

1 Comment on "Design study for an airborne N₂O lidar" by Kiemle et al. (2024)

2 Joel F. Campbell¹, Bing Lin¹, Zhaoyan Liu²

3

4 ¹NASA Langley Research Center, Hampton, VA 23681

5 joel.f.campbell@nasa.gov

6 ²NASA Ames Research Center, Moffett Field, CA 94035

7

8 In a recent publication (Kiemle et al., 2024) the following was stated:

9 "Another low-power option for IPDA is (modulated) continuous-wave (cw) laser operation instead
10 of emitting pulsed signals (e.g., Campbell et al., 2020). For measurements with a precision
11 requirement below 1 %, however, the length of the atmospheric column must be known to an
12 accuracy of better than 3 m, which is only practicable with short laser pulses in combination with
13 a sufficiently large detection bandwidth (Table 3; Ehret et al., 2008). Alternatively, a precision
14 range finder had to be added, which annihilates the cost benefit of cw lidar."

15 We reported doing those things with a CW lidar system in the referenced publication without the
16 aid of an external range finder so this statement is incorrect. The CW technique was first used in
17 radar many decades ago to do ranging, so there really is not an advantage or necessity to choose
18 one technology over another if ranging is the only consideration. In fact, one of the main
19 applications for CW lidar is ranging. The same physics applies to either technology. If a narrow
20 pulse is required for target discrimination purposes, this can also be achieved with CW using a
21 modulation with a wide bandwidth. Once the matched filter transform is performed, a narrow
22 width synthetic pulse can be achieved. A 3 m resolution CW ranging lidar would require a
23 modulation bandwidth of $\Delta f = \frac{c}{2\Delta r} = 50\text{MHz}$, where c is the light speed and Δr is the ranging
24 resolution. This is not difficult especially if optical communication hardware is utilized. Another
25 method would be to use frequency modulated CW (FMCW; Gao and Hui, 2012) or phase
26 modulated CW (PMCW; Zhi et al., 2025) and heterodyne detection. In fact, FMCW lidar is used
27 in the auto industry to detect near objects (Kim et al., 2020).

28 Regarding the point of a narrow pulse (or alternatively a narrow synthetic CW pulse) being
29 required to do ranging down to 3 meters. If the field is cluttered by clouds or other features, we
30 would say this statement is probably true depending on the situation, but in clear sky conditions
31 where the ground is the only return, interpolation can be used. Interpolating lower resolution lidars
32 is not a particularly controversial technique and has been used extensively in the past (Hu et al.,
33 2007; Ai et al., 2011; Dobler et al., 2013; Lu et al., 2014; Campbell et al., 2014). If the field is
34 cluttered by closely spaced scatterers, one return could interfere with another to distort the shape
35 of the pulse and affect the range measurement. If the ground is the only return this is not likely to
36 occur except through ground topography, which would also affect a pulse lidar. In some pulse

Deleted: Since we

Deleted: cw

Deleted: , we are at a loss to understand what

Deleted: being implied here.

Deleted: cw

Deleted: isn't any

Deleted: cw

Deleted: cw

Deleted: cw

Deleted: cw

Deleted: cw

Deleted: Now for

Deleted: other

Deleted: . Is

Deleted: cw

Deleted: ? That depends.

Deleted: maybe

Deleted: ,

Deleted: ,

Deleted: ,

57 lidars where there is variability from pulse to pulse, interpolation can be more problematic
58 depending on the system. However, CW does not suffer from this. Each modulation frame is
59 generated from a preset waveform and clock and there is a very high degree of repeatability. Not
60 only that, each synthetic pulse is generated from multiple sweeps in our processing, and the
61 interpolation is a natural feature of the way that we do the matched filtering, using a type of circular
62 Fourier interpolation by collapsing the Kronecker comb of the matched filter in the frequency
63 domain, so the results of the modified matched filter produces an interpolated synthetic pulse with
64 very good results (Campbell et al., 2014). As long as the signal is Nyquist sampled, the original
65 continuous signal can be recovered to within the limits of noise. This is the basic tenet of the
66 Nyquist-Shannon sampling theorem. Fourier interpolation (or at least our version of it designed
67 for circular correlations) is the most natural and accurate interpolation method for this type of band
68 limited signal.

69 The paper in question shows results from the multifunctional fiber laser lidar (MFLL), an
70 instrument that was developed over many years by Harris Corporation (now L3Harris) in
71 collaboration with NASA Langley Research Center. MFLL evolved from an instrument that used
72 a single frequency modulation for each wavelength that were orthogonal to one another in its early
73 development (Dobbs et al., 2008) to what it was on the Atmospheric Carbon and Transport –
74 America (ACT America) flights where it used orthogonal swept frequency modulations (Dobler et
75 al., 2013, Campbell et al., 2020). Although it is true ranging is more problematic with single
76 frequency modulations, swept frequency modulation is a technique commonly used in many older
77 CW radars to do ranging and that is what was being used by MFLL for the ACT America flights.
78 The results show that the ranging is clearly less than 3 m, which meets and, actually, exceeds the
79 science/instrumentation requirement. The authors have also experimented with PN code
80 modulation on different instruments with good results (Campbell et al., 2014).

81 References

82 Ai, Xiao; Nock, Richard; Rarity, John G.; and Dahnoun, Naim: High-resolution random-
83 modulation cw lidar, *Appl. Opt.* 50, 4478-4488, <https://doi.org/10.1364/AO.50.004478>, 2011

84 Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; and Oblad, Michael D.:
85 High-resolution CW lidar altimetry using repeating intensity-modulated waveforms and Fourier
86 transform reordering, *Opt. Lett.* 39, 6078-6081, <https://doi.org/10.1364/OL.39.006078>, 2014

87 Campbell, J. F.; Lin, B.; Dobler, J.; Pal, S.; Davis, K.; Oblad, M. D.; Erxleben, W.; McGregor,
88 D.; O'Dell, C.; Bell, E.; Weir, B.; Fan, T.-F.; Kooi, S.; Gordon, I.; Corbett, A.; and Kochanov, R.:
89 Field evaluation of column CO₂ retrievals from intensity-modulated continuous-wave differential
90 absorption lidar measurements during the ACT-America campaign, *Earth and Space Science*, 7,
91 e2019EA000847, <https://doi.org/10.1029/2019EA000847>, 2020

92 Dobbs, Michael; Dobler, Jeremy; Braun, Michael; McGregor, Doug; Overbeck, Jay; Moore III,
93 Berrien; Browell, Edward; Zaccheo, T.S.: A Modulated CW Fiber Laser-Lidar Suite for the

Deleted: so

Deleted: cw

Deleted: Semiconductor

Deleted: amplitude modulated tone

Deleted: it's

Deleted: tone

Deleted: cw

101 ASCENDS Mission, Conference: 24th International Laser Radar Conference At: Boulder, CO,
102 2008

103

104 Dobler, J. T.; Harrison, F. W.; Browell, E. V.; Lin, B.; McGregor, D.; Kooi, S.; Choi, Y.; and Ismail,
105 S.: Atmospheric CO₂ column measurements with an airborne intensity-modulated continuous
106 wave 1.57 μ m fiber laser lidar. *Applied Optics*, **52**(12), 2874–2892.
107 <https://doi.org/10.1364/AO.52.002874>, 2013

108

109 Gao, S. and Hui, R.: Frequency-modulated continuous-wave lidar using I/Q modulator for
110 simplified heterodyne detection, *Opt. Lett.* 37, 2022-2024. <https://doi.org/10.1364/OL.37.002022>,
111 (2012)

112 Hu, Y.; Powell, K.; Vaughan, M.; Tepte, C.; Weimer, C.; Behrenfeld, M.; Young, S.; Winker, D.;
113 Hostetler, C.; Hunt, W.; Kuehn, R.; Flittner, D.; Cisewski, M.; Gibson, G.; Lin, B.; and
114 MacDonnell, D.: Elevation information in tail (EIT) technique for lidar altimetry, *Optics Express*
115 15, 14504-14515, <https://doi.org/10.1364/OE.15.014504>, 2007.

116

117 Kiemle, Christoph; Fix, Andreas; Fruck, Christian; Ehret, Gerhard; and Wirth, Martin: Design
118 study for an airborne N₂O lidar, *AMT*, 17, 6569–6578, <https://doi.org/10.5194/amt-17-6569-2024>,
119 2024

120 Kim, Chankyu; Jung, Yunho; and Lee, Seongjoo: FMCW LiDAR System to Reduce Hardware
121 Complexity and Post-Processing Techniques to Improve Distance Resolution, *Sensors*, 20(22),
122 6676; <https://doi.org/10.3390/s20226676>, 2020

123 Lu, X.; Hu, Y.; Trepte, C.; and Liu, Z.: A Super-Resolution Laser Altimetry Concept, in *IEEE*
124 *Geoscience and Remote Sensing Letters*, vol. 11, no. 1, pp. 298-302,
125 doi:10.1109/LGRS.2013.2256876, 2014

126 Zhi, Yanan; Wang, Jinkai; Sun, Yujiao; Huang, Sijing; Wang, Huanyan; Xu, Bijun; and Tian,
127 Kehan: Differential pseudo-random phase-modulated continuous-wave coherent LiDAR, *Opt.*
128 *Express* 33, 13624-13646, <https://doi.org/10.1364/OE.549354>, 2025

129

130

131

132

133