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Abstract. We propose a novel method for computing the effects of TROPOMI observational uncertainties on emissions 

calculation arising from the nonlinearity of the gradient terms and non-biased filtering in space and time. Application using 15 

TROPOMI XCH4 data in clean areas of Western China with long-term WMO background observations quantifies a minimum 

detectable emission threshold of 0.3 μg/m²/s, lower than existing community thresholds using TROPOMI. By combining 

threshold-based and stochastic approaches that incorporates pixel-by-pixel and day-by-day XCH4 uncertainties, we identify 

and filter physically unrealistic emission values in both space and time. The resulting emissions reveal both missing sources 

and a 5% emission bias caused by the nonlinearity of the gradient term. Validation was performed by applying the method to 20 

the Permian Basin, where comparisons with airborne observations demonstrate the method’s ability to align with independent 

datasets. The importance and implications of our results are related to this being a new methodology for methane emissions 

estimate from TROPOMI which enables precise identification of emission sources and improved handling of observational 

noise, offering a more accurate framework for methane emission monitoring across diverse regions using existing satellite 

platforms. Our results yield a non-negative emissions dataset using an objective selection and filtration method, which includes 25 

a lower minimum emissions threshold on all grids and reduction of false positives. Finally, the new approach can be adopted 

to other satellite platforms to provide a more robust and reliable quantification of emissions under data uncertainty that moves 

beyond traditional plume identification and background subtraction. 
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1 Introduction 30 

Methane (CH4) is a potent greenhouse gas with a global warming potential (GWP) estimated to be 28-34 times that of 

carbon dioxide over a 100-year period and 84-87 times on a 20-year time scale (Hu et al., 2024; Vanselow et al., 2024; Liang 

et al., 2023). Major sources of methane include fossil fuel extraction, agricultural activities (such as rice paddies and livestock), 

waste disposal, and wetlands (Vanselow et al., 2024). Since the start of the Industrial Revolution, methane concentrations have 

been observed to significantly increase (Liang et al., 2023; Erland et al., 2022), with periods of both larger growth and slower 35 

or no growth contained within, contributing significantly to the present amount of observed global warming (Vanselow et al., 

2024; Erland et al., 2022; Prinn et al., 2001). Due to its relatively shorter atmospheric lifetime compared with many other 

greenhouse gases, accurately quantifying and controlling methane emissions is crucial in addressing global warming in the 

near-term (Erland et al., 2022; Liu, J et al., 2024a). 

In recent years, with the development of satellite remote sensing technology, various platforms from space have become 40 

more relevant at aiding the monitoring of methane concentrations in the atmosphere (Gao et al., 2023; Nesser et al.,2024). 

Among them, TROPOspheric Monitoring Instrument (TROPOMI), Greenhouse Gases Observing Satellite (GOSAT) and 

SCanning Imaging Absorption spectroMeter for Atmospheric CHartoghraphY (SCIAMACHY) have been used for its retrieval 

of a physical atmospheric CH4 column retrieval (XCH4), allowing indirect validation by surface networks (i.e., Advanced 

Global Atmospheric Gases Experiment (AGAGE) and World meteorological Organization (WMO)) as well as upward looking 45 

surface observational networks (i.e., Total Carbon Column Observing Network  (TCOON)) (Hu et al., 2016; Parker et al.,2011; 

Frankenberg et al., 2005). TROPOMI in particular offers a combination of daily XCH4 retrieval, global coverage, and high 

spatial resolution (Erland et al., 2022; Liu, M et al., 2024; Gao et al., 2023; Nesser et al., 2024; Hu et al., 2016). Due to its 

extensive use to monitor other atmospheric constituents impacting air pollution, there is extensive work to estimate the 

uncertainty of TROPOMI products including: NO2 from 10% to 40% (Boersma et al., 2018; Pollard et al., 2022), black carbon 50 

aerosol (BC) from 20%-50% (Vignati et al., 2010; Tiwari et al.,2023,2025), and CO starting from a minimum of 10% to 20% 

and upwards, without a well-defined upper range (Sha et al., 2021). Additionally, XCH4 from this platform has a significant 

number of pixels with missing data (Schneising et al., 2023; Qu et al., 2021; Hachmeister et al., 2022; Frankenberg et al., 2016; 

Hu et al., 2018). Therefore, XCH4 is expected to also have a significant uncertainty, due to at least the following factors: sensor 

and waveband resolution issues (Hu et al., 2018), atmospheric conditions which reduce the already relatively weak incoming 55 

shortwave infrared radiation such as clouds and aerosols (Balasus et al., 2023; Liu, Z et al., 2024; Liu, J et al., 2024b), and 

surface reflectivity (Balasus et al., 2023). 

Computing emissions from concentration requires an additional step that includes knowledge of the wind, atmospheric 

transport and diffusion, in-situ processing and other processes (Cohen and Prinn 2011; Cohen et al., 2011). There are many 

studies which have used various complex approaches such as chemical transport models (Hancock et al., 2025; Nesser et al., 60 

2024; Varon et al., 2023) and simple approaches such as the Gaussian integral method (Schneising et al., 2020), Divergence 

method (Liu, M et al., 2021; Veefkind et al., 2023), mass balance method (Hu et al., 2024) to attempt to estimate methane 
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emissions from TROPOMI in near real time. However, due to the uncertainties in the retrieved TROPOMI data and wind 

fields, the computation of gradient term(s) necessary to compute emissions may lead to significant non-linearity (Cohen and 

Prinn 2011; Cohen et al., 2011; He et al., 2024), thereby generating negative emissions and smaller emission values. Hancock 65 

et al. (2025) prevented non-physical negative emissions by inverting prior emissions using the lognormal error probability 

density function (PDFS), Schneising et al. (2020) defined the background from a 2°×4° headwind box and determined negative 

emissions or very low emissions for many days in the Permian basin, despite strict filtering criteria for background observations. 

Veefkind et al. (2023) employed background subtraction to filter out negative emissions and smaller emission signals in 

Permian basin and believed that the intense variations in topography and surface albedo may lead to significant negative 70 

emissions. However, these studies did not further analyze the causes of negative emissions. Simple background filtering 

methods cannot effectively remove all emission noise, and may in fact leave noise contributing to overestimation of actual 

emissions. Therefore, finding ways to address how observed and modeled uncertainties lead to the robustness of inverted 

methane emissions is a necessary and essential step to gain trust in resulting emission quantification and usefulness for 

attribution (Li et al., 2025; Tiwari et al., 2025). To gain confidence, such emissions should include methods which are both 75 

unbiased and robust, and are capable of identifying sources both known and unknown, monitoring emissions from those 

sources, and provide validation of which sources are actually being reduced or eliminated (Hemati et al., 2024). 

In this study, we quantify CH4 emissions in a clean area with a long-term WMO observational station (Waliguan) using 

a flexible mass-conserving method that explicitly accounts for the impacts of XCH4 observational uncertainties on the gradient 

terms and their influence on emission inversion. Selecting a region devoid of large emission sources is critical, as it allows for 80 

an objective demonstration of the effects of white noise generated by the nonlinearity of the gradient term on emission 

calculations. To address this, we introduce unbiased thresholds and filters to systematically separate genuine emission signals 

from white noise, effectively eliminating physically implausible emission values in an unbiased manner. Our results 

demonstrate that all identified emissions correspond to spatial and temporal locations where emissions are expected to occur, 

with no computed emissions detected in regions where emissions should not exist. To further validate the robustness and 85 

applicability of our method, we applied it to the Permian Basin, the largest and fastest-growing oil and gas-producing basin in 

the United States, located in western Texas and southeastern New Mexico. By aligning our results with known emission source 

locations in the region, we successfully captured the majority of emission signals, including many smaller emissions that were 

previously undetected using TROPOMI, thanks to our method's lower detection threshold. Comparisons with conventional 

approaches, which simply remove negative concentration or emission values, reveal that our method provides a better match 90 

with observational data, demonstrating improved stability, accuracy, and a reduction in systematic bias. This highlights that 

this approach is capable of delivering reliable and precise emission estimates, even in areas with complex sources. 
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2 Data and Methods 

2.1 study data 

TROPOMI inverts daily measurements of column-averaged dry-air atmospheric CH4 column mixing ratio based on a 95 

retrieval around the NIR and SWIR absorption bands, with overpasses occurring daily around 13:30 local time. The XCH4 

retrieval used herein (version 2.4.0 Level-2) relies on a physical algorithm that factors in surface and atmospheric scattering. 

In this study, we use the methane total column-averaged dry-air mole fraction XCH4 of TROPOMI from May 2018 to 

December 2023 in Waliguan (35.5° to 37.1°N latitude, 100.1° to 101.7°E longitude) (Hu et al., 2018; Lorente et al., 2021; 

Landgraf et al., 2024) and from 2019 to 2020 in the Permian Basin (31° to 33°N latitude, 101.3° to 104.3°W longitude). To 100 

ensure high quality data, grids with quality assurance less than 0.5 were removed. Swath-by-swath data were resampled day-

by-day onto a standard latitude/longitude grid of 0.05° x 0.05° using HARP (http://stcorp.github.io/harp/doc/html/index.html).  

Wind speed and direction were obtained from the European Centre for Medium-Range Weather Forecasts ERA-5 

reanalysis product. Due to the elevation and overpass time, 550-750 hPa level meteorology products were used in the Waliguan 

area and 750-950 hPa range products in the Permian Basin, both using an average value based on of local 13:00 and 14:00 105 

UTC (Hersbach et al., 2023). 

Daily ground observations of CH4 made for more than three decades at Waliguan are obtained from World Data Centre 

for Greenhouse Gases. The source coordinates and emission rates of methane in the Permian Basin were obtained from an 

aircraft observational study by Cusworth et al. (2021). 

High frequency CH4 flux was measured nearby a gas extraction vent of a high gas coal mine in Changzhi, Shanxi Province 110 

using the eddy correlation method, using CSAT-3 anemometer and LI-7700 and Universal open Path gas analyzer at 10 Hz as 

published in Hu (2024). The flux was calculated according to the WPL-corrected method (Webb et al., 1980) and subsequently 

narrowed down to a frequency of every half hour. Observations were made continuously from October 24 to December 21, 

2021 and from August 15 to September 13, 2022. The flux observations obtained from eddy covariance observations are 

specifically used to fit the coefficients of the mass conservation model at the date and time they are available, providing a 115 

ground-truth at the place and time the observations were made. 

2.2 Mass conservation equation 

The method used in this study is based on the continuity equation for conservation of mass of chemical substances in the 

atmosphere. 

                                                                        E = !
!"
XCH# +H+ D+ T                                                                                 (1) 120 

Where E is the emission flux, !
!"
XCH# is the time derivative of XCH4, H is the chemical gain or loss of CH4, D is the deposition 

of CH4, and T is the transport gain or loss of CH4 on each given grid in space and time. Due to the slow nature of CH4 loss 

induced by OH, its low solubility, and its slow removal due to other oxidants and bacteria as compared to the daily-scale 
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observations used herein, the terms for chemical gain H and deposition D in Equation (1) are approximately zero, allowing 

Equation (1) to be simplified as: 125 

                                        !
!"
XCH# = E − T = E − α ∗ ,∇ ∙ (XCH# ∗ U)2 − β ∗ ∇ ∙ (∇XCH#)                                                    (2) 

The transport term T is approximated by the combination of advection and pressure induced transport ∇ ∙ (XCH# ∗ U) and 

diffusion ∇ ∙ (∇XCH#)	, where U is wind field. We specifically use the methane flux measured at Changzhi as E and calculate 

the time derivative, transport, and diffusion terms for the corresponding position and time over Changzhi. The coefficients α 

and β are then calculated using Multiple Linear Regression. The resulting emissions have been previously demonstrated to 130 

work well in Shanxi (Hu et al., 2024). In this work, the trained model is used to calculate emissions across all grids on all days 

where there is sufficient available TROPOMI and meteorological data to compute all of the terms. The uncertainty range of 

emissions is determined by the range from the 20th percentile to the 80th percentile of the emission values obtained through 

multiple sets of coefficients. 

2.3 Observational Uncertainty Analysis 135 

Our model and other more simplified approaches (Cohen and Prinn 2011; Liu, M et al., 2021; Yu et al., 2023) rely upon 

concentration gradients, such as the transport term and diffusion term in our equations and the divergence method used by 

others(Liu M et al., 2021; Veefkind et al., 2023) , when considering a certain volume of air, we can calculate the number of 

CH4 molecules flowing into and out of that volume based on column density and representative wind speed and direction 

acting upon that atmospheric column. Under steady state conditions, a positive difference indicates the presence of a CH4 140 

emission source. However, the value of a gradient does not linearly vary with the uncertainty in the observations. For instance, 

if the XCH4 values at two adjacent grid points are 1800 and 1900 ppb, with a 10% uncertainty, they can range from 1620-1980 

ppb and 1710-2190 ppb respectively, leading to a possibility that the gradients could range from negative, to zero, or even 

moderately positive. Sinks comprise chemical losses, such as reaction with the hydroxyl radical, OH, and atomic chlorine and 

biological losses, primarily uptake by methanotrophic microbes in soil. The lifetime with respect to reaction with OH in the 145 

troposphere is between 10 and 11 years and the average lifetime of methane in the atmosphere is 9 years, methanotrophic 

bacteria achieved methane oxidation rates of about 5.6 nmol/cm3/day. Forest soils that cover about 30% of the Earth's land 

surface absorb about 26 to 34 Tg CH4 per year. However, we calculated TROPOMI XCH4 data day by day, grid by grid, and 

the two cases have little effect on methane concentration. Hence, there is no physical means by which a negative lifetime can 

occur in our framework. Therefore, only white noise generated by the nonlinearity of the concentration gradient is possible to 150 

achieve negative emissions. 

However, merely removing negative values is not mathematically consistent with white noise, due to the randomness of 

the uncertainties applied to the observed data being equally likely to be positive or negative. Therefore, any values which fall 

in the probability distribution which is best fit by a normal distribution with a center at zero, are associated with this noise. 

They are computed values, but are just due to the noise associated with the observational uncertainty. It is essential to compute 155 
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how these uncertainties impact the real conditions when considering the spatial change in the observed fields. This includes 

not only the observed values themselves, but also whether or not the underlying assumptions of the model used are still relevant, 

or whether the simple idea of a plume model may still be possible. For example, if the gradient switches direction when 

uncertainty is applied, the chances of the plume being real are significantly reduced, with the original detected plume more 

likely being just noise, rather than a real signal. 160 

To analyze this effect, we use the mass conservation equation to quantify methane emissions in the area around the 

Waliguan (WLG) long-term base station, because there are no large known sources of methane emissions in this area, the 

effect of noise due to the non-linearity of the gradient term can be better demonstrated, with most recent studies computing 

emissions using background subtraction (Schneising et al., 2020; Liu, M et al., 2021; Veefkind et al., 2023) which instead of 

computing actual emissions rather computes a signal based on observational noise in both the background value and the 165 

enhancement value in addition to the effects of any actual emissions. Instead, this work subsequently uses the entire column 

loading XCH4 and applies two different magnitudes of random perturbations to the observations: 10% and 20%. In each case, 

a respective value ranging from -10% to +10% (or 20% respectively) is made independently to each TROPOMI retrieved 

XCH4 data point, day-by-day, and grid-by-grid to simulate realistic and unbiased TROPOMI retrieval errors. 1000 unique sets 

of perturbations have been performed. Each of these 1000 data sets have been used to retrain the emissions via equation (2), 170 

with the resulting average value grid-by-grid and day-by-day used. 

2.4 Threshold retrieval 

To identify potential emission sources in the study area and separate these from white noise, we take a two-step approach.  

Spatial filtering: we filter all grids in terms of their mean value, with any grids having temporal average emissions values 

smaller than the 65th percentile of emissions (in this case 26.5 μg/m²/s) removed, to account for the fact that these grids likely 175 

are contributed to exclusively by white noise. Sensitivity tests are performed using different cutoff values for the first cutoff, 

specifically the 50th percentile of emissions (12.4 μg/m²/s), and re-computing the resulting emissions each time using all of the 

TROPOMI uncertainty levels as used elsewhere.  

Temporal filtering: the idea is extended to the temporal domain, considering the seasonal variations in emissions (Varon 

et al., 2025), we conduct monthly filtration, specifically assuming that any negative emissions values must be due to 180 

observational uncertainty, and therefore any positive value of the same magnitude or smaller on that same grid is also due to 

uncertainty. Specifically, within each remaining grid point, the most negative emission value computed is identified -θ μg/m2/s, 

and all values in the range from [-θ: θ] μg/m2/s are then excluded. This filter is applied grid-by-grid basis, since the uncertainty 

is assumed to be an intrinsic property of each grid point, consistent with how the retrievals are computed.  

To further validate our method, we applied it to the Permian Basin, comparing our results with strong CH4 point sources 185 

mapped and quantified by Cusworth et al. (2021) using airborne imaging spectrometer technology  
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3 Results and discussion 

3.1 Observation error 

Due to the following factors, retrievals of CH4 from TROPOMI may have relatively large uncertainties in some regions 

(noting that their influence varies as a function of location and time). First, when there is overlap between CH4 and other 190 

species which are not resolved (i.e., waveband resolution of the sensor). Second, when atmospheric conditions reduce incoming 

solar radiation in the wavebands relevant to CH4 retrieval (i.e., cloud optical depth and AOD). Third, when atmospheric 

conditions alter the band-by-band properties of incoming and scattered solar radiation in the wavebands relevant to CH4 (i.e., 

BC and CO). Fourth, when changes in the land-surface properties have occurred which are not properly modeled or included, 

such as due to development, greening, industrial growth, agriculture changes, etc. (i.e., changes in surface reflectivity). 195 

The uncertainty of the aerosol products of TROPOMI is 3% to 5% (Torres et al., 2020; Tiwari et al., 2023). As a first 

order problem, no gas retrievals can be performed until the surface albedo, clouds, and aerosols are first considered (Balasus 

et al., 2023), or the combination is considered in tandem (Chen et al., 2022). In addition to this point, it has been demonstrated 

that TROPOMI L2 XCH4 retrievals are routinely underestimated over regions with high aerosol loadings (K. Li et al., 2024). 

Therefore, since the region considered has a variable AOD, and one which is quite different from the traditional datasets 200 

employed to initiate the inversion algorithm (Liu, Z et al., 2024), therefore this factor must also be considered in the area being 

analyzed. For this reason alone, it is not possible for the CH4 retrieval to have an uncertainty lower than the aerosol retrieval 

uncertainty. TROPOMI NO2 has an error range from 10% to 40% or more (Boersma et al., 2018; Pollard et al., 2022). It is 

also known that TROPOMI CO has an error range of at least 10% to 20% (Sha et al., 2021). The uncertainties in the traditional 

datasets employed with respect to CO over China are significant (Li et al., 2025; Wang et al., 2025). This is important since 205 

the CO retrieval is made at the same waveband as the CH4 retrieval, and therefore any uncertainty in one product will yield an 

uncertainty in the other product as previously identified (Gaubert et al., 2016, 2017). 

The region around Waliguan was specifically selected due to its long-term daily surface observations of CH4 from 1992 

through 2024 (Zhou et al., 2004; Liu, S et al., 2021). Waliguan is the world's highest atmospheric baseline monitoring station 

(at 3810 meters) and the only one in the interior of the Northern Hemisphere, making it the best possible representation of a 210 

clean, continental, high atmospheric station in mid-latitudes, and best represents the world’s middle atmospheric CH4 levels. 

This point is critical, since an outsized number of coal mines with high emissions from China are similarly uniquely located 

in Shanxi, Shaanxi, Inner Mongolia, Xinjiang, and other places located at high elevations and far away from the sea (Yang et 

al., 2023; Zhang et al., 2020), and is more representative of the conditions under which CH4 is emitted in China, as well as 

some other lesser studied regions around the world (Sadavarte et al., 2021; Hancock et al., 2024). A direct comparison between 215 

the surface observations and the TROPOMI XCH4 column concentration, as clearly observed in Figure 1b, demonstrates a 

difference up to 176ppb, or a 9.4% error. Observed vertical CH4 profiles were made by Tao et al. (2024) Figure 2 using AirCore 

at the same time and very close to where this work’s satellite observations were analyzed. The results compare closely with 

the surface observations made at the WMO station in Waliguan, validating that the surface observations in this region are a 
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reasonable representation of the column average values, as shown in Figure 1. Based on this, we add a random perturbation to 220 

each retrieved value of TROPOMI XCH4 in the range from -10% to 10% to simulate the uncertainty in the retrieval data itself. 

This is also consistent with the observational study of Frankenberg et al. (2016), indicating that the observed error can range 

over 20%. 

 
Figure 1: (a) Daily (grey) and 30-day mean (red) methane concentration data from Waliguan from August 1994 to December 2021 225 
and daily series of TROPOMI XCH4 (blue) from April 2018 to December 2023; (b) The difference between Waliguan daily methane 

concentration and TROPOMI XCH4. 

3.2 Comparison of emissions before and after application of filtration in Waliguan area 

As illustrated in Figure 2, the distribution of computed emission over all pixels on all days exhibits a predominantly 

normal distribution pattern, and therefore closely resembling the distribution of white noise. Upon closer inspection, the 230 

distribution reveals obvious positive bias, signifying the presence of mixture of genuine subset of emissions values which are 

computed not due to the observational uncertainty contained within the overall set of computed emissions data. The distribution 

derived without employing the two-step filtering process, but incorporating a 10% TROPOMI uncertainty, shows only 

marginal deviations from the original emissions. 
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 235 
Figure 2: PDF of methane emissions from the Waliguan region calculated using TROPOMI XCH4 and XCH4±10% based on the 

mass conservation model 

Figure 3a highlights a significant occurrence of near-zero or negative emissions in spatial regions where no emission 

sources are expected, suggesting the presence of numerous false positives. To address this, a probability density function (PDF) 

threshold is established based on the point where the distribution deviates from normality on the positive side. Grids with mean 240 

emissions exceeding this threshold are retained to distinguish potential real emissions from noise-dominated grids. An example 

of such a grid, marked by a black box in Figure 3a, demonstrates a mean emission value surpassing the threshold. 

Following this initial spatial filtration, a secondary temporal filtering step is applied to the remaining pixels, Figure 3b 

and c show the time series before and after filtering by the red grid in Figure 3a. This step effectively eliminates unphysical 

values and those arising solely from observational noise, ensuring that only robust emission estimates are considered for further 245 

analysis. 
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Figure 3: (a) Five-year emission mean calculated by TROPOMI XCH4, the mean of the grids in the black boxes are greater than the 

set threshold (12.4 μg/m2/s) (background portion of image is from Esri World Imagery); (b) and (c) are the unfiltered and filtered 

emission time series of the red grid in (a).  250 
The spatial distribution of day-to-day and grid-to-grid emissions over five years is presented in Figure 4a-c (pre-filtering) 

and Figure 4d-f (post-filtering). Negative emissions are mainly concentrated in areas A and C of Figure 4a. The point of the 

filtering is to determine whether or not observational uncertainty or noise was the source of the retrieved emissions, or if the 

retrieved emissions were due to a physical signal. Some physical factors which contribute to signal observational uncertainty 

or noise which still exist in the QA>0.5 data include but do not fully filter for thin clouds and aerosol layers as well as moderate 255 

variations in water vapor, or medium-low albedo (Hu et al., 2016). This QA level also does not consider aerosol absorption or 

apply any constraints on co-absorbing gasses including but not limited to carbon monoxide. However, this work specifically 

analyzed a some of these drivers, and clearly determined that some of these drivers in fact contributed to those grids which 

were filtered (i.e., areas in which the emission derived from the signal were negative or sufficiently small or large and positive 

to be considered noise). 260 

Aerosols impact XCH4 in two different ways, through scattering and through absorption. First, aerosols increase radiative 

scattering, changing the entirety of the stream of energy (Kahn et al., 2023; Liu et al., 2024; Tiwari et al., 2023, 2025), while 

also absorbing radiation, affecting line-by-line radiance absorption used to invert XCH4 based on Beer’s Law, DOAS, or 

similar physics-based techniques (Kuhlmann et al., 2025; Tian et al., 2021; Guan et al., 2025). We have included observations 

of AOD at a band as close to that retrieved from TROPOMI as possible (specifically observed by MISR at 865nm). As shown 265 

in Figure S1h, almost all of our valid emissions occur at locations where the 2019-2021 average AOD is less than 0.3. Figures 

5b and e show the PDFs of AOD corresponding to the points in space and time of the invalid and valid emissions, respectively, 

while spatial plots (see Figure S2b and e) detail that while all grids are low, that those grids with valid emissions have lower 

AOD than grids with invalid emissions. Furthermore, we have analyzed the TROPOMI AOD_SWIR product (Figure S2), and 

found similarly that where our emissions are valid, the AOD remains both very low, as well as being smaller than the AOD on 270 

the invalid emissions locations, as show in Figures S2a and b. 

Next, we examine the impact of aerosol absorption based on MISR AAOD at 443nm, 865nm, and the ratio of the two 

AAODs as given in (Figures S1e, f, g) following Liu, Z et al. (2025). Areas with a large AAOD ratio indicate the presence of 

larger-sized absorbing aerosol, which is more likely to impact the radiation wavebands used in the inversion of XCH4. We 

observe that the ratio is somewhat larger over areas with emissions we have filtered (such as area A in Figure 4a). Furthermore, 275 

we observe that most of the grids with valid emissions are located are in areas with very low AAOD ratios. The PDFs of the 

AAOD ratio for the invalid and valid emission points, shown in Figure 5a and d respectively. Therefore, our approach is 

successful in determining that the pixels more impacted by aerosols are in fact filtered. 

The surface albedo in this region as shown in Figure S1d. Our retained emissions do not occur at locations with either 

very low or very high surface albedo. Moreover, compared with the retained emissions (Figures 5c and f), the surface albedo 280 

corresponding to the filtered emissions are typically found closer to the extreme ends of the albedo range. 
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These factors alone cannot explain the total uncertainty, which may be influenced by other parameters, such as cloud, 

sensor and waveband resolution issues, etc. This result offers a physical explanation of why there is a substantial uncertainty 

in the XCH4 retrieved values. What is also important is that our approach is capable of detecting such a non-linear uncertainty 

propagation, while standard emissions estimation approaches (Schneising et al., 2020; Veefkind et al., 2023; Hancock et al., 285 

2025) in fact compute negative emissions, without realizing that the emissions are merely due to observational uncertainty. To 

be clear, this approach herein is further validated, since applying the uncertainty in general does actually capture a subset of 

physical driving factors which are expected to lead to greater retrieval noise. 

A comparison of the filtered emissions in Figure 4d with the actual geographical map reveals that the filtered results 

accurately capture known emission sources: towns and villages. The emission time series (Figure S3) in regions A, B and C 290 

show that emissions are mainly concentrated around the Spring Festival, which is consistent with the increase in methane 

emissions caused by the short-term influx of people and increase in human activities during this period. However, these small-

scale anthropogenic sources are omitted in existing emission inventories over this region (Crippa et al., 2024). Our filtering 

method effectively removes noise, retaining only grid points corresponding to plausible emission sources. All grid points 

identified as emissions in this study are scientifically justifiable, whereas many grid points initially classified as white noise 295 

(Figure 4a) lack any known anthropogenic or natural emission sources substantial enough to have an emission corresponding 

to the lowest calculated value herein.  

The distributions in Figure 4b, e and Figure 4c, f correspond to the 10% and 20% TROPOMI uncertainty scenarios, 

respectively. These distributions largely overlap with the results shown in Figures 4a and d. Specifically, when the TROPOMI 

XCH4 data incorporates a 10% error, the filtered grid points align closely with the original emissions, with only a single grid 300 

discrepancy. This demonstrates the efficacy of our method in filtering out noise induced by the nonlinearity of the gradient 

term. However, when the TROPOMI error is increased to 20%, the robustness of the filtering method slightly diminishes. 

When the 50th percentile emission value (12.4 μg/m2/s) of the emission result was used as the threshold for mean filtering in 

the first step of filtration (Figure S4), the grid discrepancy in regions A and B was not obvious, but emissions occurred in the 

desert area of region C, this indicates the necessity of the first step of spatial filtering. Overall, Equation (2) successfully 305 

conserves mass by balancing the nonlinearity in the gradient terms through the contributions of other terms, ensuring reliable 

and consistent results. 
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Figure 4: (a), (b), and (c) are maps of five-year emission averages calculated using TROPOMI XCH4, XCH4±10%, and XCH4±20% 

respectively; (d), (e) and (f) are maps of the five-year emission average obtained after the two-step filtering is applied corresponding 310 
to (a), (b), (c). All backgrounds are from Esri World Imagery. 
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Figure 5: (a), (b), and (c) are the PDFs of the ratio of MISR AAOD observed at 443nm to AAOD observed at 865nm, MISR AOD 

observed at 865nm, and albedo corresponding to the location of the filtered emission (invalid emissions), respectively; while (d), (e), 

and (f) are the same respective values, but corresponding to the location of the retained emissions (valid emissions), respectively. 315 
Scatter plots in Figures 6a and b compare the emissions of 0% TROPOMI uncertainty with those of 10% TROPOMI 

uncertainty and 20% TROPOMI uncertainty respectively, with the respective R2 and RMSE being 0.99, 3.41 and 0.98, 6.81. 

The unfiltered emissions contain points which may be mathematically correct, but physically unreasonable including points 

with a roughly zero mean and substantial noise, or random extreme values. The results after two-step filtering are given 

respectively in Figures 6c and d, and have respective R2, RMSE of 0.99, 3.7, and 0.95, 7.37. Although the number of emissions 320 

after filtering in Figures 6c and d decreased by 70% compared to Figures 6a and b, R2 was similar at 10% TROPOMI 

uncertainty case, with RMSE increasing by 0.29, and a slight reduction in the R2 in the 20% TROPOMI uncertainty case, with 

RMSE increasing by 0.56, which actually indicate that overfitting is less of an issue, consistent with the fact that the 

observations contain actual uncertainty. 

The range of filtered emissions assuming 0%, 10%, and 20% TROPOMI uncertainty bounds respectively are 0.3-187 325 

μg/m²/s, 0.2-187 μg/m²/s, and 0.5-195 μg/m²/s. In all cases applying the methods herein led to all negative values (unphysical) 

being filtered, as well as the largest positive values also being filtered. This is consistent with the fact that some very high 

observed values are also noise, and that the process herein in fact applies an unbiased and reasonable result. These discrepancies 

in the mean values arise because the first and second order gradient terms both behave non-linearly when observational 
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uncertainties are included. The fact that the linear terms and the temporal derivative are able to buffer the non-linearity allows 330 

the resulting emissions to be robust, and requires that emissions calculations must include these terms to be stable. 

Many studies after calculating emission either use an absolute value of the gradient or simply remove negative resulting 

values, either way retaining only positive results (Veefkind et al., 2023; Liu, M et al., 2021). We have performed the same 

analysis approach and show the results in Figures 6e and f to compare the base emissions results against the 10% and 20% 

TROPOMI uncertainty cases respectively. This method results in emissions that include a large amount of noise both near zero 335 

as well as some extremely high values at the top. Furthermore, it is found that these extremely high and nearly zero values 

occur in locations without any known emissions sources. This increase in near-zero noise leads to genuine small emissions 

sources being indistinguishable from noise, resulting in a lower average emissions per grid, and a far larger number of grids 

than is realistic.  
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Figure 6: (a), (c), (e) Scatter plots representing each computed emissions value in terms of grid-by-grid and day-by-day from 

TROPOMI XCH4 (x-axis) and TROPOMI XCH4±10% (y-axis); (b), (d), (f) are as (a), (c), (e) respectively, but where the y-axis is 

TROPOMI XCH4±20%. Plots (a) and (b) contain all computed emissions before any filtration. Plots (c) and (d) show the results 

after both thresholds are applied. Plots (e) and (f) apply the traditional method of removing all computed emissions lower than 0 345 
μg/m²/s. 

 

3.3 Methane emissions of the Permian Basin 

The Permian Basin, situated in western Texas and southeastern New Mexico, is the largest and fastest-growing oil and 

gas-producing basin in the United States. According to the U.S. Energy Information Administration (EIA), oil and natural gas 350 

production in the Permian Basin surged by 390 percent and 350 percent respectively, from 2014 to 2019. By the end of 2020, 

the basin accounted for approximately 38 percent of total U.S. oil production and 17 percent of total U.S. natural gas production. 

To evaluate the applicability and robustness of our method, we applied the mass conservation equation to quantify methane 

emissions in this region from 2019 to 2020. 

As depicted in Figure 7a, negative and near-zero values appear in certain areas, with similar results observed when 355 

applying divergence-based methods to quantify emissions in this region using TROPOMI with both plume-based methods 

(Veefkind et al., 2023) and Gaussian integral method (Schneising et al., 2020). The unfiltered computation of grid-by-grid and 

day-by-day emissions exhibits a significant positive shift compared to Waliguan, a reasonable outcome given the presence of 

genuine and substantial emission signals, Interestingly, the overall result still contains a large amount of data centered around 

0, as evident in Figure 7b. As previously demonstrated, traditional methods that simply remove negative values or employ 360 

background subtraction retain substantial noise near zero as well as some maxima, leading to artificially low emission estimates. 

The results after applying our two-step filtration method are presented in Figure 7c. Post filtration, the mean emission 

values have increased significantly compared to the pre-filtration values, with all negative values and noise near zero 

effectively removed. The quantified true emissions range from 0.5 to 210 μg/m²/s, with the range of values slightly lower than 

but overlapping with results from other studies such as from high gas coal mining areas in Shanxi China (Hu et al., 2024; Qin 365 

et al., 2023). Notably, unlike background subtraction, our filtering method does not indiscriminately remove all values below 

a predetermined threshold. As illustrated in Figure 7d, the minimum emission value detected after filtering is 0.5 μg/m²/s, 

consistent with the smallest detectable signal of 0.2–0.3 μg/m²/s observed in the Waliguan region, demonstrating the capability 

of our method to identify small emission signals. 
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 370 
Figure 7: (a) Annual mean methane emission fluxes from the Permian Basin for 2019-2020, (b) PDF of the Permian Basin emission 

fluxes for 2019-2020, (c) Annual mean methane emission fluxes from the Permian Basin after filtration in 2019-2020, (d) PDF of the 

2019-2020 methane emission fluxes from the Permian Basin after filtration. Backgrounds of (a) and (c) are from Esri World Imagery. 

To better compare with other inventories many of which use emissions in terms of mass per time per grid, we first convert 

emissions fluxes (μg/m²/s) into emission rates over each entire TROPOMI grid (kg/h/grid). The EDGAR emission inventory 375 

over the Permian Basin is shown in Figure S6a, and Figure S6b shows the difference between our emission results and EDGAR, 

with the grid-by-grid ranging from -285 to 3830 kg/h/grid, and the 95th percentiles of the difference is 2920 kg/h/grid. The 

EDGAR emission inventory is significantly lower than our results, in part due to many emissions grids missing from their 

dataset, although their grid with the highest emission is still lower than our result, indicating that our approach does not have 

a high bias. We also compared the differences between the inventory of Cusworth et al. (2021) and EDGAR, as shown in 380 

Figure S6c. The difference range is from -3240 to 8440 kg/h/grid, and the 95th percentiles of the difference is 2450 kg/h/grid, 

which is close to the difference range between our results and EDGAR. 
 Cusworth et al. (2021) measured the emission rates of individual sources, and due to the intermittent nature of the aircraft 

observations, the number of days with detectable emissions varied from 0 to 12 days for each source, with the vast majority 
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having only 1 or 2 days of data. When multiple emission sources were located within a single grid, their emission rates were 385 

summed to represent the total emission rate of that grid (Figure S7). Figure 8a shows our filtered emission mean, overlapping 

with the grid of ground emission sources. It's clear that our results are larger, which is consistent with the observations made 

by aircraft having scan widths of 3 and 4.5km, which is always smaller than our grid resolution of 0.05 by 0.05, which is about 

5km. This means that even if their scan crossed the center of our grid, our grid would still contain information outside of their 

scan width, and if the scan only crossed a small amount of our grid, then the grid would contain far more information.  390 

The red dots in the scatter plot of Figure 8b represent the points where our emission results overlap with Cusworth et al. (2021) 

in both time and space, with R=0.8 and MAE=660 kg/h/grid, both indicating a reasonable agreement. The black dots and blue 

dots respectively represent our effective emissions and the emission estimates of Cusworth et al. (2021) on the same grid, but 

during other days when Cusworth et al. (2021) does not have observations but TROPOMI does. We found that the methane 

emissions from these emission facilities varied significantly over time, indicating that TROPOMI allows for a better 395 

understanding of how emissions dynamics may change over time. 

 
Figure 8: (a) Annual mean CH4 emissions (kg/h/grid) on grids which overlap spatially with an emission observed by 

observed by Cusworth et al. (2021); (b) The red dots in the scatter plot represent the points where our valid emissions 

grids overlap in space and time with those of Cusworth et al. (2021). The black and blue dots denote emission estimates 400 

from our study on the same grids as observed by Cusworth et al. (2021), but observed by TROPOMI on different days, 

representing temporal variation. The gray error bars represent the associated uncertainties. The background of (a) is 

from Esri World Imagery. 

 

4.Conclusion 405 

This work used a mass conserving partial differential equation, with terms trained based on observations of CH4 emissions 

from Changzhi, Shanxi, to compute emissions of CH4 using daily and grid-by-grid TROPOMI XCH4, explicit uncertainty of 

retrieved XCH4, and reanalysis meteorological data, over and around the relatively clean area around the long-term WMO CH4 

background observation station at Waliguan and the heavily emitting CH4 region of the Permian Basin. Inclusion of uncertainty 
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in retrieved TROPOMI XCH4 values are used to recompute emissions in a manner that considers the physically relevant non-410 

linear effects of gradient calculation. The work further introduced an unbiased two-step filtering method, which effectively 

removes all negative values as well as both small and larger uncertain values in an unbiased manner, yielding results which 

are realistic and match well with underlying driving factors. 

In Waliguan region we have identified CH4 emissions, with a range from 0.3 to 187 μg/m2/s, and validated that all resulting 

points are all locations containing known anthropogenic CH4 source activities. The minimum inverted emission value ranges 415 

from 0.4 to 0.5 μg/m²/s, depending on the amount of TROPOMI uncertainty applied. Due to our model's consideration of both 

the wind times concentration gradient and second order concentration gradient terms and actively propagates the TROPOMI 

data uncertainty, requiring a buffering from the linear and temporal derivative terms, a factor overlooked either in the name of 

model simplification or over-stiffness. When following the typical approach of removing negative emissions or using absolute 

values, excessive noise near 0 μg/m2/s obscures the true signal, while noisy but large values allow points to enter into the 420 

solution space which are also too large to be realistic. 

To further validate our approach and results, we compared our emission rates computed over the Permian Basis with 

aircraft imaging spectrometers estimated by Cusworth et al. (2021). Our observations span a longer time series than Cusworth 

et al. (2021) (more temporally representative) and that the per-grid area is also larger than Cusworth et al. (2021) (per grid 

possibility of missed sources. This highlights the robustness of our method in capturing both smaller than currently considered 425 

possible emissions signals using TROPOMI, as well as reducing some amount of very large emission signals, which likely are 

a result of TROPOMI inversion noise on the positive side. 

This work identifies three weaknesses to be addressed by future work. First, there is need to more carefully consider the 

inversions of multiple retrieved species in tandem, not just a single species, since other species may impact the inversion of 

CH4. Second, future satellite missions which are capable of retrieving XCH4 at a slightly higher spatial resolution than 430 

TROPOMI may yield additional gains. Third, the use of additional platforms that can yield more precise XCH4 calculations 

will improve the ability to detect not only more signals, but to widen the possible detection range. Furthermore, there is the 

issue that the work herein is not reproducing a large number of very small emissions values, as claimed by some works (Chen 

et al., 2025), although the results seem to have a lower detection threshold than other TROPOMI based works (Cusworth et 

al., 2022). 435 

In summary, our method provides a reliable framework for quantifying CH4 emissions by effectively distinguishing 

genuine emission signals from noise, rigorously accounting for observational uncertainties, and validating results against 

independent datasets. This represents a significant advancement over traditional approaches, enabling more precise 

identification and quantification of CH4 sources. Importantly, studies relying on TROPOMI or other satellite data that fail to 

actively incorporate observational uncertainties often underestimate true emissions on a grid-by-grid basis while 440 

simultaneously overestimating the number of emitting grids. This underscores the critical need to integrate uncertainty 

propagation into emission quantification methodologies to achieve robust and reliable results. 
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https://gaw.kishou.go.jp/search/file/0013-2015-1002-01-01-9999 (last access: 10 October 2025). The wind Gases data were 

obtained from the European Centre for Medium-Range Weather Forecasts ERA-5 reanalysis product (Hersbach et al.,2023). 

The ground measurement data and coefficients of Changzhi coal mine were obtained from Hu (2024). The point coordinates 

and emission rates of surface emission sources in the Permian Basin were obtained from Cusworth et al. (2021). The AAOD 

product used in this study is from (Multi-angle Imaging SpectroRadiometer) MISR satellite observations and are obtained 450 

from the NASA Langley Atmospheric Science Data Center (https://doi.org/10.5067/Terra/MISR/MIL3MAEN_L3.004, 
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