1 Dark inorganic carbon fixation contributes to bacterial organic carbon demand 2 in the oligotrophic Southeastern Mediterranean Sea Tom Reich 1,2*, Natalia Belkin 1, Guy Sisma-Ventura 1, Hagar Hauzer 1, Maxim 3 Rubin-Blum 1,2, Ilana Berman-Frank 2*, and Eyal Rahav 1,3,4 * 4 5 ¹ National Institute of Oceanography, Israel Oceanographic and Limnological 6 7 Research, Haifa, Israel. ² Department of Marine Biology, Leon H. Charney School of Marine Sciences, 8 9 University of Haifa, Haifa, Israel. ³ Department of Earth and Environmental Science, Ben-Gurion University of the 10 Negev, Beer Sheva, Israel. 11 ⁴ Institute of Marine Science, University of California, Santa Cruz, CA, USA. 12 13 *Correspondence: TR-treich02@campus.haifa.ac.il; IBF-iberman2@univ.haifa.ac.il; 14 ER- eyal.rahav@ocean.org.il 15 16 17 Abstract Settling Photosynthetically derived organic matter derived sinking to depth from 18 photosynthesis at the illuminated layers is often not sufficient to meet the energy 19 20 demands of microbes in the dark ocean. This 'mismatch' is especially notable in the warm and oligotrophic eastern Mediterranean Sea where the annual photosynthesis is 21 22 one of the lowest in the world's oceans, yet its aphotic zone is considered a hotspot for microbial activity and biomass. Here, we investigated the role of photic and aphotic 23

24 dark inorganic carbon fixation rates (DCF) in supporting bacterial carbon demand atin 25 the offshore south-easternsoutheastern Mediterranean Sea during the mixed and stratified periods. Our results demonstrate that DCF rates are measurable throughout 26 27 the water column (0-1750 m) and are on the same order of magnitude as photosynthesis (34 vs. 45 g C m⁻² y⁻¹, respectively). Using a carbon mass balance that considers 28 photosynthesis, DCF and bacterial production (and hence respiration) we show that 29 30 chemoautotrophy provides ~35% of the 'missing carbon' supply needed for microbial 31 growth and activity in the aphotic layer, while other sources of dissolved organic carbon remain to be elucidated. These findings underscore the need for further research into 32 33 the factors affecting DCF, its role in global carbon budgets, and its potential to enhance atmospheric inorganic carbon sequestration. 34

35

36

1 Introduction

37 The oceans aphotic layers contain the world's largest reservoir of dissolved inorganic 38 carbon (DIC) (Baltar et al., 2010; pool (Burd et al., 2010; Reinthaler et al., 2010), and harbor ~65% of all prokaryotes (Whitman et al., 1998). Aphotic prokaryotes typically 39 40 rely on utilization of organic matter (and carbon), fixed by photoautotrophs via photosynthesis and exported from the euphotic zone through photosynthesis, to sustain 41 their growth and accumulate biomass -(del Giorgio and Duarte, 2002). Current 42 estimates reveal, however, a discrepancy between the supply of particulate organic 43 44 carbon from photosynthesis and the bacterial organic carbon demand (BCD) in the aphotic zones (Ducklow, 2000; Karl et al., 1988; Smith and Azam, 1992). This 45 mismatch suggests that there are other source/s of carbon that are being utilized by 46 aphotic microorganisms (Baltar et al., 2009; Herndl and Reinthaler, 2013). One such 47 48 source, that has been far less investigated, involves the fixation of DIC by chemo49 autotrophic microbes and its assimilation into new biomass-(Baltar and Herndl, 2019). 50 This could subsequently provide bioavailable DOC to other microbial populations at depth (Baltar et al., 2010). 51 52 DIC uptake by heterotrophic bacterioplankton is generally attributed to anaplerotic reactions (Dijkhuizen and Harder, 1984; Erb, 2011) which are metabolic 53 54 pathways that replenish intermediates enzymes in the citric acid cycle by fixing CO2, 55 but other microorganisms such as nitrifying bacteria can also fix DIC (Alonso-Sáez et 56 al., 2010). Genomic studies on deep-sea microbial communities identified several genes and metabolic pathways that enable some microbes to thrive as chemoautotrophs on 57 58 inorganic substrates (Berg et al., 2007; Hallam et al., 2006). Measurements of CO2 fixation by chemoautotrophs and heterotrophic bacterioplankton are scarce, yet 59 substantial dark DIC fixation (DCF) rates have been reported in various oceanic settings 60 and water masses (Swan et al. 2011; Zhou et al. 2017; La Cono et al. 2018; Alothman 61 62 et al. 2023) and maybe more common than previously thought (Hansman et al., 2009; 63 Herndl et al., 2005). The deep waters of the southeast Mediterranean Sea are characterized by higher 64 65 concentrations of inorganic nutrients compared to the photic zone (e.g., ~6 µmol NO₃+NO₂ kg⁻¹ and \sim 0.2 PO₄ μ mol kg⁻¹ (Ben-Ezra et al., 2021; Sisma-Ventura et al., 66 2021) and low bioavailable dissolved organic carbon (Martínez-Pérez et al., 2017; 67 Santinelli, 2015; Santinelli et al., 2010). Despite these characteristics, the southeast 68 69 Mediterranean Sea's aphotic waters are considered a hotspot for bacterial activity 70 compared to other oceanic regimes at similar depths (Luna et al., 2012; Rahav et al., 2019). Nutrient addition bioassays and water mixing simulations suggest that aphotic 71 72 prokaryotes are primarily carbon-limited (Hazan et al., 2018; Rahav et al., 2019).

73 Here, we report on both photic and aphotic DCF and heterotrophic bacterial production rates from 6 cruises held between 2021-2023 atin the offshore southeastern 74 75 Mediterranean (bottom depth 1500-1750 m) during the mixed (winter) and stratified 76 (summer) periods. Our results demonstrate that DCF rates cannot be negletedneglected (contrary to past eonventions convention, Nielsen 1952) and are within the same order 77 of magnitude as photosynthesis or heterotrophic bacterial production (BP). We also 78 79 show that DCF substantially contributes to bacterial carbon demand (BCD), therefore 80 providing, some of the 'missing carbon' supply needed for microbial growth and activity in the aphotic layer of the southeast Mediterranean Sea. 81

82

83

2 Material and methods

2.2 Sample collection - Seawater was collected during six seasonal cruises in the 84 Levantine Basin, southeast Mediterranean Sea, on-board the R/V Bat-Galim between 85 86 2021-2023. Three cruises were held during the stratified period and three during the 87 winter mixing. The mixed layer depth was calculated using a temperature difference of Δ0.3 °C (Mena et al., 2019). Two 'deep' stations were sampled in each cruise; one 88 89 located at the edge of the continental shelf (H05 33.00 Lat, 34.50 Lon, bottom depth ~1500 m, 50 Km from the coast) and the other at the edge of Israel's exclusive 90 economic zone (H06 33.15 Lat, 34.16 Lon, bottom depth 1750 m, 90 Km from 91 shoreline). Seawater was sampled at discrete depths throughout the water column, from 92 93 the surface (~0.5 m) to the bottom (1500-1750 m) using Niskin bottles. Sampling 94 depths were chosen in real-time based on reads of Conductivity Temperature Depth (CTD) (Seabird 19 Plus), chlorophyll fluorescence (Turner designs, Cyclops-7) and 95 96 PAR (Sea Bird). The raw hydrological data can be freely downloaded from 97 https://isramar.ocean.org.il/isramar2009/. Measurements included DIC (NaH14CO3)

dark conditions (DCF), bacterial productivity (BP) and nutrient quantification. 99 100 Nitrite and ammonium concentrations - Samples for nitrite (NO₂-) and ammonium 101 (NH₄⁺) concentrations were collected only in March and Augustthe 2023 cruises. The samples were pre-filtered (0.45 µm), placed in acid-washed plastic vials, and were kept 102 frozen at -20 °C until analysis. Nutrients were measured with a Seal Analytical AA-3 103 104 system. The limits of detection for NO_2^- and NH_4^+ were 0.06 μM and 0.09 μM , 105 respectively. 106 2.3 LPP and DCF - Seawater was collected in triplicates into 45-250 ml bottles and spiked with NaH14CO3 (Perkin Elmer, specific activity 56 mCi mmol-1). The bettles 107 108 were incubated for 24 h under ambient light for 'total primary production or under full dark for DCF estimates (Nielsen, 1952). At the conclusion of the incubation, the spiked 109 seawater was filtered onto GF/F filters using low vacuum pressure (<50 110 111 mmHg):transparent (for LPP measurements) or dark (for DCF) Nalgene bottles (45-112 250 ml) and spiked with NaH¹⁴CO₃ (Perkin Elmer, specific activity 56 mCi mmol⁻¹) 113 following Nielsen, (1952). The bottles were maintained in on-deck incubators covered 114 with a gradient of neutral mesh simulating the irradiance intensity (no change in spectrum) at 100%, 50%, 10%, 1%, and 0.1% of surface light intensities or under 115 complete dark conditions (Belkin et al., 2022; Reich et al., 2024). Incubators were kept 116 117 at constant ambient surface temperatures (~19-20 °C in winter and ~28-29 °C in the 118 summer cruises). We acknowledge that temperature differences between surface and deeper depths may alter the LPP or DCF rates measurements, especially during the 119 120 summer when the water column is stratified. While in situ measurements may offer 121 more precise rate estimates, they are generally impractical during research cruises that 122 involve sampling at multiple locations and times throughout the day and night.

uptake under ambient light (hereafter 'light primary productivity, LPP) or under full

123 Nevertheless, preliminary comparisons between the incubation setup used here versus 124 in situ incubations using a mooring line showed negligible differences in primary 125 productivity, falling within the expected range of measurement variability (see also 126 Reich et al., 2022). All the incubation bottles were spiked at sunrise and terminated after 24 h (Reich et al., 2022; Robinson et al., 2009) by filtering. the particulate matter 127 onto GF/F filters using low vacuum pressure (<50 mmHg). Next, the excess ¹⁴C-128 129 bicarbonate was removed by fuming with 50 µl of 37% hydrochloric acid overnight. Finally, 5 ml scintillation cocktail (ULTIMA-GOLD) was added, and the 130 131 disintegrations per minute (DPM) from the particulate matter concentrated on the filters were counted using a TRI-CARB 4810 TR (Packard) liquid scintillation counter. Blank seawater spiked with NaH14CO3 was filtered immediately without incubation and the 133 reads were subtracted from the sample's DPM. The blank DPM reads were usually 134 negligible (<5% of the sample's DPM). Aliquots ($50~\mu l$) from random spiked samples 135 136 were placed onto new GFF filters, added with 50 µl ethanolamine and scintillation 137 liquid, and counted immediately without incubation to account for the 'added activity' of the radiolabeled working solution used. LPP was calculated as the difference 138 between the DPM retrieved from the samples incubated under ambient light ('total 140 primary production) and the 'dark' bottles. Dark or light dissolved inorganic carbon fixation was calculated based on the Bermuda Atlantic Time-series Study (BATS) protocol (https://bios.asu.edu/bats/bats-data). More details can be found in Reich et al. 142 143 (2024).2.3 Bacterial production-Samples Triplicate samples per depth (1.7 ml) were incubated 144 in the dark with 10010 nmol/L 3H-leucine L-1 (Perkin Elmer, specific activity 123 Ci 145 mmol⁻¹) for 4-6 h under ambient temperature (Simon et al., 1990). The incubations were 146 terminated with 100 µl of trichloroacetic acid (100%), were processed as described by

132

139

141

148 Smith and Azam (1992), and counted using a TRI-CARB 4810 TR (Packard) liquid scintillation counter. Killed control samples containing ³H-leucine L⁻¹ and 149 150 trichloroacetic acid (without incubation) were also measured and thisthese control 151 sample's DPMs were subtracted from the sample's reads. A conversion factor of 3 kg C mol⁻¹ per mole leucine incorporated was used, assuming an isotopic dilution of 2.0 152 (Simon and Azam 1989). 153 154 2.4 Molecular analyses and statistics - DNA was extracted from water samples with the PowerWater kit (Qiagen, USA), using the FastPrep-24TM Classic (MP Biomedicals, 155 156 USA) bead-beating to disrupt the cells (2 cycles at 5.5 m sec-1, with a 5 min interval). The V4 region (~ 300 bp) of the 16S rRNA gene was amplified from the DNA (~50 157 158 ng) using the 515Fc/806Rc primers amended with relevant tags_(Apprill et al., 2015; Parada et al., 2016). PCR conditions were as follows: initial denaturation at 94 °C for 159 45 s, 30 cycles of denaturation (94 °C for 15 sec), annealing (15 cycles at 50 °C and 15 160 161 cycles at 60 °C for 20 sec) and extension (72 °C for 30 s). Two annealing temperatures were used to account for the melting temperature of both forward (58.5-65.5 °C), and 162 reverse (46.9-54.5 °C), primers. 163 Demultiplexed paired-end reads were processed in QIIME2 V2022.2 environment 164 (Bolyen et al., 2019). Reads were truncated based on quality plots, checked for 165 chimeras, merged and grouped into amplicon sequence variants (ASVs) with DADA2 166 167 (Callahan et al., 2016), as implemented in QIIME2. The amplicons were classified with Scikit-Learn classifier that was trained on Silva database v138 (16S rRNA, (Glöckner 168 169 et al., 2017). Mitochondrial and chloroplast sequences were removed from the 16S rRNA amplicon dataset. Downstream analyses were performed in R v4.1.1 (R Core 170 171 Team, 2021), using packages Phyloseq (McMurdie and Holmes, 2013) and Ampvis2 (Andersen et al., 2018). Indicator species analyses were performed using Indic species 172

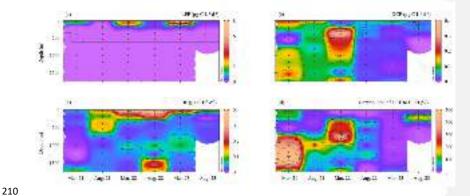
package v1.7.9 (De Ca'ceres et al., 2009). Amplicon reads were deposited to the NCBI
 SRA archive under project number PRJNA1215023.

2.5 Bacterial respiration (BR), bacterial carbon demand (BCD) and zooplankton

177 respiration (ZR) - BR was calculated based on the following equation and assuming an
 178 average open-ocean bacterial growth efficiency (BGE) of 20% (Herndl and Reinthaler,
 179 2013) similar to previous direct measurements from the Mediterranean Sea ranging

180 <u>from 0.21-0.29 (Zweifel et al., 1993).</u>

$$BGE = \frac{BP}{BP + BR}$$


BCD was then calculated as the sum of BP and BP (Gasol et al., 1998). Zooplankton respiration (ZR) and excretion were compiled from Belkin et al. (2022).

3 Results and discussion

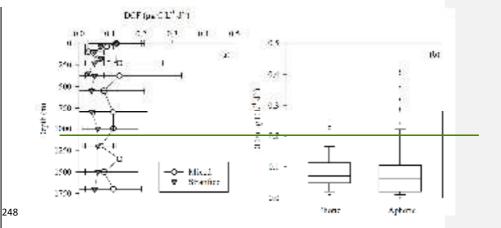
3.1 Dark and light inorganic carbon fixation rates – As expected, LPP was restricted to the photic layer with highest rates usually measured at the surface (~0.5 m) that gradually decreased to reach minimum rates at the bottom of the photic layer (~180 m) (Fig 1A). Relatively low LPP values were measured during the stratified summer (~0.1-0.8 μg C L⁻¹ d⁻¹), whereas higher rates were measured during the winter mixing period (~0.2-7.4 μg C L⁻¹ d⁻¹) (Fig 1A). This resulted in ~10-fold higher integrated rates measured during the mixed period compared to those measured during the stratified period (Table 1), in accordance with studies from the area (Psarra et al., 2005; Reich et al., 2022; Sisma-Ventura et al., 2022b). In contrast with LPP, DCF was not restricted to the photic layer and ranged from 0 to ~0.4 μg C L⁻¹ d⁻¹ throughout the water column (Fig 1B, Fig 2A), without significant differences in the absolute rates between the photic and aphotic zones (t-test, p>0.05, Fig 2B). The integrated photic DCF was

typically lower, yet rates were of the same order of magnitude, then others previously The observed decrease in DCF rates with depth (Figure 2A) during the summer cruises may be partly attributed to a decline in the abundance of chemoautotrophs with depth. For example, Agogué et al., (2008) reported a decline in archaeal amoA gene copy numbers with depth in the eastern North Atlantic.

Normalizing DCF rates to chemoautotrophic microbial cell abundance (or gene copy) could reveal a different vertical pattern. Another possible explanation for the decline in DCF rates with depth may be related to the weakening flux of sinking organic matter with depth that limits the substrates that fuel DCF (discussion below). The integrated photic DCF was typically lower than the rates reported in the central and western Mediterranean Sea (La Cono et al., 2018). The aphotic DCF rates were ~3.5 fold higher during the mixed than during the stratified period (Table 1, Fig 2A).

Figure 1: Spatial and temporal variability in rates of LPP (a), DCF (b), BP (c) and the contribution of DCF to bacterial carbon demand (BCD) (d) at the offshore SE Mediterranean Sea (Lat. 33.15 N, Lon. 34.16 E) between 2021-2023. BCD was calculated assuming a bacterial gross efficiency of 0.20 (Gasol et al., 1998).

Table 1: Rates<u>Integrated rates</u> and contribution of DCF to metabolic processes in the photic (0-180) and aphotic (>180 m) depths of the pelagic southeast Mediterranean Sea <u>BDL</u>. The values represent the minimum and maximum ranges observed across the cruises, with the averages and their corresponding standard deviations provided in <u>parentheses</u>. <u>BDL</u> = Below detection limit.


 al., 2003).

Variable	Season	Photic (0-180 m)	Aphotic (180-1750 m)	-	Formatted: Line spacing: single
I DD (ma C m ⁻² d ⁻¹)	Mixed	158-649 (368±205)	BDL		
LPP (mg C m ⁻² d ⁻¹)	Stratified	$\frac{4-69}{(32\pm26)}$	BDL		Formatted: Line spacing: single
DCE (ma C m-2 4-1)	Mixed	6-27 (15±8)	$17-342$ (152 ± 127)	4	
DCF (mg C m ⁻² d ⁻¹)	Stratified $7-19$ 8-127 Format (14 ± 5) (59 ± 48)	Formatted: Line spacing: single			
BP (mg C m ⁻² d ⁻¹)	Mixed	6-58 (28±21)	$12-65$ (33 ± 22)	<u> </u>	
Br (ling C lin 'u')	Stratified	$9-55$ (30 ± 20)	$7-123$ (81 ± 55)		Formatted: Line spacing: single
DCF contribution to BCD (%) *	Mixed	23-221 (109 ± 88)	$49-594$ (213 ± 200)	.	
Der contribution to BeD (70)	Stratified	8-31 (18±9)	$8-42$ (23 ± 13)		Formatted: Line spacing: single
DCE contribution to total DD (9/)	Mixed	1-15 (6±5)		<u> </u>	
DCF contribution to total PP (%)	Stratified	$12-81$ (40 ± 32)		•	Formatted: Line spacing: single

* Assuming bacterial gross efficiency of 0.2 (Gasol et al., 1998) and that the available --- Formatted: Indent: Left: 0 cm, First line: 0 cm, Line spacing: Multiple 1,15 li

The higher aphotic DCF in the mixed versus the stratified periods may be related to more bioavailable carbon that is transported from the photic layer as marine snow and supplies organic carbon to heterotrophic activity (mostly during in the winter when LPP is(coinciding higher LPP). However, given the oligotrophic nature of the southeast Mediterranean Sea, including during the winter (Berman-Frank and Rahav, 2012; Reich et al., 2022), most of the organic carbon (both particulate and dissolved

231 originating from LPP) is recycled within the photic layer-and only. Only a small fraction 232 fluxes down to the aphotic zone) as and has been recorded in sediment traps (Alkalay 233 et al., 2024). 3.2 Bacterial productivity in relation to DCF and BCD - Another possible mechanism 234 that may, potentially, explain higher DCF rates during the winter versus the summer is 235 anaplerosis. The extent of anaplerotic reactions is primarily driven by the availability 236 237 of labile organic carbon to heterotrophs (Dijkhuizen and Harder 1984). Therefore, 238 assuming anaplerosis drives DCF, we expect it will be positively coupled to BP. 239 Yet, our results do not support the likelihood of significant anaplerosis reactions, 240 mainly because, predominantly evident from the spatiotemporal distribution of aphotic BP (Fig 1C) differs differing considerably from that of the DCF (Fig 1B) and does not 241 correlate with it (Fig 3A). In fact, BP seems to be coupled with LPP at the photic layer 242 243 reaching ~0.4 µg C L⁻¹ d⁻¹ (not shown). Except for Excluding some sporadic measurements, aphotic BP rates were usually homogeneous and typically <0.1 μg C L⁻ 244 245 ¹ d⁻¹ (Fig 1C). Further Moreover, the highest integrated aphotic BP was measured during the summers of 2021 and 2022 and not during the winter cruises when generally higher 246 DCF was recorded (Table 1, Fig 2A). 247

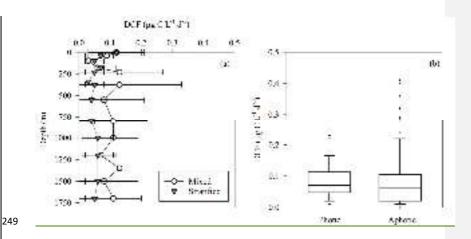


Figure 2: Dark carbon fixation rates in the southeastern Mediterranean Sea. Averaged vertical distribution of DCF in the offshore southeast Mediterranean Sea during the mixed (white) and stratified (gray) periods (a), and a box plot showing the DCF rates at the photic (0-180 m) and aphotic (>180 m) water depths (b).

contribute to bacterial carbon demand (BCD) atin the aphotic zone. Thus, we use a literaryliterature standard, a bacterial growth efficiency of 0.20 (DovalGasol, et al., 20011998) to calculate BR and BCD₇ (see the 'material and methods' section for more details). This resulted incalculation yielded bacterial respiration (BR) ranging from 29-494 mg C m⁻² d⁻¹ (average 209±172 mg C m⁻² d⁻¹), and the concurrent BCD ranges from 36 to 648 mg C m⁻² d⁻¹ (average 262±121 mg C m⁻² d⁻¹). Under these circumstances, exudation of DOC from primary productivity at the photic layer estimated as 20% of the rates (Teira et al., 2003) and equals to ~1-130 mg C m⁻² d⁻¹.

This new DOC, thethat originated form the photic zone therefore cannot support the

aphotic BCD in our system in all of our observations. However, if we consider the

Despite the lack of a clear positive relationship between DCF and BP, DCF may

Formatted: Font color: Black

266 contribution of DOC produced by aphotic DCF, part of the missing carbon eanmay be 267 'bridged'accounted for. Thus, when considering aphotic DCF in addition to the sequestered DOC from the photic layer, the 'abnormally high' aphotic BCD could be 268 269 explained in full (≥100%) in ~35% of the observations (Fig 1D). In the other 65% of the observations the missing carbon sources needed to support the aphotic BCD remains 270 an enigma. Evidences suggestWe note that these calculations are based on global 271 272 averages and assumptions and therefore may be subject to some uncertainties. For 273 example, BGE can vary between seasons and sites (del Giorgio and Cole, 1998). In the 274 Mediterranean Sea, long-term measurements of BGE ranged from 0.21 (similar to our 275 calculations and the global average used by Herndl and Reinthaler, 2013) to 0.29 (Zweifel et al., 1993). If the 0.29 value is used, the contribution of DCF to the aphotic 276 277 BCD increases to \sim 45% of the observations rather than \sim 35% when using BGE of 0.2. Similarly, if we apply an exported DOC estimate of ~4% from the photic zone, as 278 279 reported for the Ionian Sea/western Mediterranean (Moutin and Raimbault, 2002), the 280 relative contribution of DCF to aphotic BCD would be even higher than in our current calculations, which assume ~20% DOC export (Teira et al., 2003). These uncertainties 281 282 warrant future investigation. Yet, even when using conservative estimates for BGE and 283 DOC export as done here, the contribution of DCF to aphotic BCD remains substantial. Evidence suggests that dissolved methane may be more abundant in oxygenated 284 environments than previously thought (Grossart et al., 2011). Methane can potentially 285 286 be one of the missing energy sources for marine microbes and support high BCD 287 (Brankovits et al., 2017) as observed at the aphotic southeast Mediterranean Sea (Fig 288 1D). In agreement, methanotrophs were found in aphotic cold seeps at the southeast 289 Mediterranean Sea (Sisma-Ventura et al., 2022a), as well as across the aphotic water 290 column in our samples (see discussion below).

Formatted: Space After: 0 pt

Formatted: Swiss German (Switzerland)

3.3 Interannual variability in aphotic DCF - Interannual variability in DCF, but not in LPP or BP, was observed with higher rates recorded in March 2021-March 2022 and lower rates observed in August 2022-August 2023 (Fig 1B). The drivers of this variability are unknown and may be related to differences in nutrients availability that fuels chemoautotrophic microbes of the aphotic layer between these two periods. While the absolute concentrations of PO43+ or NO3+NO2-in the deep aphotic water were similar overall between periods (not shown) and, therefore, not likely to affect the DCF rates, organic nutrients that were not considered here may limit chemoautotrophy. In support, recent studies from the northern Red Sea and South China Sea showed that DCF at the surface waterInorganic nutrients such as PO₄³⁺ or NO₃⁻+NO₂⁻ are unlikely to explain this variability as their ambient levels were similar between periods (https://isramar.ocean.org.il/isramar2009/). Alternatively, we surmise that differences in the bioavailability and concentration of sinking organic particles, possibly attributed by the BiOS (Bimodal Oscillating System) oscillation circulation of deep water between the Adriatic and Ionian seas, could potentially explain the higher aphotic chemoautotrophic activity in March 2021-March 2022 versus August 2022-August 2023. This mechanism is known to influence the bioavailability of organic nutrients in the deep Mediterranean Sea by modulating deep-water circulation and ventilation patterns (Civitarese et al., 2010). These shifts affect the transport and residence time of organic matter (Civitarese et al., 2023), thereby potentially altering availability of organic nutrients to aphotic microbial populations, including to chemoautotrophs. Supporting this hypothesis are recent studies from the northern Red Sea and South China Sea showing that DCF is limited by labile organic nutrients such as phosphonates and even carbon-rich molecules (Reich et al., 2024; Zhou et al., 2017). Aphotic freeliving chemoautotrophs are likely to encounter an increasingly refractory pool of

291

292 293

294

295

296 297

298

299 300

301

302

303

304

305

306 307

308

309

310 311

312

313

314

316 dissolved organic matter for metabolism that may result in lower DCF rates, as shown in exported material through the water column (Santinelliin Bar-Zeev et al. 2015., 317 318 2013). Particle-attached chemoautotrophs may have access to higher concentrations of 319 organic substrates, and therefore. Therefore we surmise theythese microbes would preferentially have a preferential particle-attached lifestyle in the deep ocean. The 320 321 patchy nature of particulate matter sinking and lateral transport during wintertime 322 (Alkalay et al., 2024) and aggregate concentrations (Bar-Zeev et al., 2012) in the deep 323 southeast Mediterranean Sea could also potentially explain the interannual variability in DCF between periods. Understanding how chemoautotrophs transform labile 324 325 dissolved organic matter into refractory dissolved organic matter, awhich is an essential process known asin the 'microbial carbon pump' (Herndl and Reinthaler, 2013), is 326 crucial as it influences the efficiency of the biological pump (Jiao et al., 2010). 327 Oxidizing reduced inorganic compounds as electron donors (e.g., NO₂ or NH₄) may 328 329 provide chemoautotrophic prokaryotes sufficient energy to fix DIC (Hügler and 330 Sievert, 2011). We therefore measured (March and August 2023 cruises) the vertical 331 distribution of NO2⁻ and NH4⁺ (only in the March and August 2023 cruises) and examined if these chemical species are coupled or uncoupled with DCF at the aphotic 332 zone. Indeed, our Our results show a negative-linear relationship between DCF and 333 Formatted: Swiss German (Switzerland) 334 NO₂ (Fig 3B) and NH₄⁺ (Fig 3C), suggesting nitrification. This is potentially an Formatted: Swiss German (Switzerland) 335 important metabolic pathway yieldingbecause chemoautotrophs consume NO2 and 336 NH₄⁺ during nitrification to yield energy to fix DIC in the aphotic zone₋ (REF), thereby Formatted: Swiss German (Switzerland) reducing nutrient standing stocks in the water. We surmise that this 'depletion' may, 337 338 theoretically, explain the observed negative correlation between nutrient levels and chemoautotrophic activity. In agreement, both ammonia and nitrite oxidizers were 339 Formatted: Swiss German (Switzerland) 340 found in the aphotic zone of all cruises (DNA level, discussion below), further Formatted: Swiss German (Switzerland)

highlighting their potential role as contributors to DCF in the southeast Mediterranean. Sea. Nitrification measurements along with metagenomic tools, DCF (and BP) in aphotic water should be doneincluded in future dedicated studies to better refute or reinforce that oxidation of NO₂ or NH₄ may provide chemoautotrophic prokaryotes the energy to fix DIC.

Formatted: Swiss German (Switzerland)

Formatted: Swiss German (Switzerland)

Figure 3: Possible relationships examined via linear correlations The relationship between aphotic DCF and BP (a), NO_2^- (b) and NH_4^+ (c). Note that NO_2^- and NH_4^+ was measured only during the 2023 cruises. The 95% confidence interval is shown in gray.

3.4 Potential chemoautotrophs based on microbial community structure - Analyses of 16S rRNA gene amplicons suggest that diverse bacteria and archaea may drive DCF in the aphotic southeast Mediterranean Sea (Fig 4A). Microbes found in our collected genetic material primarily include the order Nitrosopumilales ammonia-oxidizing archaea, which become dominant below DCM (up to \sim 30% read abundance near the bottom), corresponding to previous estimates based on *in-situ* fluorescent hybridization (De Corte et al., 2009). Nitrite-oxidizing Nitrospirales comprised \sim 1% read abundance at depths below 300 m. Among these lineages, analyses of indicator species identified seasonal variation in abundance of the orders Nitrosopumilales and Nitrosophaeria that were more prominent in the stratified period than in wintertime (p-value<0.05) $_{7}$

361 when the water column is mixed, while the deep-sea community in general exhibited 362 only mild seasonal changes (Fig 4B). These ammonia oxidizers may thus drive ammonia depletion during summertime at the southeast Mediterranean Sea. 363 Additionally, we identified consistent occurrence of UBA10353 (Arenicellales, including the UBA868 group) and SAR324 gammaproteobacterial groups at depths 365 below the deep chlorophyll maxima (Fig 4A). Members from these ubiquitous clades 366 367 are mixotrophs that can fix inorganic carbon conserving energy from sulfur oxidation 368 (Baltar et al., 20222023; Jaffe et al., 2024; Swan et al., 2011). We did not find the SUP05/Arctic96BD-19 gammaproteobacterial sulfur oxidizers that occur in productive 369 370 dark oxygenated waters (Swan et al., 2011). We note that Methylococcales methane oxidizers were typical in the near-bottom water layer, as found previously in the 371 372 southeast Mediterranean Sea basin (Sisma-Ventura et al., 2022a; Techtmann et al., 2015), suggesting methylotrophy as a potential mechanism of 1-carbon molecule 373 acquisition in the dark southeast Mediterranean Sea. While this DNA-based community 374 375 analysis provides insight into the potential contributors to DCF, it does not reflect a 376 direct link as we cannot determine which of the identified microbes are responsible for 377 the measured DCF rates. We stress that future studies should examine the link between DCF and specific microbial groups such as archaea by targeting RNA-level expression 378 379 and functional genes (e.g., amoA and amoB), as demonstrated by (Agogué et al., 2008)

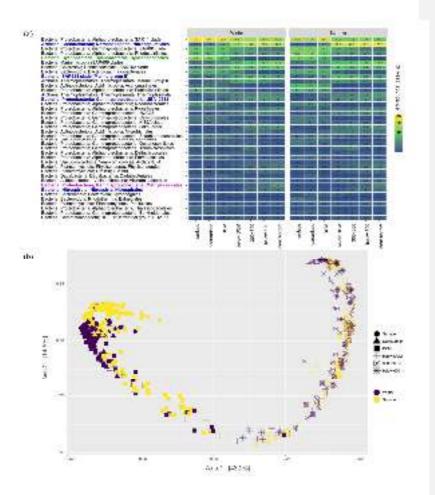
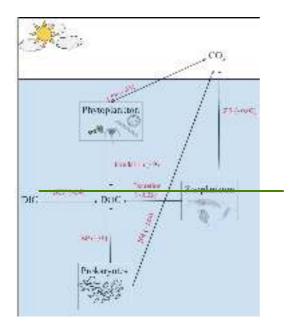
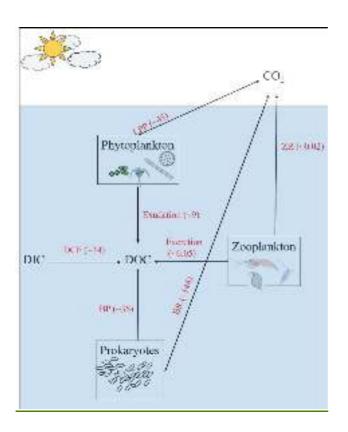


Figure 4: (a) Read abundance of the 40 most abundant taxa (order level) from different depths offshore the Southeastern Mediterranean Sea. Surface samples are within the range of 1-5 m depth; near surface are between 20 and deep chlorophyll maximum (DCM); below DCM corresponds to 180-240 m depths; near bottom samples were taken circa 5 meters above the seafloor. Potential DCF microbes are shown in blue, Methylococcales methanotrophs are marked in magenta, and photosynthetic Synechoccocales are shown in green for reference. (b) A principal component analysis


388 showing the differences in the structure of microbial populations (40 most abundant 389 taxa) based on 16S rRNA gene read mapping. 390 391 4 Conclusions Based on the conceptual model in Figure 5 that summarizes the annual microbial carbon 392 exchanges in the southeast Mediterranean sea's offshore area, it is clear that DOC 393 394 supplied by LPP is negligible and cannot explain the 'high' BCD in the area, especially in the aphotic zone that is considered a 'microbial hotspot' with relatively high bacterial 395 activity per cell (Hazan et al., 2018; Rahav et al., 2019). Therefore, our back of the 396 397 envelope calculations highlightsOur observations suggest that DCF may provide a substantial amount of the missing carbon, at least in the southeast Mediterranean Sea, 398 while source/s for the remaining missing carbon are currently unknown and warrant 399


more research.

400

401

Formatted: Font: Bold

404

406

407

408

409

410

411

412

Figure 5: A schematic illustration showing microbial carbon exchange in the southeast

Mediterranean Sea. Values shown are the annual averages of LPP, DCF and BP. DOC

exudation from LPP was assumed to be 20% of the rates, BR was calculated from BP

and assuming BGE=0.20, Zooplankton's respiration (ZR) and excretion were compiled

from Belkin et al. (2022). The numbers in brackets show the integrated values over

1750 m and expressed as g C m⁻² y⁻¹.

Regardless of the yet missing DOC sources, our results demonstrate the pivotal role-

DCF playplays in compensating metabolic imbalances in carbon sources at the aphotic

southeast Mediterranean Sea. Similarly, DCF was shown to be a significant process

supporting microbial respiration and/or activity in aphotic layers (Baltar et al., 2009;

Formatted: Swiss German (Switzerland)

Formatted: Swiss German (Switzerland)

Formatted: Space After: 0 pt

416 DCF contribution to aphotic BCD are based on widely accepted assumptions, they are 417 subject to some uncertainties, particularly regarding BGE that may be changed on both spatial and temporal scales, as well as the fraction of DOC exported from the photic 418 zone that may also change between seasons and water provinces (see discussion below). 419 420 These uncertainties underscore the need for more precise and region-specific 421 measurements of BGE and DOC fluxes to better constrain the role of DCF in deep 422 ocean carbon cycling, 423 We note that despite the contribution of DCF to the DOC pool, Another potential 424 uncertainty in measuring aphotic metabolic rates such as DCF or BP lies in the unclear 425 effects of hydrostatic pressure on the activity of bulk microbial communities (Riebesell et al., 2009; Tamburini et al., 2013). Laboratory-based manipulations that do not 426 427 account for in situ pressure conditions may alter DCF rates, potentially misrepresenting 428 the actual contribution of chemoautotrophs to aphotic BCD. This highlights the urgent need for more detailed investigations into how hydrostatic pressure influences 429 430 microbial activity in the deep ocean. 431 Additionally, despite the contribution of DCF to the DOC pool (taking into account the uncertainties associated with it discussed above), as well as the other sources, very little 432 of fixed carbon as particulate organic matter (POC) ends up in sediment traps located 433 434 above the seabed (2-6%). This suggests that most of the fixed carbon arriving from DCF (as well as LPP other potential sources) is recycled in the water column and does 435 436 not reach the seabed. The rapid microbial recycling of nutrients was mostly investigated 437 in the photic layer of the southeast Mediterranean Sea (e.g., PO₄, Thingstad et al.-(.,

2005) and little is known about the processes, which are often cryptic (e.g., NO2-

Herndl et al., 2005; Yakimov et al., 2011), as well as in hydrothermal vents (Mattes et al., 2013) and cold seeps (Nakagawa et al., 2007). Note that, while our estimates of

414

415

438

Formatted: Swiss German (Switzerland)

439	oxygenation), occurring in the aphotic layers. Our study highlights the need for adding
440	DCF measurements to global carbon budgets. Moreover, understanding the factors
441	affecting DCF in the photic and aphotic layers may provide science-based operational
442	opportunities to increase atmospheric inorganic carbon sequestration.
443	Understanding the 'dark end' of the biological pump in oligotrophic oceans, which
444	plays an important (yet variable) role in oceanic carbon cycling and sequestration, will
445	require a multidisciplinary approach that take into account all the uncertainties
446	discussed above in light of our (and others) observations of DCF, especially in the
447	context of ongoing and significant changes in the marine environment. Our study
448	supports the need for adding DCF measurements to global carbon budgets as also
449	mentioned by Baltar and Herndl (2010).
450	
451	Data availability statement
452	The raw physiological data used to generate figures 1-3 can be downloaded from the
453	PANGEA repository: Reich, Tom (2025): Primal, chemo and bacterial productivity
454	coupled with inorganic nutrient concentrations from an off shore, outgoing transect
455	cruises. PANGAEA,: https://doi.org/10.1594/PANGAEA.975231. Hydrological data
456	can be downloaded from https://isramar.ocean.org.il/isramar2009/. Genomic data can
457	be downloaded from the NCBI SRA archive project number PRJNA1215023.
458	
459	Author contribution
460	TR: Formal experimental work and data analyses; Investigation; Data Curation;
461	Visualization; Writing – Original Draft Preparation. NB: Resources; Writing –

463	Investigation. MRB: Investigation; Writing – Review. IBF: Conceptualization;
464	Funding Acquisition; Supervision; data interpretation, Writing – Review & Editing.
465	ER: Conceptualization; Formal Analysis; Funding Acquisition; Supervision;
466	Visualization; Writing – Review & Editing.
467	
468	Competing interests
469	The authors declare that they have no conflict of interest.
470	
471	Acknowledgements
472	We would like to thank the University of Haifa for supporting T. Reich, and the
473	Helmholtz funded International Laboratory; The Eastern Mediterranean Sea Centre-
474	An Early-Warning Model-System for our Future Oceans: EMS Future Ocean
475	REsearch (EMS FORE).
476	This study is in partial fulfillment of the PhD requirements for T. Reich at the Leon
477	H. Charney School of Marine Sciences, at the University of Haifa.
478	
479	Statements and Declarations
480	The authors declare that they have no conflict of interest.
481	
482	Funding
483	This work was supported by the German-Israeli Foundation for Scientific Research
484	and Development 2016021

References

486

522

523

01374-2, 2023.

487 Agogué, H., Brink, M., Dinasquet, J., and Herndl, G. J.: Major gradients in putatively nitrifying 488 and non-nitrifying Archaea in the deep North Atlantic, Nature, 456, 788-792, 489 https://doi.org/10.1038/nature07535, 2008. 490 Alkalay, R., Weinstein, Y., Herut, B., Ozer, T., Zlatkin, O., Bar, T., Berman-Frank, I., and Katz, Formatted: Font: +Body (Calibri), 11 pt 491 T.: Temporal Pattern and Profile of a Coastal-Deep Sea Conveyor at a Marginal Deep Formatted: Line spacing: Multiple 1,08 li 492 Oligotrophic Sea, J Geophys Res Oceans, 129, https://doi.org/10.1029/2023JC020441, 2024. 493 Alonso-Sáez, L., Galand, P. E., Casamayor, E. O., Pedrós-Alió, C., and Bertilsson, S.: High 494 bicarbonate assimilation in the dark by Arctic bacteria, ISME Journal, 4, 1581–1590, 495 https://doi.org/10.1038/ismej.2010.69, 2010. 496 Alothman, A., López-Sandoval, D., Duarte, C. M., and Agustí, S.: Bacterioplankton dark CO 2 497 fixation in oligotrophic waters, Biogeosciences Discussions, https://doi.org/10.5194/bg-498 2023-65, 2023. 499 Andersen, K. S., Kirkegaard, R. H., Karst, S. M., and Albertsen, M.: ampvis2: an R package to 500 analyse and visualise 16S rRNA amplicon data, https://doi.org/10.1101/299537, 11 April 501 2018. 502 Apprill, A., Mcnally, S., Parsons, R., and Weber, L.: Minor revision to V4 region SSU rRNA 503 806R gene primer greatly increases detection of SAR11 bacterioplankton, Aquatic Microbial 504 Ecology, 75, 129-137, https://doi.org/10.3354/ame01753, 2015. 505 Baltar, F. and Herndl, G. J.: Ideas and perspectives: Is dark carbon fixation relevant for 506 oceanic primary production estimates?, Biogeosciences, 16, 3793-3799, 507 https://doi.org/10.5194/bg-16-3793-2019, 2019. 508 Baltar, F., Arístegui, J., Gasol, J. M., Sintes, E., and Herndl, G. J.: Evidence of prokaryotic Formatted: Font: +Body (Calibri), 11 pt 509 metabolism on suspended particulate organic matter in the dark waters of the subtropical Formatted: Line spacing: Multiple 1,08 li 510 North Atlantic, Limnol Oceanogr, 54, 182–193, https://doi.org/10.4319/lo.2009.54.1.0182, 511 2009. 512 Baltar, F., Martinez-Pérez, C., Amano, C., Vial, Arístegui, J., Sintes, E., Gasol, J., M., Formatted: Font: +Body (Calibri), 11 pt 513 Robaina Estevez, S., Reinthaler, T., and Zhao, Z., Logares, R., Herndl, G., Morales, S., and Formatted: Font: +Body (Calibri), 11 pt 514 González, J.: Novel bacterial group potentially dominates sulfur cycling. J.: Formatted: Font: +Body (Calibri), 11 pt 515 Significance of non-sinking particulate organic carbon and dark CO2 fixation to heterotrophic 516 carbon demand in the dark ocean mesopelagic northeast Atlantic, Geophys Res Lett, 37, Formatted: Font: +Body (Calibri), 11 pt 517 https://doi.org/https://doi.org/10.21203/rs.3.rs-1561045/v1, 20 April Formatted: Font: +Body (Calibri), 11 pt 20221029/2010GL043105, 2010. 518 Formatted: Font: +Body (Calibri), 11 pt 519 Baltar, F., Martínez-Pérez, C., Amano, C., Vial, M., Robaina-Estévez, S., Reinthaler, T., Herndl, Formatted: Font: +Body (Calibri), 11 pt 520 G. J., Zhao, Z., Logares, R., Morales, S. E., and González, J. M.: A ubiquitous Formatted: Font: +Body (Calibri), 11 pt 521 gammaproteobacterial clade dominates expression of sulfur oxidation genes across the

mesopelagic ocean, Nat Microbiol, 8, 1137–1148, https://doi.org/10.1038/s41564-023-

- Bar-Zeev, E., Berman-Frank, I., Girshevitz, O., and Berman, T.: Revised paradigm of aquatic
- 525 biofilm formation facilitated by microgel transparent exopolymer particles, Proc Natl Acad
- 526 Sci U S A, 109, 9119–9124, https://doi.org/10.1073/pnas.1203708109, 2012.
- Bar-Zeev, E., Passow, U., Romero-Vargas Castrillón, S., and Elimelech, M.: Transparent
- 528 exopolymer particles: From aquatic environments and engineered systems to membrane
- 529 biofouling, https://doi.org/10.1021/es5041738, 20 January 2015.
- 530 Belkin, N., Guy-haim, T., Rubin-blum, M., Lazar, A., and Sisma-, G.: Influence of cyclonic and
- anti-cyclonic eddies on plankton biomass, activity and diversity in the southeastern
- 532 Mediterranean Sea, 1–56, 2022.
- Ben-Ezra, T., Krom, M. D., Tsemel, A., Berman-Frank, I., Herut, B., Lehahn, Y., Rahav, E.,
- Reich, T., Thingstad, T. F., and Sher, D.: Deep-Sea Research Part I Seasonal nutrient dynamics
- in the P depleted Eastern Mediterranean Sea, Deep-Sea Research Part I, 176, 103607,
- 536 https://doi.org/10.1016/j.dsr.2021.103607, 2021.
- Berg, I. A., Kockelkorn, D., Buckel, W., and Fuchs, G.: A 3-hydroxypropionate/4-
- 538 hydroxybutyrate autotrophic carbon dioxide assimilation pathway in archaea, Science
- 539 (1979), 318, 1782–1786, https://doi.org/10.1126/science.1149976, 2007.
- Berman-Frank, I. and Rahav, E.: Dinitrogen fixation as a source for new production in the
- Mediterranean Sea: A review, Life in the Mediterranean Sea: A Look at Habitat Changes,
- 542 199–226, 2012.
- Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A.,
- Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K.,
- Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase,
- J., Cope, E. K., Da Silva, R., Diener, C., Dorrestein, P. C., Douglas, G. M., Durall, D. M.,
- Duvallet, C., Edwardson, C. F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J. M., Gibbons, S.
- 548 M., Gibson, D. L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H.,
- Huttenhower, C., Huttley, G. A., Janssen, S., Jarmusch, A. K., Jiang, L., Kaehler, B. D., Kang, K.
- Bin, Keefe, C. R., Keim, P., Kelley, S. T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille,
- M. G. I., Lee, J., Ley, R., Liu, Y. X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.
- D., McDonald, D., McIver, L. J., Melnik, A. V., Metcalf, J. L., Morgan, S. C., Morton, J. T.,
- Naimey, A. T., Navas-Molina, J. A., Nothias, L. F., Orchanian, S. B., Pearson, T., Peoples, S. L.,
- 554 Petras, D., Preuss, M. L., Pruesse, E., Rasmussen, L. B., Rivers, A., Robeson, M. S., Rosenthal,
- P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S. J., Spear, J. R., Swafford, A. D.,
- Thompson, L. R., Torres, P. J., Trinh, P., Tripathi, A., Turnbaugh, P. J., Ul-Hasan, S., van der
- 557 Hooft, J. J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., et al.:
- Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2,
- 559 https://doi.org/10.1038/s41587-019-0209-9, 1 August 2019.
- Brankovits, D., Pohlman, J. W., Niemann, H., Leigh, M. B., Leewis, M. C., Becker, K. W., Iliffe,
- T. M., Alvarez, F., Lehmann, M. F., and Phillips, B.: Methane-and dissolved organic carbon-
- fueled microbial loop supports a tropical subterranean estuary ecosystem, Nat Commun, 8,
- 563 https://doi.org/10.1038/s41467-017-01776-x, 2017.
- Burd, A. B., Hansell, D. A., Steinberg, D. K., Anderson, T. R., Arístegui, J., Baltar, F., Beaupré,
- 565 S. R., Buesseler, K. O., DeHairs, F., Jackson, G. A., Kadko, D. C., Koppelmann, R., Lampitt, R. S.,
- Nagata, T., Reinthaler, T., Robinson, C., Robison, B. H., Tamburini, C., and Tanaka, T.:

Formatted: Font: +Body (Calibri), 11 pt

- 567 Assessing the apparent imbalance between geochemical and biochemical indicators of
- meso- and bathypelagic biological activity: What the @\$#! is wrong with present
- calculations of carbon budgets?, Deep Sea Res 2 Top Stud Oceanogr, 57, 1557–1571,
- 570 https://doi.org/10.1016/j.dsr2.2010.02.022, 2010.
- 571 De Ca´ceres, M., Ca´ceres, C., and Legendre, P.: Associations between species and groups of
- 572 sites: indices and statistical inference, Ecology, 3566–3574 pp., 2009.
- Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P.:
- DADA2: High-resolution sample inference from Illumina amplicon data, Nat Methods, 13,
- 575 581–583, https://doi.org/10.1038/nmeth.3869, 2016.
- 576 <u>Civitarese, G., Gačić, M., Lipizer, M., and Eusebi Borzelli, G. L.: On the impact of the Bimodal</u>
- 577 Oscillating System (BiOS) on the biogeochemistry and biology of the Adriatic and Ionian Seas
- 578 (Eastern Mediterranean), Biogeosciences, 7, 3987–3997, https://doi.org/10.5194/bg-7-3987-
- 579 <u>2010, 2010.</u>
- 580 <u>Civitarese, G., Gačić, M., Batistić, M., Bensi, M., Cardin, V., Dulčić, J., Garić, R., and Menna,</u>
- 581 M.: The BiOS mechanism: History, theory, implications,
- 582 https://doi.org/10.1016/j.pocean.2023.103056, 1 August 2023.
- La Cono, V., Ruggeri, G., Azzaro, M., Crisafi, F., Decembrini, F., Denaro, R., La Spada, G.,
- Maimone, G., Monticelli, L. S., Smedile, F., Giuliano, L., and Yakimov, M. M.: Contribution of
- bicarbonate assimilation to carbon pool dynamics in the deep Mediterranean Sea and
- cultivation of actively nitrifying and CO2-fixing bathypelagic prokaryotic consortia, Front
- 587 Microbiol, 9, https://doi.org/10.3389/fmicb.2018.00003, 2018.
- 588 De Corte, D., Yokokawa, T., Varela, M. M., Agogué, H., and Herndl, G. J.: Spatial distribution
- of Bacteria and Archaea and amoA gene copy numbers throughout the water column of the
- 590 Eastern Mediterranean Sea, ISME Journal, 3, 147–158,
- 591 https://doi.org/10.1038/ismej.2008.94, 2009.
- 592 Dijkhuizen, L. and Harder, W.: Current views on the regulation of autotrophic carbon dioxide
- fixation via the Calvin cycle in bacteria, Antonie Van Leeuwenhoek, 50, 473–487, 1984.
- 594 Ducklow, H. W.: Bacterial Production and Biomass in the Oceans., Microbial Ecology of the
- 595 Oceans., 85-119, 2000.
- 596 Erb, T. J.: Carboxylases in natural and synthetic microbial pathways,
- 597 https://doi.org/10.1128/AEM.05702-11, December 2011.
- 598 Gasol, J. M., Doval, M. D., Pinhassi, J., Calderón-Paz, J. I., Guixa-Boixareu, N., Vaqué, D., and
- 599 Pedrós-Alió, C.: Diel variations in bacterial heterotrophic activity and growth in the
- 600 northwestern Mediterranean Sea, Mar Ecol Prog Ser, 164, 107–124,
- 601 https://doi.org/10.3354/meps164107, 1998.
- del Giorgio, P. A. and Cole, J. J.: Bacterial growth efficiency in natural aquatic systems, Annu
- 603 Rev Ecol Syst, 29, 503–541, https://doi.org/10.1146/annurev.ecolsys.29.1.503, 1998.
- 604 <u>del Giorgio, P. A. and Duarte, C. M.: Respiration in the open ocean, Nature, 420, 379–384,</u>
- 605 https://doi.org/10.1038/nature01165, 2002.
- 606 Glöckner, F. O., Yilmaz, P., Quast, C., Gerken, J., Beccati, A., Ciuprina, A., Bruns, G., Yarza, P.,
- 607 Peplies, J., Westram, R., and Ludwig, W.: 25 years of serving the community with ribosomal

Formatted: Font: +Body (Calibri), 11 pt

Formatted: Line spacing: Multiple 1,08 li

Formatted: Font: +Body (Calibri), 11 pt

- 608 RNA gene reference databases and tools, https://doi.org/10.1016/j.jbiotec.2017.06.1198, 10
- 609 November 2017.
- Grossart, H. P., Frindte, K., Dziallas, C., Eckert, W., and Tang, K. W.: Microbial methane
- 611 production in oxygenated water column of an oligotrophic lake, Proc Natl Acad Sci U S A,
- 612 108, 19657–19661, https://doi.org/10.1073/pnas.1110716108, 2011.
- Hallam, S. J., Mincer, T. J., Schleper, C., Preston, C. M., Roberts, K., Richardson, P. M., and
- DeLong, E. F.: Pathways of carbon assimilation and ammonia oxidation suggested by
- environmental genomic analyses of marine Crenarchaeota, PLoS Biol, 4, 520–536,
- 616 https://doi.org/10.1371/journal.pbio.0040095, 2006.
- Hansman, R. L., Griffin, S., Watson, J. T., Druffel, E. R. M., Ingalls, A. E., Pearson, A., and
- 618 Aluwihare, L. I.: The radiocarbon signature of microorganisms in the mesopelagic ocean,
- 619 Proceedings of the National Academy of Sciences, 106, 6513–6518,
- 620 https://doi.org/10.1073/pnas.0810871106, 2009.
- Hazan, O., Silverman, J., Sisma-Ventura, G., Ozer, T., Gertman, I., Shoham-Frider, E., Kress,
- N., and Rahav, E.: Mesopelagic prokaryotes alter surface phytoplankton production during
- 623 simulated deep mixing experiments in Eastern Mediterranean Sea waters, Front Mar Sci, 5,
- 624 1–11, https://doi.org/10.3389/fmars.2018.00001, 2018.
- 625 Herndl, G. J. and Reinthaler, T.: Microbial control of the dark end of the biological pump,
- 626 https://doi.org/10.1038/ngeo1921, September 2013.
- Herndl, G. J., Reinthaler, T., Teira, E., Van Aken, H., Veth, C., Pernthaler, A., and Pernthaler,
- 628 J.: Contribution of Archaea to total prokaryotic production in the deep atlantic ocean, Appl
- 629 Environ Microbiol, 71, 2303–2309, https://doi.org/10.1128/AEM.71.5.2303-2309.2005,
- 630 2005
- Hügler, M. and Sievert, S. M.: Beyond the Calvin cycle: Autotrophic carbon fixation in the
- 632 ocean, Ann Rev Mar Sci, 3, 261–289, https://doi.org/10.1146/annurev-marine-120709-
- 633 142712, 2011.
- 634 Jaffe, A. L., Salcedo, R. S. R., and Dekas, A. E.: Abundant and metabolically flexible lineages
- 635 within the SAR324 and gammaproteobacteria dominate the potential for rubisco-mediated
- 636 carbon fixation in the dark ocean, https://doi.org/10.1101/2024.05.09.593449, 10 May
- 637 2024.
- 638 Jiao, N., Herndl, G. J., Hansell, D. A., Benner, R., Kattner, G., Wilhelm, S. W., Kirchman, D. L.,
- 639 Weinbauer, M. G., Luo, T., Chen, F., and Azam, F.: Microbial production of recalcitrant
- dissolved organic matter: Long-term carbon storage in the global ocean,
- 641 https://doi.org/10.1038/nrmicro2386, August 2010.
- 642 Karl, D. M., Knauer, G. A., and Martin, J. H.: Downward flux of particulate organic matter in
- the ocean: a particle decomposition paradox, Nature, 332, 438–441,
- 644 https://doi.org/10.1038/332438a0, 1988.
- 645 <u>Li Zweifel, U., Norrman, B., and Hagström, Å.: Consumption of dissolved organic carbon by</u>
- 646 marine bacteria and demand for inorganic nutrients, Source: Marine Ecology Progress
- 647 <u>Series, 23–32 pp., 1993.</u>

648 Luna, G. M., Bianchelli, S., Decembrini, F., De Domenico, E., Danovaro, R., and Dell'Anno, A.:

The dark portion of the Mediterranean Sea is a bioreactor of organic matter cycling, Global

- 650 Biogeochem Cycles, 26, https://doi.org/https://doi.org/10.1029/2011GB004168, 2012.
- Martínez-Pérez, A. M., Álvarez-Salgado, X. A., Arístegui, J., and Nieto-Cid, M.: Deep-ocean
- 652 dissolved organic matter reactivity along the Mediterranean Sea: Does size matter, Sci Rep,
- 653 7, https://doi.org/10.1038/s41598-017-05941-6, 2017.
- Mattes, T. E., Nunn, B. L., Marshall, K. T., Proskurowski, G., Kelley, D. S., Kawka, O. E.,
- 655 Goodlett, D. R., Hansell, D. A., and Morris, R. M.: Sulfur oxidizers dominate carbon fixation at
- a biogeochemical hot spot in the dark ocean, ISME Journal, 7, 2349–2360,
- 657 https://doi.org/10.1038/ismej.2013.113, 2013.
- 658 McMurdie, P. J. and Holmes, S.: Phyloseq: An R Package for Reproducible Interactive
- 659 Analysis and Graphics of Microbiome Census Data, PLoS One, 8,
- 660 https://doi.org/10.1371/journal.pone.0061217, 2013.
- Mena, C., Reglero, P., Hidalgo, M., Sintes, E., Santiago, R., Martín, M., Moyà, G., and Balbín,
- 662 R.: Phytoplankton Community Structure Is Driven by Stratification in the Oligotrophic
- 663 <u>Mediterranean Sea, Front Microbiol, 10, https://doi.org/10.3389/fmicb.2019.01698, 2019.</u>
- Moutin, T. and Raimbault, P.: Primary production, carbon export and nutrients availability in
- 665 western and eastern Mediterranean Sea in early summer 1996 (MINOS cruise), Journal of
- 666 Marine Systems, 33, 273–288, 2002.
- 667 Nakagawa, T., Mori, K., Kato, C., Takahashi, R., and Tokuyama, T.: Distribution of Cold-
- Adapted Ammonia-Oxidizing Microorganisms in the Deep-Ocean of the Northeastern Japan
- 669 Sea, Microbes Environ, 365–372 pp., 2007.
- 670 Nielsen, E. S.: The use of radio-active carbon (C14) for measuring organic production in the
- 671 sea, ICES Journal of Marine Science, 18, 117–140, 1952.
- Parada, A. E., Needham, D. M., and Fuhrman, J. A.: Every base matters: Assessing small
- 673 subunit rRNA primers for marine microbiomes with mock communities, time series and
- 674 global field samples, Environ Microbiol, 18, 1403–1414, https://doi.org/10.1111/1462-
- 675 2920.13023, 2016.
- 676 Psarra, S., Zohary, T., Krom, M. D., Mantoura, R. F. C., Polychronaki, T., Stambler, N., Tanaka,
- 677 T., Tselepides, A., and Frede Thingstad, T.: Phytoplankton response to a Lagrangian
- 678 phosphate addition in the Levantine Sea (Eastern Mediterranean), Deep Sea Res 2 Top Stud
- 679 Oceanogr, 52, 2944–2960, https://doi.org/10.1016/j.dsr2.2005.08.015, 2005.
- Rahav, E., Silverman, J., Raveh, O., Hazan, O., Rubin-Blum, M., Zeri, C., Gogou, A., Kralj, M.,
- Pavlidou, A., and Kress, N.: The deep water of Eastern Mediterranean Sea is a hotspot for
- bacterial activity, Deep Sea Res 2 Top Stud Oceanogr, 164, 135–143,
- 683 https://doi.org/10.1016/j.dsr2.2019.03.004, 2019.
- 684 Reich, T., Ben-Ezra, T., Belkin, N., Tsemel, A., Aharonovich, D., Roth-Rosenberg, D., Givati, S.,
- 685 Bialik, M., Herut, B., Berman-Frank, I., Frada, M., Krom, M. D., Lehahn, Y., Rahav, E., and
- 686 Sher, D.: A year in the life of the Eastern Mediterranean: Monthly dynamics of
- 687 phytoplankton and bacterioplankton in an ultra-oligotrophic sea, Deep Sea Research Part I:
- 688 Oceanographic Research Papers, 182, 103720,
- 689 https://doi.org/https://doi.org/10.1016/j.dsr.2022.103720, 2022.

Formatted: Font: +Body (Calibri), 11 pt

Formatted: Line spacing: Multiple 1,08 li

Formatted: Font: +Body (Calibri), 11 pt

- 690 Reich, T., Belkin, N., Sisma-Ventura, G., Berman-Frank, I., and Rahav, E.: Significant dark
- 691 inorganic carbon fixation in the euphotic zone of an oligotrophic sea, Limnol Oceanogr, 69,
- 692 1129–1142, https://doi.org/10.1002/lno.12560, 2024.
- Reinthaler, T., van Aken, H. M., and Herndl, G. J.: Major contribution of autotrophy to
- 694 microbial carbon cycling in the deep North Atlantic's interior, Deep Sea Res 2 Top Stud
- 695 Oceanogr, 57, 1572–1580, https://doi.org/10.1016/j.dsr2.2010.02.023, 2010.
- 696 Riebesell, U., Kö, A., and Oschlies, A.: Sensitivities of marine carbon fluxes to ocean change,
- 697 2009
- 698 Robinson, C., Tilstone, G. H., Rees, A. P., Smyth, T. J., Fishwick, J. R., Tarran, G. A., Luz, B.,
- 699 Barkan, E., and David, E.: Comparison of in vitro and in situ plankton production
- determinations, Aquatic Microbial Ecology, 54, 13–34, https://doi.org/10.3354/ame01250,
- 701 2009.
- 702 Santinelli, C.: DOC in the Mediterranean Sea, in: Biogeochemistry of marine dissolved
- 703 organic matter, Elsevier, 579–608, 2015.
- 704 Santinelli, C., Nannicini, L., and Seritti, A.: DOC dynamics in the meso and bathypelagic layers
- of the Mediterranean Sea, Deep Sea Res 2 Top Stud Oceanogr, 57, 1446–1459,
- 706 https://doi.org/10.1016/j.dsr2.2010.02.014, 2010.
- 707 Simon, M., Alldredge, A., and Azam, F.: Bacterial carbon dynamics on marine snow, Mar Ecol
- 708 Prog Ser, 65, 205–211, 1990.
- 709 Sisma-Ventura, G., Kress, N., Silverman, J., Gertner, Y., Ozer, T., Biton, E., Lazar, A., Gertman,
- 710 I., Rahav, E., and Herut, B.: Post-eastern Mediterranean Transient Oxygen Decline in the
- 711 Deep Waters of the Southeast Mediterranean Sea Supports Weakening of Ventilation Rates,
- 712 Front Mar Sci, 7, https://doi.org/10.3389/fmars.2020.598686, 2021.
- 713 Sisma-Ventura, G., Bialik, O. M., Makovsky, Y., Rahav, E., Ozer, T., Kanari, M., Marmen, S.,
- 714 Belkin, N., Guy-Haim, T., Antler, G., Herut, B., and Rubin-Blum, M.: Cold seeps alter the near-
- 715 bottom biogeochemistry in the ultraoligotrophic Southeastern Mediterranean Sea, Deep Sea
- Research Part I: Oceanographic Research Papers, 183, 103744,
- 717 https://doi.org/https://doi.org/10.1016/j.dsr.2022.103744, 2022a.
- 718 Sisma-Ventura, G., Belkin, N., Rubin-Blum, M., Jacobson, Y., Hauzer, H., Bar-Zeev, E., and
- Rahav, E.: Discharge of polyphosphonate-based antiscalants via desalination brine: impact
- on seabed nutrient flux and microbial activity, Environ Sci Technol,
- 721 https://doi.org/10.1021/acs.est.2c04652, 2022b.
- 722 Smith, D. and Azam, F.: A simple, economical method for measuring bacterial protein
- 723 synthesis rates in seawater using, Marine microbial food webs, 6, 107–114, 1992.
- Swan, B. K., Martinez-Garcia, M., Preston, C. M., Sczyrba, A., Woyke, T., Lamy, D., Reinthaler,
- T., Poulton, N. J., Masland, E. D. P., Gomez, M. L., Sieracki, M. E., DeLong, E. F., Herndl, G. J.,
- 726 and Stepanauskas, R.: Potential for chemolithoautotrophy among ubiquitous bacteria
- 727 lineages in the dark ocean, Science (1979), 333, 1296–1300,
- 728 https://doi.org/10.1126/science.1203690, 2011.

Formatted: Font: +Body (Calibri), 11 pt

- 729 <u>Tamburini, C., Boutrif, M., Garel, M., Colwell, R. R., and Deming, J. W.: Prokaryotic responses</u>
- 730 to hydrostatic pressure in the ocean a review, https://doi.org/10.1111/1462-2920.12084,
- 731 May 2013.
- 732 Techtmann, S. M., Fortney, J. L., Ayers, K. A., Joyner, D. C., Linley, T. D., Pfiffner, S. M., and
- 733 Hazen, T. C.: The unique chemistry of Eastern Mediterranean water masses selects for
- distinct microbial communities by depth, PLoS One, 10,
- 735 https://doi.org/10.1371/journal.pone.0120605, 2015.
- 736 Teira, E., Pazó, M., Quevedo, M., Fuentes, M., Niell, F., and Fernández, E.: Rates of dissolved
- organic carbon production and bacterial activity in the eastern North Atlantic Subtropical
- 738 Gyre during summer, Mar Ecol Prog Ser, 249, 53–67, https://doi.org/10.3354/meps249053,
- 739 2003.
- Thingstad, T. F., Krom, M. D., Mantoura, R. F. C., Flaten, G. A. F., Groom, S., Herut, B., Kress,
- N., Law, C. S., Pasternak, A., and Pitta, P.: Nature of phosphorus limitation in the
- 742 ultraoligotrophic eastern Mediterranean, Science (1979), 309, 1068–1071, 2005.
- 743 Whitman, W. B., Coleman, D. C., and Wiebe, W. J.: Perspective Prokaryotes: The unseen
- 744 majority, 6578-6583 pp., 1998.
- 745 Yakimov, M. M., Cono, V. La, Smedile, F., Deluca, T. H., Juárez, S., Ciordia, S., Fernández, M.,
- Albar, J. P., Ferrer, M., Golyshin, P. N., and Giuliano, L.: Contribution of crenarchaeal
- 747 autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters
- 748 (Central Mediterranean Sea), ISME Journal, 5, 945–961,
- 749 https://doi.org/10.1038/ismej.2010.197, 2011.
- 750 Zhou, W., Li, Y., Liu, X., He, S., and Huang, J. C.: Comparison of microbial communities in
- different sulfur-based autotrophic denitrification reactors, Appl Microbiol Biotechnol, 101,
- 752 447–453, https://doi.org/10.1007/s00253-016-7912-y, 2017.

Formatted: Font: +Body (Calibri), 11 pt

Formatted: Line spacing: Multiple 1,08 li

Formatted: Font: +Headings CS (Times New Roman)