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Abstract

Photosynthetically derived organic matter sinking to depth from the illuminated layers
is often not sufficient to meet the energy demands of microbes in the dark ocean. This
‘mismatch’ is especially notable in the warm and oligotrophic eastern Mediterranean
Sea where the annual photosynthesis is one of the lowest in the world’s oceans, yet its
aphotic zone is considered a hotspot for microbial activity and biomass. Here, we

investigated the role of photic and aphotic dark inorganic carbon fixation rates (DCF)
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in supporting bacterial carbon demand in the southeastern Mediterranean Sea during
the mixed and stratified periods. Our results demonstrate that DCF rates are measurable
throughout the water column (0-1750 m) and are on the same order of magnitude as
photosynthesis (34 vs. 45 g C m? y'!, respectively). Using a carbon mass balance that
considers photosynthesis, DCF and bacterial production (and hence respiration) we
show that chemoautotrophy provides ~35% of the ‘missing carbon’ supply needed for
microbial growth and activity in the aphotic layer, while other sources of dissolved
organic carbon remain to be elucidated. These findings underscore the need for further
research into the factors affecting DCEF, its role in global carbon budgets, and its

potential to enhance atmospheric inorganic carbon sequestration.

1 Introduction

The oceans aphotic layers contain the world’s largest reservoir of dissolved inorganic
carbon (DIC) (Baltar et al., 2010; Burd et al., 2010; Reinthaler et al., 2010), and harbor
~65% of all prokaryotes (Whitman et al., 1998). Aphotic prokaryotes typically rely on
utilization of organic matter (and carbon), fixed by photoautotrophs via photosynthesis
and exported from the euphotic zone, to sustain their growth and accumulate biomass
(del Giorgio and Duarte, 2002). Current estimates reveal, however, a discrepancy
between the supply of particulate organic carbon from photosynthesis and the bacterial
organic carbon demand (BCD) in the aphotic zones (Ducklow, 2000; Karl et al., 1988;
Smith and Azam, 1992). This mismatch suggests that there are other source/s of carbon
that are being utilized by aphotic microorganisms (Baltar et al., 2009; Herndl and
Reinthaler, 2013). One such source, that has been far less investigated, involves the

fixation of DIC by chemo-autotrophic microbes and its assimilation into new biomass
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(Baltar and Herndl, 2019). This could subsequently provide bioavailable DOC to other
microbial populations at depth (Baltar et al., 2010).

DIC uptake by heterotrophic bacterioplankton is generally attributed to
anaplerotic reactions (Dijkhuizen and Harder, 1984; Erb, 2011) which are metabolic
pathways that replenish intermediates enzymes in the citric acid cycle by fixing COz,
but other microorganisms such as nitrifying bacteria can also fix DIC (Alonso-Saez et
al., 2010). Genomic studies on deep-sea microbial communities identified several genes
and metabolic pathways that enable some microbes to thrive as chemoautotrophs on
inorganic substrates (Berg et al., 2007; Hallam et al., 2006). Measurements of CO2
fixation by chemoautotrophs and heterotrophic bacterioplankton are scarce, yet
substantial dark DIC fixation (DCF) rates have been reported in various oceanic settings
and water masses (Swan et al. 2011; Zhou et al. 2017; La Cono et al. 2018; Alothman
et al. 2023) and maybe more common than previously thought (Hansman et al., 2009;
Herndl et al., 2005).

The deep waters of the southeast Mediterranean Sea are characterized by higher
concentrations of inorganic nutrients compared to the photic zone (e.g., ~6 pmol
NOs+NO: kg™ and ~0.2 PO4 pmol kg™' (Ben-Ezra et al., 2021; Sisma-Ventura et al.,
2021) and low bioavailable dissolved organic carbon (Martinez-Pérez et al., 2017;
Santinelli, 2015; Santinelli et al., 2010). Despite these characteristics, the southeast
Mediterranean Sea’s aphotic waters are considered a hotspot for bacterial activity
compared to other oceanic regimes at similar depths (Luna et al., 2012; Rahav et al.,
2019). Nutrient addition bioassays and water mixing simulations suggest that aphotic

prokaryotes are primarily carbon-limited (Hazan et al., 2018; Rahav et al., 2019).

Here, we report on both photic and aphotic DCF and heterotrophic bacterial production

rates from 6 cruises held between 2021-2023 in the southeastern Mediterranean (bottom
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depth 1500-1750 m) during the mixed (winter) and stratified (summer) periods. Our
results demonstrate that DCF rates cannot be neglected (contrary to past convention,
Nielsen 1952) and are within the same order of magnitude as photosynthesis or
heterotrophic bacterial production (BP). We also show that DCF substantially
contributes to bacterial carbon demand (BCD), therefore providing, some of the
‘missing carbon’ supply needed for microbial growth and activity in the aphotic layer

of the southeast Mediterranean Sea.

2 Material and methods

2.2 Sample collection - Seawater was collected during six seasonal cruises in the
Levantine Basin, southeast Mediterranean Sea, on-board the R/V Bat-Galim between
2021-2023. Three cruises were held during the stratified period and three during the
winter mixing. The mixed layer depth was calculated using a temperature difference of
A0.3 °C (Mena et al., 2019). Two ‘deep’ stations were sampled in each cruise; one
located at the edge of the continental shelf (HO5 33.00 Lat, 34.50 Lon, bottom depth
~1500 m, 50 Km from the coast) and the other at the edge of Israel’s exclusive
economic zone (H06 33.15 Lat, 34.16 Lon, bottom depth 1750 m, 90 Km from
shoreline). Seawater was sampled at discrete depths throughout the water column, from
the surface (~0.5 m) to the bottom (1500-1750 m) using Niskin bottles. Sampling
depths were chosen in real-time based on reads of Conductivity Temperature Depth
(CTD) (Seabird 19 Plus), chlorophyll fluorescence (Turner designs, Cyclops-7) and
PAR (Sea Bird). The raw hydrological data can be freely downloaded from

https://isramar.ocean.org.il/isramar2009/. Measurements included DIC (NaH'“CO3)

uptake under ambient light (hereafter ‘light primary productivity, LPP) or under full

dark conditions (DCF), bacterial productivity (BP) and nutrient quantification.
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Nitrite and ammonium concentrations — Samples for nitrite (NO2) and ammonium
(NH4") concentrations were collected only in the 2023 cruises. The samples were pre-
filtered (0.45 pm), placed in acid-washed plastic vials, and were kept frozen at -20 °C
until analysis. Nutrients were measured with a Seal Analytical AA-3 system. The limits

of detection for NO2 and NH4" were 0.06 uM and 0.09 uM, respectively.

2.3 LPP and DCF - Seawater was collected in triplicates into transparent (for LPP
measurements) or dark (for DCF) Nalgene bottles (45-250 ml) and spiked with
NaH'*COs (Perkin Elmer, specific activity 56 mCi mmol!) following Nielsen, (1952).
The bottles were maintained in on-deck incubators covered with a gradient of neutral
mesh simulating the irradiance intensity (no change in spectrum) at 100%, 50%, 10%,
1%, and 0.1% of surface light intensities or under complete dark conditions (Belkin et
al., 2022; Reich et al., 2024). Incubators were kept at constant ambient surface
temperatures (~19-20 °C in winter and ~28-29 °C in the summer cruises). We
acknowledge that temperature differences between surface and deeper depths may alter
the LPP or DCF rates measurements, especially during the summer when the water
column is stratified. While in situ measurements may offer more precise rate estimates,
they are generally impractical during research cruises that involve sampling at multiple
locations and times throughout the day and night. Nevertheless, preliminary
comparisons between the incubation setup used here versus in situ incubations using a
mooring line showed negligible differences in primary productivity, falling within the
expected range of measurement variability (see also Reich et al.,, 2022). All the
incubation bottles were spiked at sunrise and terminated after 24 h (Reich et al., 2022;
Robinson et al., 2009) by filtering. the particulate matter onto GF/F filters using low
vacuum pressure (<50 mmHg). Next, the excess '“C-bicarbonate was removed by

fuming with 50 pl of 37% hydrochloric acid overnight. Finally, 5 ml scintillation
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cocktail (ULTIMA-GOLD) was added, and the disintegrations per minute (DPM) from
the particulate matter concentrated on the filters were counted using a TRI-CARB 4810
TR (Packard) liquid scintillation counter. Blank seawater spiked with NaH!'*CO3 was
filtered immediately without incubation and the reads were subtracted from the
sample’s DPM. The blank DPM reads were usually negligible (<5% of the sample’s
DPM). Aliquots (50 pl) from random spiked samples were placed onto new GFF filters,
added with 50 pl ethanolamine and scintillation liquid, and counted immediately
without incubation to account for the ‘added activity’ of the radiolabeled working
solution used. LPP was calculated as the difference between the DPM retrieved from
the samples incubated under ambient light (‘total primary production) and the ‘dark’
bottles. Dark or light dissolved inorganic carbon fixation was calculated based on the

Bermuda Atlantic Time-series Study (BATS) protocol (https://bios.asu.edu/bats/bats-

data). More details can be found in Reich et al. (2024).

2.3 Bacterial production- Triplicate samples per depth (1.7 ml) were incubated in the
dark with 10 nmol/L *H-leucine L' (Perkin Elmer, specific activity 123 Ci mmol') for
4-6 h under ambient temperature (Simon et al., 1990). The incubations were terminated
with 100 pl of trichloroacetic acid (100%), processed as described by Smith and Azam
(1992), and counted using a TRI-CARB 4810 TR (Packard) liquid scintillation counter.
Killed control samples containing *H-leucine L' and trichloroacetic acid (without
incubation) were also measured and these control sample’s DPMs were subtracted from
the sample’s reads. A conversion factor of 3 kg C mol™! per mole leucine incorporated

was used, assuming an isotopic dilution of 2.0 (Simon and Azam 1989).

2.4 Molecular analyses and statistics - DNA was extracted from water samples with

the PowerWater kit (Qiagen, USA), using the FastPrep-24™ Classic (MP Biomedicals,


https://www.dropbox.com/sh/8dbumf8tx3uidjv/AAChkCR580wxaaEAIpQVSpDBa?dl=0
https://www.dropbox.com/sh/8dbumf8tx3uidjv/AAChkCR580wxaaEAIpQVSpDBa?dl=0

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

USA) bead-beating to disrupt the cells (2 cycles at 5.5 m sec-1, with a 5 min interval).
The V4 region (~ 300 bp) of the 16S rRNA gene was amplified from the DNA (~50
ng) using the 515Fc/806Rc primers amended with relevant tags (Apprill et al., 2015;
Parada et al., 2016). PCR conditions were as follows: initial denaturation at 94 °C for
45 s, 30 cycles of denaturation (94 °C for 15 sec), annealing (15 cycles at 50 °C and 15
cycles at 60 °C for 20 sec) and extension (72 °C for 30 s). Two annealing temperatures
were used to account for the melting temperature of both forward (58.5-65.5 °C), and

reverse (46.9-54.5 °C), primers.

Demultiplexed paired-end reads were processed in QIIME2 V2022.2 environment
(Bolyen et al., 2019). Reads were truncated based on quality plots, checked for
chimeras, merged and grouped into amplicon sequence variants (ASVs) with DADA2
(Callahan et al., 2016), as implemented in QIIME2. The amplicons were classified with
Scikit-Learn classifier that was trained on Silva database v138 (16S rRNA, (Glockner
et al., 2017). Mitochondrial and chloroplast sequences were removed from the 16S
rRNA amplicon dataset. Downstream analyses were performed in R v4.1.1 (R Core
Team, 2021), using packages Phyloseq (McMurdie and Holmes, 2013) and Ampvis2
(Andersen et al., 2018). Indicator species analyses were performed using Indic species
package v1.7.9 (De Ca’ceres et al., 2009). Amplicon reads were deposited to the NCBI

SRA archive under project number PRINA1215023.

2.5 Bacterial respiration (BR), bacterial carbon demand (BCD) and zooplankton
respiration (ZR) - BR was calculated based on the following equation and assuming an
average open-ocean bacterial growth efficiency (BGE) of 20% (Herndl and Reinthaler,
2013) similar to previous direct measurements from the Mediterranean Sea ranging

from 0.21-0.29 (Zweifel et al., 1993).
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BGE = ————
G BP + BR

BCD was then calculated as the sum of BP and BP (Gasol et al., 1998). Zooplankton

respiration (ZR) and excretion were compiled from Belkin et al. (2022).

3 Results and discussion

3.1 Dark and light inorganic carbon fixation rates — As expected, LPP was restricted
to the photic layer with highest rates usually measured at the surface (~0.5 m) that
gradually decreased to reach minimum rates at the bottom of the photic layer (~180 m)
(Fig 1A). Relatively low LPP values were measured during the stratified summer (~0.1-
0.8 ug C L' d'!), whereas higher rates were measured during the winter mixing period
(~0.2-7.4 pg C L' d") (Fig 1A). This resulted in ~10-fold higher integrated rates
measured during the mixed period compared to those measured during the stratified
period (Table 1), in accordance with studies from the area (Psarra et al., 2005; Reich et
al., 2022; Sisma-Ventura et al., 2022b). In contrast with LPP, DCF was not restricted
to the photic layer and ranged from 0 to ~0.4 pg C L' d"!' throughout the water column
(Fig 1B, Fig 2A), without significant differences in the absolute rates between the
photic and aphotic zones (t-test, p>0.05, Fig 2B). The observed decrease in DCF rates
with depth (Figure 2A) during the summer cruises may be partly attributed to a decline
in the abundance of chemoautotrophs with depth. For example, Agogué et al,. (2008)
reported a decline in archaeal amoA gene copy numbers with depth in the eastern North
Atlantic. Normalizing DCF rates to chemoautotrophic microbial cell abundance (or
gene copy) could reveal a different vertical pattern. Another possible explanation for
the decline in DCF rates with depth may be related to the weakening flux of sinking
organic matter with depth that limits the substrates that fuel DCF (discussion below).

The integrated photic DCF was typically lower than the rates reported in the central and
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western Mediterranean Sea (La Cono et al., 2018). The aphotic DCF rates were ~3.5

fold higher during the mixed than during the stratified period (Table 1, Fig 2A).

(a) LPP(pgCL'd") (b) DCF (ug C L' d)

Depth (m)

Depth (m)

Mar. 21 Aug. 21 Mar. 22 Aug. 22 Mar. 23 Aug. 23 Mar. 21 Aug. 21 Mar. 22 Aug. 22 Mar. 23 Aug. 23

Figure 1: Spatial and temporal variability in rates of LPP (a), DCF (b), BP (c) and the
contribution of DCF to bacterial carbon demand (BCD) (d) at the offshore SE
Mediterranean Sea (Lat. 33.15 N, Lon. 34.16 E) between 2021-2023. BCD was

calculated assuming a bacterial gross efficiency of 0.20 (Gasol et al., 1998).

Table 1: Integrated rates and contribution of DCF to metabolic processes in the photic
(0-180) and aphotic (>180 m) depths of the pelagic southeast Mediterranean Sea. The
values represent the minimum and maximum ranges observed across the cruises, with
the averages and their corresponding standard deviations provided in parentheses. BDL

= Below detection limit.

Variable Season g)li(l)tslg m) als):)l?lt;c‘SO m)
] 158-649
Mixed (368 +205) BDL
LPP (mg C m2d") | 4-69
Stratified (324 26) BDL
_ 6-27 17-342
DCF (mg C m2d") Mixed (15+8) (152%127)
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7-19 8-127

Stratified (14£5) (59+48)
' 6-58 12-65
Mixed (28£21)  (33%22)
BP (mg Cm?d") . 9-55 7-123
Stratified (30%20) (81+55)
‘ 23-221 49-594
- Mixed (109 +88) (213£200)
DCF contribution to BCD (%) * . 8-31 8-42
Stratified (18+9) (23%13)
. 1-15
o Mixed (6%5) -
DCF contribution to total PP (%) 12-81
Stratified (40%32)

* Assuming bacterial gross efficiency of 0.2 (Gasol et al., 1998) and that the available
DOC for bacteria is 20% of the total primary productivity at the photic layer (Teira et
al., 2003).

The higher aphotic DCF in the mixed versus the stratified periods may be related to
more bioavailable carbon that is transported from the photic layer as marine snow and
supplies organic carbon to heterotrophic activity in the winter (coinciding higher LPP).
However, given the oligotrophic nature of the southeast Mediterranean Sea (Berman-
Frank and Rahav, 2012; Reich et al., 2022), most of the organic carbon (both particulate
and dissolved originating from LPP) is recycled within the photic layer. Only a small
fraction fluxes down to the aphotic zone and has been recorded in sediment traps
(Alkalay et al., 2024).

3.2 Bacterial productivity in relation to DCF and BCD - Another possible mechanism
that may, potentially, explain higher DCF rates during the winter versus the summer is
anaplerosis. The extent of anaplerotic reactions is primarily driven by the availability
of labile organic carbon to heterotrophs (Dijkhuizen and Harder 1984). Therefore,

assuming anaplerosis drives DCF, we expect it will be positively coupled to BP.

10
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Yet, our results do not support the likelihood of significant anaplerosis reactions,
predominantly evident from the spatiotemporal distribution of aphotic BP (Fig 1C)
differing considerably from that of the DCF (Fig 1B) and does not correlate with it (Fig
3A). In fact, BP seems to be coupled with LPP at the photic layer reaching ~0.4 pg C
L d!' (not shown). Excluding some sporadic measurements, aphotic BP rates were
usually homogeneous and typically <0.1 pg C L' d! (Fig 1C). Moreover, the highest
integrated aphotic BP was measured during the summers of 2021 and 2022 and not
during the winter cruises when generally higher DCF was recorded (Table 1, Fig 2A).

DCF (ugC L d")

0.0 0.1 02 0.3 0.4 0.5
0 +Hrm H ‘ : 0.5
(a) (b)
250
0.4 - :
500 [ = .
LU +
T 750 T 037 :
= \ ) .
= \ 0 + !
o 1000 - H—% = *
a =02 A
B .
1250 43 a T
] 0.1
1500 +——yedt : —0O— Mixed
i ¥ Stratified T
1750 1 0.0 : -
Photic Aphotic

Figure 2: Dark carbon fixation rates in the southeastern Mediterranean Sea. Averaged
vertical distribution of DCF in the offshore southeast Mediterranean Sea during the
mixed (white) and stratified (gray) periods (a), and a box plot showing the DCF rates

at the photic (0-180 m) and aphotic (>180 m) water depths (b).

Despite the lack of a clear positive relationship between DCF and BP, DCF may
contribute to bacterial carbon demand (BCD) in the aphotic zone. Thus, we use a

literature standard, a bacterial growth efficiency of 0.20 (Gasol et al., 1998) to calculate

11
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BR and BCD (see the ‘material and methods’ section for more details). This calculation
yielded bacterial respiration (BR) ranging from 29-494 mg C m d-!' (average 209+172
mg C m? d'), and the concurrent BCD ranges from 36 to 648 mg C m d! (average
2624121 mg C m2 d'!'). Under these circumstances, exudation of DOC from primary
productivity at the photic layer estimated as 20% of the rates (Teira et al., 2003) equals
to ~1-130 mg C m2d".

This new DOC, that originated form the photic zone therefore cannot support the
aphotic BCD in our system in all of our observations. However, if we consider the
contribution of DOC produced by aphotic DCF, part of the missing carbon may be
accounted for. Thus, when considering aphotic DCF in addition to the sequestered DOC
from the photic layer, the ‘abnormally high’ aphotic BCD could be explained in full
(>100%) in ~35% of the observations (Fig 1D). In the other 65% of the observations
the missing carbon sources needed to support the aphotic BCD remains an enigma. We
note that these calculations are based on global averages and assumptions and therefore
may be subject to some uncertainties. For example, BGE can vary between seasons and
sites (del Giorgio and Cole, 1998). In the Mediterranean Sea, long-term measurements
of BGE ranged from 0.21 (similar to our calculations and the global average used by
Herndl and Reinthaler, 2013) to 0.29 (Zweifel et al., 1993). If the 0.29 value is used,
the contribution of DCF to the aphotic BCD increases to ~45% of the observations
rather than ~35% when using BGE of 0.2. Similarly, if we apply an exported DOC
estimate of ~4% from the photic zone, as reported for the lonian Sea/western
Mediterranean (Moutin and Raimbault, 2002), the relative contribution of DCF to
aphotic BCD would be even higher than in our current calculations, which assume

~20% DOC export (Teira et al., 2003). These uncertainties warrant future investigation.

12
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Yet, even when using conservative estimates for BGE and DOC export as done here,
the contribution of DCF to aphotic BCD remains substantial.

Evidence suggests that dissolved methane may be more abundant in oxygenated
environments than previously thought (Grossart et al., 2011). Methane can potentially
be one of the missing energy sources for marine microbes and support high BCD
(Brankovits et al., 2017) as observed at the aphotic southeast Mediterranean Sea (Fig
1D). In agreement, methanotrophs were found in aphotic cold seeps at the southeast
Mediterranean Sea (Sisma-Ventura et al., 2022a), as well as across the aphotic water
column in our samples (see discussion below).

3.3 Interannual variability in aphotic DCF - Interannual variability in DCF, but not in
LPP or BP, was observed with higher rates recorded in March 2021-March 2022 and
lower rates observed in August 2022-August 2023 (Fig 1B). Inorganic nutrients such
as PO4*" or NO3+NOz" are unlikely to explain this variability as their ambient levels
were  similar  between  periods  (https://isramar.ocean.org.il/isramar2009/).
Alternatively, we surmise that differences in the bioavailability and concentration of
sinking organic particles, possibly attributed by the BiOS (Bimodal Oscillating System)
oscillation circulation of deep water between the Adriatic and Ionian seas, could
potentially explain the higher aphotic chemoautotrophic activity in March 2021-March
2022 versus August 2022-August 2023. This mechanism is known to influence the
bioavailability of organic nutrients in the deep Mediterranean Sea by modulating deep-
water circulation and ventilation patterns (Civitarese et al., 2010). These shifts affect
the transport and residence time of organic matter (Civitarese et al., 2023), thereby
potentially altering availability of organic nutrients to aphotic microbial populations,
including to chemoautotrophs. Supporting this hypothesis are recent studies from the

northern Red Sea and South China Sea showing that DCF is limited by labile organic
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nutrients such as phosphonates and even carbon-rich molecules (Reich et al., 2024;
Zhou et al., 2017). Aphotic free-living chemoautotrophs are likely to encounter an
increasingly refractory pool of dissolved organic matter for metabolism that may result
in lower DCEF rates, as shown in exported material through the water column (Santinelli
et al.,, 2013). Particle-attached chemoautotrophs may have access to higher
concentrations of organic substrates. Therefore we surmise these microbes would
preferentially have a particle-attached lifestyle in the deep ocean. The patchy nature of
particulate matter sinking and lateral transport during wintertime (Alkalay et al., 2024)
and aggregate concentrations (Bar-Zeev et al., 2012) in the deep southeast
Mediterranean Sea could also potentially explain the interannual variability in DCF
between periods. Understanding how chemoautotrophs transform labile dissolved
organic matter into refractory dissolved organic matter, which is an essential process in
the ‘microbial carbon pump’, is crucial as it influences the efficiency of the biological

pump (Jiao et al., 2010).

Oxidizing reduced inorganic compounds as electron donors (e.g., NO2™ or NH4") may
provide chemoautotrophic prokaryotes sufficient energy to fix DIC (Hiigler and
Sievert, 2011). We therefore measured the vertical distribution of NO2" and NH4" (only
in the March and August 2023 cruises) and examined if these chemical species are
coupled or uncoupled with DCF at the aphotic zone. Our results show a negative-linear
relationship between DCF and NO:2 (Fig 3B) and NH4" (Fig 3C), suggesting
nitrification. This is because chemoautotrophs consume NO:2  and NHs4" during
nitrification to yield energy to fix DIC in the aphotic zone (REF), thereby reducing
nutrient standing stocks in the water. We surmise that this ‘depletion’ may,
theoretically, explain the observed negative correlation between nutrient levels and

chemoautotrophic activity. In agreement, both ammonia and nitrite oxidizers were

14
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found in the aphotic zone of all cruises (DNA level, discussion below), further
highlighting their potential role as contributors to DCF in the southeast Mediterranean
Sea. Nitrification measurements along with metagenomic tools, DCF (and BP) in
aphotic water should be included in future dedicated studies to better refute or reinforce

that oxidation of NO2" or NH4" may provide chemoautotrophic prokaryotes the energy

to fix DIC.
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Figure 3: The relationship between aphotic DCF and BP (a), NO2™ (b) and NH4" (¢).
Note that NO2 and NH4" was measured only during the 2023 cruises. The 95%

confidence interval is shown in gray.

3.4 Potential chemoautotrophs based on microbial community structure - Analyses of
16S rRNA gene amplicons suggest that diverse bacteria and archaea may drive DCF in
the aphotic southeast Mediterranean Sea (Fig 4A). Microbes found in our collected
genetic material primarily include the order Nitrosopumilales ammonia-oxidizing
archaea, which become dominant below DCM (up to ~30% read abundance near the
bottom), corresponding to previous estimates based on in-situ fluorescent hybridization
(De Corte et al., 2009). Nitrite-oxidizing Nitrospirales comprised ~1% read abundance
at depths below 300 m. Among these lineages, analyses of indicator species identified
seasonal variation in abundance of the orders Nitrosopumilales and Nitrososphaeria

that were more prominent in the stratified period than in wintertime (p-value<0.05)
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when the water column is mixed, while the deep-sea community in general exhibited
only mild seasonal changes (Fig 4B). These ammonia oxidizers may thus drive
ammonia depletion during summertime at the southeast Mediterranean Sea.

Additionally, we identified consistent occurrence of UBA10353 (Arenicellales,
including the UBAS868 group) and SAR324 gammaproteobacterial groups at depths
below the deep chlorophyll maxima (Fig 4A). Members from these ubiquitous clades
are mixotrophs that can fix inorganic carbon conserving energy from sulfur oxidation
(Baltar et al., 2023; Jaffe et al., 2024; Swan et al., 2011). We did not find the
SUPO05/Arctic96BD-19 gammaproteobacterial sulfur oxidizers that occur in productive
dark oxygenated waters (Swan et al., 2011). We note that Methylococcales methane
oxidizers were typical in the near-bottom water layer, as found previously in the
southeast Mediterranean Sea basin (Sisma-Ventura et al., 2022a; Techtmann et al.,
2015), suggesting methylotrophy as a potential mechanism of 1-carbon molecule
acquisition in the dark southeast Mediterranean Sea. While this DNA-based community
analysis provides insight into the potential contributors to DCF, it does not reflect a
direct link as we cannot determine which of the identified microbes are responsible for
the measured DCF rates. We stress that future studies should examine the link between
DCEF and specific microbial groups such as archaea by targeting RNA-level expression

and functional genes (e.g., amoA and amoB), as demonstrated by (Agogué et al., 2008)
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Figure 4: (a) Read abundance of the 40 most abundant taxa (order level) from different
depths offshore the Southeastern Mediterranean Sea. Surface samples are within the
range of 1-5 m depth; near surface are between 20 and deep chlorophyll maximum
(DCM); below DCM corresponds to 180-240 m depths; near bottom samples were
taken circa 5 meters above the seafloor. Potential DCF microbes are shown in blue,
Methylococcales methanotrophs are marked in magenta, and photosynthetic

Synechoccocales are shown in green for reference. (b) A principal component analysis
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showing the differences in the structure of microbial populations (40 most abundant

taxa) based on 16S rRNA gene read mapping.

4 Conclusions

Based on the conceptual model in Figure 5 that summarizes the annual microbial carbon
exchanges in the southeast Mediterranean sea’s offshore area, DOC supplied by LPP is
negligible and cannot explain the ‘high’ BCD in the area, especially in the aphotic zone
that is considered a ‘microbial hotspot’ with relatively high bacterial activity per cell
(Hazan et al., 2018; Rahav et al., 2019). Our observations suggest that DCF may
provide a substantial amount of the missing carbon, at least in the southeast
Mediterranean Sea, while source/s for the remaining missing carbon are currently

unknown and warrant more research.
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Figure 5: A schematic illustration showing microbial carbon exchange in the southeast
Mediterranean Sea. Values shown are the annual averages of LPP, DCF and BP. DOC
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and assuming BGE=0.20, Zooplankton’s respiration (ZR) and excretion were compiled
from Belkin et al. (2022). The numbers in brackets show the integrated values over
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Regardless of the yet missing DOC sources, our results demonstrate the pivotal role
DCF plays in compensating metabolic imbalances in carbon sources at the aphotic
southeast Mediterranean Sea. Similarly, DCF was shown to be a significant process

supporting microbial respiration and/or activity in aphotic layers (Baltar et al., 2009;
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Herndl et al., 2005; Yakimov et al., 2011), as well as in hydrothermal vents (Mattes et
al., 2013) and cold seeps (Nakagawa et al., 2007). Note that, while our estimates of
DCEF contribution to aphotic BCD are based on widely accepted assumptions, they are
subject to some uncertainties, particularly regarding BGE that may be changed on both
spatial and temporal scales, as well as the fraction of DOC exported from the photic
zone that may also change between seasons and water provinces (see discussion below).
These uncertainties underscore the need for more precise and region-specific
measurements of BGE and DOC fluxes to better constrain the role of DCF in deep
ocean carbon cycling.

Another potential uncertainty in measuring aphotic metabolic rates such as DCF or BP
lies in the unclear effects of hydrostatic pressure on the activity of bulk microbial
communities (Riebesell et al., 2009; Tamburini et al., 2013). Laboratory-based
manipulations that do not account for in situ pressure conditions may alter DCF rates,
potentially misrepresenting the actual contribution of chemoautotrophs to aphotic
BCD. This highlights the urgent need for more detailed investigations into how
hydrostatic pressure influences microbial activity in the deep ocean.

Additionally, despite the contribution of DCF to the DOC pool (taking into account the
uncertainties associated with it discussed above), as well as the other sources, very little
of fixed carbon as particulate organic matter (POC) ends up in sediment traps located
above the seabed (2-6%). This suggests that most of the fixed carbon arriving from
DCEF (as well as LPP other potential sources) is recycled in the water column and does
not reach the seabed. The rapid microbial recycling of nutrients was mostly investigated
in the photic layer of the southeast Mediterranean Sea (e.g., PO4, Thingstad et al., 2005)
and little is known about the processes, which are often cryptic (e.g., NOz

oxygenation), occurring in the aphotic layers.

20



413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

Understanding the ‘dark end’ of the biological pump in oligotrophic oceans, which
plays an important (yet variable) role in oceanic carbon cycling and sequestration, will
require a multidisciplinary approach that take into account all the uncertainties
discussed above in light of our (and others) observations of DCF, especially in the
context of ongoing and significant changes in the marine environment. Our study
supports the need for adding DCF measurements to global carbon budgets as also

mentioned by Baltar and Herndl (2010).
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