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Abstract. This study presents SanDyPALM, an innovative toolkit designed to streamline the generation of both static and

dynamic input data for the PALM-4U
:::::
PALM

:
model, thereby facilitating urban microclimate simulations. SanDyPALM is ca-

pable of processing a diverse range of custom input data from raster and vector files, and it incorporates two novel methods—

OSM2PALM and LCZ4PALM—that introduce the automated extraction of static input data from open data sources. To inves-

tigate the impact of static input data on simulation outcomes, we developed static drivers from four distinct data sources. Our5

analysis reveals not only variations in the generated static drivers but also differences in the simulation results. Importantly, all

simulations correlate well with measurements from two different weather stations, underscoring the robustness of the overall

modeling approach. However, we observed variations in temperature, humidity, and wind speed that are dependent on the static

input data. Furthermore, our findings demonstrate that automated processing methods can yield results comparable to those

achieved through expert-driven approaches, significantly simplifying workflows.10

Copyright statement. TEXT

1 Introduction

Rapid urbanization and climate change are two significant factors that drive the need for a better understanding of urban

climates. According to the 6th Assessment Report of the IPCC (Pörtner et al., 2022), “an additional 2.5 billion people are

projected to live in urban areas by 2050.” The report also states that “there is at least a greater than 50% likelihood that global15

warming will reach or exceed 1.5 °C in the near term, even for the very low greenhouse gas emissions scenario.” In cities,

the detrimental impacts of climate change will be intensified by the urban heat island phenomenon
:::::::::::::::::
(Pörtner et al., 2022). To

mitigate these adverse scenarios, urban microclimate analysis can assist urban planningin various ways. For instance, future

development plans can: 1) reduce urban heating by enhancing natural ventilation, leading to healthier and more comfortable

living environments; 2) improve the energy efficiency of districts through optimal placement and design of buildings; and 3)20
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promote biodiversity by tailoring temperature and humidity levels to meet the needs of local flora and fauna.
::
is

::::::
crucial

:::
for

:::::::
effective

:::::
urban

::::::::
planning.

:::
One

::::::::
approach

::
to

:::::::
analyze

:::
the

:::::
urban

:::::::::::
microclimate

:
is
:::::::
through

:::
the

:::
use

::
of

:::::
dense

:::::::::
monitoring

::::::::
networks

::
in

:::::
urban

:::::
areas.

::::::::
However,

::
a

::::::::
significant

::::::::
drawback

:::
of

:::
this

::::::
method

::
is

:::
the

:::::::
practical

::::::::
challenge

::
of

:::::::
ensuring

::::::::
adequate

:::::::
temporal

::::
and

:::::
spatial

::::::::
coverage

::::::::::::
(Afshari, 2023)

:
.
::
An

:::::::::
alternative

::
to

:::::
direct

::::::::::::
measurements

::
is

:::::::::
microscale

:::::::::
modeling,

:::::
which

:::::::
enables

::::::::::
comparative

:::::::
analysis

::
of

:::::::
different

::::::::
scenarios

::::
and25

:::::
allows

:::
for

:::
the

:::::::::::
investigation

::
of

:
a
:::::
large

::::::
number

::
of

::::::
points

::
in

:::::
space

:::
and

::::
time

::::::::::::::::::
(Toparlar et al., 2017)

:
.

To analyze the urban microclimate, microscale modelingis considered one of the most effective methods. The PALM (PAr-

allelised Large-eddy simulation Model for Urban applications) model system (Maronga et al., 2020) is
:::
has

::::
been

:
increasingly

utilized due to its accurate LES (Large Eddy Simulation
:::::
(LES) core, which is based on the non-hydrostatic, filtered, incom-

pressible Navier-Stokes equations
:
,
:::::
where

::::::::
buoyancy

::
is

:::::::::
considered

:::::
using

:::
the

:::::::::
Boussinesq

::::::::::::
approximation. It incorporates an inter-30

nal self-nesting capability developed by Hellsten et al. (2020), as well as an offline nesting capability implemented by Kadasch

et al. (2021), which enables simulations to be driven by a mesoscale model. The PALM model system features PALM-4U, a

suite of specialized components designed for detailed modeling of urban climate physics. Key components of the PALM-4U

urban microclimate framework include
::
this

::::::::::
framework

:::
are: 1) an urban surface model (Resler et al., 2017); 2) a land surface

model (Gehrke et al., 2021); 3) a
::::
plant

::::::
canopy

::::::
model,

:::
see

::::::::::::::::::
(Maronga et al., 2020)

:
;
::
4)

:
a
:
radiative transfer model (Krč et al., 2021);35

and 4
:
5) a building indoor climate model (Pfafferott et al., 2021). Since our research focuses on urban microclimate simulations,

we will refer to it as the PALM-4U model throughout this manuscript
:
;
::
6)

::
an

:::::::::::
atmospheric

::::::::
chemistry

::::::
model

:::::::::::::::
(Khan et al., 2021)

:
;

:::
and

::
7)

:
a
::::::::::::::
biometeorology

:::::
model

::::::::::::::::::::::::::
(Fröhlich and Matzarakis, 2020).

While the PALM-4U
::::::
PALM model enables realistic urban microclimate simulations, its setup can present significant chal-

lenges. A substantial amount of input data must be collected and formatted for both the static driver, which contains all static40

geographic information such as terrain height, building height, and land surface classification, and the dynamic driver, which

includes transient initial and boundary conditions derived from mesoscale data. The PALM-4U
:::::
PALM

:
model establishes a

comprehensive standard for input data,
:::
the

::::::
PALM

:::::
Input

::::
Data

::::::::
Standard

:::::::
(PIDS),

:::
see

::::::::::::::::::::::::::::::::::
(PALM model system developers, 2025a)

:
, and provides checks to ensure correctness and consistency. However, the preparation of input data remains a hindrance

for researchers and users of the PALM-4U model. Additionally, constraining simulationswith realistic initial and boundary45

conditions poses another challenge
::::::
PALM

::::::
model,

:::::
which

::::
has

::::
been

::::::::::::
acknowledged

::
in

:::
the

::::::::::
community,

::::
see

:::
e.g.

::::::::::::::
Lin et al. (2024)

:
.
::::
This

:::::
results

::
in
::

a
::::
need

:::
for

:::::::::::
user-friendly,

::::::::::::::
semi-automated

:::::::::
processing

::::
tools

::
to
::::::::
facilitate

::::
data

::::::::::
preparation,

::
as

:::::::
manual

:::::::::
techniques

::
are

::::::::::
impractical

:::
for

:::::
large

::::::::
city-scale

::::::::::
simulations. The following state-of-the-art review examines recent advancements and ap-

plications of static and dynamic drivers, referencing key literature and public software tools.

To create a static driver, the workflow provided by the PALM-4U
:::::
PALM

::::::
model environment utilizes the tool “palm_csd”50

along with geospatial input data that was preprocessed for the three German cities—Berlin, Hamburg, and Stuttgart—by

Heldens et al. (2020) as part of the “MOSAIK” project, which was included in the first phase of the [UC2] project (Scherer et al.,

2019). There are minimum requirements for basic simulations, with additional data available for more detailed and complex

studies. Various sources of geospatial data were utilized: remote sensing data for building heights derived from LiDAR (Light

Detection and Ranging) and land cover classification from satellite imagery; municipal data collections, including building55
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registries with detailed information and land-use maps; and open data sources such as OpenStreetMap (OSM), which provided

basic building footprints and street networks. The challenge of processing large amounts of geospatial data for use in the

PALM-4U model is acknowledged, emphasizing the need for further development of user-friendly, semi-automated processing

tools to facilitate data preparation, as manual techniques are impractical for large city-scale simulations. A key limitation of

“palm_csd” is its predefined data format, primarily designed for the “MOSAIK” dataset. Adapting it to other locations or data60

sources requires significant effort, as the data must first be manually processed into the required format.

Besides “palm_csd”, other static driver tools have been developed. The following two packages have not been publishedyet,

but the code repositories are publicly available: The first is “palmpy” (Fluck, 2023), a Python package that creates static drivers

for the PALM-4U
::::::
PALM

:
model with a comprehensive documentation. The second tool is “rpalm” (Stadler, 2024b), an R

package designed to create and edit static drivers for the PALM-4U
::::::
PALM model.65

To alleviate some of the existing limitations of default methods for creating a static driver, Lin et al. (2024) introduced

GEO4PALM, an open-source toolkit that streamlines the processing of geospatial data from raw input to PALM-4U-ready

::::::::::
PALM-ready

:
formats. It can utilize open data sources directly and includes tools for preprocessing and visualizing data.

:::::::
Another

::::
static

:::::
driver

::::
tool

:::::::::::
PALM-GEM

:::
has

::::
been

:::::::::
published

::
by

::::::::::::::::::::
Bureš and Resler (2024)

:
,
:::::
which

::::::
utilizes

:::
the

:::::::
publicly

::::::::
available

:::
data

:::::
from

::::::::::
UrbanAtlas,

:::::
OSM

:::
and

:::::::::
EU-DEM.

::::
The

:::
tool

::::
was

::::::
already

:::::::
applied

::
to

:::::::
develop

:
a
::::::
model

:::
for

::::::::
integrated

:::::
urban

:::::::
services

:::
by70

::::::::::::::
Esau et al. (2024)

:
.

The “PALM-4U GUI” (Winkler et al., 2023) is a cloud-based graphical user interface (GUI) for the PALM-4U
::::::
PALM

model. The code is open source and can be accessed via a code repository (Stadler et al., 2024a). The GUI provides a user-

friendly way to prepare input data and simulation setups. Users can run, visualize, and analyze simulation results without

requiring code writing. This method can be particularly helpful for new users or those unfamiliar with command-line interfaces,75

making it the easiest option for getting started with the PALM-4U
::::::
PALM modeling workflow. Input data is created via an

interactive web map editor, representing the area to be simulated as a polygonal city model. Geographic data can be imported,

modified, and supplemented with user-drawn objects. Settings can be configured for global parameters and for each individual

map object up to Level of Detail 2 (LOD2). City models can be created from OpenStreetMap
::::
OSM

:
and translated into the

PALM-4U
:::::
PALM

:
input data types using the open-source package OSM2PALM (Stadler, 2024a). The optional QGIS plugin80

“PALMClassify” (Stadler et al., 2024b) can classify custom geodata in shapefile format into PALM-4U
::::::
PALM input data types

and export them to the PALM-4U GUI.

Dynamic drivers provide transient boundary conditions to run the PALM-4U
::::::
PALM model in “offline-nesting” mode, mean-

ing that the PALM-4U
:::::
PALM

:
boundaries are defined using data from an external model. This approach can significantly

improve the model’s responsiveness to temporally varying large-scale atmospheric conditions and generally enhance the over-85

all fidelity of the simulations. A major challenge in using dynamic drivers is the inherent errors in the weather prediction

models themselves, which propagate into the PALM-4U
::::::
PALM simulations and affect their accuracy (Radović et al., 2024).

The first method to create dynamic drivers from mesoscale models was INIFOR (Mesoscale Interface for Initializing and

Forcing), developed by Kadasch et al. (2021). It has become the standard tool for dynamic driver creation in PALM-4U
::::::
PALM

and interfaces with the mesoscale weather prediction model COSMO (Baldauf et al., 2011). INIFOR processes meteorological90

3



data (wind, temperature, humidity) and initial soil data from the weather prediction model, preparing it for use as dynamic

boundary conditions in the PALM-4U simulation. PALM-4U
::::::
PALM

:::::::::
simulation.

::::::
PALM

:
utilizes the prepared data to set the

conditions at its borders (top, sides, and bottom), ensuring that the smaller-scale simulation within PALM-4U
:::::
PALM

:
aligns

with the larger-scale atmospheric processes.

Besides INIFOR, other methods have been developed to create dynamic drivers from mesoscale models, particularly for95

the Weather Research and Forecasting (WRF) model
::::::::::::::::::::
(Skamarock et al., 2019). The first was

::
the

:::::::::::::
”wrf_interface“

:
presented

by Resler et al. (2021) and
:
it
:
was used for a comprehensive study of realistic urban microclimate simulations. However, one

downside of this approach is that it does not provide a surface layer model to fill the atmospheric data into the region below

the first WRF model level.

Lin et al. (2021) introduced WRF4PALM—a tool designed to facilitate the conversion of mesoscale data from the Weather100

Research and Forecasting (WRF )
::::
WRF model into a dynamic driver. It implements a surface layer extension to fill data below

the first WRF level using a simple logarithmic fit function.

Vogel et al. (2022) presented a new method for coupling the WRF mesoscale weather model with the PALM-4U
::::::
PALM

microscale model to simulate urban microclimates under realistic atmospheric conditions. The novel dynamic coupling scheme

incorporates a roughness-corrected Monin-Obukhov surface layer representation (Arya, 2001), accounting for the varying105

roughness of urban surfaces to improve the accuracy of the initial and boundary conditions for the PALM-4U
::::::
PALM model.

This scheme is particularly important for WRF setups with relatively large vertical grid spacing near the surface. Simulations

were conducted in an urban district of Berlin to test the new coupling scheme and investigate different WRF setups. The

results were compared to standalone WRF simulations (without the microscale model) and actual measurements from the area.

The main findings indicated that PALM-4U
::::::
PALM simulations generally showed better agreement with measurements than110

standalone WRF simulations, especially for temperature. Refining the coupling time step or the WRF grid spacing did not

significantly improve accuracy.

Radović et al. (2024) also used the WRF model to force the PALM-4U
:::::
PALM

:
model and described the challenges of estab-

lishing ideal conditions for running accurate simulations. The study determined that the accuracy of the model’s results heavily

relies on the quality of the boundary conditions. It was observed that errors or limitations in WRF data can significantly affect115

the results generated by PALM-4U
:::::
PALM, although the influence of boundary conditions on PALM-4U

::::::
PALM simulations can

vary depending on the season and even the time of day. PALM-4U
:::::
PALM

:
can, to some extent, mitigate the impact of errors

in wind speed from the boundary conditions. However, its ability to handle temperature variations arising from these errors

is less consistent. Overall, the study emphasizes the crucial role of carefully chosen and high-quality boundary conditions in

achieving reliable results with PALM-4U
::::::
PALM.120

::::::
Finally,

:::
the

::::::
PALM

::::::
model

::::::
system

:::::::
release

:::::
24.04

:::::::::::::::::::::::::::::::::::
(PALM model system developers, 2025b)

::::::
features

::
a

::::
new

:::::::
dynamic

::::::
driver

::::::
creation

::::
tool

::::::
named

::::::::::::::
PALM-METEO,

::::::
which

::
is

:::
the

::::::::
successor

:::
of

:::
the

:::::::::::::
”wrf_interface“

:::
by

::::::::::::::::
Resler et al. (2021).

::::::::::::::
PALM-METEO

:::::::
supports

:
a
:::::
range

::
of

:::::::::
mesoscale

::::::
models

::::::::
including

::::::
WRF,

:::::
ICON

:::
and

::::::
Aladin.

The study of the state of the art revealed that the options for creating PALM-4U
::::::
PALM input data have been continuously

increasing. However, several questions remain: 1) How can the process of input data preparation be accelerated and made more125
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user-friendly? 2) What level of detail is necessary in the input data to produce realistic urban microclimate simulations? 3)

How can we develop models on coarse grids, for instance, for a large parent domain that is driven by a mesoscale model?

In this paper, we present a workflow and the necessary program code to create static and dynamic input data for PALM-4U

:::::
PALM

:
simulations as an all-in-one solution. We primarily investigate how the level of detail in the geographic input data

impacts the simulation results. Additionally, we introduce two novel methods, OSM2PALM and LCZ4PALM, to generate130

static drivers from Open Street Maps (OSM )
:::::
OSM or Local Climate Zones (LCZ) maps anywhere in the world. This approach

::::::::::
LCZ4PALM

:
is particularly useful for parametric studies and for coarser grids, where real building shapes cannot be resolved,

making it preferable to have an approximate but meaningful urban representation instead. In this work, we compare four

static drivers from different data sources: 1) “MOSAIK”—the dataset by Heldens et al. (2020), which is already preprocessed

but still needs to be converted into a static driver; 2) “Custom”—our own custom preprocessing of data openly available135

from the municipality; 3) “OSM”—data preprocessed by our tool OSM2PALM; and 4) “LCZ”—data preprocessed by our tool

LCZ4PALM. The four simulation variations were conducted, validated by tower and station measurements, and then compared

to each other to address our stated research questions.

The findings of this study indicate that the choice and quality of input data influence the accuracy of urban microclimate

simulations using the PALM-4U
:::::
PALM

:
model. By comparing various static drivers derived from different data sources, we140

demonstrate how variations in data representation can lead to differences in simulation outcomes, particularly in temperature,

humidity, and wind speed. Despite these differences, all simulation test cases could be validated using measurement data,

albeit with varying degrees of deviation. The introduction of the novel methods, OSM2PALM and LCZ4PALM, to generate

static drivers from widely available geospatial data enhances the accessibility and applicability of urban climate modeling.

Ultimately, this research contributes to the development of more reliable urban climate simulations, which are essential for145

informed urban planning and effective climate change mitigation strategies.

2 Methodology

The methodology consists of five parts: The first section 2.1 describes the simulation test case defined for our investigation. The

next section 2.2 outlines the various geographic data sources and explains how the data was preprocessed before generating

the static driver. Section 2.3.1 provides a detailed account of the static driver generation process, while section 2.3.2 briefly150

describes the dynamic driver creation. In section 2.4, we present our specific PALM-4U
:::::
PALM

:
setup, including grid and model

settings. Finally, the measured data from a tower station, which we used for validation in this study, is presented in section 2.5.

2.1 Test case

The time period of our test case spans two days, from 19 July 2022 00:00 until 21 July 2022 00:00 Central European Summer

Time (CEST). These two days were characterized by a heat wave with record-breaking temperatures in Germany and other155

European countries. According to ERA5 reanalysis data evaluated for the region around Berlin, the average temperature over

the two days was 28.0 °C, with temperature maxima of 35.4 °C on 19 July and 37.9 °C on 20 July. The wind speed was relatively
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low, with an average value of 2.2m/s, and the wind direction was predominantly southeast. The period was cloud-free, with

total cloud cover not exceeding 1% over the two-day span.

Our test case uses nested domains to cover an overall larger area with the parent domain while allowing a sufficiently high160

resolution in the nested domain around the main region of interest. The location of our test case is in the borough of “Steglitz-

Zehlendorf” in Berlin, Germany. The average terrain height in the region is 46m. The simulation domains are centered at the

weather monitoring tower situated in the garden of the Institute of Ecology at the Technical University of Berlin (TUB). We

chose this location specifically because it offers a high quantity and quality of measurements, allowing for thorough validation

of our simulation models. In addition to the tower, there is also a measurement station of the German Weather Service (DWD165

– Deutscher Wetterdienst) in “Dahlem”, which is covered by the parent domain and can therefore also be used for validation.

SanDyPALM facilitates the selection of coordinates and domain size by offering a function that calculates the coordinates

in both latitude/longitude and in the PALM-4U
:::::
PALM

:
native grid, which is a local projection. It also plots the parent and all

nested domain borders over a geographic map. Our test case is visualized in this manner in Figure 1.

Figure 1. Open street map (OpenStreetMap contributors, 2024) of the test case with illustrations of the domain outlines of the parent and

nested grids. The map also indicates two measurement locations used in this study: the TUB tower in Rothenburgstraße “Roth” and the DWD

station in Botanischer Garten “Dahlem”.

The local coordinate system we use for this test case is EPSG:25833, a universal transverse mercator (UTM) projection for170

zone 33N. The center coordinates of our domain are 52.457227°N, 13.315827°E (latitude/longitude) or y = 5813228.0m,

x= 385566.5m (EPSG:25833). In SanDyPALM, the coordinates can be specified in four different ways: 1) native PALM-4U

:::::
PALM

:
coordinate system of the domain center, 2) latitude/longitude of the domain center, 3) native PALM-4U

:::::
PALM

:
coordi-

nate system of the domain lower-left corner, and 4) latitude/longitude of the domain lower-left corner.
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2.2 Geographic Data Sources175

The SanDyPALM package allows input from different data representations, which mainly include: 1) raster data stored in

netCDF format, 2) raster data stored in GeoTIFF files, and 3) vector data stored in commonly used formats, such as ESRI

Shapefile, GeoJSON, or GeoPackage. In this work, we aim to prepare one test case with different data sources and compare

how the static driver varies depending on the data source and how this affects the simulation results. We defined four data

sources for our test case in Berlin. The first is the data generated within the MOSAIK project, which is readily preprocessed180

as netCDF raster files. The second is our own custom preprocessing of openly available data from the municipality of Berlin.

The third is a dataset derived from generally available open data sources, mainly OpenStreetMap (OSM)
::::
OSM, which requires

special preprocessing to convert the data types to a format compatible with PALM-4U
:::::
PALM. The last source differs from the

others in that it does not represent the actual urban geometry but instead derives a virtual city solely from a 100m LCZ map

using our tool LCZ4PALM. Geographic maps of the different data sources are presented in Figure 2, where selected data types185

are illustrated in different colors. Table 1 summarizes the main differences between the data sources; detailed descriptions of

each data source follow in the next four sections.

2.2.1 MOSAIK

This dataset originates from the MOSAIK project, for which several data sources were preprocessed for use in the PALM-4U

:::::
PALM

:
model. This dataset was intended to be further processed and converted into a static driver by the utility palm_csd190

that is shipped with the PALM-4U
::::::
PALM model. However, in this work, we used SanDyPALM instead to convert this dataset

into a static driver. For a detailed description of the MOSAIK dataset, we refer to Heldens et al. (2020).

2.2.2 Custom

The “Custom” dataset contains openly available data from the municipality of Berlin, specifically from the geodata portal run

by the Senate Department for Urban Development, Building and Housing of Berlin. The data to be used was selected after an195

in-depth search on the portal for information compatible with PALM-4U
:::::
PALM types.

The data was processed using our own custom processing based on Heldens et al. (2020) and the workflow proposed for

“PALMClassify”. This resulted in a dataset where each PALM-4U
:::::
PALM

:
type is represented by one shapefile, including

information on covered area, specific type, building height, and tree height.

Often, multiple input datasets represented parts of the same PALM-4U
::::::
PALM

:
type, necessitating their combination. In200

some instances, new datasets had to be created; for example, the true orthophoto channels of red and near-infrared were

used to calculate the NDVI (Normalized Difference Vegetation Index), which helped identify vegetation and tree areas. The

topography and the digital surface model were used to create the normalized digital surface model, which provided height

values for buildings and trees.
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Figure 2. Geographic maps of the four different input data sources for SanDyPALM.
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Table 1. Comparison of the four different input data sources used in SanDyPALM to generate static drivers. The following abbreviations are

used: OSM: Open Street Map, DEM: Digital Elevation Model, WSF3D: World Settlement Footprint 3D,
::::
LAI:

::::
Leaf

::::
Area

::::
Index

MOSAIK Custom OSM LCZ

Data sources Municipality data

Sentinel-2

OSM

Municipality data OSM

NASA Earth DEM

WSF3D

Global LCZ

NASA Earth DEM

WSF3D

Source format Vector and raster data shape, .xyz, .txt, .jp2 XML, shape geoTIFF

Target format netCDF shape geojson geoTIFF

Source CRS Various/Unknown EPSG: 25833 EPSG:4326 EPSG: 4326

Target CRS EPSG: 25833 EPSG: 25833 EPSG: 25833 EPSG: 25833

Time period Last updated 2019 2021-2024 Last updated Jun 2024 Last updated Oct 2023

Strengths • tree patch LAI

• tree patch heights

• single trees

• bridges

• high-res DEM

• detailed street types

• detailed building types

• tree patch heights

• exact building footprints

• detailed building types

• high-res DEM

• correct construction sites

• open source

• globally available

• exact building footprints

• open source

• globally available

• ideal for coarse grids

Weaknesses • large building footprints

• overestimated vegetation

• no tree LAI

• few street types

• no tree LAI

• no tree heights

• sparse building heights

• few building types

• lacking vegetation areas

• low-res DEM

• no exact shapes of build-

ings, streets, water, vegeta-

tion etc

• no tree LAI

• no tree heights

• low-res DEM
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2.2.3 Open Street Maps205

Input data for PALM-4U
:::::
PALM

:
can also be created using open-source, globally available datasets. One such dataset is

OpenStreetMap (OSM )
::::
OSM

:
(OpenStreetMap contributors, 2024). It contains surface classifications, building footprintswith

occasional building height information, and other features such as ,
::::::::
building

::::::
heights

:::
and

:
trees. Data quality varies by region,

but for European cities, it is relatively high.
:::
For

:::::
more

::::::::::
information

::
on

:::
the

::::::::::::
completeness

::
of

:::::::
building

::::
data

::
in

:::::
OSM

:::
we

:::::
refer

::
to

::::::::::::::::
Herfort et al. (2023)

:
.210

OSM has an open API that allows anyone to request data and, in theory, filter
::::::
filtering

:
data on the server side to reduce

the amount of data received from OSM. Experience
:::::::
However,

::::::::::
experience has shown that attributes and information that can

help specify the PALM-4U surface classification of an OSM object
:::::::::
requesting

:::
the

:::::
entire

:::::
OSM

:::::
chunk

:::::
yields

:::
the

:::::
most

:::::::
detailed

:::::::
datasets,

:::::::
because

:::::
useful

::::::::::
information

:
can be found in any group and definition provided by OSM. This means that requesting

the entire OSM chunk yields the most detailed datasets.215

A Python package called OSM2PALM (Stadler, 2024a) has been developed to request and process OSM data. It primarily

uses lookup tables defined by Heldens et al. (2020), with minor adjustments to existing tables and new value pairs for previously

unused OSM attributes. Continuous efforts are made to search for and identify unused OSM surface classifications that can be

reasonably translated to PALM-4U
::::::
PALM surface types.

One caveat
::::::::
advantage of OSM data is that it can be quite rich in data outside of cities, where

::
its

:::::::
detailed

:::::::::::
representation

:::
of220

::::::
features

:::::::
outside

:::::
cities,

::::::::
including forests, shrubs, small rivers, and other details are defined in a way that fills the domain. Inside

cities
:::
and

:::::
small

::::::
rivers.

::
In

:::::
urban

:::::
areas, building footprints and unique features such as

:::
like

:
swimming pools and parks can be

accurately represented; however,
::
are

:::::::::
accurately

:::::::
depicted,

:::
but

:
surface data is generally lacking in most urban areas. Roads

::::
often

:::::::::
insufficient.

::::::
While

:::::
roads can be estimated and depicted using buffered line datasets, but sidewalks and especially the back and

front
::::::::::
information

::
on

:::::::::
sidewalks

:::
and

:::
the

::::
front

::::
and

::::
back yards of buildings typically lack surface information

:
is
::::::::
typically

::::::
lacking.225

Additionally, some datasets necessary for PALM-4U are often missing in OSM, including building heights
:::::
Some

::::
data

::::::
needed

::
for

:::::::
PALM,

:::
like

:::::::
building

:
and tree heights. The script allows the user to handle missing data with multiple options. In this case,

building data was used if available, or ,
:::
are

:::::
often

:::::
absent

::
in

::::::
OSM.

:::
The

:::::::
missing

::::
data

:
is
:::::::
handled

::
as

:::::::
follows:

::
If
:::
the

:::::::
building

::::::
height

:
is
::::::::::
unavailable,

:
the number of stories was used to calculate building heights. Otherwise

:
is
::::
used

::
to

:::::::
estimate

::
it
::::
with

:
a
:::::::
constant

:::::
story

::::::
height.

::
If
::::::
neither

:::
the

:::::::
building

::::::
height

:::
nor

:::
the

::::::
number

:::
of

:::::
stories

::
is

:::::
found, a default building height of 20 was assumed. The same230

approach was taken for tree heights , with
:::::
height

::
is

::::::::
assumed

::
by

::::::::::::
OSM2PALM.

::
To

:::
fill

:::::
these

:::::::
missing

:::::::
building

:::::::
heights,

:::
we

::::
used

::
the

::::::
global

:::::::
building

::::::
height

::::
data

::
of

:::
the

::::::
World

:::::::::
Settlement

::::::::
Footprint

:::
3D

:::::::::
(WSF3D)

::::::::
generated

:::
by

:::::::::::::::
Esch et al. (2022).

::::
All

::::::
default

::::::
heights

:::::::::
previously

:::
set

::
by

::::::::::::
OSM2PALM

::::
were

::::::::
replaced

:::
by

:::::
using

:::
the

:::::::
WSF3D

:::::
raster

::::
data

::::::::::
interpolated

:::
on

:::
the

::::::
center

:::::
points

:::
of

::
the

::::::::
building

::::::::
footprints.

::::
This

:::::
way,

:::::
every

:::::::
building

::
in

:::
the

:::::
OSM

::::::
method

::::::
obtains

::
a
:::::::::
reasonable

:::::::
building

::::::
height,

:::::
albeit

::::
with

:::::::
varying

:::::::
accuracy.

::::
For

::::
trees

::::
with

:::::::
missing

:::::::
heights,

:
a
::::::
default

::
of

:
12m as a fallback option

:
is

::::
used.235

The general workflow of the OSM2PALM script can be seen in Figure 3. All
:
It
::::::
begins

:::
by

:::::::::
requesting

::
all

:
data from OSMis

requested, converted ,
:::::::::
converting

::
it
:
into a UTM coordinate system , and then split

:::
and

::::::::
grouping

::
it into three categories:

multipolygons, line data , and points.
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Workflow of conversion from OSM data to PALM-4U input data.

Multipolygons and points are translated according to a lookup table. Single values from an attribute or information from the240

other_tags attribute are used to define the PALM-4U surface type as well as the valueof the surface type.

:::::
PALM

:::::::
surface

:::
type

::::
and

::
its

:::::
value.

:
Line data requires further processing, such as

::::::::
including buffering, dissolving, and creating

a difference. Typical line data
:::::::::
differences;

::::::
typical

::::::::
examples

:
includes roads, train tracks, or

:::
and small rivers. Finally, all datasets

are merged and saved as a GeoJSON file.

Figure 3.
:::::::
Workflow

::
of
:::::::::
conversion

::::
from

::::
OSM

:::
data

::
to
::::::
PALM

::::
input

::::
data.

2.2.4 Local Climate Zones245

This dataset for the static driver is obtained using our tool “LCZ4PALM”. It is a novel feature incorporated into SanDyPALM

to create a static driver using the global LCZ map provided by Demuzere et al. (2022). PALM-4U
:::::
PALM

:
requires a detailed

description of urban and rural neighborhoods for accurate microclimate modeling and analysis. Unfortunately, this information

is neither readily available nor easily accessible for every region in the world, which severely limits the ability to perform mi-

croclimatic studies. The static data is usually obtained from multiple sources and involves extensive preprocessing, as outlined250

in the previous sections. This problem is addressed with the help of globally available LCZ maps. LCZs are defined by Stewart
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and Oke (2012) as “regions of uniform surface cover, structure, material, and human activity that span hundreds of meters to

several kilometers in horizontal scale.” LCZ is the most popular landscape classification scheme and is widely used in climate

simulations and related studies. It mainly focuses on the classification of urban and rural landscapes (17 classes - 10 built

classes and 7 natural classes) based on surface characteristics such as building packing densities, aspect ratio, building or tree255

height, sky view factor, surface albedo, anthropogenic heat emissions, and so on. This makes them highly suitable for urban

microclimatic studies, typically investigations of the urban heat island effect.

Demuzere et al. (2022) generated a global map of LCZs at a 100m resolution by training a random forest model using a large

labeled dataset. In our tool, these LCZ maps are first reprojected onto the PALM-4U
:::::
PALM

:
simulation domain, and the LCZs

corresponding to the intended simulation region are extracted. Then, for each LCZ tile, geospatial inputs (buildings, vegetation,260

water bodies) that conform to the LCZ definitions are generated in a systematic approach, as shown in Figure 5. Using this

method, we construct an idealized city with buildings, vegetation, and pavements, which can be used as an alternative for

realistic domains. This approach is mainly suitable for coarse grids
::::
with

:
a
::::
grid

::::::
spacing

:::::
above

:::
10m, either for parent domains in

nested setups or generic LCZ studies of large areas where coarse grids are needed to limit computational effort. The problem is

that at low resolutions, realistic buildings, trees, and pavements are often either overestimated or underestimated. For example,265

narrow streets may disappear, while wider streets are stretched to fit the entire grid cell. The same applies to buildings and

vegetation. This leads to unrealistic inputs that negatively impact simulation accuracy. The virtual city created by LCZ4PALM

may not be accurate in its details, but it represents the urban morphology on average.

The process is shown in Figure 4. The LCZ4PALM module requires several inputs, including an LCZ map that covers the

desired region, a mapping of PALM-4U
:::::
PALM

:
type probabilities to LCZ classes (building types, pavement types, vegeta-270

tion types, and vegetation properties), the LCZ definitions, and, optionally, a global building height dataset. The mapping of

PALM-4U
:::::
PALM

:
type probabilities is not directly available and needs to be derived from another data source. In this study,

we performed an exemplary analysis using a 30 km by 30 km region around Berlin from the MOSAIK dataset by Heldens

et al. (2020) to generate this data. For each LCZ class, the probability of occurrence of all PALM-4U
:::::
PALM

:
types was de-

rived. The resulting mapping was saved in a JSON file and is valid for Berlin and cities similar in urban morphology. The275

LCZ definitions used in this study were provided by Stewart and Oke (2012). For each LCZ class, they specify a range for

surface fractions, which include building surface fraction (BSF), pervious surface fraction (PSF), impervious surface fraction

(ISF), aspect ratio, and building height. To achieve more accurate building heights, we used the global building height data “
::
of

WSF3D ” generated by Esch et al. (2022)
:::::::::::::::
(Esch et al., 2022). Alternatively, random building heights within the LCZ range can

be used. Before generating the static driver, the input data undergoes several preprocessing steps. Initially, the global LCZ map280

is projected onto the PALM-4U
::::::
PALM grid using a resolution specified by the user. Next, it is resampled onto an LCZ grid

with a resolution of at least 100m using a custom grid-resampling technique. This technique assigns the LCZ value with the

highest occurrence to the grid cell. Finally, once the LCZ grid is prepared, the code generates the geospatial information for

each LCZ tile.

The approach of generating a virtual urban neighborhood from LCZ classes is illustrated in Figure 5. The grid cell size is285

20m in this case. The virtual city is created in blocks of 100m by 100m, and for each of these blocks, a dominant LCZ class

12



Figure 4. Process diagram of the LCZ4PALM algorithm.

is assigned and urban surfaces are generated, while different functions are used depending on the LCZ class. For built types

ranging from LCZ 1 to 10, building, pavement, and vegetation tiles are created. One row and one column of pavement tiles are

always allocated in the southern and eastern borders. The available length and width of the buildings are utilized to compute

the maximum number of buildings that can be accommodated without violating the LCZ class specification. This information290

is then used to determine the potential configurations of aligned arrays of cuboidal buildings. For instance, this could involve

arrangements such as 2x3 or 2x1 building tiles, among others. From the various possible configurations, one configuration is

chosen randomly, provided that it satisfies four conditions. These conditions include ensuring that the building surface fraction,

total length and total width of buildings, and the length-to-width ratio of the buildings all meet the requirements of the LCZ

class. The building surface fraction condition is determined based on the LCZ definitions and must fall within a specified range295

of minimum and maximum values. Furthermore, the total width and length of the buildings and streets should be smaller than

the total width and length possible for the given tile. To prevent the presence of long and slender buildings in the domain, a

maximum length-to-width ratio of 4 is enforced. Once all of these conditions are met, the building array is generated for the

LCZ grid.
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Figure 5. Creation of geospatial input data for the PALM-4U
::::

PALM
:
model using LCZ4PALM with global LCZ maps.

The subsequent step involves creating vegetation around the buildings up to a randomly determined limit within the per-300

missible range. The remaining tiles that are not part of the buildings are designated as vegetation tiles until the criteria for the

pervious surface fraction are met. Once the vegetation tiles are marked, each tile needs to be assigned a vegetation type, for

which the corresponding vegetation properties can be further defined. This is accomplished using the data obtained from the

PALM-4U
:::::
PALM

:
type probabilities per LCZ discussed earlier, which includes the vegetation type along with its probability

of occurrence. For each vegetation tile, a vegetation type is randomly sampled based on its given probability and assigned305

to the tile. The vegetation types can be categorized as either high or low, depending on the characteristics of the vegetation

present. In the case of a high vegetation type (4, 5, 6, 7, 17, or 18), additional information such as tree patch height and leaf

area index (LAI) is required. The PALM-4U
:::::
PALM

:
type probability mapping also contains the mean and standard deviation

of tree heights in the Berlin region for each vegetation type within each LCZ. Using this information, the tree patch height is

calculated from a random normal distribution.310

After creating the vegetation, the remaining tiles are utilized to create impervious surface elements (streets and pavements).

Building types and pavement types are assigned to the corresponding tiles in a manner similar to that of vegetation types.

For land cover types ranging from LCZ 11 to 16, the creation of vegetation and pavement tiles follows the same process as

explained earlier. However, in this case, there are no buildings present. Therefore, only the criteria for pervious and impervious
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surface fractions are satisfied. For water (LCZ 17), water tiles are currently created using a default type 4, which corresponds315

to ponds. However, this type can also be modified to a user-defined type based on the domain. All of the data needed for static

driver generation are saved as GeoTIFF files for later processing into a static driver using SanDyPALM.

2.3 SanDyPALM package

The new open-source repository SanDyPALM consolidates our efforts to create static and dynamic drivers for PALM-4U

:::::
PALM

:
using Python code.

:
It
::
is
::
a

::::::::
collection

::
of

:::::::
steering

::::::
scripts

::::
and

::::::::
functions

:::
that

:::
are

::::::::
intended

::
to

:::
run

::
in

:::
the

:::::::::
command

:::
line

:::
or320

::
in

::
an

::::::::
integrated

:::::::::::
development

:::::::::::
environment

:::::
(IDE).

:
The majority of the static driver generation code originates from the PALM-

4U GUI (Winkler et al., 2023), while the WRF dynamic driver code has been developed and utilized by Vogel et al. (2022).

SanDyPALM is a package that can generate all necessary input data for a WRF-driven microscale simulation setup. However,

it can also be used to create only a static driver for unforced PALM-4U simulations . The package
::::::
PALM

::::::::::
simulations

::
or

:::
for

:::::::::
combining

:
it
::::
with

::
a
:::::::
different

::::::::
dynamic

:::::
driver

:::::
tool.

::::
Also,

::
it
::::
can

::
be

::::
used

:::
to

::::
only

:::::
create

::
a

:::::::
dynamic

:::::
driver

:::
for

:::
an

:::::::
existing

:::::
static325

:::::
driver.

::::
The

::::
static

::::
and

:::::::
dynamic

::::::
drivers

:::
are

::::::
created

:::::::::
according

::
to

:::
the

:::::
PIDS

:::::::::::::::::::::::::::::::::
(PALM model system developers, 2025a)

:
.

:::::::::::
SanDyPALM comes with a default configuration and a set of tutorials

:::::
tutorial

::::::
scripts

:
that explain the basic setup and guide

the user through the complete process of creating a static driver from various geographic data sources, as well as creating

a dynamic driver using WRF data. Further tutorials provide basic plotting of results and conversion of input data between

netCDF, GeoTIFF, and vector formats. In addition to tutorials, we also included example case files, where each script directs330

one complete generation process. All our PALM-4U
:::::
PALM

:
setups are nested cases and relatively small, allowing them to be

run without HPC
:::
high

:::::::::::
performance

:::::::::
computing. The configuration always starts from a predefined default configuration that is

modified in a tutorial or case file. The final configuration is always saved together with the static and dynamic drivers to enable

the user to retrace the settings with which the drivers were generated. SanDyPALM encourages users to work in projects, where

each project contains all generated data, configuration parameters, and generated plots.335

SanDyPALM also facilitates nesting and grid setup . There are separate functions that generate the PALM-4U grid and

transfer it into a geographic projection
::
by

:::::::
offering

:
a
::::::
simple

:::
and

::::::::::
independent

:::::::
function

::
to

:::::::
generate

:::
the

::::::
PALM

::::
grid

:::::::
positions

::::::
before

:::::::::
performing

:::
any

::::::::::::::
time-consuming

::::::::::
processing.

:::
The

::::
grid

::::::::
positions

:::
are

::::
first

::::::::
generated

:::
as

::::
local

::::::::::
coordinates

:::
and

::::
then

:::::::::::
transformed

:::
into

:::
the

:::::::::::
user-specified

::::::::::
geographic

::::::::
coordinate

::::::::
reference

::::::
system. All nested domains can be plotted together on an OpenStreetMap

::::
OSM

:
to inspect their sizes and positioning. The grid dimensions, especially the

:::::
extent

::
in

:::
the

::::
three

:::::::::::
dimensions,

::
as

::::
well

::
as

:::
all340

vertical grid levels ,
:::
and

::::::::::
thicknesses are printed to the terminalto adjust the .

::::
This

::::::
allows

:::
the

::::
user

::
to

::::::
quickly

::::
test

:::::::
different

::::
grid

::::::
settings

:::
and

::::::::
optimize

:::
the

::::::
vertical

:
grid spacing and vertical stretching parameters.

Once the domains are finished, open data can be automatically downloaded from several available data sources. There is an

interface to OSM2PALM (the code for OSM2PALM needs to be downloaded separately) that can be used to download OSM

data for the given extent of the largest domain. Another interface allows downloading the ASTER Global Digital Elevation345

Model V003 with a resolution of 30m from NASA Earth Science data (ASTER Science Team, 2019) using the Python package

earthaccess in the background. The data is freely available but requires registration. SanDyPALM provides an HTTP interface

to download other needed files into an appropriate data folder. In our tutorials, the global LCZ map (Demuzere et al., 2023) and
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the World Settlement Footprint 3D (WSF3D )
:::::::
building

::::::
heights

:
(Esch et al., 2022) are automatically downloaded, if desired.

The LCZ map is needed for the LCZ4PALM module, and the WSF3D map can be used in both LCZ4PALM and OSM2PALM350

to provide approximate building height information for better accuracy.

2.3.1 Static Driver Generation

The static driver contains the physical representation of the
::::::::
represents

::
a domain in a Cartesian grid using raster data. All data

fields are at least 2D, meaning they contain information for each grid point in the x and y directions. For 3D fields, the third

dimension is either the z-coordinate or a dimension that accesses predefined parameterizations for some 2D datasets. The 2D355

variables typically describe the surface of the model or the topography
:
A
:::::::::

definition
::
of

:::
all

:::::::
possible

:::::
input

::::
data

:::::
fields

::
is

:::::
given

::
in

:::
the

::::
PIDS

::::::::::::::::::::::::::::::::::
(PALM model system developers, 2025a). Depending on the application of PALM-4U

:::::
PALM, the mandatory data

fields in the static driver vary; for example, in the case of boundary layer studies, only the roughness length of the surface is

needed. For an urban simulation, much more information is required, such as surface classifications, topography, and building

positions and heights. PALM-4U
::::::
PALM uses four major surface classifications: vegetation, pavement, water, and buildings,360

each with sets of predefined physical parameters, such as roughness for heat and momentum or albedo. For each pixel
:::
grid

:::
tile in the domain, these parameters can also be adjusted from the predefined values. There are two major 3D datasets that

interact in the atmosphere: the 3D buildings dataset and leaf area density (LAD). The 3D buildings data define a grid of ones

and zeros, where ones represent building grid points and zeros represent atmospheric grid points. These data can be used to

model overhangs, gates, or bridges. The LAD dataset is used to model the 3D influence of trees, which interact with radiation365

and humidity in the atmosphere and act as a momentum sink. The PALM-4U Input Data Standard (PIDS) defines how these

datasets, as well as further metadata, need to be stored in a netCDF file.

SanDyPALM is able to create a static driver that follows the PIDS requirements and performs further processing for certain

datasets or according to the settings of SanDyPALM. A major feature of SanDyPALM is the support for multiple types of

geospatial data. Typically, geospatial data is either vector data using polygons (i.e., surfaces, lines, and points) or raster data370

using a grid format. SanDyPALM can read any shapefile format,
::::
many

::::::
vector

::::::
formats

::::::
(shape,

:::::::
geojson,

::::::
sqlite,

:::::::::::
geopackage),

:::
the

GeoTIFF format, or the netCDF datasets specifically defined within the MOSAIK project (Heldens et al., 2020). The data is

then rastered or resampled onto the grid defined by the user and written to the static driver. Each input file needs to be assigned

to a surface classification of PALM-4U
::::::
PALM or set predefined names for processing. Depending on the input file type, further

information and settings must be provided. The static driver generation method is visualized in the flow chart in Figure 6.375

Shapefiles are converted into raster datasets via the rasterize function of the GDAL Python package. Besides the domain

definition, this function also requires the attribute that is to be rastered. Optional inputs include an attribute filter as well as a

rasterization parameter that specifies when grid tiles are considered inside or outside of a polygon that is to be rastered (“all

touched”).

GeoTIFF files are resampled onto the defined grid via the “warp” function of GDAL. Typically, the raster band of the desired380

dataset should be specified; otherwise, SanDyPALM takes the first band
::
(0)

:
by default. If the resolution of the dataset differs

from the target resolution of the static driver, a resampling or aggregation algorithm can be defined in the GDAL “warp”
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Figure 6. SanDyPALM static driver generation flowchart.

17



function. The resampling algorithm needs to be chosen wisely based on the type of data and whether the data is up- or down-

sampled.

The netCDF data that came from the MOSAIK project do not have their geo-referencing inside each data file; instead,385

additional files are needed that specify the x and y coordinates in a UTM coordinate system. SanDyPALM reads the data files

as well as the coordinate files and first creates geo-referenced GeoTIFF files; then they can be resampled using GDAL tools

similar to the GeoTiff files.

For an overview on the supported file types and additional inputs, see Table ??.

Overview of supported file types and additional input parameters in SanDyPALM. Shape GeoTIFF netCDF File types390

shape, geojson, sqlite, geopackage geoTIFF netCDF Mandatory input attribute band (defaults to 0) variable name Optional

input attribute_filter, all_touched resampling algorithm resampling algorithm

For the urban surface parameterizations, it is expected that the provided data is already translated into the PALM-4U
::::::
PALM

surface types with the corresponding sub-types. Data for these parameters is converted to the grid and then saved directly onto

the appropriate PALM-4U
:::::
PALM

:
variable. Level of detail 2 (LOD2) parameters, such as roughness length of vegetation, can395

also be adjusted from 2D input files in a separate sub-dictionary of the configuration. The position of the 2D slice inside the

3D dataset must be provided as additional input.

SanDyPALM uses
:::::::
Resolved

:::::::::
vegetation

:::
can

:::
be

:::::::::::
implemented

:
in
:::
the

:::::
static

:::::
driver

:::::
using

:
a
:::
3D

:::::
LAD

::::
field.

:::::
There

:::
are

:::
two

::::::::
common

:::::::
methods

::
to

::::::
resolve

:::::
trees:

:::
1)

:::::
Single

:::::
trees

:::
are

:::::::
resolved

::
as

:::
3D

:::::::
shapes,

:::
and

:::
2)

::::::
Groups

::
of
:::::

trees
:::
are

:::::::
modeled

:::::
using

:::::::
vertical

:::::
LAD

::::::
profiles.

:::::::::
Currently,

::::
only

:::
the

::::::
second

:::::::
method

:
is
:::::::::::
implemented

::
in

::::::::::::
SanDyPALM

::::::::
following a similar approach for vegetation as the400

static driver generation software
::
as

::
in

:::
the

::::
tool

:
“palm_csd, which is shipped with the PALM-4U model, where the leaf area

density (LAD ) of larger groups of trees is treated as a tree patch. We use the
::
”.

::::::::
However,

:::::::::::
SanDyPALM

:::::::
features

:
a
::::
new

:::::::
discrete

:::
tree

::::::
canopy

:::::::::
generator,

:::::
which

::::::
asserts

:::
that

:::
the

:::::::
integral

::
of

:::
the

:::::
LAD

:::::
profile

::
is
::::::
exactly

:::
the

::::
LAI

:::::
value

::
of

:::
the

::::
grid

:::
tile.

:

:::
The

:
leaf area distribution

:
is
:::::::
defined according to Markkanen et al. (2003) , given by

::
in equation (1), which is a probability

density function; therefore, we define this as normalized (denoted by the overline) LAD:405

LAD
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This equation is then discretized on the PALM-4U
::::::
PALM grid, replacing the integral with a summation over the vertical grid

cells, which leads to the discretized version (denoted by the asterisk) of the normalized LAD profile given in equation (2):
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h∗

)α−1 (
1− zi

h∗

)β−1
)

∆z
h∗

(2)

Here, zi are the heights of the grid cell centers (above ground) and h∗ is the discretized tree height of the current grid tile.410

The discretized tree height is calculated for each grid tile by rounding the tree height to the nearest staggered vertical position

zw (defined for vertical velocity) of the PALM-4U
::::::
PALM grid. We use these grid positions because they are also the vertical

grid cell faces (or boundaries) of the non-staggered grid cells.
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The discretized non-normalized LAD profile LAD∗ is then obtained by multiplying by the leaf area index (LAI )
:::
LAI

:
and

dividing by the discretized tree height h∗ using equation (3):415

LAD∗ =
LAI

h∗ LAD
∗

(3)

This equation is applied to every grid cell of the PALM-4U
:::::
PALM

:
domain. The formulation is fully conservative; if we

integrate over all LAD values on top of one grid tile, we exactly obtain the LAI value of that grid tile. A check is in place to

ensure that this is always the case.

While the tree height is a mandatory input for SanDyPALM, the LAI and α parameters can be obtained from a predefined420

default value if no appropriate data fields are available. The default LAI value can also be automatically scaled by tree height.

Therefore, instead of using one default value for all trees, we define a default value for LAI
h . From that, a more appropriate

default LAI value can be derived for different tree heights. A typical default value would be LAI
h = 0.2, which means that a

tree of 5m height would have a default LAI value of 1, and a tree of 25m height would have a default LAI value of 5. For these

default LAI values, the LAD is still calculated using equation (3). While this procedure is not highly accurate, it is superior to425

simply specifying one default LAI value.

We also implemented two different filtering strategies for LAI data fields after encountering relatively high LAI values. The

first method limits the value of LAI
h to a threshold of, for example, 0.2. As a result, for each grid cell, the value of LAI is

reduced so that LAI
h ≤ 0.2. Alternatively (or additionally), we can check the final values of the 3D field of LAD∗ and limit

them to a certain value, e.g., 0.1.430

SanDyPALM creates the 3D buildings data from the 2D buildings data, primarily for visualization purposes, since the

PALM-4U
::::::
PALM model itself constructs the 3D buildings data. However, to be able to add custom buildings into the 3D

buildings data, we need to create the 3D buildings data beforehand. If the height of the custom building exceeds the height of

all other buildings in the domain, we can set a user-defined maximum height for the 3D buildings data field to ensure there

is enough space in the data field to add the building. This enables us to add specific buildings at a later stage after creating435

the static driver. For example, we used this procedure to add a custom model of the Berlin tower (Fernsehturm) in Vogel et al.

(2022).

Another feature of SanDyPALM is that it performs automatic data consistency checks and allows the user to handle incon-

sistencies. These inconsistencies could be grid tiles that have no surface classification assigned (missing data) or grid cells

having multiple classifications (overlapping data). After the initial assignment of surface parameters and building data to the440

static driver, all grid points are checked for missing data, and a default surface classification and value are assigned to these grid

points. Afterwards, all grid points are checked for overlapping data, where a user-defined priority list is applied to decide which

data field is to be kept. The default setting uses the following priority (descending): buildings, water, pavement, vegetation.

A data filter checks for specific values in data fields that can be replaced with a given value. We used this functionality to

replace the building type “0” in the MOSAIK data, which stands for “user-defined,” for which the user would need to specify445

all LOD2 building parameters.
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Another feature in SanDyPALM is to remove buildings at the border of the domain to adhere to typical guidelines for

atmospheric boundary layer studies and to avoid potential discontinuities at the inflow of the domain. Within a defined number

of grid cells from the domain edge, all buildings are automatically removed and replaced by pavement. We can further decide

to remove all grid cells having the same building ID as already removed buildings, so that buildings are not cut into pieces but450

are removed entirely. In a nested setup, it makes sense to use this feature only in the outermost “parent” domain.

The soil type can be provided as a 2D input file, but if it is not available, a default value for the whole domain can be used.

In any case, SanDyPALM handles the correct allocation of the soil type as well as the surface fraction variable. Finally, a

domain-wide constant water temperature can be defined that is then applied to all water bodies in the static driver.

2.3.2 Dynamic Driver Generation455

The dynamic driver generation is the second main component for setting up a realistic urban microscale simulation using

PALM-4U
::::::
PALM. Currently, SanDyPALM supports WRF as the input data source. Using the WRF model has the significant

advantage of allowing a relatively fine horizontal grid spacing on the order of 1 km, and it enables the use of an urban canopy

layer scheme together with an urbanized land use/land cover map, and optionally even average building heights, to better

represent urban effects in the mesoscale forcing. We believe that this leads to significantly improved boundary conditions for460

the PALM-4U
:::::
PALM

:
model. The process of creating the dynamic driver is illustrated in Figure 7.

One novelty of our dynamic driver creation is the handling of mesoscale data below the first model level of the mesoscale

model. Since the data in this region is not available, we need to fill it using reasonable values. As described in Vogel et al.

(2022), our dynamic coupling scheme incorporates a roughness-corrected Monin-Obukhov surface layer representation, which

accounts for the varying roughness of urban surfaces. As mentioned earlier, this scheme is important for WRF setups with465

relatively large vertical grid spacing near the surface, e.g., when using
:::::
which

:::
are

:::::::
typically

:::::
used

:::::::
together

::::
with the single-layer

urban canopy model (SLUCM) or the slab (or bulk) urban model in WRF. When using
::::
With a small vertical grid spacing

near the surface , e.g.,
:
in
::::::

WRF,
:::::
which

::
is
::::::::

typically
:::
the

::::
case

:
when using the multi-layer urban canopy model in WRF (BEP,

BEM
::::::
named

:::::::
building

:::::
effect

::::::::::::::
parameterization

:::::
(BEP), a simple linear interpolation can be used instead

:::
may

:::
be

:::::::
sufficient.

The dynamic driver generation can utilize the building height data in the static driver to derive the urban morphological470

parameters needed in the aforementioned roughness-corrected Monin-Obukhov surface layer representation. Additionally, the

terrain height can be read from the PALM-4U
::::::
PALM static driver to adjust the atmospheric data from WRF to the PALM-4U

:::::
PALM

:
terrain height. To achieve this, the WRF level heights are shifted by the amount that the WRF terrain deviates from

the PALM-4U
::::::
PALM terrain. However, this shifting is limited to the surface so that we do not shift the atmospheric layers

throughout the entire boundary layer. Therefore, we can specify a vertical distance for this transition region. The WRF level475

heights will then be fully shifted at the reference height, which is either the WRF first (half) model level height or a user-defined

reference height to which the WRF data is interpolated. At the specified distance above the reference height, the WRF level

heights will remain untouched. All level heights in between will be linearly shifted. This produces a smooth transition region

and limits the level height shifting to a small area close to the surface. The procedure is illustrated in Figure 8.
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Figure 7. SanDyPALM dynamic driver generation flowchart.

2.4 PALM-4U
::::::
PALM setup480

This section provides a short summary of our most important PALM-4U
::::::
PALM model settings, which include offline nesting,

the choice of grid, the solver, and the setup of the urban physics modules.

We used release 23.04 of the PALM model system from the Institute of Meteorology and Climatology Hannover, which can

be obtained from their code repository (?)
:::::::::::::::::::::::::::::::::
(PALM model system developers, 2025b).

The PALM-4U
:::::
PALM

:
model is forced by mesoscale data using the offline nesting capability. The mesoscale data is the485

result of a WRF downscaling simulation using three nested domains with spatial resolutions of 9 km, 3 km, and 1 km, and a

temporal resolution of 1 h. The WRF model was itself forced by ERA5 global reanalysis data (Hersbach et al., 2018a, b) with a

spatial resolution of 0.25 ° in both latitude and longitude, which at the given latitude equates to approximately 28 km by 17 km,

respectively, and a temporal resolution of 1 h. The WRF mesoscale simulation used here is similar to the setup described in
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Figure 8. Adjustment of WRF mesoscale level heights based on the difference between WRF and PALM-4U
:::::
PALM

:
surface heights, which

account for actual terrain elevation at different horizontal resolutions. The adjustment procedure employs a linear transition region. This

example is illustrative and does not represent the actual level heights utilized in this study.

Vogel et al. (2022), which employed the multi-layer urban canopy model named Building Effect Parameterization (BEP )
::::
BEP490

for urban representation. The dynamic driver was created using the method described in Vogel et al. (2022). The nesting setup

is illustrated in Figure 9.

Figure 9. Nesting setup utilizing ERA5 for global boundary conditions, WRF for mesoscale forcing, and PALM-4U
:::::
PALM as the microscale

model.

The nesting mode of the PALM-4U
:::::
PALM internal grid nesting is set to one-way nesting, meaning the data is only trans-

ferred from the parent to the nest, but the refined results from the nest are not transferred back to the parent. This is the recom-

mended setting. The parent domain has a coarse horizontal grid size of dx= 20m by dy = 20m and an extent of Lx = 3.2km495

by Ly = 3.2km. The
:::
the

:
nested domain has a finer grid size of dx= 5m by dy = 5mand an extent of Lx = 1.6km by
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Ly = 1.6km. The vertical grid size is dz = 5m in both cases; however, in the parent domain, we used vertical grid stretching.

The stretching starts 10m above the nested domain, which has a height of Lz = 640m. Since the urban boundary layer is

approximately at a maximum height of 2045m in our case, this means that the grid stretches throughout the boundary layer;

however, the stretching is very gradual, using a small stretching factor of 1.0183. Although a uniform grid is recommended500

for Large Eddy Simulations (LES), this grid has the advantages of a small vertical grid size at the surface, which allows for

the evaluation of near-surface measurements, a uniform grid transition between the parent and nest near the surface, and a

relatively small vertical grid cell count. Throughout the boundary layer, the vertical grid size increases gradually and reaches

about dz = 30m at the maximum boundary layer height. In the upper damping layer above the urban boundary layer, the grid

size further increases up to dz = 40m at the domain top at z = 3088m. The grid parameters are summarized in Table 2.505

Table 2. Grid specifications in the PALM-4U
:::::
PALM

:
model for the parent domain (using vertical grid stretching) and the nested domain

(without vertical grid stretching).

Grid parameter x−direction y−direction z−direction

Parent

Domain size 3200m 3200m 3088m

Number of grid points 160 160 256

Grid size 20m 20m 5m

Stretching factor - - 1.0183

Starting height - - 650m

Max grid size - - 40m

Nest

Domain size 1600m 1600m 640m

Number of grid points 320 320 128

Grid size 5m 5m 5m

In the last third of the vertical height of the grid, starting at z = 2050m, we employed Rayleigh damping with a damping

factor of 0.1. According to the PALM-4U
::::::
PALM model documentation, this forces horizontal velocities, temperature, and

humidity to their respective mean values provided by the mesoscale model. The damping is weak at the starting height and

increases towards the top. The Rayleigh damping is intended to decrease gravity waves that might otherwise travel unhindered

through the domain and reflect at the top of the domain.510

As the solver for the Poisson equation for perturbation pressure, we used the multigrid method with 2 iterations of the w-

cycle per time step and 2 iterations of the Gauss-Seidel method on each grid level. For the multigrid solver, the number of

grid points needs to follow certain rules to achieve enough grid coarsening levels, and the performance of the solver is optimal

when this number is 5 or higher. In our case, the grid of the parent domain allows for 5 coarsening levels, and the grid of the
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nested domain allows for 6 grid coarsening levels. In the case of parallel computing, these conditions need to hold for each515

partitioned subdomain.

In the urban surface model, the inner temperatures of walls, roofs, and windows are set to 298.15K. To facilitate model

spin-up and reduce atmospheric simulation spin-up time, we employed a wall/soil spin-up with a duration of 24 h and a time

step of 10 s. In the OSM case, a smaller time step was necessary due to a metal surface type with high heat conductivity,

which led to instabilities. The spin-up period corresponds to the 24h interval from 18 July 2022 00:00 to 19 July 2022 00:00520

(CEST), immediately preceding the simulation start time. The PALM-4U
:::::
PALM model performs the wall/soil spin-up with a

sinusoidal atmospheric temperature variation over time, specified by the mean and amplitude of daily temperature variation.

The mean value θspinup = 299.15K and amplitude θ̃spinup = 9.0K for atmospheric temperature during the wall/soil spin-up

were approximately derived from mesoscale model results for the spin-up period.

For global radiation input, we used the “external” setting, where shortwave and longwave downwelling radiation are read525

from the dynamic driver. This approach has the advantage of considering clouds resolved by the mesoscale model in the

radiation input. To resolve radiation within the urban canopy, the radiative transfer model (RTM) is used in PALM-4U
:::::
PALM.

The radiation time step is set to 60 s. In the plant canopy model, the canopy drag coefficient is set to 0.2, and plant canopy

transpiration is enabled. To create dynamic boundary conditions, the offline nesting mode is used. To generate turbulence at

the boundaries, the synthetic turbulence generator
::::::::::::::::::
(Kadasch et al., 2021) is activated with an adjustment time step of 1800 s.530

2.5 Measurement data

For the validation of the different PALM-4U
::::::
PALM model simulation runs, we used measurement data from two different

stations. The locations of the stations are illustrated in Figure 1.

The first station is a weather monitoring tower situated in the garden of the Institute of Ecology at the Technical University

of Berlin (TUB) on Rothenburgstraße (Fenner et al., 2014). The exact coordinates are 52.457232°N, 13.315827°E, and the535

terrain height is 46.5m. The meteorological data generated by the tower is openly available on the website of the Urban

Climate Observatory (UCO) (Scherer et al., 2024). This station is at the center of our inner nested PALM-4U
::::::
PALM domain.

From the many quantities available, we evaluated temperature, humidity, and wind. The available measurement heights are

2m, 5m, 10m, 20m, 30m, and 40m. However, wind speed and direction are only available at heights of 10m to 40m, while

humidity is only available at 2m and 5m. For simplicity, we evaluated only the heights of 5m and 40m for temperature, 5m540

for humidity, and 10m and 40m for wind speed.

The second station is the weather monitoring station “Dahlem” from the “Deutscher Wetterdienst” (DWD), which is located

in the botanical garden in Berlin-Steglitz. The data was obtained from the DWD Open Data-Server (Deutscher Wetterdienst,

2024). The coordinates of this station are 52.4537°N, 13.3017°E, and the terrain height is 51m. This location is only covered

by our outer parent domain. The station features temperature and humidity measurements at a height of 2m and wind speed545

measurements at a height of 36m.
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3 Results and discussion

In this study, we present a novel method for generating static and dynamic drivers for the PALM-4U
:::::
PALM

:
model, with an

emphasis on static geographic data. Our results focus on two primary aspects: the impact of using various data sources to create

static drivers and the subsequent effects on the PALM-4U
::::::
PALM simulation outcomes. To achieve this, we compared the most550

relevant static driver variables from our four approaches, both visually and statistically. Additionally, we evaluated how the use

of different static drivers influences PALM-4U
::::::
PALM simulations by running simulations for each case and comparing them

against measurements and one another. This comparison is crucial for understanding the implications of data source selection

on simulation accuracy and reliability.

3.1 Comparison of static drivers555

Referencing Figure 2, it is evident that the input data sources differ substantially in their representation of building footprints,

vegetation, and pavement. We further investigate these variations in the final processed static drivers, focusing on the most

significant variables. The static driver variables are categorized into continuous and categorical types. For continuous variables,

we examined terrain height (Figure 10), building height (Figure 11), tree height (Figure 12), and Leaf Area Index (LAI)

(Figure 13). For categorical variables, we evaluated building type (Figure 14), vegetation type (Figure 15), and pavement type560

(Figure 16).

In addition to qualitative differences, a quantitative comparison containing several statistics was performed. For continuous

variables, statistics (mean, standard deviation, minimum, and maximum) were calculated over the valid grid tiles only (ex-

cluding no-data values); the results are shown in Table 3. For categorical variables, the distribution of the observed types was

calculated as a percentage of the total number of grid tiles (including no-data values); the results are given in Table 4. Types565

that do not occur are omitted in the table. To identify the valid types of a variable, we refer to the figure of the specific type for

a legend connecting the type number to a text description. The table also lists no-data values to compare the number of grid

cells lacking specific types. Calculations were performed separately for parent and nested domains.

For terrain height,
::
see

::::::
Figure

:::
10, despite the four cases, there are only two main data sources: the terrain height for MOSAIK

and Custom originates from municipal data, while OSM and LCZ utilize a remotely sensed Digital Elevation Model (DEM).570

The MOSAIK terrain height was slightly post-processed, resulting in negligible differences from the municipal terrain height.

The terrain height presented here is relative to the origin of the z-coordinate (originz) of the parent domain, with originz ≈
32m for MOSAIK and Custom, and originz ≈ 26m for OSM and LCZ. The remotely sensed DEMs (OSM and LCZ) exhibit

higher average and maximum values compared to the municipal DEMs (MOSAIK and Custom). Additionally, the remote

sensing DEMs (OSM and LCZ) have a larger range of values, are generally noisier, and lack the detail found in the municipal575

DEMs (MOSAIK and Custom).

Regarding building height,
:::::
shown

::
in

::::::
Figure

:::
11, the MOSAIK data shows larger building footprints compared to the Custom

and OSM cases. All three datasets struggle to resolve building footprints at the coarser scale of the parent domain. The LCZ

method does not accurately capture the exact building footprints at either scale but maintains consistency across them. Building
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Figure 10. Comparison of terrain height for the different static drivers.

heights are similar in MOSAIK and Custom, while OSM and LCZ exhibit comparable heights. OSM combines available580

heights with WSF3D data, which can result in occasional anomalies due to gaps filled by WSF3D data. In contrast, LCZ relies

solely on WSF3D, leading to more consistent building heights.

Tree heights vary significantly across the datasets,
:::
see

::::::
Figure

::
12. MOSAIK features extensive tree cover, while Custom has

fewer trees. OSM includes only individual trees with no tree patches, and LCZ shows sparse tree coverage. Generally, tree

heights in MOSAIK are larger than those in Custom, although there are regions where the reverse is true. OSM lacks specific585

tree height data, so default constant heights were used. In contrast, LCZ tree heights align with those in MOSAIK, as their

distribution was derived from the same data source.

For
:::
the

:
tree Leaf Area Index (LAI),

:::::
which

::
is

::::::
shown

::
in

::::::
Figure

:::
13,

:::
the

:::::
cases

:
MOSAIK, Custom, and LCZ exhibit similar

values due to the LAI limiting process during SanDyPALM processing. The original LAI values in MOSAIK were significantly

higher, requiring moderation to prevent excessive humidity spikes near vegetation. The variation in LAI for Custom arises from590

height-dependent default calculations. In contrast, OSM shows no variation in tree LAI; due to the absence of values for both

tree LAI and tree height, constant default values are assumed for both.

Building types across the datasets show notable variations
:
,
::
as

:::
can

:::
be

::::
seen

::
in

::::::
Figure

::
14. Predominantly, buildings are classi-

fied as types 1, 2, 4, and 5 (Residential and Office before 2000), with types 3 and 6 (Residential and Office after 2000) being
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Figure 11. Comparison of building height for the different static drivers.
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Figure 12. Comparison of tree height for the different static drivers.
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Figure 13. Comparison of leaf area index (LAI) for the different static drivers.
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Figure 14. Comparison of building type for the different static drivers.

30



Figure 15. Comparison of vegetation type for the different static drivers.
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Figure 16. Comparison of pavement type for the different static drivers.
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Table 3. Comparison of Static Drivers showing the statistics mean, standard deviation, minimum and maximum for continuous variables

terrain height, building height, tree height and tree LAI.

Variable MOSAIK Custom OSM LCZ

parent nest parent nest parent nest parent nest

Terrain height / m mean 14.0 14.5 14.0 14.6 25.3 26.6 25.3 26.6

std 5.4 6.1 5.4 6.1 6.9 7.3 6.9 7.3

min 0.0 3.5 0.0 3.6 0.0 7.0 0.0 7.0

max 37.0 37.2 37.1 37.4 52.0 52.0 52.0 52.0

Building height / m mean 14.4 15.0 14.6 15.3 11.9 12.1 12.1 13.4

std 6.4 7.4 6.1 7.3 5.9 5.9 7.9 9.2

min 2.5 2.5 2.5 2.5 2.5 2.5 3.0 3.0

max 118.7 118.7 114.6 115.8 107.3 61.9 109.4 109.4

Tree height / m mean 10.2 10.6 11.4 11.8 12.0 12.0 15.0 15.7

std 4.8 5.0 3.7 3.8 0.0 0.0 6.1 5.9

min 2.5 2.5 2.5 2.6 12.0 12.0 3.0 3.0

max 31.0 33.0 28.3 41.4 12.0 12.0 31.8 30.7

Tree LAI / m2m−2 mean 0.7 0.7 0.4 0.4 0.4 0.1 0.1 0.1

std 0.9 1.0 0.8 0.8 0.7 0.4 0.5 0.6

min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

max 4.7 4.9 4.2 6.2 1.8 1.8 4.8 4.6

rare. The Custom data, sourced directly from the municipality, emphasizes type 1 (Residential before 1950) and type 4 (Office595

before 1950), while types 2 and 5 are less common. In contrast, the MOSAIK data, also based on municipal sources but further

post-processed, shows a significantly higher occurrence of type 5 compared to Custom, nearly matching type 4. Occasionally,

buildings classified as office in MOSAIK are categorized as residential in Custom, and vice versa. OSM data predominantly

features residential buildings, while LCZ data closely resembles MOSAIK data, as its type probabilities were derived from it.

Overall, building type classifications exhibit significant variability across the different approaches.600

Vegetation types
:
,
:::
see

::::::
Figure

:::
15,

::::
have

:::::::
distinct

::::::::
variations

:
across the datasetsshow distinct differences

:
,
::
as

::::
well. The highest

vegetation amount is in the MOSAIK case, followed by LCZ and Custom, with OSM data having the sparsest vegetation. The

dominant type across all cases is type 3 (short grass). The LCZ case also includes significant amounts of type 1 (bare soil) and

type 2 (crops), while MOSAIK only includes type 2 (crops) in the parent domain. The type distribution for LCZ was derived

from MOSAIK data for the entire city boundary of Berlin, explaining the distribution differences. In the OSM case, a small605

amount of type 1 (bare soil) and a significant amount of type 2 (crops) are found in the parent domain. Both Custom and LCZ

contain some type 8 (tall grass). A similar amount of type 15 (evergreen shrubs) is found in both MOSAIK and LCZ, while
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Table 4. Comparison of Static Drivers showing the percentage distribution of observed types for the categorical variables building type,

vegetation type and pavement type.

Variable MOSAIK Custom OSM LCZ

parent nest parent nest parent nest parent nest

Building type / % no-data 69.2 63.0 80.9 77.1 80.5 76.1 71.6 66.2

1 17.3 19.7 10.5 12.2 0.0 0.0 8.7 13.1

2 6.0 8.5 2.8 2.6 18.8 22.5 11.9 12.6

3 0.0 0.0 0.3 0.2 0.0 0.0 0.0 0.0

4 3.0 4.7 4.8 7.2 0. 0. 1.1 1.5

5 4.5 4.3 0.6 0.8 0.7 1.5 6.6 6.6

6 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0

Vegetation type / % no-data 61.9 64.2 73.9 74.2 89.3 89.6 69.7 70.6

1 0.0 0.0 0.3 0.0 0.3 0.0 2.6 1.8

2 2.6 0.0 0.0 0.0 2.0 0.6 1.1 1.2

3 32.3 31.9 24.7 24.8 7.4 8.5 22.8 21.8

8 0.0 0.0 1.1 1.1 0.0 0.0 0.5 0.6

14 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3

15 1.3 1.8 0.0 0.0 0.0 0.0 2.1 2.6

16 1.8 2.2 0.0 0.0 1.0 1.3 1.1 1.2

Pavement type / % no-data 69.6 73.4 45.8 49.2 30.8 34.8 58.7 63.2

1 0.0 0.0 49.7 48.2 1.2 1.1 0.0 0.0

2 21.8 16.9 2.6 0.2 52.0 46.4 40.6 36.0

3 0.0 0.1 0.0 0.0 0.1 0.2 0.1 0.1

4 0.6 0.6 0.0 0.0 3.2 3.8 0.1 0.1

5 4.3 5.0 0.0 0.0 10.5 11.0 0.3 0.3

6 3.6 3.9 0.0 0.0 0.2 0.3 0.3 0.3

7 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0

9 0.1 0.1 0.4 0.7 0.3 0.5 0.0 0.0

10 0.0 0.0 1.0 1.7 1.3 1.4 0.0 0.0

13 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0

14 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0

15 0.0 0.0 0.1 0.0 0.2 0.2 0.0 0.0
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type 16 (deciduous shrubs) is present in MOSAIK, OSM, and LCZ but absent in Custom. Overall, the amount and distribution

of vegetation vary significantly among the four cases.

Pavement typeshows significant variability
:
,
::
as

::::::
shown

::
in

:::::
Figure

:::
16,

:::::
varies

:::
as

:::
well

:::::::::::
significantly across the datasets. MOSAIK610

has sparse pavement coverage (26.6 – 30.4 %), while Custom (50.8 – 54.2 %) and OSM (65.2 – 69.2 %) likely overestimate

pavement. LCZ falls in between (36.8 – 41.3 %) but remains higher than MOSAIK. The dominant pavement types differ:

type 2 is prevalent in MOSAIK, OSM, and LCZ, while type 1 is dominant in Custom. MOSAIK includes significant amounts

of types 5 and 6 (paving stones and cobblestone), OSM shows types 4 and 5 (sett and paving stones), and both Custom and

OSM contain some type 10 (fine gravel). Only OSM includes type 7 (metal), which caused issues during the PALM-4U
::::::
PALM615

wall/soil spin-up due to high heat conductivity, resolved by using a smaller time step. Other types are sparse. Overall, the

amount and type of pavement vary significantly among the cases.

We found that the MOSAIK case tends to overestimate building footprints and vegetation, while the OSM and Custom

cases generally underestimate vegetation. The overestimation in MOSAIK likely results from the “all-touched” rasterization

technique, which rasters all grid tiles touched by a vector polygon. Additionally, MOSAIK data may have been post-processed620

to prioritize vegetation over pavement. In contrast, the Custom and OSM cases raster only those grid tiles whose centers

are covered by a vector polygon, resulting in more realistic building footprints. However, a downside of the Custom and

OSM cases is that the vegetation appears too sparse, and LAI data is missing, necessitating the use of default values. The

overestimation of pavement in these cases occurs because, with sparse vegetation, pavement becomes the default surface

type when no other type is defined. While MOSAIK data has been post-processed and prioritized, the other data sources625

are relatively raw. During processing in SanDyPALM, consistency checks and corrections were uniformly applied across all

datasets, although customized strategies might have benefited different datasets.

This analysis illustrates that the choice of data source significantly influences outputs, with each processing strategy pre-

senting its own advantages and disadvantages. Overall, the key differences between the test cases highlight variations in urban

morphology, vegetation coverage, and data completeness, all of which may impact the outcomes of PALM-4U
:::::
PALM

:
simula-630

tions.

3.2 Comparison of PALM-4U
::::::
PALM results to measurements

The next step in our investigation involved simulating the same test case using the four generated
:::::::
different static drivers, while

keeping the dynamic driver consistent. This
:::
The

:::::::
dynamic

::::::
driver

::
is

::::::
created

:::::
using

::::
the

::::
same

:::::::::
mesoscale

:::::
data,

:::
but

::
it

::::
may

::::
still

::::
vary

::::::
slightly

::::::
among

:::
the

::::::
cases,

::::::
because

::::
the

::::::
surface

::::
layer

::::::
model

::::
used

::
to
:::

fill
:::
the

:::::::::::
near-surface

::::
data

::::
gaps

::
in

:::
the

:::::::::
mesoscale

:::::
input635

:::
data

:::::::
depends

:::
on

::::::::
roughness

:::::::::
properties

::::::
derived

:::::
from

:::
the

::::
static

::::::
driver.

::::
This

::::::::
approach allowed for a comparison of the PALM-4U

:::::
PALM

:
results, along with the WRF results, against measurements from the TUB monitoring tower located within the inner

nested domain and the DWD weather station, which is covered only by the parent domain.
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3.2.1 Tower measurements

For our investigation, we selected a limited number of measurement heights from the tower. For example, measurements at640

2m and 5m are not expected to differ significantly, particularly in numerical models where values are interpolated from sparse

data points near the surface. Air temperature T was evaluated at heights of 5m and 40m above ground, relative humidity ϕrel

at 5m, and horizontal wind speed Uh at 10m and 40m. The comparison of WRF and PALM-4U
:::::
PALM

:
results with the tower

measurements is presented in Figure 17, and the metrics for all models compared to the tower data are compiled in Table 5.

Table 5. Metrics for comparing WRF and the PALM-4U
:::::
PALM

:
results with measurements from the TUB Tower “Rothenburgstraße” (located

in nested domain).

WRF MOSAIK Custom OSM LCZ

Quantity Unit MBE RMSE MBE RMSE MBE RMSE MBE RMSE MBE RMSE

T5m °C -0.02 1.72 -1.41 2.38 -0.79 1.86 0.16 1.59 -0.19 1.84

T40m °C -0.94 1.53 -1.11 1.64 -1.08 1.62 -0.98 1.49 -0.88 1.51

ϕrel, 5m % 3.09 6.40 8.03 9.84 4.85 6.96 1.82 5.73 3.05 6.46

Uh, 10m ms−1 1.32 1.57 0.32 0.45 0.55 0.70 0.97 1.04 2.11 2.57

Uh, 40m ms−1 0.65 1.30 0.60 1.20 0.54 1.24 0.34 1.31 1.02 1.73

The general agreement between WRF and PALM-4U
:::::
PALM results and the measurements indicates that all relevant physical645

processes are well resolved. However, some notable deviations exist. For temperature at 40m, WRF and all PALM-4U
::::::
PALM

results are nearly identical, but all show lower daytime temperatures compared to tower measurements. At 10m, the PALM-4U

:::::
PALM

:
models using MOSAIK and Custom data deviate increasingly from the WRF model, while the OSM and LCZ models

remain close to WRF. Unfortunately, this deviation is away from the measurements and is likely related to humidity.

The 5m relative humidity shows increased nighttime values between sunset and sunrise, particularly for the PALM-4U650

:::::
PALM

:
models using MOSAIK and Custom static drivers. The main difference is that these static drivers feature significantly

more vegetation than the others. The observed higher humidity may result from a combination of evapotranspiration from soil

and vegetation, reduced atmospheric mixing, and dew formation. Even after sunset, plants continue to release water vapor

through transpiration, while moisture retained by soil and vegetation during the day can evaporate as temperatures drop.

Additionally, surface cooling can create a stable atmospheric layer near the ground, reducing vertical mixing and allowing the655

air close to the surface to retain more moisture. Dew formation and subsequent evaporation can also contribute to localized

increases in humidity.

These combined factors could explain the high humidity levels observed in vegetated areas during the evening and why these

effects are more pronounced with MOSAIK or Custom data, which feature greater vegetation coverage. However, it remains

unclear whether the amount of vegetation is overestimated in the input data or if the described effects are exaggerated in the660

PALM-4U
:::::
PALM

:
model.
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Figure 17. Comparison of WRF and PALM-4U
::::
PALM

:
results of temperature T , relative humidity ϕrel and horizontal wind speed Uh against

measurements from the TUB tower at “Rothenburgstraße” (located in nested domain).
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The measured wind speeds during this period are generally low. At 40m, WRF slightly overestimates wind speed compared

to tower measurements, while the PALM-4U
:::::
PALM

:
models generally follow WRF, showing deviations toward both stronger

and weaker wind speeds. At 10m, the PALM-4U
::::::
PALM models tend to output lower wind speeds than WRF, aligning better

with the measurements, except for the LCZ case, which records significantly higher wind speeds on the second day. The LCZ665

case is unique, as the buildings are not accurately resolved, and the arrangement near the tower may differ significantly from

the actual courtyard of the TUB tower.

Additionally, the generally low measured wind speeds and the tendency for simulations to overestimate wind speed can be

attributed to the courtyard’s surroundings, which are lined with tall, dense trees. This creates significant wind shading, an effect

not accounted for by the WRF model. The accuracy of the PALM-4U
::::::
PALM models in this location also heavily relies on the670

precise locations and characteristics of the trees and buildings.

3.2.2 Station measurements

WRF and PALM-4U
:::::
PALM

:
results were compared to measurements from the DWD station in Dahlem, which is only resolved

in the parent domain of our PALM-4U
:::::
PALM

:
setup. Air temperature T and relative humidity ϕrel were evaluated at a height

of 2m above ground, while horizontal wind speed Uh was evaluated at 36m. These evaluation heights correspond to the mea-675

surement heights of the station.
::
In

:::
the

:::::
PALM

:::::::::
simulation

:::::::
results,

:::
the

::::::::::
temperature

:::
and

::::::::
humidity

::::
were

:::::::::::::
approximately

::::::::
evaluated

:
at
:::
the

::::
first

::::
grid

:::::
point

:::::
above

::::::
ground

::
at

:
a
::::::

height
::
of

::::
2.5m

:
;
:::
the

::::
wind

:::::
speed

::::
was

::::::::
vertically

::::::::::
interpolated

:::::
from

:::
the

::::::::::
neighboring

::::
grid

:::::
points

::
to

:::
the

:::::
exact

:::::::::::
measurement

::::::
height. The comparison of WRF and PALM-4U

:::::
PALM

:
results with the station measurements

is presented in Figure 18, and the metrics for all models compared to the station data are compiled in Table 6.

Table 6. Metrics for comparing WRF and PALM-4U
:::::
PALM

:
results from the four test cases with measurements from the DWD station

“Dahlem” (located in the parent domain).

WRF MOSAIK Custom OSM LCZ

Quantity Unit MBE RMSE MBE RMSE MBE RMSE MBE RMSE MBE RMSE

T2m °C 1.66 3.01 -1.08 2.35 -0.416 2.35 -0.861 2.35 -0.611 2.03

ϕrel, 2m % -3.43 12.1 6.25 12.2 2.94 11.2 4.40 11.0 4.28 10.0

Uh, 36m ms−1 -0.857 1.40 0.285 1.26 0.328 1.34 0.109 1.36 -0.0517 1.42

For this station, the WRF model overestimates nighttime temperatures, likely due to an exaggerated urban heat island effect.680

The LCZ map used in WRF classifies the area around the station as “LCZ 6” (Open low-rise), which is appropriate for the entire

1 km WRF grid tile but does not accurately represent the densely vegetated botanical garden around this station. In contrast,

the PALM-4U
:::::
PALM

:
models, which realistically resolve buildings and vegetation, are significantly closer to the measurements

in this case.

Humidity is underestimated by WRF at night and overestimated during the day. The PALM-4U
:::::
PALM

:
models generally685

predict higher humidity than WRF, with a moderate increase during the day and a more pronounced rise at night. At the end
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Figure 18. Comparison of WRF and PALM-4U
:::::
PALM

:
results for temperature T , relative humidity ϕrel, and horizontal wind speed Uh

against measurements from the DWD station “Dahlem” (located in the parent domain).

of the first night, PALM-4U
:::::
PALM

:
results align more closely with measurements than WRF, but on the second and early

third nights, they overestimate humidity compared to the measurements. Similar to the tower data, PALM-4U
:::::
PALM humidity

shows significant spikes around sunset.

Wind speed at this location is comparable to that at the upper tower location, which has a similar height. While WRF690

overestimates wind speed at the tower, it underestimates it at the station. This discrepancy may arise because the tower is

surrounded by large trees and buildings that create wind shading, whereas the station is situated in an open park with less

restricted wind flow. The WRF model, lacking detailed information about trees and buildings, resolves both locations similarly.

In contrast, wind speeds from the PALM-4U
:::::
PALM

:
models are closer to the measurements, with all PALM-4U

:::::
PALM

:
models

performing comparably well.695
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3.3 Comparison of PALM-4U
::::::
PALM results to each other

To compare the PALM-4U
:::::
PALM

:
simulation results across the four test cases, we evaluated the potential temperature θ (Fig-

ure 19) and the mixing ratio q (Figure 20) at the first vertical centered grid level, corresponding to a height above ground

of hAGL = 2.5m. The horizontal wind speed Uh (Figure 21) was evaluated at the second vertical centered grid level, corre-

sponding to a height of hAGL = 7.5m. All quantities were time-averaged over the entire simulation period, which spanned700

two days. A quantitative comparison of the statistics for the four different simulation test cases is presented in Table 7. For

each quantity, the mean, standard deviation (std), minimum (min), and maximum (max) values were calculated over the entire

two-day simulation period and across all grid points (excluding no-data values).

Table 7. PALM-4U
::::
PALM

:
results statistics for the four different test cases.

MOSAIK Custom OSM LCZ

Quantity Unit Statistic parent nest parent nest parent nest parent nest

θ2.5m °C mean 25.6 25.6 26.3 26.3 26.7 27.0 26.7 26.6

std 5.9 5.6 5.5 5.3 5.4 5.2 5.3 5.2

min 13.8 14.1 14.5 14.6 14.6 14.9 14.1 14.4

max 37.5 37.6 37.1 37.7 37.0 38.3 37.1 38.0

q2.5m g kg−1 mean 9.4 9.4 9.0 9.0 8.9 8.8 9.0 9.0

std 1.4 1.4 1.2 1.2 1.2 1.2 1.2 1.2

min 5.2 6.4 6.0 4.4 4.8 6.4 0.0 6.6

max 29.1 26.0 17.1 25.0 19.0 13.4 19.8 16.9

Uh7.5m ms−1 mean 0.7 0.5 0.8 0.7 1.0 0.9 1.1 1.1

std 0.7 0.5 0.7 0.6 0.8 0.8 0.9 0.8

min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

max 6.1 5.7 6.1 6.8 6.9 6.7 7.0 7.4

One issue we encountered, particularly when applying the LCZ method to the parent grid at a coarse resolution of 20m,

is the gap-filling of terrain and building grid boxes performed by PALM-4U
::::::
PALM. While this gap-filling is an important705

preprocessing step for the PALM-4U
::::::
PALM model, it prevents us from using the exact building shapes we designed. We

observed that narrow street canyons became blocked, rectangular footprints were altered into arbitrary shapes, and small

courtyards formed within building areas. The source of this problem is that street canyons that are only one grid box wide are

considered too narrow by the PALM-4U
:::::
PALM

:
model. Conversely, we cannot use additional grid boxes at coarse resolutions, as

this would result in excessively wide street canyons. Our intention in creating the LCZ4PALM method was to design regularly710

shaped buildings at coarse resolutions and to prevent the usual clustering of dense building areas into one continuous mass.

However, running the model at such coarse resolutions remains challenging, and we must accept that, in the simulation, the

buildings and street canyons do not take the shapes we intended.
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Figure 19. Comparison of time-averaged potential temperature θ evaluated at hAGL = 2.5m.
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Figure 20. Comparison of time-averaged mixing ratio q evaluated at hAGL = 2.5m.
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Figure 21. Comparison of time-averaged horizontal wind speed Uh evaluated at hAGL = 7.5m.
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Regarding
::
In

:::
our

:::::::::::
investigation

::
of

:
temperature, humidity, and wind speed, we observed notable differences among the test

cases.715

Examining
::::
First,

:::::::::
examining

:
mean temperatures in the nested domain

::
in

:::::
Figure

:::
19, we find 25.6 °C for MOSAIK, 26.3 °C for

Custom, 27.0 °C for OSM, and 26.6 °C for LCZ. There is a clear increase in temperature from MOSAIK to Custom to OSM,

with LCZ falling between Custom and OSM . The parent domain shows a similar trend. The minimum
::::
LCZ

::
to

:::::
OSM.

::::
We

::::::
suspect

:::
the

::::::
reason

::
for

::::
this

::
is

::::::
mainly

:::
due

::
to

::::::::::
differences

::
in

:::::::::
vegetation,

:::::::
because

:::
the

::::::
amount

::
of

:::::::::
vegetation

::::::::::::
approximately

:::::::
follows

::
the

:::::::
inverse

:::::
order,

::::
with

:::::::::
MOSAIK

::::::
having

:::
the

:::::::
highest

::::
and

:::::
OSM

:::
the

::::::
lowest

:::::::
amount.

::::
The

:::::::::::
temperatures

::
in

:::
the

::::::
parent

:::::::
domain720

::::::
behave

::::::::
similarly:

:::
The

:::::
mean

:
temperatures are lowest in MOSAIK, followed by LCZ,

::::::
second

:
is
:
Custom, and OSM . Maximum

:::
and

::::
LCZ

:::
are

::::
third

::::
with

:::
the

:::::
same

:::::
value.

::::
The

::::::::
minimum

:::
and

:::::::::
maximum

:
temperatures exhibit more variability between the parent

and nested domains.

Humidity shows
:::
The

::::::::
Humidity,

::::::
which

::
is

::::::
shown

::
in

:::::
Figure

::::
20,

:::
has the largest divergence among the test cases and between

the nested and parent domains. The mean humidity is particularly high in the MOSAIK case at 9.4 g kg−1, compared to the725

other cases, which range from 8.8 g kg−1 to 9.0 g kg−1. This is likely due to the higher vegetation density in the input data.

MOSAIK also produces extreme maximum humidity values of up to 29.1 g kg−1, which seem unrealistic. Conversely, the LCZ

case exhibits extremely low values, down to 0.0 g kg−1. However, such physically unrealistic values were observed only in rare

instances in space and time. Their occurrence was limited to only one or two output time steps at sunrise or sundown and only

a few grid boxes in narrow street canyons or courtyards, particularly in conjunction with an abundance or absence of vegetation730

nearby. For example, the low humidity in the LCZ case occurred only in one output time step and in a single grid box that

has a paved surface beneath and is surrounded by tall buildings. Although it is advisable to avoid narrow street canyons or

courtyards, preventing them in practical workflows is challenging, especially at relatively coarse resolutions.

Wind speed
::::::
Finally,

::::
the

::::
wind

::::::
speed

::::::
(Figure

::::
21)

:
is generally lowest in the MOSAIK case, followed by Custom, OSM,

and LCZ. This trend may again be attributed to vegetation density, which is highest in MOSAIK and lower in OSM and735

LCZ. Additionally, the OSM and LCZ cases partially or fully utilize approximate building heights derived from coarse global

datasets, and their terrain elevation data is less accurate compared to the more precise representations in MOSAIK and Custom.

Interestingly, the OSM and LCZ test cases, despite being automatically generated and using approximations, yield results

comparable to the heavily preprocessed MOSAIK and Custom cases. In the LCZ case, while the local distribution is less

realistic due to unresolved buildings and streets, areas like the botanical garden in the lower-left of the nested domain are well740

represented. Despite geographic precision shortcomings, the overall results of the LCZ case compare surprisingly well to the

other cases.

The main question remains: which dataset most accurately represents the selected district, and how can we further improve

data quality? Each test case has its advantages and disadvantages. The MOSAIK case utilized extensive data and underwent sig-

nificant preprocessing, yet it overestimates building footprints and underpredicts temperature, suggesting an excessive amount745

of vegetation or that PALM-4U
:::::
PALM

:
overestimates vegetation impact. The Custom case, designed by an expert, benefits

from more accurate building footprints and less vegetation cover, leading to reduced temperature underprediction near the

surface. The OSM case, fully automatically processed, features similar building footprints to the Custom case but significantly
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less vegetation, resulting in the highest overall temperatures. Wind speeds are also higher than in the MOSAIK and Custom

cases, likely due to differences in vegetation, building heights, and terrain elevation. Finally, the LCZ case, also automatically750

processed, shows relatively high temperatures and the highest wind speeds, with variations in building heights, footprints, and

distribution impacting both temperature and wind speed results. Similar to the OSM case, differences in terrain elevation and

vegetation density also play a role.

Overall, this research indicates that the outcomes of realistic urban microclimate simulations depend strongly
::::::
clearly

::::::
depend

on input data. Different data sources for the same test case can yield varying results, yet
:
.
::::::::
However,

:
the outputs do not di-755

verge excessively. Although the test cases were selected for diversity, the ,
:::::::::

especially
:::::
when

::::::::::
considering

::::
that

:::
the

:::
set

::
of

::::
test

:::::::::::::
cases–including

:::::
OSM

:::
and

::::
LCZ

::::
data

::::::::::
sources–can

::
be

:::::
seen

::
as

::::
quite

:::::::
diverse.

:::
The

:
overall features of the microclimate simulations

are similar, with no extreme outliers in the comparison statistics, except for the described instabilities regarding humidity in

certain locations.

4 Conclusions760

In this study, we presented SanDyPALM, an innovative toolkit designed to streamline the creation of static and dynamic input

data for the PALM-4U
::::::
PALM model, thereby enhancing realistic microclimate simulations.

:::
The

:::::
main

:::::::::
motivation

::
of

:::
this

::::::
toolkit

:::
was

::
to

:::::
make

:::
the

::::::::::
preparation

::
of

:::::
input

::::
data

:::::
faster

:::
and

:::::
more

:::::::::::
user-friendly.

::::
This

::::
was

:::::::
achieved

:::
by

:::::::::
combining

:::::
static

:::
and

::::::::
dynamic

:::::
driver

:::::::::
generation

:::
into

::::
one

:::::::
package

:::
and

::::
also

::
by

::::::::::
introducing

:::::::
methods

:::
for

:::::::::
automatic

::::::::
generation

:::
of

::::
static

:::::
input

::::
data.

:

We introduced two novel methods, OSM2PALM and LCZ4PALM, which facilitate the generation of static drivers from765

widely available geospatial data sources. These methods enhance the accessibility and applicability of urban climate modeling,

allowing for parametric studies and the creation of models
::::::::
anywhere

::
on

:::
the

:::::
earth.

:::::::::::
LCZ4PALM

::
is

:::::::::
especially

:::::
useful

::
to

::::::
create

::
an

::::::::::
approximate

::::::
model on coarse grids,

:
where real building shapes cannot be resolved

:
,
:::::
while

:::::::::::
OSM2PALM

::::::
creates

:::
an

:::::::
accurate

:::::
urban

:::::
model

::::::::
resolving

::::::::
buildings

:::
and

:::::::::
vegetation

::
to

:::
the

::::::
degree

:::::::
available

:::
in

::
the

::::::::
database.

By comparing four static drivers derived from different sources—MOSAIK, Custom, OSM, and LCZ—we observed sub-770

stantial variations in the representation of building footprints, vegetation, and pavement. The MOSAIK dataset, while rich in

detail, tended to overestimate building footprints and vegetation, whereas the Custom, OSM, and LCZ datasets underestimated

vegetation coverage.

The results of our simulations were validated against measurements from a weather monitoring tower and a weather station,

revealing that all models captured the essential physical processes. However, notable discrepancies were observed, particularly775

in temperature and humidity. The PALM-4U
::::::
PALM models using MOSAIK and Custom data exhibited elevated nighttime

humidity levels, likely due to their greater vegetation density. In contrast, the OSM and LCZ models, despite being based on

approximations, produced results closer to measurements due to their lower vegetation density. This raises the question of

whether the observed deviations stem from the amount of vegetation or the modeling approach used in PALM-4U
:::::
PALM.

In very rare cases, unrealistic humidity values were observed inside narrow street canyons or courtyards for a limited number780

of output time steps. This issuecould be addressed by adjusting urban morphology or refining
::
To

::::::
address

::::
this

:::::
issue,

:::::
either

:::
the
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::::
static

:::::
input

::::
data

:::::
needs

:::
to

::
be

::::::::
adjusted

::
or

:
the humidity model in PALM-4U

:::::
PALM

:::::
needs

:::
to

::
be

:::::::
refined

::
to

::::
limit

::::::::
humidity

:::
to

::::::
realistic

::::::
values. Another challenge is that the urban morphology is altered by PALM-4U

::::::
PALM preprocessing to fill narrow

street canyons and terrain, which modifies building shapes and closes off a substantial number of street canyons. Without

changes to the PALM-4U
:::::
PALM

:
model itself, it may be advisable to apply further terrain smoothing, enforce wider street785

canyons, or increase the grid resolution of the parent domain.

The results indicated that while expert-driven approaches, such as the MOSAIK and Custom datasets, provide
::
the

:::::
more de-

tailed and accurate representations of urban environments, automated methods like .
::::
But

::
the

:::::::::
automated

::::::::
methods OSM2PALM

and LCZ4PALMcan yield comparable results, offering ,
:::::
while

:::::::
lacking

:::::
detail,

:::
can

:::::
yield

::::::::::
comparably

:::::::
accurate

::::::
results.

:::::::::
Therefore,

:::
they

:::::
offer

:
a viable alternative when expert resources are limited.

::
As

::
a
::::::
result,

:::
the

:::::::
required

:::::
level

::
of

:::::
detail

:::::::
needed

::
to

::::::
obtain790

::::::
realistic

:::::::::::::
meteorological

::::::::
quantities

:::::
from

:::::
urban

:::::::::::
microclimate

::::::::::
simulations

::
is
:::::
lower

::::
than

:::::::::
expected.

::::::::
However,

::
to

:::
get

:::
the

:::::::
highest

:::::::
precision

:::::::
results,

:
it
::
is

::::
still

::::::::
necessary

::
to

:::::::::
thoroughly

:::::::
prepare

:::
the

::::
input

::::
data

::
by

:::
an

::::::
expert.

Future research should
::
can

:
focus on refining these automated toolsand

:
, exploring additional data sources to further enhance

the reliability of urban microclimate simulations
:::
and

::::::::::
performing

::::::::
additional

::::::::::::
investigations

::
on

:::
the

::::
role

::
of

:::::
static

::::
input

:::::
data:

::
1)

::
A

:::::
terrain

:::::::::
smoothing

:::::
could

::
be

::::::
useful,

:::::::::
especially

:::::
when

::::
using

:::
the

:::::
LCZ

::::::
method,

:::
to

::::::
prevent

:::
the

::::::::
necessity

::
for

::::::::
excessive

:::::::::
gap-filling

:::
by795

::
the

::::::
PALM

::::::
model.

::
2)

::::
The

::::
LCZ

:::::::
method

:::
was

::::
used

::::
with

::::
data

::::::::::
specifically

::::::::
generated

:::
for

::
the

::::
city

::
of

:::::
Berlin

::::
and

:::::
needs

::
to

::
be

::::::::
extended

::
to

::::
other

:::::
cities

::
to

::
be

::::
able

::
to
:::::::::
generalize

::
3)

::::
The

:::::::
dynamic

::::::
driver

:::
tool

:::::
could

:::
be

:::::::
adjusted

::
to

::::::
accept

::::
other

:::::
input

::::
data

::::::
sources

:::::::
besides

:::::
WRF.

::
4)

:::::::::
Additional

::::
open

::::
data

:::::::
sources

:::::
could

::
be

::::::::::::
implemented,

::::::::
especially

:::
for

:::
tree

::::::
height

:::
and

:::::
LAI,

:::::::
because

::::
these

:::
are

:::::::
lacking

::
in

::::
OSM

::::
and

::::
LCZ

::::
data

:::::::
sources.

::
5)

:::
An

:::::::::
interesting

:::::::::
application

::
of

:::
the

:::::::::::
OSM2PALM

::::
and

::::::::::
LCZ4PALM

::::::::
methods

:::::
would

::
be

::
to
::::::::
combine

::::
them

::
in

:::
the

::::::::
following

:::::
way:

:
a
::::
large

::::
and

::::::::::::
low-resolution

:::::
parent

:::::::
domain

::
is

:::::
based

::
on

::::
LCZ

::::
and

:::::
driven

:::
by

:
a
:::::::::
mesoscale

::::::
model,

:::::
while800

:
a
:::::::::::::
high-resolution

:::::
nested

:::::::
domain

::
is

:::::
based

::
on

::
a
:::::::
detailed

:::::
OSM

::::::
model.

::::
This

::::::::
approach

:::::
based

:::::
solely

:::
on

::::
open

::::
data

:::::
would

::::::::
leverage

::
the

::::::::::
advantages

::
of

::::
both

::::::::
methods,

::::::::
providing

:
a
:::::::::
low-detail

:::::
model

::
at

::::::
coarse

::::::::
resolution

:::
and

::
a
:::::::::
high-detail

:::::
model

::
at

::::
fine

:::::::::
resolution.

::
6)

::::::
Further

:::::::::::
investigations

:::
are

:::::::::
necessary

:::::
about

:::
the

::::::
impact

::
of

:::::
static

::::
input

::::
data

:::
on

:::::::::
mitigation

::::::::
strategies

:::
for

::::::
climate

::::::
change

:::
or

:::::
urban

::::::
heating.

:::
7)

:::
The

:::::
issue

::
of

:::::::
extreme

::::::::
humidity

:::::
values

::::::::
requires

::::::
further

::::::::::::::::::::::
investigation—specifically,

::
by

::::::
further

:::::::::
analyzing

:::
the

::::::
impact

::
of

::::
static

:::::
input

::::
data

:::
and

:::::::::
examining

::::
how

:::::
water

::::::
content

::
is
::::::::
managed

::
in

::::::
PALM.805

Code and data availability. The code for SanDyPALM v1.0 (Vogel et al., 2025) is publicly available at https://doi.org/10.5281/zenodo.

14772519. The code will be further maintained in the code repository https://gitlab.cc-asp.fraunhofer.de/upm/sandy-palm. The necessary

input data is either included (if not openly available) or instructions are provided on how to download the data (if openly available). An

exception is the “MOSAIK” dataset, which could not be included and is not openly available.
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Groß, G., Heldens, W., Hellsten, A., Hoffmann, F., Inagaki, A., Kadasch, E., Kanani-Sühring, F., Ketelsen, K., Khan, B. A., Knigge, C.,

Knoop, H., Krč, P., Kurppa, M., Maamari, H., Matzarakis, A., Mauder, M., Pallasch, M., Pavlik, D., Pfafferott, J., Resler, J., Rissmann, S.,

Russo, E., Salim, M., Schrempf, M., Schwenkel, J., Seckmeyer, G., Schubert, S., Sühring, M., von Tils, R., Vollmer, L., Ward, S., Witha,

B., Wurps, H., Zeidler, J., and Raasch, S.: Overview of the PALM model system 6.0, Geoscientific Model Development, 13, 1335–1372,885

https://doi.org/10.5194/gmd-13-1335-2020, 2020.

OpenStreetMap contributors: Planet dump retrieved from https://planet.osm.org, https://www.openstreetmap.org, last access: 10 January

2025, 2024.

PALM model system developers: PALM Input Data Standard (PIDS), https://palm.muk.uni-hannover.de/trac/wiki/doc/app/iofiles/pids, last

access: 11 April 2025, 2025a.890

PALM model system developers: PALM model system repository, https://gitlab.palm-model.org/releases/palm_model_system, last access:

10 January 2025, 2025b.

49

https://doi.org/10.5194/gmd-2020-222
https://doi.org/10.1038/s41467-023-39698-6
https://doi.org/10.1038/s41467-023-39698-6
https://doi.org/10.1038/s41467-023-39698-6
https://doi.org/10.24381/cds.bd0915c6
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.5194/gmd-14-5435-2021
https://doi.org/10.5194/gmd-14-1171-2021
https://doi.org/10.5194/gmd-14-3095-2021
https://doi.org/10.5194/gmd-14-2503-2021
https://doi.org/10.5194/gmd-17-815-2024
https://doi.org/10.1023/A:1021261606719
https://doi.org/10.5194/gmd-13-1335-2020
https://www.openstreetmap.org
https://palm.muk.uni-hannover.de/trac/wiki/doc/app/iofiles/pids
https://gitlab.palm-model.org/releases/palm_model_system


Pfafferott, J., Rißmann, S., Sühring, M., Kanani-Sühring, F., and Maronga, B.: Building indoor model in PALM-4U: indoor climate, en-

ergy demand, and the interaction between buildings and the urban microclimate, Geoscientific Model Development, 14, 3511–3519,

https://doi.org/10.5194/gmd-14-3511-2021, 2021.895

Pörtner, H.-O., Roberts, D. C., Adams, H., Adelekan, I., Adler, C., Adrian, R., Aldunce, P., Ali, E., Begum, R. A., Friedl, B. B., Kerr, R. B.,

Biesbroek, R., Birkmann, J., Bowen, K., Caretta, M. A., Carnicer, J., Castellanos, E., Cheong, T. S., Chow, W., G. Cissé, G. C., and Ibrahim,

Z. Z.: Climate Change 2022: Impacts, Adaptation and Vulnerability, Technical Summary, Cambridge University Press, Cambridge, UK

and New York, USA, ISBN 9781009325844, 2022.
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