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Abstract 17 

Settling Photosynthetically derived organic matter derived sinking to depth from 18 

photosynthesis at the illuminated layers is often not sufficient to meet the energy 19 

demands of microbes in the dark ocean. This ‘mismatch’ is especially notable in the 20 

warm and oligotrophic eastern Mediterranean Sea where the annual photosynthesis is 21 

one of the lowest in the world’s oceans, yet its aphotic zone is considered a hotspot for 22 

microbial activity and biomass. Here, we investigated the role of photic and aphotic 23 
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dark inorganic carbon fixation rates (DCF) in supporting bacterial carbon demand atin 24 

the offshore south-easternsoutheastern Mediterranean Sea during the mixed and 25 

stratified periods. Our results demonstrate that DCF rates are measurable throughout 26 

the water column (0-1750 m) and are on the same order of magnitude as photosynthesis 27 

(34 vs. 45 g C m-2 y-1, respectively). Using a carbon mass balance that considers 28 

photosynthesis, DCF and bacterial production (and hence respiration) we show that 29 

chemoautotrophy provides ~35% of the ‘missing carbon’ supply needed for microbial 30 

growth and activity in the aphotic layer, while other sources of dissolved organic carbon 31 

remain to be elucidated. These findings underscore the need for further research into 32 

the factors affecting DCF, its role in global carbon budgets, and its potential to enhance 33 

atmospheric inorganic carbon sequestration. 34 

 35 

1 Introduction 36 

The oceans aphotic layers contain the world’s largest reservoir of dissolved inorganic 37 

carbon (DIC) (Baltar et al., 2010; pool (Burd et al., 2010; Reinthaler et al., 2010), and 38 

harbor ~65% of all prokaryotes (Whitman et al., 1998). Aphotic prokaryotes typically 39 

rely on utilization of organic matter (and carbon) ), fixed by photoautotrophs via 40 

photosynthesis and exported from the euphotic zone through photosynthesis , to sustain 41 

their growth and accumulate biomass  (del Giorgio and Duarte, 2002). Current 42 

estimates reveal, however, a discrepancy between the supply of particulate organic 43 

carbon from photosynthesis and the bacterial organic carbon demand (BCD) in the 44 

aphotic zones (Ducklow, 2000; Karl et al., 1988; Smith and Azam, 1992). This 45 

mismatch suggests that there are other source/s of carbon that are being utilized by 46 

aphotic microorganisms (Baltar et al., 2009; Herndl and Reinthaler, 2013). One such 47 

source, that has been far less investigated, involves the fixation of DIC by chemo-48 
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autotrophic microbes and its assimilation into new biomass. (Baltar and Herndl, 2019). 49 

This could subsequently provide bioavailable DOC to other microbial populations at 50 

depth (Baltar et al., 2010). 51 

 DIC uptake by heterotrophic bacterioplankton is generally attributed to 52 

anaplerotic reactions (Dijkhuizen and Harder, 1984; Erb, 2011) which are metabolic 53 

pathways that replenish intermediates enzymes in the citric acid cycle by fixing CO2, 54 

but other microorganisms such as nitrifying bacteria can also fix DIC (Alonso-Sáez et 55 

al., 2010). Genomic studies on deep-sea microbial communities identified several genes 56 

and metabolic pathways that enable some microbes to thrive as chemoautotrophs on 57 

inorganic substrates (Berg et al., 2007; Hallam et al., 2006). Measurements of CO2 58 

fixation by chemoautotrophs and heterotrophic bacterioplankton are scarce, yet 59 

substantial dark DIC fixation (DCF) rates have been reported in various oceanic settings 60 

and water masses (Swan et al. 2011; Zhou et al. 2017; La Cono et al. 2018; Alothman 61 

et al. 2023) and maybe more common than previously thought (Hansman et al., 2009; 62 

Herndl et al., 2005).  63 

The deep waters of the southeast Mediterranean Sea are characterized by higher 64 

concentrations of inorganic nutrients compared to the photic zone (e.g., ~6 µmol 65 

NO₃+NO₂ kg⁻¹ and ~0.2 PO₄ µmol kg⁻¹ (Ben-Ezra et al., 2021; Sisma-Ventura et al., 66 

2021) and low bioavailable dissolved organic carbon (Martínez-Pérez et al., 2017; 67 

Santinelli, 2015; Santinelli et al., 2010). Despite these characteristics, the southeast 68 

Mediterranean Sea’s aphotic waters are considered a hotspot for bacterial activity 69 

compared to other oceanic regimes at similar depths (Luna et al., 2012; Rahav et al., 70 

2019). Nutrient addition bioassays and water mixing simulations suggest that aphotic 71 

prokaryotes are primarily carbon-limited (Hazan et al., 2018; Rahav et al., 2019). 72 
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Here, we report on both photic and aphotic DCF and heterotrophic bacterial production 73 

rates from 6 cruises held between 2021-2023 atin the offshore southeastern 74 

Mediterranean (bottom depth 1500-1750 m) during the mixed (winter) and stratified 75 

(summer) periods. Our results demonstrate that DCF rates cannot be negletedneglected 76 

(contrary to past conventionsconvention, Nielsen 1952) and are within the same order 77 

of magnitude as photosynthesis or heterotrophic bacterial production (BP). We also 78 

show that DCF substantially contributes to bacterial carbon demand (BCD), therefore 79 

providing, some of the ‘missing carbon’ supply needed for microbial growth and 80 

activity in the aphotic layer of the southeast Mediterranean Sea. 81 

 82 

2 Material and methods 83 

2.2 Sample collection - Seawater was collected during six seasonal cruises in the 84 

Levantine Basin, southeast Mediterranean Sea, on-board the R/V Bat-Galim between 85 

2021-2023. Three cruises were held during the stratified period and three during the 86 

winter mixing. The mixed layer depth was calculated using a temperature difference of 87 

Δ0.3 °C (Mena et al., 2019). Two ‘deep’ stations were sampled in each cruise; one 88 

located at the edge of the continental shelf (H05 33.00 Lat, 34.50 Lon, bottom depth 89 

~1500 m, 50 Km from the coast) and the other at the edge of Israel’s exclusive 90 

economic zone (H06 33.15 Lat, 34.16 Lon, bottom depth 1750 m, 90 Km from 91 

shoreline). Seawater was sampled at discrete depths throughout the water column, from 92 

the surface (~0.5 m) to the bottom (1500-1750 m) using Niskin bottles. Sampling 93 

depths were chosen in real-time based on reads of Conductivity Temperature Depth 94 

(CTD) (Seabird 19 Plus), chlorophyll fluorescence (Turner designs, Cyclops-7) and 95 

PAR (Sea Bird). The raw hydrological data can be freely downloaded from 96 

https://isramar.ocean.org.il/isramar2009/. Measurements included DIC (NaH14CO3) 97 
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uptake under ambient light (hereafter ‘light primary productivity, LPP) or under full 98 

dark conditions (DCF), bacterial productivity (BP) and nutrient quantification.  99 

Nitrite and ammonium concentrations – Samples for nitrite (NO2
-) and ammonium 100 

(NH4
+) concentrations were collected only in March and Augustthe 2023 cruises. The 101 

samples were pre-filtered (0.45 µm), placed in acid-washed plastic vials, and were kept 102 

frozen at -20 °C until analysis. Nutrients were measured with a Seal Analytical AA-3 103 

system. The limits of detection for NO2
- and NH4

+ were 0.06 µM and 0.09 µM, 104 

respectively.  105 

2.3 LPP and DCF - Seawater was collected in triplicates into 45-250 ml bottles and 106 

spiked with NaH14CO3 (Perkin Elmer, specific activity 56 mCi mmol-1). The bottles 107 

were incubated for 24 h under ambient light for 'total primary production or under full 108 

dark for DCF estimates (Nielsen, 1952). At the conclusion of the incubation, the spiked 109 

seawater was filtered onto GF/F filters using low vacuum pressure (<50 110 

mmHg).transparent (for LPP measurements) or dark (for DCF) Nalgene bottles (45-111 

250 ml) and spiked with NaH14CO3 (Perkin Elmer, specific activity 56 mCi mmol-1) 112 

following Nielsen, (1952). The bottles were maintained in on-deck incubators covered 113 

with a gradient of neutral mesh simulating the irradiance intensity (no change in 114 

spectrum) at 100%, 50%, 10%, 1%, and 0.1% of surface light intensities or under 115 

complete dark conditions (Belkin et al., 2022; Reich et al., 2024). Incubators were kept 116 

at constant ambient surface temperatures (~19-20 °C in winter and ~28-29 °C in the 117 

summer cruises). We acknowledge that temperature differences between surface and 118 

deeper depths may alter the LPP or DCF rates measurements, especially during the 119 

summer when the water column is stratified. While in situ measurements may offer 120 

more precise rate estimates, they are generally impractical during research cruises that 121 

involve sampling at multiple locations and times throughout the day and night. 122 
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Nevertheless, preliminary comparisons between the incubation setup used here versus 123 

in situ incubations using a mooring line showed negligible differences in primary 124 

productivity, falling within the expected range of measurement variability (see also 125 

Reich et al., 2022). All the incubation bottles were spiked at sunrise and terminated 126 

after 24 h (Reich et al., 2022; Robinson et al., 2009) by filtering. the particulate matter 127 

onto GF/F filters using low vacuum pressure (<50 mmHg). Next, the excess 14C-128 

bicarbonate was removed by fuming with 50 μl of 37% hydrochloric acid overnight. 129 

Finally, 5 ml scintillation cocktail (ULTIMA-GOLD) was added, and the 130 

disintegrations per minute (DPM) from the particulate matter concentrated on the filters 131 

were counted using a TRI-CARB 4810 TR (Packard) liquid scintillation counter. Blank 132 

seawater spiked with NaH14CO3 was filtered immediately without incubation and the 133 

reads were subtracted from the sample’s DPM. The blank DPM reads were usually 134 

negligible (<5% of the sample’s DPM). Aliquots (50 µl) from random spiked samples 135 

were placed onto new GFF filters, added with 50 µl ethanolamine and scintillation 136 

liquid, and counted immediately without incubation to account for the ‘added activity’ 137 

of the radiolabeled working solution used. LPP was calculated as the difference 138 

between the DPM retrieved from the samples incubated under ambient light (‘total 139 

primary production) and the ‘dark’ bottles. Dark or light dissolved inorganic carbon 140 

fixation was calculated based on the Bermuda Atlantic Time-series Study (BATS) 141 

protocol (https://bios.asu.edu/bats/bats-data). More details can be found in Reich et al. 142 

(2024). 143 

2.3 Bacterial production- SamplesTriplicate samples per depth (1.7 ml) were incubated 144 

in the dark with 10010 nmol/L 3H-leucine L-1 (Perkin Elmer, specific activity 123 Ci 145 

mmol-1) for 4-6 h under ambient temperature (Simon et al., 1990). The incubations were 146 

terminated with 100 µl of trichloroacetic acid (100%), were processed as described by 147 
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Smith and Azam (1992), and counted using a TRI-CARB 4810 TR (Packard) liquid 148 

scintillation counter. Killed control samples containing 3H-leucine L-1 and 149 

trichloroacetic acid (without incubation) were also measured and thisthese control 150 

sample’s DPMs were subtracted from the sample’s reads. A conversion factor of 3 kg 151 

C mol-1 per mole leucine incorporated was used, assuming an isotopic dilution of 2.0 152 

(Simon and Azam 1989). 153 

2.4 Molecular analyses and statistics - DNA was extracted from water samples with 154 

the PowerWater kit (Qiagen, USA), using the FastPrep-24™ Classic (MP Biomedicals, 155 

USA) bead-beating to disrupt the cells (2 cycles at 5.5 m sec-1, with a 5 min interval).  156 

The V4 region (~ 300 bp) of the 16S rRNA gene was amplified from the DNA (~50 157 

ng) using the 515Fc/806Rc primers amended with relevant tags (Apprill et al., 2015; 158 

Parada et al., 2016). PCR conditions were as follows: initial denaturation at 94 °C for 159 

45 s, 30 cycles of denaturation (94 °C for 15 sec), annealing (15 cycles at 50 °C and 15 160 

cycles at 60 °C for 20 sec) and extension (72 °C for 30 s). Two annealing temperatures 161 

were used to account for the melting temperature of both forward (58.5-65.5 °C), and 162 

reverse (46.9-54.5 °C), primers. 163 

Demultiplexed paired-end reads were processed in QIIME2 V2022.2 environment 164 

(Bolyen et al., 2019). Reads were truncated based on quality plots, checked for 165 

chimeras, merged and grouped into amplicon sequence variants (ASVs) with DADA2 166 

(Callahan et al., 2016), as implemented in QIIME2. The amplicons were classified with 167 

Scikit-Learn classifier that was trained on Silva database v138 (16S rRNA, (Glöckner 168 

et al., 2017). Mitochondrial and chloroplast sequences were removed from the 16S 169 

rRNA amplicon dataset. Downstream analyses were performed in R v4.1.1 (R Core 170 

Team, 2021), using packages Phyloseq (McMurdie and Holmes, 2013) and Ampvis2 171 

(Andersen et al., 2018). Indicator species analyses were performed using Indic species 172 
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package v1.7.9 (De Ca´ceres et al., 2009).  Amplicon reads were deposited to the NCBI 173 

SRA archive under project number PRJNA1215023. 174 

 175 

2.5 Bacterial respiration (BR), bacterial carbon demand (BCD) and zooplankton 176 

respiration (ZR) - BR was calculated based on the following equation and assuming an 177 

average open-ocean bacterial growth efficiency (BGE) of 20% (Herndl and Reinthaler, 178 

2013) similar to previous direct measurements from the Mediterranean Sea ranging 179 

from 0.21-0.29 (Zweifel et al., 1993). 180 

��� =
��

�� + ��
 181 

BCD was then calculated as the sum of BP and BP (Gasol et al., 1998). Zooplankton 182 

respiration (ZR) and excretion were compiled from Belkin et al. (2022). 183 

 184 

3 Results and discussion 185 

3.1 Dark and light inorganic carbon fixation rates – As expected, LPP was restricted 186 

to the photic layer with highest rates usually measured at the surface (~0.5 m) that 187 

gradually decreased to reach minimum rates at the bottom of the photic layer (~180 m) 188 

(Fig 1A). Relatively low LPP values were measured during the stratified summer (~0.1-189 

0.8 µg C L-1 d-1), whereas higher rates were measured during the winter mixing period 190 

(~0.2-7.4 µg C L-1 d-1) (Fig 1A). This resulted in ~10-fold higher integrated rates 191 

measured during the mixed period compared to those measured during the stratified 192 

period (Table 1), in accordance with studies from the area (Psarra et al., 2005; Reich et 193 

al., 2022; Sisma-Ventura et al., 2022b). In contrast with LPP, DCF was not restricted 194 

to the photic layer and ranged from 0 to ~0.4 µg C L-1 d-1 throughout the water column 195 

(Fig 1B, Fig 2A), without significant differences in the absolute rates between the 196 

photic and aphotic zones (t-test, p>0.05, Fig 2B). The integrated photic DCF was 197 
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typically lower, yet rates were of the same order of magnitude, then others 198 

previouslyThe observed decrease in DCF rates with depth (Figure 2A) during the 199 

summer cruises may be partly attributed to a decline in the abundance of 200 

chemoautotrophs with depth. For example, Agogué et al,. (2008) reported a decline in 201 

archaeal amoA gene copy numbers with depth in the eastern North Atlantic. 202 

Normalizing DCF rates to chemoautotrophic microbial cell abundance (or gene copy) 203 

could reveal a different vertical pattern. Another possible explanation for the decline in 204 

DCF rates with depth may be related to the weakening flux of sinking organic matter 205 

with depth that limits the substrates that fuel DCF (discussion below). The integrated 206 

photic DCF was typically lower than the rates reported in the central and western 207 

Mediterranean Sea (La Cono et al., 2018). The aphotic DCF rates were ~3.5 fold higher 208 

during the mixed than during the stratified period (Table 1, Fig 2A). 209 

 210 

Figure 1: Spatial and temporal variability in rates of LPP (a), DCF (b), BP (c) and the 211 

contribution of DCF to bacterial carbon demand (BCD) (d) at the offshore SE 212 

Mediterranean Sea (Lat. 33.15 N, Lon. 34.16 E) between 2021-2023. BCD was 213 

calculated assuming a bacterial gross efficiency of 0.20 (Gasol et al., 1998). 214 

 215 
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Table 1: RatesIntegrated rates and contribution of DCF to metabolic processes in the 216 

photic (0-180) and aphotic (>180 m) depths of the pelagic southeast Mediterranean Sea 217 

BDL –. The values represent the minimum and maximum ranges observed across the 218 

cruises, with the averages and their corresponding standard deviations provided in 219 

parentheses.  BDL = Below detection limit. 220 

Variable Season 
Photic  

(0-180 m) 

Aphotic  

(180-1750 m) 

LPP (mg C m-2 d-1) 

Mixed 
158-649 

(368±205) 
BDL 

Stratified 
4-69  

(32±26) 
BDL 

DCF (mg C m-2 d-1) 

Mixed 
6-27 

(15±8) 

17-342 

(152±127) 

Stratified 
7-19 

(14±5) 

8-127 

(59±48) 

BP (mg C m-2 d-1) 

Mixed 
6-58  

(28±21) 

12-65  

(33±22) 

Stratified 
9-55  

(30±20) 

7-123  

(81±55) 

DCF contribution to BCD (%) * 

Mixed 
23-221 

(109±88) 

49-594  

(213±200) 

Stratified 
8-31 

(18±9) 

8-42  

(23±13) 

DCF contribution to total PP (%) 

Mixed 
1-15  

(6±5) 
--- 

Stratified 
12-81  

(40±32) 
--- 

* Assuming bacterial gross efficiency of 0.2 (Gasol et al., 1998) and that the available 221 

DOC for bacteria is 20% of the total primary productivity at the photic layer (Teira et 222 

al., 2003). 223 

 224 

The higher aphotic DCF in the mixed versus the stratified periods may be related to 225 

more bioavailable carbon that is transported from the photic layer as marine snow and 226 

supplies organic carbon to heterotrophic activity (mostly during in the winter when LPP 227 

is(coinciding higher LPP). However, given the oligotrophic nature of the southeast 228 

Mediterranean Sea, including during the winter (Berman-Frank and Rahav, 2012; 229 

Reich et al., 2022), most of the organic carbon (both particulate and dissolved 230 
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originating from LPP) is recycled within the photic layer and only. Only a small fraction 231 

fluxes down to the aphotic zone) as and has been recorded in sediment traps (Alkalay 232 

et al., 2024). 233 

3.2 Bacterial productivity in relation to DCF and BCD - Another possible mechanism 234 

that may, potentially, explain higher DCF rates during the winter versus the summer is 235 

anaplerosis. The extent of anaplerotic reactions is primarily driven by the availability 236 

of labile organic carbon to heterotrophs (Dijkhuizen and Harder 1984). Therefore, 237 

assuming anaplerosis drives DCF, we expect it will be positively coupled to BP.  238 

Yet, our results do not support the likelihood of significant anaplerosis reactions, 239 

mainly because,predominantly evident from the spatiotemporal distribution of aphotic 240 

BP (Fig 1C) differsdiffering considerably from that of the DCF (Fig 1B) and does not 241 

correlate with it (Fig 3A). In fact, BP seems to be coupled with LPP at the photic layer 242 

reaching ~0.4 µg C L-1 d-1 (not shown). Except forExcluding some sporadic 243 

measurements, aphotic BP rates were usually homogeneous and typically <0.1 µg C L-244 

1 d-1 (Fig 1C). FurtherMoreover, the highest integrated aphotic BP was measured during 245 

the summers of 2021 and 2022 and not during the winter cruises when generally higher 246 

DCF was recorded (Table 1, Fig 2A).  247 

 248 
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 249 

Figure 2: Dark carbon fixation rates in the southeastern Mediterranean Sea. Averaged 250 

vertical distribution of DCF in the offshore southeast Mediterranean Sea during the 251 

mixed (white) and stratified (gray) periods (a), and a box plot showing the DCF rates 252 

at the photic (0-180 m) and aphotic (>180 m) water depths (b).  253 

 254 

Despite the lack of a clear positive relationship between DCF and BP, DCF may 255 

contribute to bacterial carbon demand (BCD) atin the aphotic zone. Thus, we use a 256 

literaryliterature standard, a bacterial growth efficiency of 0.20 (DovalGasol et al., 257 

20011998) to calculate BR and BCD. (see the ‘material and methods’ section for more 258 

details). This resulted incalculation yielded bacterial respiration (BR) ranging from 29-259 

494 mg C m-2 d-1 (average 209±172 mg C m-2 d-1), and the concurrent BCD ranges from 260 

36 to 648 mg C m-2 d-1 (average 262±121 mg C m-2 d-1). Under these circumstances, 261 

exudation of DOC from primary productivity at the photic layer estimated as 20% of 262 

the rates (Teira et al., 2003) and equals to ~1-130 mg C m-2 d-1.  263 

This new DOC, thethat originated form the photic zone therefore cannot support the 264 

aphotic BCD in our system in all of our observations. However, if we consider the 265 

Formatted: Font color: Black



 

 13

contribution of DOC produced by aphotic DCF, part of the missing carbon canmay be 266 

‘bridged’accounted for. Thus, when considering aphotic DCF in addition to the 267 

sequestered DOC from the photic layer, the ‘abnormally high’ aphotic BCD could be 268 

explained in full (≥100%) in ~35% of the observations (Fig 1D). In the other 65% of 269 

the observations the missing carbon sources needed to support the aphotic BCD remains 270 

an enigma. Evidences suggestWe note that these calculations are based on global 271 

averages and assumptions and therefore may be subject to some uncertainties. For 272 

example, BGE can vary between seasons and sites (del Giorgio and Cole, 1998). In the 273 

Mediterranean Sea, long-term measurements of BGE ranged from 0.21 (similar to our 274 

calculations and the global average used by Herndl and Reinthaler, 2013) to 0.29 275 

(Zweifel et al., 1993). If the 0.29 value is used, the contribution of DCF to the aphotic 276 

BCD increases to ~45% of the observations rather than ~35% when using BGE of 0.2. 277 

Similarly, if we apply an exported DOC estimate of ~4% from the photic zone, as 278 

reported for the Ionian Sea/western Mediterranean (Moutin and Raimbault, 2002), the 279 

relative contribution of DCF to aphotic BCD would be even higher than in our current 280 

calculations, which assume ~20% DOC export (Teira et al., 2003). These uncertainties 281 

warrant future investigation. Yet, even when using conservative estimates for BGE and 282 

DOC export as done here, the contribution of DCF to aphotic BCD remains substantial. 283 

Evidence suggests that dissolved methane may be more abundant in oxygenated 284 

environments than previously thought (Grossart et al., 2011). Methane can potentially 285 

be one of the missing energy sources for marine microbes and support high BCD 286 

(Brankovits et al., 2017) as observed at the aphotic southeast Mediterranean Sea (Fig 287 

1D). In agreement, methanotrophs were found in aphotic cold seeps at the southeast 288 

Mediterranean Sea (Sisma-Ventura et al., 2022a), as well as across the aphotic water 289 

column in our samples (see discussion below). 290 
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3.3 Interannual variability in aphotic DCF - Interannual variability in DCF, but not in 291 

LPP or BP, was observed with higher rates recorded in March 2021-March 2022 and 292 

lower rates observed in August 2022-August 2023 (Fig 1B). The drivers of this 293 

variability are unknown and may be related to differences in nutrients availability that 294 

fuels chemoautotrophic microbes of the aphotic layer between these two periods. While 295 

the absolute concentrations of PO4
3+ or NO3

-+NO2
- in the deep aphotic water were 296 

similar overall between periods (not shown) and, therefore, not likely to affect the DCF 297 

rates, organic nutrients that were not considered here may limit chemoautotrophy. In 298 

support, recent studies from the northern Red Sea and South China Sea showed that 299 

DCF at the surface waterInorganic nutrients such as PO4
3+ or NO3

-+NO2
- are unlikely 300 

to explain this variability as their ambient levels were similar between periods 301 

(https://isramar.ocean.org.il/isramar2009/). Alternatively, we surmise that differences 302 

in the bioavailability and concentration of sinking organic particles, possibly attributed 303 

by the BiOS (Bimodal Oscillating System) oscillation circulation of deep water 304 

between the Adriatic and Ionian seas, could potentially explain the higher aphotic 305 

chemoautotrophic activity in March 2021-March 2022 versus August 2022-August 306 

2023. This mechanism is known to influence the bioavailability of organic nutrients in 307 

the deep Mediterranean Sea by modulating deep-water circulation and ventilation 308 

patterns (Civitarese et al., 2010). These shifts affect the transport and residence time of 309 

organic matter (Civitarese et al., 2023), thereby potentially altering availability of 310 

organic nutrients to aphotic microbial populations, including to chemoautotrophs. 311 

Supporting this hypothesis are recent studies from the northern Red Sea and South 312 

China Sea showing that DCF is limited by labile organic nutrients such as phosphonates 313 

and even carbon-rich molecules (Reich et al., 2024; Zhou et al., 2017). Aphotic free-314 

living chemoautotrophs are likely to encounter an increasingly refractory pool of 315 
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dissolved organic matter for metabolism that may result in lower DCF rates, as shown 316 

in exported material through the water column (Santinelliin Bar-Zeev et al. 2015., 317 

2013). Particle-attached chemoautotrophs may have access to higher concentrations of 318 

organic substrates, and therefore. Therefore we surmise theythese microbes would 319 

preferentially have a preferential particle-attached lifestyle in the deep ocean. The 320 

patchy nature of particulate matter sinking and lateral transport during wintertime 321 

(Alkalay et al., 2024) and aggregate concentrations (Bar-Zeev et al., 2012) in the deep 322 

southeast Mediterranean Sea could also potentially explain the interannual variability 323 

in DCF between periods. Understanding how chemoautotrophs transform labile 324 

dissolved organic matter into refractory dissolved organic matter, awhich is an essential 325 

process known asin the ‘microbial carbon pump’ (Herndl and Reinthaler, 2013), is 326 

crucial as it influences the efficiency of the biological pump (Jiao et al., 2010).  327 

Oxidizing reduced inorganic compounds as electron donors (e.g., NO2
- or NH4

+) may 328 

provide chemoautotrophic prokaryotes sufficient energy to fix DIC (Hügler and 329 

Sievert, 2011). We therefore measured (March and August 2023 cruises) the vertical 330 

distribution of NO2
- and NH4

+ (only in the March and August 2023 cruises) and 331 

examined if these chemical species are coupled/ or uncoupled with DCF at the aphotic 332 

zone. Indeed, ourOur results show a negative-linear relationship between DCF and 333 

NO2
- (Fig 3B) and NH4

+ (Fig 3C), suggesting nitrification. This is potentially an 334 

important metabolic pathway yieldingbecause chemoautotrophs consume NO2
- and 335 

NH4
+ during nitrification to yield energy to fix DIC in the aphotic zone. (REF), thereby 336 

reducing nutrient standing stocks in the water. We surmise that this ‘depletion’ may, 337 

theoretically, explain the observed negative correlation between nutrient levels and 338 

chemoautotrophic activity. In agreement, both ammonia and nitrite oxidizers were 339 

found in the aphotic zone of all cruises (DNA level, discussion below), further 340 
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highlighting their potential role as contributors to DCF in the southeast Mediterranean 341 

Sea. Nitrification measurements along with metagenomic tools, DCF (and BP) in 342 

aphotic water should be doneincluded in future dedicated studies to better refute or 343 

reinforce that oxidation of NO2
- or NH4

+ may provide chemoautotrophic prokaryotes 344 

the energy to fix DIC. 345 

 346 

Figure 3: Possible relationships examined via linear correlationsThe relationship 347 

between aphotic DCF and BP (a), NO2
- (b) and NH4

+ (c). Note that NO2
- and NH4

+ 348 

was measured only during the 2023 cruises. The 95% confidence interval is shown in 349 

gray.  350 

3.4 Potential chemoautotrophs based on microbial community structure - Analyses of 351 

16S rRNA gene amplicons suggest that diverse bacteria and archaea may drive DCF in 352 

the aphotic southeast Mediterranean Sea (Fig 4A).  Microbes found in our collected 353 

genetic material primarily include the order Nitrosopumilales ammonia-oxidizing 354 

archaea, which become dominant below DCM (up to ~30% read abundance near the 355 

bottom), corresponding to previous estimates based on in-situ fluorescent hybridization 356 

(De Corte et al., 2009). Nitrite-oxidizing Nitrospirales comprised ~1% read abundance 357 

at depths below 300 m. Among these lineages, analyses of indicator species identified 358 

seasonal variation in abundance of the orders Nitrosopumilales and Nitrososphaeria 359 

that were more prominent in the stratified period than in wintertime (p-value<0.05),) 360 
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when the water column is mixed, while the deep-sea community in general exhibited 361 

only mild seasonal changes (Fig 4B). These ammonia oxidizers may thus drive 362 

ammonia depletion during summertime at the southeast Mediterranean Sea.  363 

Additionally, we identified consistent occurrence of UBA10353 (Arenicellales, 364 

including the UBA868 group) and SAR324 gammaproteobacterial groups at depths 365 

below the deep chlorophyll maxima (Fig 4A). Members from these ubiquitous clades 366 

are mixotrophs that can fix inorganic carbon conserving energy from sulfur oxidation 367 

(Baltar et al., 20222023; Jaffe et al., 2024; Swan et al., 2011). We did not find the 368 

SUP05/Arctic96BD-19 gammaproteobacterial sulfur oxidizers that occur in productive 369 

dark oxygenated waters (Swan et al., 2011). We note that Methylococcales methane 370 

oxidizers were typical in the near-bottom water layer, as found previously in the 371 

southeast Mediterranean Sea basin (Sisma-Ventura et al., 2022a; Techtmann et al., 372 

2015), suggesting methylotrophy as a potential mechanism of 1-carbon molecule 373 

acquisition in the dark southeast Mediterranean Sea. While this DNA-based community 374 

analysis provides insight into the potential contributors to DCF, it does not reflect a 375 

direct link as we cannot determine which of the identified microbes are responsible for 376 

the measured DCF rates. We stress that future studies should examine the link between 377 

DCF and specific microbial groups such as archaea by targeting RNA-level expression 378 

and functional genes (e.g., amoA and amoB), as demonstrated by (Agogué et al., 2008) 379 
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 380 

Figure 4: (a) Read abundance of the 40 most abundant taxa (order level) from different 381 

depths offshore the Southeastern Mediterranean Sea.  Surface samples are within the 382 

range of 1-5 m depth; near surface are between 20 and deep chlorophyll maximum 383 

(DCM); below DCM corresponds to 180-240 m depths; near bottom samples were 384 

taken circa 5 meters above the seafloor. Potential DCF microbes are shown in blue, 385 

Methylococcales methanotrophs are marked in magenta, and photosynthetic 386 

Synechoccocales are shown in green for reference. (b) A principal component analysis 387 
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showing the differences in the structure of microbial populations (40 most abundant 388 

taxa) based on 16S rRNA gene read mapping. 389 

 390 

4 Conclusions  391 

Based on the conceptual model in Figure 5 that summarizes the annual microbial carbon 392 

exchanges in the southeast Mediterranean sea’s offshore area, it is clear that DOC 393 

supplied by LPP is negligible and cannot explain the ‘high’ BCD in the area, especially 394 

in the aphotic zone that is considered a ‘microbial hotspot’ with relatively high bacterial 395 

activity per cell (Hazan et al., 2018; Rahav et al., 2019). Therefore, our back of the 396 

envelope calculations highlightsOur observations suggest that DCF may provide a 397 

substantial amount of the missing carbon, at least in the southeast Mediterranean Sea, 398 

while source/s for the remaining missing carbon are currently unknown and warrant 399 

more research.  400 

 401 
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 403 

Figure 5: A schematic illustration showing microbial carbon exchange in the southeast 404 

Mediterranean Sea. Values shown are the annual averages of LPP, DCF and BP. DOC 405 

exudation from LPP was assumed to be 20% of the rates., BR was calculated from BP 406 

and assuming BGE=0.20, Zooplankton’s respiration (ZR) and excretion were compiled 407 

from Belkin et al. (2022). The numbers in brackets show the integrated values over 408 

1750 m and expressed as g C m-2 y-1. 409 

Regardless of the yet missing DOC sources, our results demonstrate the pivotal role 410 

DCF playplays in compensating metabolic imbalances in carbon sources at the aphotic 411 

southeast Mediterranean Sea. Similarly, DCF was shown to be a significant process 412 

supporting microbial respiration and/or activity in aphotic layers (Baltar et al., 2009; 413 
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Herndl et al., 2005; Yakimov et al., 2011), as well as in hydrothermal vents (Mattes et 414 

al., 2013) and cold seeps (Nakagawa et al., 2007). Note that, while our estimates of 415 

DCF contribution to aphotic BCD are based on widely accepted assumptions, they are 416 

subject to some uncertainties, particularly regarding BGE that may be changed on both 417 

spatial and temporal scales, as well as the fraction of DOC exported from the photic 418 

zone that may also change between seasons and water provinces (see discussion below). 419 

These uncertainties underscore the need for more precise and region-specific 420 

measurements of BGE and DOC fluxes to better constrain the role of DCF in deep 421 

ocean carbon cycling. 422 

We note that despite the contribution of DCF to the DOC pool,Another potential 423 

uncertainty in measuring aphotic metabolic rates such as DCF or BP lies in the unclear 424 

effects of hydrostatic pressure on the activity of bulk microbial communities (Riebesell 425 

et al., 2009; Tamburini et al., 2013). Laboratory-based manipulations that do not 426 

account for in situ pressure conditions may alter DCF rates, potentially misrepresenting 427 

the actual contribution of chemoautotrophs to aphotic BCD. This highlights the urgent 428 

need for more detailed investigations into how hydrostatic pressure influences 429 

microbial activity in the deep ocean. 430 

Additionally, despite the contribution of DCF to the DOC pool (taking into account the 431 

uncertainties associated with it discussed above), as well as the other sources, very little 432 

of fixed carbon as particulate organic matter (POC) ends up in sediment traps located 433 

above the seabed (2-6%). This suggests that most of the fixed carbon arriving from 434 

DCF (as well as LPP other potential sources) is recycled in the water column and does 435 

not reach the seabed. The rapid microbial recycling of nutrients was mostly investigated 436 

in the photic layer of the southeast Mediterranean Sea (e.g., PO4, Thingstad et al. (., 437 

2005) and little is known about the processes, which are often cryptic (e.g., NO2
- 438 
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oxygenation), occurring in the aphotic layers. Our study highlights the need for adding 439 

DCF measurements to global carbon budgets. Moreover, understanding the factors 440 

affecting DCF in the photic and aphotic layers may provide science-based operational 441 

opportunities to increase atmospheric inorganic carbon sequestration. 442 

Understanding the ‘dark end’ of the biological pump in oligotrophic oceans, which 443 

plays an important (yet variable) role in oceanic carbon cycling and sequestration, will 444 

require a multidisciplinary approach that take into account all the uncertainties 445 

discussed above in light of our (and others) observations of DCF, especially in the 446 

context of ongoing and significant changes in the marine environment. Our study 447 

supports the need for adding DCF measurements to global carbon budgets as also 448 

mentioned by Baltar and Herndl (2010).  449 
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