq. (A2) is optimal in the sense that it minimizes
c>C̃−1c under constraint that c is a solution of Eq. (A1) [or Eq. (A6)]. Thus,
this solution is as close as possible to zero under the constraint of smoothness

(quantified by C̃). By defining ξ =
[
P (C̃ + R̃)P>

]−1
P (y − x) and introducing

Lagrange multipliers λ, we obtain

f(c, λ) = c>C̃−1c+ λ>(Pc− PC̃P>ξ), ∂f

∂ci
= 0,

∂f

∂λj
= 0, (A7)

c = −C̃P>λ from ∂cif(c, λ) = 0, (A8)

Pc = PC̃P>ξ from ∂λjf(c, λ) = 0. (A9)

Since PC̃P> has full rank, combining Eqs. (A8) and (A9) implies that λ = −ξ and
thereby c = C̃P>ξ is the unique solution of the optimization problem arg minc f(c, 0)
under the constraint that Pc = PC̃P>ξ.
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Given that we aim for a smooth solution that should only deviated from zero when force by
observations, we consider Eq. (A2) (old Eq. (B2)) the optimal solution and need not worry
about non-uniqueness of Eq. (A6) (or old Eq. (B1)). We thank the referee for checking our
calculations in detail and for motivating this more formal justification for the construction of
our far-field correction.

36. Appendix C: Referee comment: “I didn’t follow the reasoning in this appendix. For example,
I note the following points.”

We agree that the derivations in this appendix (now Appendix D of Part 1) need more clarifi-
cation. We have rewritten the mathematical derivation of the central result, Eq. (C4), of the
appendix.

Remark: In the new derivation, the matrix Q may seem to differ from the old appendix at
first sight, but one can show that both forms are equivalent.

(a) Referee comment: “The left hand side of (C1) seems strange to me. It is the probability
of a real number (the mismatch) being realised. This doesn’t make any sense to me.
Normally a probability density would be used, e.g. P (µ = y −Hsprior − xff)dµ to mean
the probability between values of µ and µ+ dµ.”

(C1) describes a probability density and not a probability, as correctly noted by the
referee. We have corrected this aspect.

(b) Referee comment: “What is the variable dPs and how does one arrive at (C1)?”

As recommended, we have reformulated this step and avoid the ambiguous notation used
in (C1):

We start from the probability density of observations y under the assumption
that s describes the true emissions:

P (y|s) ∝ exp
[
−1

2(y −Hs− xff)>R−1(y −Hs− xff)
]
. (D1)

Like in the inversion, R describes uncertainties in the transport, in the corrected
far-field contribution xff, and in the observations y. By a change of variables
we obtain the probability for the a priori model–observation mismatch µprior =
y −Hsprior − xff: P (µprior|s)dµ = P (y|s)|y=Hsprior+xff+µpriordy.

To estimate whether a given µprior is realistic, we need to integrate out the scaling
factors s to obtain P (µprior). We denote the integral over the vector space of
scaling factors s with probability measure dPs by

∫
s •dPs =

∫
s P (s) • dns for

s ∈ Rn. Using the above definitions in Eq. (D1), we obtain [Berchet et al., 2015,
doi:10.5194/gmd-8-1525-2015]

P (µprior)

=

∫
s

P (µprior|s) dPs (D2)

∝
∫
s

exp
[
− 1

2 (y −Hs− xff)>R−1(y −Hs− xff)− 1
2 (s− sprior)>B−1(s− sprior)

]
y=Hsprior+xff+µprior d

ns

(D3)

τ=s−sprior

=

∫
τ

exp
[
− 1

2 (µprior −Hτ)>R−1(µprior −Hτ)− 1
2τ
>B−1τ

]
dnτ (D4)

(c) Referee comment: “The line in (C2) appears to integrate over the posterior. How does
this relate to (C1)?”
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We have changed the notation and added another step (Eq. (D3) above) in which we
explicitly write the assumed Gaussian probability densities for y and s to make this step
clearer. The integral over s originates from basic Bayesian probability theory (Eq. (D2)
above).

(d) Referee comment: “The term Hτ+µ, which appears in (C2) has the following form [. . . ].
This doesn’t seem correct to me.”

(C2) contained a sign mistake. This mistake did not change the result. We are thankful
for spotting this mistake.

(e) Referee comment: “The rest of the section does contain some useful analysis about the
expected value and range of χ2/Ndof, but the appendix should be explained more and a
reference added.”

We have extended the explanation in the first part of the appendix and added some
references (Greenwood and Nikulin (1996) for a general discussion of χ2 tests, Berchet
et al. (2015) for P (µprior) and Abramowitz and Stegun (1964) for the approximation of
χ2).

37. Appendix D: We have included most of this appendix in the main text (Sect. 2.4.3 of Part 1).
This part of the appendix was completely rewritten. Only Appendix D2 remains in what is
now Appendix B of Part 1.

(a) Referee comment: “‘We estimate the model uncertainty using a meteorological ensemble.’
Which model uncertainty and which quantity? I assume the authors are referring to the
uncertainty in s?”

The model uncertainty is the transport uncertainty described by R. To clarify this point,
we now write “model uncertainty in R” when referring to this uncertainty, unless it is
clear from the context. The mentioned sentence in line 692 has been removed when
rewriting the appendix.

(b) Referee comment: “‘Stronger emissions lead to stronger spatial gradients in the model
concentrations . . . ’ (suggested change to make distinct from gradients in state space).”

We follow this suggestion and refer to spatial gradients when discussing this issue (now
in Sect. 4.2 of Part 1).

(c) L712-715: Referee comment: “‘When using a priori scaling factors to estimate the model
uncertainty, we need only the total concentration xmi (sprior) for each ensemble member.
Thus, only a single tracer field is required in the ensemble transport simulation. To fully
compute xmi (s) as function of s, the tracer categories need to be distinguished for each
ensemble member, resulting in > 40 tracer fields in the ensemble simulation.’ The only
difference between the calculation of xmi (sprior) and xmi (s) is that sprior is replaced by s.
How does this require that > 40 different tracer fields are required? I guess that > 40
different values of s are chosen. What is the significance of the number 40? The difficulty
to understand this may be connected to point 7f above.”

To compute xmi (s) for one fixed vector s ∈ R46 (e.g., s = sprior), we can use a single tracer
that contains all CH4 emissions scaled by s. But we are interested in the function xmi (s)
and want to evaluate this for arbitrary s without re-running the transport model. This is
only possible if we know xmi (s) for a complete set of basis vectors of R46 and additionally
for the background concentration xmi (0). Thus, we need to simulate the transport for 47
tracers, which is numerically expensive.

We have adjusted the explanation to clarify this point (now Appendix B of Part 1):
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When using a priori scaling factors to estimate the model uncertainty in R, we
need only the total concentration xmi (sprior) for each ensemble member m and
each observation i, where sprior is known. Thus, only a single tracer field is
required in the ensemble transport simulation. To compute xmi (s) for arbitrary
s ∈ R46, the flux categories need to be distinguished for each ensemble member,
resulting in > 40 tracer fields in the ensemble simulation.

(d) Referee comment: “In the above, what does i stand for?”

i labels the observations as introduced in Sect. 2.4. We added a reminder on this notation
(see previous point 37c for the new text) and adjusted the notation throughout the
manuscript to avoid using i differently.

(e) Referee comment: “I don’t really understand Eq. (D3). What is the distinction between
xmgi = xmi (Pgs

prior) and HPgs
prior (they seem to be the same thing)? Making this dis-

tinction is probably the key to understanding (D3).”

We thank the referee fo this valuable comment because it points to a mistake in the
notation of Appendix D2: It should be xmgi = HmPgs

prior and not xmgi = xmi (Pgs
prior).

By xmgi we denote the contribution of emissions from flux-category-group g to the con-
centration at observation i in ensemble member m. The new formulation of the appendix
should clarify this point:

From the deterministic model run, we know the operator H mapping scaling
factors s to a model prediction Hs + xff for the concentrations. For ensemble
member m, we would ideally know Hm and xff,m yieldingto compute a model
prediction Hms + xff,m. In lack of computational resources to compute Hm

for every ensemble member, we combine information from the deterministic run
(H) and selected tracers for the ensemble run to approximate Hm. To avoid
calculating the full matrix Hm, We group the flux categories into groups {g}
and denote by Pg the projector of scaling vectors s on the subspace spanned
by the flux categories in group g. In the ensemble members, we compute the
total concentration from group g, xmgi = HmPgs

prior. We distribute the 46
flux categories to only three groups and thereby reduce the computational effort
considerably. To estimate the full dependence on the scaling factors in the
ensemble, we approximate:

xmi (s) ≈
∑
g

(HPgs)i
(HPgsprior)i

xmgi + xff,m
i . (B1)

[. . . ]

38. Table E1:

(a) Referee comment: “ID 101: ‘no time averaging’, given the explanation column, shouldn’t
this read ‘change in time averaging’?”

We agree that this is misleading and adjusted the description to “no additional time
averaging”. The observations include some type of time averaging over 1 h. By choosing
the same window for the time averaging in the model, we avoid any time averaging
beyond what is required to compare to the available observation data.

(b) Referee comment: “Some of the test cases (rows in table) are ambiguous to me. For
example, ‘200, fewer hours of day, use time window 12 h–16 h (0 h–4 h for high moun-
tains)’. Does it mean that the reference case used observations at all hours? Then again
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‘201, all hours of day, no filtering by time of day, increase uncertainty inflation by factor
1.5’ seems to imply that using observation at all hours is a test case different from the
reference. I would recommend going through the entire list and making sure that each
test case is unambiguous to the reader.”

We have checked the list and added more information. For many cases, like the men-
tioned case 200, we have added the configuration of the reference case for comparison.
Furthermore, when changing how observations are selected, we add the total number
of considered observations as an indicator for the impact of the changes in tuning pa-
rameters. We also added more references to those parts in the manuscript where the
considered tuning parameters are introduced.

39. Appendix F:

(a) Referee comment: “I am confused why the truth (horizontal lines) should change with the
test ID.”

The test IDs represent different scenarios. These scenarios include changes in the observa-
tion bias, noise, and changes in the true fluxes. Since these are synthetic experiments with
pseudo-observations, we can define the true emissions and construct pseudo-observations
accordingly. By keeping the prior fixed and changing the truth, we test how the inversion
system is expected to reacts to changes in the emissions.

(b) Referee comment: “‘Next, we test the effect of an underestimation or overestimation of
all emissions. In case 20 of Fig. F1, all natural and LULUCF fluxes are reduced by
40 % in the truth, and cases 21 and 22 change all anthropogenic emissions excluding
LULUCF by −20 % and +20 %, respectively.’ Are these experiments simply changing the
true emissions (and the synthetic observations and a-priori values) and then repeating the
inversion? I would’ve thought that such an experiment would be expected to have posterior
fluxes that are consistent with the truth. Wouldn’t a more interesting experiment be one
with the underestimation or overestimation of all emissions in the a-priori, but with the
truth (and synthetic observations) unchanged?”

The synthetic experiments change the true emissions and thereby the pseudo-observations,
but the a priori emissions are not changed. The inversion is repeated with the different
pseudo-observations. Since the a priori emissions are not adjusted to the new synthetic
truth, we can analyze how well the inversion can determine the modified synthetic truth.

One could also keep the truth fixed and change the a priori. But in our setup it is simpler
to change the truth and leave the a priori unchanged. In both cases, the a priori is an
underestimation or overestimation of the synthetic truth.

In response to the referees’ comments, the old Appendix F has been rewritten and is now
included in the main text of Part 1. We introduce the mentioned test cases as follows
(Sect. 4.4, Part 1): “For the last three test cases (20–22), we scale either the natural and
LULUCF fluxes or all other emissions in the synthetic truth while leaving the a priori
emissions unchanged.”

(c) Fig. F2 and text: Referee comment: “It would be useful to draw the 1:1 line in each
panel (see also point 31 above). It would then be seen that the when far-field correction
is applied the posterior R-inversion does better than the prior R-inversion. I think it is
best to describe fully the experiments being done and then show the results in the Figs. In
the case of the text around Fig. F2 it is not until the end of the appendix that the reader
learns that the ‘prior is underestimated compared to the synthetic truth.’”
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This part of the old Appendix F is now Sect. 4.3 and Fig. 7 of Part 1. Like Fig. 10
(point 31 above), the representation of the data has changed such that no 1:1 line is
needed to compare the different methods. In response to the referee’s comment, we
now state that: “The a priori emissions remain unchanged and are thus lower than the
synthetic truth.” before referring to the figure with the results.

40. Appendix G (now Appendix C of Part 2):

(a) Referee comment: “‘When observations can detect a change in total emissions but cannot
distinguish between different emission sectors, the sector-resolving inversion will change
the sectoral distribution based on the prior uncertainties.’ Out of curiosity, how could
observations of methane make this distinction? Also mention is made in the main text
at L365.”

As explained in the above point 29, the different spatial distribution of emissions from dif-
ferent sectors leads to different patterns in the observations. The analysis in Appendix G
shows one possible problem when trying to estimate sector emissions.

(b) Referee comment: “‘The a priori probability density for an emission . . . ’”

We thank the referee for this correction, which has been incorporated.

(c) Referee comment: “The symbol P (e) is used to represent the posteriori probability density,
but the same symbol is used for the prior density in Eq. (G1). Although this is often
done when describing probabilities, one can distinguish the prior from the posterior by
its argument. The prior is often written as P (e) and posterior as the conditional density
P (e|y). The statement on L770-771 needs to refer to the posterior.”

Eq. (G1) refers to the a priori probability density P (e) but remains valid for P (e|y). We
have adjusted the notation accordingly:

The inversion will yield a result for estimate the total emissions epost
tot that

maximizes the probability P (s) when including information from the observations
such that the a posteriori probability density P (e|y) is maximized. But by as-
sumption, these observations do not distinguish between sectors such that Eq. (G1)
remains valid the a posteriori probability density fulfills P (e|y) ∝ P (e) as long
as
∑

i ei is fixed. We thus obtain the posterior emissions of the sectors by max-
imizing [Eq. (G1)] with the constraint

∑
i ei = epost

tot .

41. Appendix H (now Appendix B of Part 2):

(a) L786-787: Referee comment: “‘We first estimate the sensitivity of the posterior scaling
factor to the true emissions under the assumption that the transport model, far field,
and the flux pattern within each flux category are perfect.’ Flux patterns are referred to,
but not defined anywhere. I suspect addressing this point will help the reader understand
point 7e above also.”

We agree and gladly take up this suggestion to improve clarity: We now avoid the term
“flux pattern” and adjusted this at multiple locations in the manuscript. The mentioned
part now reads: “We first estimate the sensitivity of the posterior scaling factor to the
true emissions under the assumption that the transport model, far field, observations,
and the flux pattern a priori spatial distribution within each flux category are perfect.”

(b) L788: Referee comment: “µ = y −Hsprior − xff. Let y = Hstruth + xff + εy (where εy is
the observation error. Then, µ = H(sprior−struth +εy. The expression given in the paper
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doesn’t have εy, which suggests that the authors are making the additional assumption
that the observations are perfect.”

Yes, we thank the referee for this correction. We now include the assumption of per-
fect observations in the explanation in the new version of the manuscript (see previous
point 41a for the new text).

(c) Eq. (H1): Referee comment: “Given that the above expression is used to substitute for
y−Hs−xff (and not y−Hsprior−xff as used in point 41b above), why not simply present
the previous expression with sprior → s?”

Yes, the notation proposed by the referee (sprior → s) is better. We adapt this in the
new version.

42. Appendix I (now Appendix D of Part 2):

(a) Fig. I1: Referee comment: “There is no explanation of the distinction between the two
panels in the caption. The only difference is (a) is labeled Aemissions and (b) is labeled
Ascaling factors. I assume that (a) is computed from (b)? What are the smaller matrices
at the bottom of each panel?”

Fig. I1 (now Fig. D1 of Part 2) uses the same representation as Fig. 9 (now Fig. 7 of
Part 2). We extended the explanation in the figure caption, but do not completely repeat
the explanation of the representation from Fig. 9:

Averaging kernel matrices of German sector emissions (a) and the corresponding
scaling factors (b) when trying to distinguish sectors waste, public power and
other, estimated using the posterior error covariance matrix. Small matrices
at the bottom indicate the ideal result. See Fig. 7 for an explanation of the
representation. Panel (a), third row, shows that increasing true emissions in
any sector is expected to cause higher posterior agriculture emissions with a
false attribution of 46 % to 70 %. The same row in panel (b) shows that when
looking at relative changes in the emissions, the influence of the false attribution
on the agriculture sector is not very large.

3 Presentational points and very minor points

We thank the referee for correcting also typos and providing advices on making the text more
understandable. Aside from typos and simple corrections, the referee mentioned the following
points:

1. Referee comment: “The appendices are referenced in a different order to their placement. For
example, appendix B is referenced first. It makes logical sense to place the appendices in the
order that they are first referenced in the main text.”

This is an important remark. In the restructuring we made sure that the appendices are
ordered as recommended.

2. Table 1: Referee comment: “As there are many acronyms, the caption of Table 1 might
be a good place to (re)define acronyms. Incidentally, I cannot see where GNFR is defined
anywhere.”

The acronyms used in Table 1 are partially product names (e.g., CAMS-REG or ICON), for
which the acronym may be more common than the expanded name. For the abbreviation
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“GNFR”, which names a convention used in reporting, we added the information to the table
caption that is most relevant to the reader: “The national reporting distinguishes emissions by
GNFR sectors of which A–M include all anthropogenic emissions excluding land use, land use
change and forestry (LULUCF).” We thereby also define “LULUCF” in the updated caption.

4. Sections 4.1.1 and 4.1.2: Referee comment: “I got very lost trying to follow exactly what was
done here. I would recommend that these sections are rewritten, possibly with a table to help
the reader see exactly how different regions and sectors are combined, etc.”

As suggest, these sections have been rewritten and are now Sections 2.1.3 and 2.1.4 of Part 1.
We added a short introduction with a simple example and a table of flux categories to
Sect. 2.1.3 (old Sect. 4.1.1). In Sect. 2.1.4 (old Sect. 4.1.2), we have added an explanation
how the a priori concentrations are computed. We have rewritten the most complicated part
relating to flux categories.

15. L588: Referee comment: “‘Moreover, adjusting fewer degrees of freedom may . . . ’”

We thank the referee for this comment. The suggested correction does not perfectly fit what
we meant here, but motivates the following clarification: “Moreover, adjusting only a few
degrees of freedom may not be sufficient . . . ”

4 Mistake in the manuscript

Figures 10, F2 and E1 in the submitted manuscript were affected by a mistake: Those inversions
for which the far-field correction was disabled used wrong tuning parameters with underestimated
uncertainties due to a bug in the code. In sensitivity test 400 and Figure 10, this led to an
overestimation of the relevance of the far-field correction. The mistake has been corrected and
the discussion of the far-field correction has been adjusted accordingly. The conclusions of our
manuscript remain unaffected.

(This paragraph is included in the replies to both referees.)
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