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Abstract

Settling—Photosynthetically derived organic matter derived—sinking to depth from

phetesynthesis—at the illuminated layers is often not sufficient to meet the energy
demands of microbes in the dark ocean. This ‘mismatch’ is especially notable in the
warm and oligotrophic castern Mediterranean Sea where the annual photosynthesis is
one of the lowest in the world’s oceans, yet its aphotic zone is considered a hotspot for

microbial activity and biomass. Here, we investigated the role of photic and aphotic
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dark inorganic carbon fixation rates (DCF) in supporting bacterial carbon demand atin
the effshore—south-easternsoutheastern Mediterranean Sea during the mixed and
stratified periods. Our results demonstrate that DCF rates are measurable throughout
the water column (0-1750 m) and are on the same order of magnitude as photosynthesis
(34 vs. 45 g C m? y!, respectively). Using a carbon mass balance that considers
photosynthesis, DCF and bacterial production (and hence respiration) we show that
chemoautotrophy provides ~35% of the ‘missing carbon’ supply needed for microbial
growth and activity in the aphotic layer, while other sources of dissolved organic carbon
remain to be elucidated. These findings underscore the need for further research into
the factors affecting DCF, its role in global carbon budgets, and its potential to enhance

atmospheric inorganic carbon sequestration.

1 Introduction

The oceans aphotic layers contain the world’s largest reservoir of dissolved inorganic
carbon (DIC) (Baltar et al., 2010; peet{Burd et al., 2010; Reinthaler et al., 2010), and
harbor ~65% of all prokaryotes (Whitman et al., 1998). Aphotic prokaryotes typically

rely on utilization of organic matter (and carbon)-). fixed by photoautotrophs via

photosynthesis and exported from the euphotic zone-threugh-phetesynthesis-, to sustain

their growth and accumulate biomass —(del Giorgio and Duarte, 2002). Current
estimates reveal, however, a discrepancy between the supply of particulate organic
carbon from photosynthesis and the bacterial organic carbon demand (BCD) in the
aphotic zones (Ducklow, 2000; Karl et al., 1988; Smith and Azam, 1992). This
mismatch suggests that there are other source/s of carbon that are being utilized by
aphotic microorganisms (Baltar et al., 2009; Herndl and Reinthaler, 2013). One such

source, that has been far less investigated, involves the fixation of DIC by chemo-
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autotrophic microbes and its assimilation into new biomass- (Baltar and Herndl, 2019).

This could subsequently provide bioavailable DOC to other microbial populations at
depth (Baltar et al., 2010).
DIC uptake by heterotrophic bacterioplankton is generally attributed to

anaplerotic reactions (Dijkhuizen and Harder, 1984; Erb, 2011)_which are metabolic

pathways that replenish intermediates enzymes in the citric acid cycle by fixing CO»,

but other microorganisms such as nitrifying bacteria can also fix DIC (Alonso-Séez et
al., 2010). Genomic studies on deep-sea microbial communities identified several genes
and metabolic pathways that enable some microbes to thrive as chemoautotrophs on
inorganic substrates (Berg et al., 2007; Hallam et al., 2006). Measurements of CO>
fixation by chemoautotrophs and heterotrophic bacterioplankton are scarce, yet
substantial dark DIC fixation (DCF) rates have been reported in various oceanic settings
and water masses (Swan et al. 2011; Zhou et al. 2017; La Cono et al. 2018; Alothman
et al. 2023) and maybe more common than previously thought (Hansman et al., 2009;
Herndl et al., 2005).

The deep waters of the southeast Mediterranean Sea are characterized by higher
concentrations of inorganic nutrients compared to the photic zone (e.g., ~6 pmol
NO;+NO: kg ' and ~0.2 POs pmol kg (Ben-Ezra et al., 2021; Sisma-Ventura et al.,
2021) and low bioavailable dissolved organic carbon (Martinez-Pérez et al., 2017;
Santinelli, 2015; Santinelli et al., 2010). Despite these characteristics, the southeast
Mediterranean Sea’s aphotic waters are considered a hotspot for bacterial activity
compared to other oceanic regimes at similar depths (Luna et al., 2012; Rahav et al.,
2019). Nutrient addition bioassays and water mixing simulations suggest that aphotic

prokaryotes are primarily carbon-limited (Hazan et al., 2018; Rahav et al., 2019).
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Here, we report on both photic and aphotic DCF and heterotrophic bacterial production
rates from 6 cruises held between 2021-2023 atin the—effshere southeastern
Mediterranean (bottom depth 1500-1750 m) during the mixed (winter) and stratified
(summer) periods. Our results demonstrate that DCF rates cannot be negletedneglected
(contrary to past eenventionsconvention, Nielsen 1952) and_are within the same order
of magnitude as photosynthesis or heterotrophic bacterial production (BP). We also
show that DCF substantially contributes to bacterial carbon demand (BCD), therefore
providing, some of the ‘missing carbon’ supply needed for microbial growth and

activity in the aphotic layer of the southeast Mediterranean Sea.

2 Material and methods
2.2 Sample collection - Seawater was collected during six seasonal cruises in the
Levantine Basin, southeast Mediterranean Sea, on-board the R/V Bat-Galim between

2021-2023. Three cruises were held during the stratified period and three during the

winter mixing. The mixed layer depth was calculated using a temperature difference of

A0.3 °C (Mena et al., 2019). Two ‘deep’ stations were sampled in each cruise; one

located at the edge of the continental shelf (HO5 33.00 Lat, 34.50 Lon, bottom depth
~1500 m, 50 Km from the coast) and the other at the edge of Israel’s exclusive
economic zone (H06 33.15 Lat, 34.16 Lon, bottom depth 1750 m, 90 Km from
shoreline). Seawater was sampled at discrete depths throughout the water column, from
the surface (~0.5 m) to the bottom (1500-1750 m) using Niskin bottles. Sampling
depths were chosen in real-time based on reads of Conductivity Temperature Depth
(CTD) (Seabird 19 Plus), chlorophyll fluorescence (Turner designs, Cyclops-7) and

PAR (Sea Bird). The raw hydrological data can be freely downloaded from

https://isramar.ocean.org.il/isramar2009/. Measurements included DIC (NaH'*COs)




98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

122

uptake under ambient light (hereafter ‘light primary productivity, LPP) or under full
dark conditions (DCF), bacterial productivity (BP) and nutrient quantification.

Nitrite and ammonium concentrations — Samples for nitrite (NO2") and ammonium
(NH4") concentrations were collected only in Mareh-and-Augustthe 2023 cruises. The
samples were pre-filtered (0.45 um), placed in acid-washed plastic vials, and were kept
frozen at -20 °C until analysis. Nutrients were measured with a Seal Analytical AA-3
system. The limits of detection for NO» and NH4" were 0.06 pM and 0.09 uM,

respectively.

2.3 LPP and DCF - Seawater was collected in triplicates into 45-256-ml-bettlesand

spiked-with NaH"CO; (Perkin Elmer, specific-activity-56-mCi-mmel ) The bottles

smmHe)-transparent (for LPP measurements) or dark (for DCF) Nalgene bottles (45-

250 ml) and spiked with NaH'*CO; (Perkin Elmer, specific activity 56 mCi mmol™)

following Nielsen, (1952). The bottles were maintained in on-deck incubators covered

with a gradient of neutral mesh simulating the irradiance intensity (no change in

spectrum) at 100%, 50%, 10%, 1%, and 0.1% of surface light intensities or under

complete dark conditions (Belkin et al., 2022:; Reich et al., 2024). Incubators were kept

at constant ambient surface temperatures (~19-20 °C in winter and ~28-29 °C in the

summer cruises). We acknowledge that temperature differences between surface and

deeper depths may alter the LPP or DCF rates measurements, especially during the

summer when the water column is stratified. While in sifu measurements may offer

more precise rate estimates, they are generally impractical during research cruises that

involve sampling at multiple locations and times throughout the day and night.
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Nevertheless, preliminary comparisons between the incubation setup used here versus

in_situ_incubations using a mooring line showed negligible differences in primary

productivity, falling within the expected range of measurement variability (see also

Reich et al., 2022). All the incubation bottles were spiked at sunrise and terminated

after 24 h (Reich et al., 2022: Robinson et al., 2009) by filtering. the particulate matter

onto GF/F filters using low vacuum pressure (<50 mmHg). Next, the excess '“C-

bicarbonate was removed by fuming with 50 pl of 37% hydrochloric acid overnight.
Finally, 5 ml scintillation cocktail (ULTIMA-GOLD) was added, and the
disintegrations per minute (DPM) from the particulate matter concentrated on the filters
were counted using a TRI-CARB 4810 TR (Packard) liquid scintillation counter. Blank
seawater spiked with NaH'“COs was filtered immediately without incubation and the
reads were subtracted from the sample’s DPM. The blank DPM reads were usually
negligible (<5% of the sample’s DPM). Aliquots (50 pl) from random spiked samples
were placed onto new GFF filters, added with 50 pl ethanolamine and scintillation
liquid, and counted immediately without incubation to account for the ‘added activity’
of the radiolabeled working solution used. LPP was calculated as the difference
between the DPM retrieved from the samples incubated under ambient light (‘total
primary production) and the ‘dark’ bottles. Dark or light dissolved inorganic carbon
fixation was calculated based on the Bermuda Atlantic Time-series Study (BATS)

protocol (https://bios.asu.edu/bats/bats-data). More details can be found in Reich et al.

(2024).

2.3 Bacterial production- SamplesTriplicate samples per depth (1.7 ml) were incubated

in the dark with 10910 nmol/L 3H-leucine L' (Perkin Elmer, specific activity 123 Ci
mmol™) for 4-6 h under ambient temperature (Simon et al., 1990). The incubations were

terminated with 100 pl of trichloroacetic acid (100%), were-processed as described by
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Smith and Azam (1992), and counted using a TRI-CARB 4810 TR (Packard) liquid
scintillation counter. Killed control samples containing 3H-leucine L' and
trichloroacetic acid (without incubation) were also measured and thisthese control
sample’s DPMs were subtracted from the sample’s reads. A conversion factor of 3 kg
C mol™! per mole leucine incorporated was used, assuming an isotopic dilution of 2.0

(Simon and Azam 1989).

2.4 Molecular analyses and statistics - DNA was extracted from water samples with
the PowerWater kit (Qiagen, USA), using the FastPrep-24™ Classic (MP Biomedicals,
USA) bead-beating to disrupt the cells (2 cycles at 5.5 m sec-1, with a 5 min interval).
The V4 region (~ 300 bp) of the 16S rRNA gene was amplified from the DNA (~50
ng) using the 515Fc/806Rc primers amended with relevant tags (Apprill et al., 2015;
Parada et al., 2016). PCR conditions were as follows: initial denaturation at 94 °C for
45 s, 30 cycles of denaturation (94 °C for 15 sec), annealing (15 cycles at 50 °C and 15
cycles at 60 °C for 20 sec) and extension (72 °C for 30 s). Two annealing temperatures
were used to account for the melting temperature of both forward (58.5-65.5 °C), and

reverse (46.9-54.5 °C), primers.

Demultiplexed paired-end reads were processed in QIIME2 V2022.2 environment
(Bolyen et al., 2019). Reads were truncated based on quality plots, checked for
chimeras, merged and grouped into amplicon sequence variants (ASVs) with DADA2
(Callahan et al., 2016), as implemented in QIIME2. The amplicons were classified with
Scikit-Learn classifier that was trained on Silva database v138 (16S rRNA, (Glockner
et al., 2017). Mitochondrial and chloroplast sequences were removed from the 16S
rRNA amplicon dataset. Downstream analyses were performed in R v4.1.1 (R Core
Team, 2021), using packages Phyloseq (McMurdie and Holmes, 2013) and Ampvis2

(Andersen et al., 2018). Indicator species analyses were performed using Indic species
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package v1.7.9 (De Ca’ceres et al., 2009). Amplicon reads were deposited to the NCBI

SRA archive under project number PRINA1215023.

2.5 Bacterial respiration (BR), bacterial carbon demand (BCD) and zooplankton

respiration (ZR) - BR was calculated based on the following equation and assuming an

average open-ocean bacterial growth efficiency (BGE) of 20% (Herndl and Reinthaler,

2013) similar to previous direct measurements from the Mediterranean Sea ranging

from 0.21-0.29 (Zweifel et al., 1993).

BP

BGE = 2 BR

BCD was then calculated as the sum of BP and BP (Gasol et al., 1998). Zooplankton

respiration (ZR) and excretion were compiled from Belkin et al. (2022).

3 Results and discussion

3.1 Dark and light inorganic carbon fixation rates — As expected, LPP was restricted

to the photic layer with highest rates usually measured at the surface (~0.5 m) that
gradually decreased to reach minimum rates at the bottom of the photic layer (~180 m)
(Fig 1A). Relatively low LPP values were measured during the stratified summer (~0.1-
0.8 pg C L' d!), whereas higher rates were measured during the winter mixing period
(~0.2-7.4 pg C L' d") (Fig 1A). This resulted in ~10-fold higher integrated rates
measured during the mixed period compared to those measured during the stratified
period (Table 1), in accordance with studies from the area (Psarra et al., 2005; Reich et
al., 2022; Sisma-Ventura et al., 2022b). In contrast with LPP, DCF was not restricted
to the photic layer and ranged from 0 to ~0.4 ug C L' d"! throughout the water column

(Fig 1B, Fig 2A), without significant differences in the absolute rates between the

photic and aphotic zones (t-test, p>0.05, Fig 2B). The—integratedphotic DCEwas
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previoustyThe observed decrease in DCF rates with depth (Figure 2A) during the

summer cruises may be partly attributed to a decline in the abundance of

chemoautotrophs with depth. For example, Agogué et al.. (2008) reported a decline in

archaeal amoA gene copy numbers with depth in the eastern North Atlantic.

Normalizing DCF rates to chemoautotrophic microbial cell abundance (or gene copy)

could reveal a different vertical pattern. Another possible explanation for the decline in

DCEF rates with depth may be related to the weakening flux of sinking organic matter

with depth that limits the substrates that fuel DCF (discussion below). The integrated

photic DCF was typically lower than the rates reported in the central and western

Mediterranean Sea (La Cono et al., 2018). The aphotic DCF rates were ~3.5 fold higher

during the mixed than during the stratified period (Table 1, Fig 2A).

' HopmoLar

madl Al dmI lapil ms Ul g

Figure 1: Spatial and temporal variability in rates of LPP (a), DCF (b), BP (c) and the
contribution of DCF to bacterial carbon demand (BCD) (d) at the offshore SE
Mediterranean Sea (Lat. 33.15 N, Lon. 34.16 E) between 2021-2023. BCD was

calculated assuming a bacterial gross efficiency of 0.20 (Gasol et al., 1998).



216  Table 1: RatesIntegrated rates and contribution of DCF to metabolic processes in the
217  photic (0-180) and aphotic (>180 m) depths of the pelagic southeast Mediterranean Sea

218 BDLE—. The values represent the minimum and maximum ranges observed across the

219  cruises, with the averages and their corresponding standard deviations provided in

220  parentheses. BDL = Below detection limit.

. Photic Aphotic
Variable Season (0-180 m) (120_1750 m) 17 {Formatted: Line spacing: single
158-649
Mixed BDL
(368 +205)
LPP (mg C m?2d" > “ { Formatted: Line spacing: single
Stratified 0 BDL
ratifie 32426
6-27 17-342
Mixed
15£8 152127
DCF (mg C m? d) : : : L ‘{ Formatted: Line spacing: single
Stratified 7-19 8-127
St PE) (59+48)
. 6-58 12-65
2 Mixed (28+21) (33+22)
BP (mg C m™=d") T { Formatted: Line spacing: single
Stratified 9-55 7-123
et 304200 (81£55)
Mixed 23-221 49-594
o 10988 213200
DCF contribution to BCD (%) * (8-31 ! (8-42 ) L ‘{ Formatted: Line spacing: single
Stratified 15 g) 23%13)
1-15
Mixed ---
. (6X5)
DCEF contribution to total PP (%) 12-81 e { Formatted: Line spacing: single
Stratified 4032 -

221  * Assuming bacterial gross efficiency of 0.2 (Gasol et al., 1998) and that the available+ ~ - { Formatted: Indent: Left: 0 cm, First line: 0 cm, Line
222 DOC for bacteria is 20% of the total primary productivity at the photic layer (Teira et spacing: Multiple 1,15 li

223 al, 2003).
224

225  The higher aphotic DCF in the mixed versus the stratified periods may be related to

226  more bioavailable carbon that is transported from the photic layer as marine snow and
227  supplies organic carbon to heterotrophic activity Gresthy-durine-in the winter whea PP

228  is(coinciding higher LPP). However, given the oligotrophic nature of the southeast

229  Mediterranean Sea;—including—during—the—winter (Berman-Frank and Rahav, 2012;

230  Reich et al., 2022), most of the organic carbon (both particulate and dissolved
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originating from LPP) is recycled within the photic layer-and-enly. Only a small fraction
fluxes down to the aphotic zone)-as and has been recorded in sediment traps (Alkalay
et al., 2024).

3.2 Bacterial productivity in relation to DCF and BCD - Another possible mechanism

that may, potentially, explain higher DCF rates during the winter versus the summer is
anaplerosis. The extent of anaplerotic reactions is primarily driven by the availability
of labile organic carbon to heterotrophs (Dijkhuizen and Harder 1984). Therefore,
assuming anaplerosis drives DCF, we expect it will be positively coupled to BP.

Yet, our results do not support the likelihood of significant anaplerosis reactions,

mainly-beeause;predominantly evident from the spatiotemporal distribution of aphotic

BP (Fig 1C) differsdiffering considerably from that of the DCF (Fig 1B) and does not
correlate with it (Fig 3A). In fact, BP seems to be coupled with LPP at the photic layer
reaching ~0.4 pg C L' d! (not shown). Exeept—ferExcluding some sporadic
measurements, aphotic BP rates were usually homogeneous and typically <0.1 ng C L
'd'! (Fig 1C). FurtherMoreover, the highest integrated aphotic BP was measured during
the summers of 2021 and 2022 and not during the winter cruises when generally higher
DCF was recorded (Table 1, Fig 2A).
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Figure 2: Dark carbon fixation rates in the southeastern Mediterranean Sea. Averaged
vertical distribution of DCF in the offshore southeast Mediterranean Sea during the
mixed (white) and stratified (gray) periods (a), and a box plot showing the DCF rates

at the photic (0-180 m) and aphotic (>180 m) water depths (b).

Despite the lack of a clear positive relationship between DCF and BP, DCF may

contribute to bacterial carbon demand (BCD) atin the aphotic zone. Thus, we use a

200611998) to calculate BR and BCD- (see the ‘material and methods’ section for more

details). This resultedincalculation yielded bacterial respiration (BR) ranging from 29-
494 mg C m2 d!' (average 209+172 mg C m™ d'"), and the concurrent BCD ranges from
36 to 648 mg C m d! (average 262+121 mg C m? d'!). Under these circumstances,
exudation of DOC from primary productivity at the photic layer estimated as 20% of
the rates (Teira et al., 2003)-and equals to ~1-130 mg C m?2 d"".

This new DOC, thethat originated form the photic zone_therefore cannot support the

aphotic BCD in our system in all of our observations. However, if we consider the
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266  contribution of DOC produced by aphotic DCF, part of the missing carbon eanmay be
267  “bridged’accounted for. Thus, when considering aphotic DCF in addition to the
268  sequestered DOC from the photic layer, the ‘abnormally high’ aphotic BCD could be
269  explained in full (>100%) in ~35% of the observations (Fig 1D). In the other 65% of
270  the observations the missing carbon sources needed to support the aphotic BCD remains

271  an enigma. Evidenees—suggestWe note that these calculations are based on global

272  averages and assumptions and therefore may be subject to some uncertainties. For

273  example, BGE can vary between seasons and sites (del Giorgio and Cole, 1998). In the

274  Mediterranean Sea, long-term measurements of BGE ranged from 0.21 (similar to our

275  calculations and the global average used by Herndl and Reinthaler, 2013) to 0.29

276  (Zweifel et al., 1993). If the 0.29 value is used, the contribution of DCF to the aphotic

277  BCD increases to ~45% of the observations rather than ~35% when using BGE 0of 0.2.

278  Similarly, if we apply an exported DOC estimate of ~4% from the photic zone, as

279  reported for the Tonian Sea/western Mediterranean (Moutin and Raimbault, 2002), the

280 relative contribution of DCF to aphotic BCD would be even higher than in our current

281  calculations, which assume ~20% DOC export (Teira et al., 2003). These uncertainties

282  warrant future investigation. Yet, even when using conservative estimates for BGE and

283  DOC export as done here, the contribution of DCF to aphotic BCD remains substantial.

284  Evidence suggests that dissolved methane may be more abundant in oxygenated+ — - {Formatted: Space After: 0 pt

285  environments than previously thought (Grossart et al., 2011). Methane can potentially
286  be one of the missing energy sources for marine microbes and support high BCD
287  (Brankovits et al., 2017) as observed at the aphotic southeast Mediterranean Sea (Fig
288  1D). In agreement, methanotrophs were found in aphotic cold seeps at the southeast

289  Mediterranean Sea (Sisma-Ventura et al., 2022a), as well as across the aphotic water

290  column in our samples (see discussion below),, | - { Formatted: Swiss German (Switzerland)
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3.3 Interannual variability in aphotic DCF - Interannual variability in DCF, but not in

LPP or BP, was observed with higher rates recorded in March 2021-March 2022 and

lower rates observed in August 2022-August 2023 (Fig 1B). The-drivers—of-this

PCE at the surface-waterlnorganic nutrients such as PO4** or NO3;+NO;" are unlikely

to_explain this variability as their ambient levels were similar between periods

(https://isramar.ocean.org.il/isramar2009/). Alternatively, we surmise that differences

in the bioavailability and concentration of sinking organic particles, possibly attributed

by the BiOS (Bimodal Oscillating System) oscillation circulation of deep water

between the Adriatic and Ionian seas, could potentially explain the higher aphotic

chemoautotrophic activity in March 2021-March 2022 versus August 2022-August

2023. This mechanism is known to influence the bioavailability of organic nutrients in

the deep Mediterranecan Sea by modulating deep-water circulation and ventilation

patterns (Civitarese et al., 2010). These shifts affect the transport and residence time of

organic matter (Civitarese et al., 2023), thereby potentially altering availability of

organic_nutrients to aphotic_microbial populations, including to chemoautotrophs.

Supporting this hypothesis are recent studies from the northern Red Sea and South

China Sea showing that DCF is limited by labile organic nutrients such as phosphonates

and even carbon-rich molecules (Reich et al., 2024; Zhou et al., 2017). Aphotic free-

living chemoautotrophs are likely to encounter an increasingly refractory pool of
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dissolved organic matter for metabolism that may result in lower DCF rates, as shown
in_exported material through the water column (SantinelliinBar-Zeev et al—2045.,

2013). Particle-attached chemoautotrophs may have access to higher concentrations of

organic substrates—and—therefore. Therefore we surmise theythese microbes would

preferentially have a preferential-particle-attached lifestyle in the deep ocean. The

patchy nature of particulate matter sinking_and lateral transport during wintertime
(Alkalay et al., 2024) and aggregate concentrations (Bar-Zeev et al., 2012) in the deep
southeast Mediterranean Sea could also potentially explain the interannual variability
in DCF between periods. Understanding how chemoautotrophs transform labile
dissolved organic matter into refractory dissolved organic matter, awhich is an essential

process knewn-asin the ‘microbial carbon pump’{Herndl-and Reinthaler- 20439, is

crucial as it influences the efficiency of the biological pump (Jiao et al., 2010).

Oxidizing reduced inorganic compounds as electron donors (e.g., NO>” or NH4") may
provide chemoautotrophic prokaryotes sufficient energy to fix DIC (Hiigler and

Sievert, 2011). We therefore measured (Mareh-and-August2023-eruises)-the vertical

distribution of NO;” and NH4" (only in the March and August 2023 cruises) and

examined if these chemical species are coupled” or uncoupled with DCF at the aphotic

s { Formatted: Swiss German (Switzerland)

NO; (Fig 3B) and NH4" (Fig 3C), suggesting nitrification. This is petentially—an - {Formatted; Swiss German (Switzerland)

reducing nutrient standing stocks in the water. We surmise that this ‘depletion’ may

theoretically, explain the observed negative correlation between nutrient levels and

found in the aphotic zone of all cruises (DNA level, discussion below), further
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Figure 3: sThe relationshi

between aphotic DCF and BP (a), NO2™ (b) and NH4" (c). Note that NO2™ and NH4"

was measured only during the 2023 cruises. The 95% confidence interval is shown in

gray.

3.4 Potential chemoautotrophs based on microbial community structure - Analyses of
16S rRNA gene amplicons suggest that diverse bacteria and archaea may drive DCF in
the aphotic southeast Mediterranean Sea (Fig 4A). Microbes found in our collected
genetic material primarily include the order Nitrosopumilales ammonia-oxidizing
archaea, which become dominant below DCM (up to ~30% read abundance near the
bottom), corresponding to previous estimates based on in-situ fluorescent hybridization
(De Corte et al., 2009). Nitrite-oxidizing Nitrospirales comprised ~1% read abundance
at depths below 300 m. Among these lineages, analyses of indicator species identified
seasonal variation in abundance of the orders Nitrosopumilales and Nitrososphaeria

that were more prominent in the stratified period than in wintertime (p-value<0.05%;)
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when the water column is mixed, while the deep-sea community in general exhibited

only mild seasonal changes (Fig 4B). These ammonia oxidizers may thus drive
ammonia depletion during summertime at the southeast Mediterranean Sea.

Additionally, we identified consistent occurrence of UBA10353 (Arenicellales,
including the UBA868 group) and SAR324 gammaproteobacterial groups at depths
below the deep chlorophyll maxima (Fig 4A). Members from these ubiquitous clades
are mixotrophs that can fix inorganic carbon conserving energy from sulfur oxidation
(Baltar et al., 20222023; Jaffe et al., 2024; Swan et al., 2011). We did not find the
SUPO05/Arctic96BD-19 gammaproteobacterial sulfur oxidizers that occur in productive
dark oxygenated waters (Swan et al., 2011). We note that Methylococcales methane
oxidizers were typical in the near-bottom water layer, as found previously in the
southeast Mediterranean Sea basin (Sisma-Ventura et al., 2022a; Techtmann et al.,
2015), suggesting methylotrophy as a potential mechanism of 1-carbon molecule

acquisition in the dark southeast Mediterranean Sea. While this DNA-based community

analysis provides insight into the potential contributors to DCF, it does not reflect a

direct link as we cannot determine which of the identified microbes are responsible for

the measured DCF rates. We stress that future studies should examine the link between

DCF and specific microbial groups such as archaea by targeting RNA-level expression

and functional genes (e.g., amoA and amoB), as demonstrated by (Agogué et al., 2008)
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Figure 4: (a) Read abundance of the 40 most abundant taxa (order level) from different
depths offshore the Southeastern Mediterranean Sea. Surface samples are within the
range of 1-5 m depth; near surface are between 20 and deep chlorophyll maximum
(DCM); below DCM corresponds to 180-240 m depths; near bottom samples were
taken circa 5 meters above the seafloor. Potential DCF microbes are shown in blue,
Methylococcales methanotrophs are marked in magenta, and photosynthetic

Synechoccocales are shown in green for reference. (b) A principal component analysis
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showing the differences in the structure of microbial populations (40 most abundant

taxa) based on 16S rRNA gene read mapping.

4 Conclusions

Based on the conceptual model in Figure 5 that summarizes the annual microbial carbon
exchanges in the southeast Mediterranean sea’s offshore area, it-is—elear—that-DOC
supplied by LPP is negligible and cannot explain the ‘high’ BCD in the area, especially
in the aphotic zone that is considered a ‘microbial hotspot’ with relatively high bacterial
activity per cell (Hazan et al., 2018; Rahav et al., 2019). Fherefore—ourbackofthe

envelope—caleulations—highlightsOur observations suggest that DCF may provide a

substantial amount of the missing carbon, at least in the southeast Mediterranean Sea,
while source/s for the remaining missing carbon are currently unknown and warrant

more research.
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Figure 5: A schematic illustration showing microbial carbon exchange in the southeast

Mediterranean Sea. Values shown are the annual averages of LPP, DCF and BP. DOC - [ Formatted: Swiss German (Switzerland)
exudation from LPP was assumed to be 20% of the rates:, BR was calculated from BP - { Formatted: Swiss German (Switzerland)

and assuming BGE=0.20, Zooplankton’s respiration (ZR) and excretion were compiled
from Belkin et al. (2022). The numbers in brackets show the integrated values over

1750 m and expressed as g C m2 y!.

Regardless of the yet missing DOC sources, our results demonstrate the pivotal role — - {Formatted: Space After: 0 pt

DCEF playplays in compensating metabolic imbalances in carbon sources at the aphotic
southeast Mediterranean Sea. Similarly, DCF was shown to be a significant process

supporting microbial respiration and/or activity in aphotic layers (Baltar et al., 2009;
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Herndl et al., 2005; Yakimov et al., 2011), as well as in hydrothermal vents (Mattes et

al., 2013) and cold seeps (Nakagawa et al., 2007). Note that, while our estimates of

DCEF contribution to aphotic BCD are based on widely accepted assumptions, they are

subject to some uncertainties, particularly regarding BGE that may be changed on both

spatial and temporal scales, as well as the fraction of DOC exported from the photic

zone that may also change between seasons and water provinces (see discussion below).

These uncertainties underscore the need for more precise and region-specific

measurements of BGE and DOC fluxes to better constrain the role of DCF in deep

ocean carbon cycling.,

We note-that despite the contribution-of - DCF to-the DOC pool,Another potential

uncertainty in measuring aphotic metabolic rates such as DCF or BP lies in the unclear

effects of hydrostatic pressure on the activity of bulk microbial communities (Riebesell

et al., 2009; Tamburini et al., 2013). Laboratory-based manipulations that do not

account for in situ pressure conditions may alter DCF rates, potentially misrepresenting

the actual contribution of chemoautotrophs to aphotic BCD. This highlights the urgent

need for more detailed investigations into how hydrostatic pressure influences

microbial activity in the deep ocean.

Additionally, despite the contribution of DCF to the DOC pool (taking into account the

uncertainties associated with it discussed above), as well as the other sources, very little

of fixed carbon as particulate organic matter (POC) ends up in sediment traps located
above the seabed (2-6%). This suggests that most of the fixed carbon arriving from
DCF (as well as LPP other potential sources) is recycled in the water column and does
not reach the seabed. The rapid microbial recycling of nutrients was mostly investigated
in the photic layer of the southeast Mediterranean Sea (e.g., PO4, Thingstad et al-—.,

2005) and little is known about the processes, which are often cryptic (e.g., NO2”
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oxygenation), occurring in the aphotic layers. Ourstudy-highlichtsthe needfor adding

Understanding the ‘dark end’ of the biological pump in oligotrophic oceans, which

plays an important (yet variable) role in oceanic carbon cycling and sequestration, will

require _a multidisciplinary approach that take into account all the uncertainties

discussed above in light of our (and others) observations of DCF, especially in the

context of ongoing and significant changes in the marine environment. Our study

supports the need for adding DCF measurements to global carbon budgets as also

mentioned by Baltar and Herndl (2010).
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