

1 **Drone-based vertical profiling of particulate matter size
2 distribution and carbonaceous aerosols: urban vs. rural
3 environment**

4 Kajal Julaha^{1,2,*}, Vladimír Ždímal², Saliou Mbengue³, David Brus⁴, Naděžda Zíková^{2,5,*}

5 ¹Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, Prague, 18000,
6 Czech Republic.

7 ²Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague 16500, Czech Republic.

8 ³Global Change Research Institute of the Czech Academy of Sciences, Brno 60300, Czech Republic.

9 ⁴Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki 00560, Finland.

10 ⁵Institute for Environmental Studies, Faculty of Sciences, Charles University, Prague, 12801, Czech Republic

11

12 *Correspondence to: zikova@icpf.cas.cz (N. Zíková), julaha@icpf.cas.cz (K. Julaha)

13 **Keywords:** Equivalent black carbon, vertical distributions, Drone, micro-aethalometer AE51, optical particle
14 counter, Aethalometer AE33, optical particle sizer, humidity control.

15 **Abstract.** The study ~~uses-presents~~ drone-based measurements to investigate the seasonal vertical variability of
16 equivalent black carbon (eBC) mass and particle number concentrations (PNC) at a rural and urban site in the
17 Czech Republic. Vertical profiles of eBC were measured using a micro-aethalometer, while PNC was measured
18 using an optical particle counter. Drone-based eBC measurements closely matched reference aethalometers placed
19 at both ground level and at 230m of a tower when using a humidity control mechanism. Without dryer, eBC mass
20 concentration was overestimated by 276% in summer and 285% in winter, but uncertainties were reduced to under
21 10% with drying. These findings highlight the importance of humidity control for accurate aerosol measurements,
22 especially for eBC. The study also revealed a decrease in eBC and PNC with height at the rural site during both
23 summer and winter, with seasonal differences in the altitude where this decrease began. Elevated eBC
24 concentrations in winter were due to increased atmospheric stability and combustion-related fine particles. At the
25 urban site, concentrations in summer were uniform with height (4 to 100 m AGL) but gradually decreased with
26 height during winter. Furthermore, the study investigated changes in the vertical distribution of eBC and PNC
27 during a high pollution event at the urban site, influenced by long-range transport. Our findings confirm the
28 effectiveness of drones in capturing vertical variations of air pollutants, offering results on the dynamics between
29 local emissions, atmospheric stability, and long-range transport and suggesting the necessity of ~~measuring~~ vertical
30 ~~pollutants'~~ concentration ~~measurements-profiles~~ to support air quality management strategies.²

31 **1. Introduction**

32 Black Carbon (BC) aerosols, one of the substantial contributors to climate change and adverse health effects, are
33 primarily emitted into our atmosphere through incomplete combustion of fossil fuels and biomass (Bond et al.,
34 2013; Ramanathan and Carmichael, 2008). BC absorbs efficiently solar radiation and contributes to atmospheric
35 warming (Moteki, 2023; Myhre et al., 2013). Aged BC can act as cloud condensation nuclei (CCN) and affect
36 climate through its indirect effects by altering cloud properties and their formation processes (Wang et al., 2018c).
37 The radiative properties of BC depend on its vertical profiles (Samset et al., 2013). For example, BC in the free
38 troposphere can enhance its radiative forcing by trapping energy emitted from the lower cloud layers (Schwarz et
39 al., 2006). The vertical distribution of BC also impacts the evolution of the planetary boundary layer (PBL). BC

40 in the upper PBL exhibits light absorption efficiency, heating the surrounding atmosphere and enhancing
41 atmospheric stability, leading to extreme haze pollution events (Ding et al., 2016).

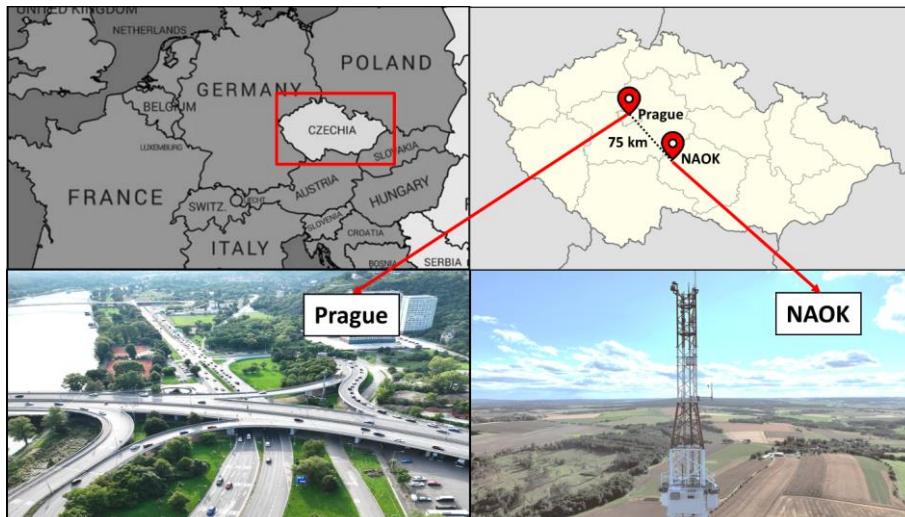
42 Modeling-based studies on BC vertical distribution are limited (Chen et al., 2022). Uncertainties in these
43 models mainly arise from assumptions about the vertical distribution of BC aerosols, highlighting the need to
44 measure the vertical distribution of BC on a regional scale, from areas influenced by direct emissions from the
45 ground to those characterized by long-range transport (Ramana et al., 2010). These measurements can also help
46 validate satellite observations and improve the representation of BC vertical profiles in climate models, leading
47 to a more accurate assessment of BC radiative forcing (Li et al., 2013; Samset et al., 2013).

48 The BC vertical distribution can be measured by various platforms, such as meteorological balloons,
49 towers, aircraft, and unmanned aerial vehicles (UAVs). Meteorological tethered balloons provide highly resolved
50 data and detailed information close to the ground, capable of measuring aerosol concentrations up to the free
51 atmosphere (Babu et al., 2011; Ferrero et al., 2019; Renard et al., 2020; Cappelletti et al., 2022). Meteorological
52 towers offer a unique opportunity for continuous long-term monitoring of aerosols at different heights (Chi et al.,
53 2013; Xie et al., 2019; Sun et al., 2020; Liang et al., 2022). Compared to towers, aircraft and UAVs can access
54 higher altitudes, with some aircraft capable of carrying heavier payloads, allowing them to transport more
55 sophisticated instruments for detailed aerosol measurements. These platforms offer greater spatial coverage and
56 flexibility, making them suitable for comprehensive atmospheric studies (Brady et al., 2016; Corrigan et al., 2007;
57 Villa et al., 2016; Wu et al., 2021; Schulz et al., 2019). Drones have recently gained popularity among all the other
58 methods because of their cost effectiveness, flexibility, and mobility due to their lightweight design (Barbieri et
59 al., 2019; Boer et al., 2020). Several studies have used drones to study vertical measurements of BC and particle
60 number concentrations (PNC). For example, Liu et al. (2020) conducted vertical measurements of fine particulate
61 matter (PM) and BC using a DJI Matrice 600 drone equipped with a battery-operated light-scattering laser
62 photometer and a micro-aethalometer. Their study revealed different vertical patterns for PM2.5 and BC,
63 suggesting different sources for each. Similarly, Zhu et al. (2019) used a hexacopter with a customized scanning
64 mobility particle sizer, an optical particle counter, and a meteorology sensor to study the vertical variability of
65 particle number size distribution (PNSD) near the ground to up to 300 m. The study showed that PNC with size
66 $>0.3 \mu\text{m}$ decreased with height during the evening. Brus et al. (2021) investigated the vertical profile of PNCs and
67 gases in the San Luis Valley, Colorado, and highlighted their interaction with meteorological conditions and
68 boundary layer processes. Studies on the vertical distribution of BC aerosols in Central Europe are very limited.
69 In Poland, Chilinski et al. (2016) examined the vertical distribution of BC in a valley for three days using UAV.
70 In Germany, Samad et al. (2020) investigated the vertical profiles of PM, BC, and ultrafine particles in Stuttgart
71 using a tethered balloon, and Harm-Altstädter et al. (2024) used a fixed-wing drone for vertical measurement of
72 aerosol concentration, including eBC, near a civil airport.

73 The studies about the vertical distributions of BC aerosols in the Czech Republic are limited to a tall
74 tower in a rural area (Mbengue et al., 2023), and no measurements in urban areas have been done. To date, no
75 drone-based measurement of BC has been conducted in the Czech Republic. This study combines mobile (drone-
76 based) and fixed (tall tower and building) observational platforms to measure the vertical distribution of BC
77 aerosols and PNC at two different sites representing an urban and a rural location [to isolate the respective roles of local emissions, meteorology, and long-range transport in shaping vertical aerosol distributions](#). It further

79 estimates the measurement uncertainties and dependence of the results on the humidity. [In this study, we address](#)
80 [this gap by developing and testing a lightweight, drone-mountable silica-gel dryer that enables humidity-](#)
81 [controlled eBC measurements.](#)

82 **2. Materials and Methodology**


83 **2.1. Measurement Sites**

84 **2.1.1. Rural background site**

85 The National Atmospheric Observatory Košetice (NAOK, 49°35'N, 15°05'E; 534 m a.s.l.) in the Bohemian
86 Moravian Highlands in the Czech Republic (Figure 1) represents a central European background site. Located
87 approximately 75 kilometers southeast of Prague, the observatory is situated in a rural area. The observatory is
88 equipped with instruments to measure gaseous pollutants, atmospheric aerosols, and meteorological parameters.

89 It ~~also~~ includes a 250 m tall atmospheric tower [providing which provides](#) a unique opportunity to study
90 atmospheric parameters at different elevations (Dvorská et al., 2015). NAOK is part of the Aerosol, Clouds, and
91 Trace Gases Research Infrastructure Network (ACTRIS ERIC) and several other research projects and monitoring
92 programs (Mbengue et al., 2023).

93 NAOK is influenced by regional and long-range transported air masses, mainly associated with the
94 western and southeastern directions (Mbengue et al., 2021; Vodička et al., 2015). A primary highway in the Czech
95 Republic (D1: 36,000 cars/day, CSD, 2020) is situated approximately 6 km to the north and northeast of the
96 observatory (Mbengue et al., 2023).

97
98 **Figure 1. Geographical location of rural background (NAOK) and urban (Prague) sites in the Czech Republic. Source:**
99 [mapchart.net](#), [Wikipedia](#).

100 **2.1.2. Urban site**

101 The Faculty of Mathematics and Physics (50°6.89'N, 14°26.95'E; 185 m a.s.l.) at Charles University in Prague
102 represents an urban site situated 75 kilometers away from NAOK (Figure 1). The faculty has multiple campus
103 locations throughout Prague, with its Troja campus near the Vltava River serving as the site for this study. The
104 main building of the Troja campus is an 11-story building, almost 50 m high. The campus is located in a river
105 valley surrounded by hills with an elevation of 50 m AGL. The Department of Atmospheric Physics (DAP) is also
106 on this campus. The DAP monitors particulate matter (PM₁, PM_{2.5}, and PM₁₀), gases (NO₂, O₃, and CO), and
107 meteorology (temperature, relative humidity (RH), pressure, wind speed, and rainfall), with measurements taken
108 at ground level (2m), 10 m, and 50 m (Ramatheerthan et al., 2024).

109 The site is located near the Blanka tunnel exit and is impacted by fresh traffic emissions. The Blanka
110 tunnel, more than 6 km long, is the longest road tunnel in the Czech Republic. The average traffic density of this
111 tunnel is 80,000 to 90,000 cars/day (Metrostav, 2024). It was constructed to minimize the environmental impacts
112 of traffic. However, its opening significantly increased the traffic at some locations, leading to substantial changes
113 in the urban geochemistry of Prague (Mizera et al., 2022).

114 **2.2. Instrumentation**

115 **2.2.1. eBC measurements**

116 The micro-Aethalometer AE51 (AethLabs San Francisco, CA) (Figure 2a) provides real-time equivalent BC
117 (eBC) concentration using an 880 nm light source (Petzold et al., 2013). AE51 operates on a principle similar to
118 other aethalometers, such as AE31 (Aerosol Magee Scientific, Berkeley, CA). The AE51 measures the light
119 attenuation through a filter (T60 Teflon-coated glass fiber) loaded with particles and converts the attenuation into
120 an eBC mass concentration using a predefined mass attenuation coefficient (12.5 m²/g) (Alas et al., 2020). The
121 time resolution of 10 seconds and flow rate of 150 ml/min were used in this study. The filter was replaced when
122 attenuation, a dimensionless measure of optical absorbance, reached 80 dB/m to minimize the filter loading effect.
123 This threshold has been recommended to reduce measurement bias due to increasing filter loading and to ensure
124 data reliability (Good et al., 2017; Lee, 2019; Miyakawa et al., 2020).

Formatted: Superscript

125 Recent studies (Alas et al., 2020; Masey et al., 2020) have shown that uncorrected AE51 readings closely
126 match reference instruments in low-concentration environments. Therefore, no correction method was used for
127 the eBC values in the present study.

128 To reduce short-term noise, AE51 data were averaged over 1-minute intervals. If the resulting mean eBC was
129 negative, the measurement point was excluded from further analysis. The fraction of excluded data was below 2%
130 for all periods except the NAOK summer, where it reached a maximum of 10.45% at altitudes above 100 m.

131 **2.2.2. Air stream Dryer**

132 A 20 cm-long homemade silica gel dryer (Figure 2d) was used in front of the AE51 (Figure 2f) to control the
133 humidity for accurate eBC mass concentrations measurements. The dryer consists of 2 coaxial cylinders of 1.62
134 cm and 0.65 cm diameters, with silica gel in the space between them. The silica gel effectively removes moisture
135 from the aerosols as axial airflow passes through the dryer. The silica gel used in the dryer was spherical bead-

136 type (Carl Roth, P077.1, “Perfform”), which is mechanically robust and non-dusting, minimizing any risk of
137 particle shedding under vibration. Additionally, the dryer was sealed with stainless-steel mesh (inner cylinder) at
138 both ends to prevent the possible release of silica fragments during operation. The inner cylinder (diameter 6.6
139 mm and length 13.5 cm), of stainless steel woven mesh screen with a 0.25 mm x 0.25 mm square hole aperture
140 (80 opening per inch, 0.05 mm wire, ~65 % open area) The inner cylinder, made from stainless steel mesh of
141 was chosen for its smooth surface and minimal particle loss, while the outer parts were fabricated with PLA
142 (Polylactic Acid) using a 3D printer (MK4S, Prusa Research), with a total weight of 50 g. Particle loss was
143 evaluated using the Particle loss calculator (von der Weiden et al., 2009) and found to be $\leq 1\%$ for PM2.5-sized
144 particles at the AE51’s flow rate of 150 mL/min (Table S2). Laboratory tests were performed at 100% RH,
145 showing that the dryer could perform effectively by maintaining RH below 40% for up to three days (Figure S1).
146 The performance of the dryer was tested in laboratory conditions by passing air with 100% RH through the setup
147 at the AE51’s flow rate of 150 mL/min. The dryer effectively reduced the RH to below 40%, and maintained that
148 level for up to 3 days, ensuring reliable drying under operational flow (Figure S1). The silica-gel beads were
149 replaced every morning before measurements began. The flow and leakage tests were also carried out to describe
150 the dryer’s performance at 150 mL/min. The flow rate was monitored before and after the dryer using a mass flow
151 meter. For the leak test, the dryer inlet was connected to a HEPA filter, and the outlet was connected to a
152 Condensation Particle Counter (CPC) to monitor any particle breakthrough. Particle concentrations measured by
153 the CPC were found to be negligible, confirming the air-tight integrity of the dryer assembly.
154

155 2.2.3. Particle number concentration measurements

156 The air quality measurements backpack (Yugen Oy, Finland) for a consumer-grade drone with an Optical particle
157 Counter (OPC-N3, Alphasense) (Figure 2b) was used to measure PNC in the polystyrene latex (PSL) equivalent
158 size range from 0.35 to 40 μm . The OPC detects the light scattered by particles in the sample air stream illuminated
159 by a laser beam (~658 nm) and translates the signal into particle count and size (Hagan and Kroll, 2020). The
160 OPC-N3 reports an internal airflow estimate based on a low-power internal fan fan performance, not corrected for
161 external wind. The OPC’s inlet was horizontally mounted and exposed to wind during drone flights so that it faced
162 oncoming airflow. While this minimized directional variability, strong horizontal winds could still affect the
163 internal airflow stability of the OPC-N3 (Table S42). To mitigate this, all measurements were averaged over 1-
164 minute intervals, which helps reduce short-term fluctuations. Due to OPC’s horizontal inlet design and a low
165 power built-in ventilator, equipping a dryer would result in an excessively high pressure drop (manufacturer’s
166 maximum allowable pressure drop ≤ 40 Pa), making the measurement highly unreliable (Bezantakos et al., 2020)
167 and thus the OPC-N3 was operated without a dryer.

168 Since OPC-N3 sampled air without drying, the measured particle sizes and number concentrations may
169 therefore be affected by hygroscopic growth under high relative humidity conditions. However, the instrument’s
170 internal T is slightly elevated due to electronics heat emission, reducing the humidity of the sampled air. Analysis
171 of the internal RH logs revealed that no data exceeded 80% RH, and most measurements were taken under
172 relatively dry conditions (RH $< 40\%$ in 60–90% of cases, depending on the season and height). Therefore,
173 hygroscopic growth effects were expected to be minor. Similar limitations and evaluation strategies (flagged RH

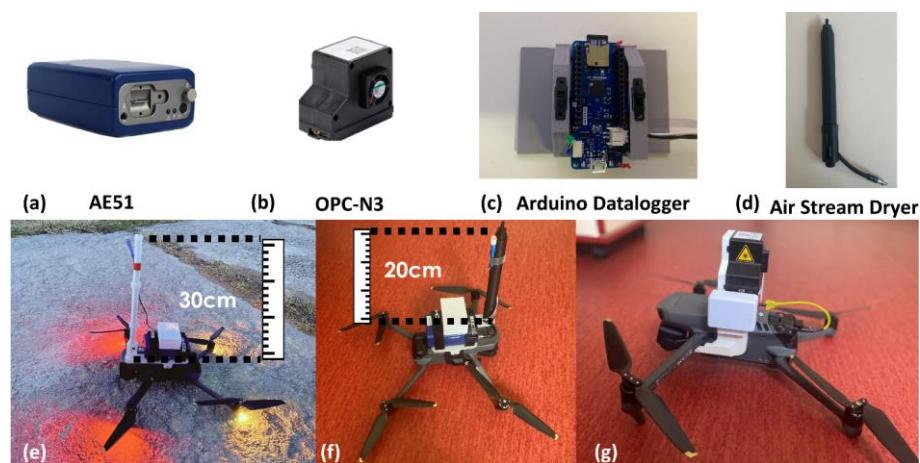
174 [> 80 %](#) -have been documented in previous UAV-based OPC studies (Brus et al., 2025; Chacón-Mateos et al.,
175 2022; Nurowska et al., 2023; Nurowska and Markowicz, 2023).²

176 The backpack [with OPC](#) uses a Raspberry Pi zero microcomputer as a data logger and was mounted on
177 the top of the drone (Figure 2g). The backpack also contains two meteorological sensors BME 280 (Bosch
178 Sensortec GmbH) and SHT85 (Senserion AG) positioned on [either opposite](#) side of the backpack [\(see their](#)
179 [comparison in the next section\)](#) and a redundant to drone own GPS module for the recording of drone position
180 (Brus et al., 2025). [The backpack housing was 3D-printed using white polyethylene terephthalate glycol \(PETG\)](#)
181 [filament, which provides structural support and helps reflect solar radiation to minimize thermal influence on the](#)
182 [sensors. The dual-sensor configuration also reduces bias caused by asymmetric solar heating, which can lead to](#)
183 [small temperature differences \(up to a few degrees\) under clear-sky conditions, while remaining negligible under](#)
184 [overcast skies.](#) Temperature and RH readings from both sensors were compared against tower-based temperature
185 and RH data while flying on the drone at different heights to [evaluate the feasibility and reliability of using the](#)
186 [drone-based setup for vertical profiling of temperature and RH](#) validate sensor accuracy and data reliability (Figure
187 S2-S5). [Both the BME280 and SHT85 sensors exhibit correlations about or over 0.9 between tower measurements](#)
188 [and temperature across various heights. However, at 230 m, this correlation weakens to 0.5. For humidity, the](#)
189 [SHT85 maintains a strong correlation at most heights, except at 230 m, while the BME280 shows greater](#)
190 [variability, with R² values dropping to 0.54 at 4 m, 50 m, and 230 m.](#)

191 [The OPC N3's flow is driven by a low-power internal fan, and its inlet was horizontally mounted and exposed to](#)
192 [ambient wind during drone flights. The vertical profiling was conducted against the prevailing wind direction, the](#)
193 [OPC inlet consistently faced oncoming airflow, helping to standardize sampling conditions across flights. While](#)
194 [this minimized directional variability, strong horizontal winds could still affect the internal airflow stability of the](#)
195 [OPC N3 \(Table S1\). To mitigate this, all measurements were averaged over 1-minute intervals, which helps](#)
196 [reduce short-term fluctuations. Due to OPC's horizontal inlet design and a low-power fan built in ventilator,](#)
197 [equipping a dryer was not feasible, as it would result in an excessively high pressure drop, making the](#)
198 [measurement highly unreliable \(Bezantakos et al., 2020\) and the OPC N3 without a dryer to ensure data quality.](#)

200 The total particle number concentration (N), in particles per cubic meter (#/m³), was calculated from the
201 raw OPC data as:

$$202 N = \frac{C}{F \cdot t}, \quad (1)$$


203 where C is the total particle count, F is the flow rate in cm³/s, and t is the sampling time in seconds. The OPC
204 operates at a total flow rate of 5.5 l/min and a sample flow rate of 0.21-28 l/min. The measurement interval of 1
205 second was used to account for the high temporal variability of particles' concentrations.

206 [The OPC N3 reports an internal airflow estimate based on fan performance, not corrected for external](#)
207 [wind. To standardize exposure, all hovering profiles were conducted into the prevailing wind, and data were](#)
208 [averaged to 1 min to reduce short-term variability. Residual wind-fan interactions for fan-driven OPCs are](#)
209 [acknowledged \(Bezantakos et al., 2020\).](#)

210 **2.2.4. Temperature and RH**

211 For OPC, sensor SHT85 was used to measure ambient temperature (T) and RH, while with AE51, an Arduino
212 (MKR Zero) datalogger (HYT939p, Innovative Sensor Technology IST AG) (Figure 2c) was used for T and RH
213 measurements. The HYT939P was selected primarily due to its availability. Although this sensor HYT939p has a
214 slower nominal response time ($\approx 2-3$ s), potential lag effects were negligible because the drone hovered for
215 approximately 5 min at each altitude and data were averaged over 1-min intervals. The HYT939P showed close
216 agreement with tower-based T/RH measurements (see Figures S6 and S7 and Table S3), confirming its suitability
217 for UAV-based profiling. The Arduino MKR zero microcontroller processes sensor data using a 32-bit SAMD21
218 processor and stores it on an SD card. It is programmed via the Arduino IDE to read inputs, perform tasks, and
219 save data. The Arduino datalogger with HYT939p sensor was developed after the first summer campaigns at both
220 sites and, therefore, was used only during winter campaigns. For the summer campaign, meteorological variables
221 from the tower at the same height as the drone hover at NAOK were used, and in Prague, meteorological data
222 from the ground and top of the building, i.e., 50 m, were used. The Arduino T and RH measurements were also
223 compared to the tower temperature and RH data at different heights to confirm the validity and robustness of the
224 drone T and RH results (Figures S6 and S7). The results show a strong correlation between tower measurements
225 and Arduino observed humidity and temperature at different heights, with R^2 values generally above 0.8.

226 UAV-based T and RH measurements showed strong agreement with tower observations ($R^2 = 0.85-0.99$
227 for T and 0.50-0.96 for RH; RMSE = 0.3-2.4 °C and 5-8 %, respectively, Figure S2-S57). Among the sensors,
228 the HYT939p exhibited the most stable performance and the smallest bias, while the SHT85 and BME showed
229 largest scatter (Figure S8 and Table S3). On average, UAV readings were ~ 0.3 °C warmer and ~ 7 % drier than
230 the tower reference. The moderate reduction in correlation above 150 m, primarily due to fewer data points and a
231 response lag at 230 m, reflects the known limitations of compact airborne sensors (Brus et al., 2025). These
232 uncertainties, however, remain within acceptable limits for UAV-based meteorological measurements, as
233 demonstrated in previous intercomparison studies (Barbieri et al., 2019).

234

235 **Figure 2. Measurement setup: (a) micro-Aethalometer AE51, (b) optical particle counter (OPC) N3, (c) Arduino**

236 **datalogger, (d) Air Stream Dryer, (e) micro-Aethalometer AE51 with a temperature and RH datalogger without a**

237 **dryer, (f) micro-Aethalometer AE51 with a temperature and RH datalogger with a dryer, and (g) consumer drone**

238 **backpack with an optical particle counter with a custom mount on the drone.**

239 **2.2.5. Drone-based sampling**

240 The instruments were installed on the Mavic 3 Classic drone (DJI Technology Co., Ltd.)

241 (<https://www.dji.com/cz/mavic-3-classic/specs>). The instrument's combined weight was too high to be carried by

242 the drone; thus, the instruments were set up separately and measured each alternating hour under similar

243 meteorological conditions.

244 With the micro-Aethalometer AE51, two different types of inlets were used: a 30 cm high inlet without

245 a dryer and a 20 cm high inlet with a diffusion-based silica gel dryer, while no inlet was used with a drone

246 backpack (Figure 2). In the dryer-equipped setup, in contrast to the non-dryer configuration using a single bend

247 (Figure 2e), an additional 90° bend in the inlet tubing was necessary to accommodate the dryer housing (Figure

248 2f). Based on an equivalent pipe length (EPL) of 0.15 m per 90° bend (radius < 5 cm; Wang et al., 2002), the EPL

249 increased from 42 cm (without dryer) to 49 cm (with dryer). The AE51's sampling height and mounting position

250 remained unchanged, and this small difference in EPL is negligible for submicron aerosols at 0.15 L min⁻¹ (von

251 der Weiden et al., 2009).

252 In the dryer-equipped setup, the AE51 unit was mounted upside down to align its default downward-

253 facing inlet with the dryer outlet. This configuration required an additional 90° bend in the inlet tubing to

254 accommodate the dryer housing (Figure 2f). In contrast, the non-dryer configuration used a single bend (Figure

255 2e). Despite these differences, the sampling height, AE51 mounting location, and total tubing length were

256 consistent across both setups, minimizing potential sampling artifacts or inlet losses.

257 Particle losses within the AE51 inlet system were estimated using the Particle Loss Calculator (von der Weiden

258 et al., 2009) for all measurement configurations and wind speeds (Table S2). For a 30 cm high inlet without dryer,

259 total transmission efficiency for particles < 2.5 μm corresponded to losses < 9 %, while for the 20-cm dryer inlet,

260 losses were < 1 %. Whole-inlet losses were evaluated for both AE51 configurations (with and without dryer) to

261 assess the effect of wind speed on sampling accuracy. For the AE51 without dryer, concentration changes for

262 PM_{2.5} remained minimal (< 10 % overestimation) up to 4 m s⁻¹ but increased at higher wind speeds, reaching

263 about 22 % overestimation for PM₁ at 6 m s⁻¹. When the dryer was attached, the sampling efficiency also decreased

264 with wind speed, with overestimation increasing from ~5 % at 2 m s⁻¹ for PM₁ to ~50 % at 6 m s⁻¹ for PM_{2.5}. The

265 particle loss within the inlet for particles up to 2.5 μm calculated for the AE51 setup for a 30 cm high inlet is <

266 9 %, and for a 20 cm dryer inlet, it is < 1 %. The overall sampling losses for the whole set-up were calculated using

267 Particle Loss Calculator (von der Weiden et al., 2009) for all measurement set-ups and wind speeds (Table S1).

268

269 Only sampling losses were calculated for OPC and OPS, as no inlet extension was used. For OPS,

270 sampling loss was minimal (10 % overestimation) for PM_{2.5}, fraction up to wind speed of 6 m/s, but PM₁ showed

271 an underestimation of 100 % up to 6 m/s. For OPC, sampling losses were less severe (50 % overestimation up to

272 6 m/s) for PM₁, but for PM_{2,5} overestimation ranged from 60 % to 125 % at 4 m/s and 6 m/s, respectively. For
273 PM₁₀ particles, overestimation was as high as 750% at 6 m/s.

274 Whole inlet particle losses were calculated for AE51 with and without dryer inlets. For AE51 without a dryer,
275 changes in concentrations for PM_{2,5} remained minimal (< 10% overestimation) up to 4 m/s and below but
276 increased at higher wind speeds, reaching up to 22 % overestimation for PM₄ at 6 m/s. For AE51 with dryer,
277 sampling is also affected by wind speed, with overestimation increasing from 5 % at 2 m/s for PM₄ to 50 % at 6
278 m/s for PM_{2,5}.

279 Only sampling losses were calculated for OPC and OPS, as no inlet extension was used. For OPS, sampling loss
280 was minimal (10 % overestimation) for PM_{2,5} fraction up to wind speed of 6 m/s, but PM₁₀ showed an
281 underestimation of 100 % up to 6 m/s. For OPC, sampling losses effects were less severe (50 % overestimation up
282 to 6 m/s) for PM₁, but for PM_{2,5}, overestimation ranged from 60 % to 125 % at 4 m/s and 6 m/s, respectively. For
283 PM₁₀ particles, overestimation was as high as 750% at 6 m/s.

284

285 During the flights, the drone climbed vertically from the ground to 230 m and 100 m AGL at a constant
286 speed of 1 ms⁻¹ along the tower at NAOK and the Prague building, respectively (the maximum altitude was limited
287 to 100 m in Prague due to flight height restrictions). The drone hovered at different heights (4 m, 50 m, 100 m,
288 150 m, and 230 m at NAOK and 4 m, 50 m, and 100 m in Prague) for at least 3-5 minutes and then ascended in
289 the same vertical direction. To reduce short-term noise, the raw data were averaged into 1-minute intervals,
290 yielding 3-5 values per altitude per flight. Although continuous measurements were recorded during each ascent
291 flight, only hovering measurements at different heights were used in this study. This approach reduces the
292 influence of rotor-induced turbulence and enables more stable sampling conditions. While ascent and hovering
293 show a 3-6 % error in particle concentration, the descending flights were excluded due to the propellers-induced
294 airflow increasing apparent particle concentrations by up to 40-60% (Hedworth et al., 2022; Lampert et al., 2020).

295 Although continuous measurements were recorded during each ascent flight, only hovering
296 measurements at different heights were used in this study. This approach reduces the influence of rotor induced
297 turbulence and enables more stable sampling conditions. The descending flights were excluded due to the
298 disturbance of propellers on airflow and aerosol sampling. The descended flights were not considered due to the
299 propellers' effect on aerosols' flow (Although continuous measurements were recorded during each flight, only
300 hovering measurements at different heights were used in this study. This approach reduces the influence of rotor-
301 induced turbulence and enables more stable sampling conditions. The descended flights were not considered due
302 to the propellers' effect on aerosols' flow. As demonstrated by (Hedworth et al., 2022; Lampert et al., 2020), air
303 sampling during ascent and hover is considerably less affected by rotor wash than during descent, which can
304 introduce vertical mixing and distort aerosol concentrations. Computational Fluid Dynamics simulations by
305 Hedworth et al. (2022) demonstrated that UAV rotor downwash can increase apparent particle concentrations by
306 up to 40-60% during descent, whereas ascent and hovering conditions exhibit negligible disturbance (3-6 % error).

307 Flights were conducted for at least 4 to 5 days during a week, depending on the weather conditions.
308 During each flight, data were collected while hovering for 3-5 minutes at predefined altitudes. To reduce short-
309 term noise, the raw data were averaged into 1-minute intervals, yielding 3-5 values per altitude per flight. Across

310 the full campaign (approximately 15–20 flights), these 1-minute averages were grouped by altitude, and the
311 resulting distributions were used for comparisons with reference instruments (e.g., AE33) and visualized at each
312 height level.

313 ~~However, to compare OPC-N3 (0.35–37 μm measurement size range) with the OPS (0.3–10 μm size
314 range), size-bin harmonization was applied. For each 1-min average, OPC binned number concentrations were
315 linearly interpolated in $\log_{10}(D_p)$ space from OPC mid-bin diameters onto the OPS bin grid over the overlapping
316 size range of 0.35–10 μm (Weltje and Roberson, 2012). Values below the OPC detection limit (0.35 μm) were
317 clipped, and the interpolated distributions were integrated to the OPS bin boundaries to obtain number
318 concentrations per OPS bin. For all other analyses and plots, no bin harmonization was applied and data are
319 presented in the full size ranges; we show the native bins of each instrument (all OPC bins up to 10 μm and all
320 OPS bins).~~

321
322 The summer campaign took place at NAOK from July and August 2023, and the winter campaign in
323 February 2024 (Table 1). Additionally, a test to evaluate the dryer's performance was conducted on August 13,
324 2024. ~~The dryer-on intercomparison at NAOK was performed on a single day.~~ In Prague, measurements were
325 performed during two summer campaigns and one winter campaign across 2023 and 2024. The urban
326 measurements were taken without a dryer in August 2023, and in December 2023, while a dryer was used for eBC
327 measurements in ~~June–July~~ 2024 (Table 1). Measurements for each campaign began at ~~8 AM~~ 06:00 UTC (08:00
328 CEST) (~~08:00 local time?~~) and continued until ~~8 PM~~ 18:00 UTC (20:00 CEST) ~~during the summer and (08:00 local
329 time?) until 5 PM during winter~~ the summer, and from 07:00 UTC (08:00 CET) to 16:00 UTC (17:00 CET) during
330 the winter, due to shorter daylight hours. The number of flights for eBC and PNC at each height is summarized
331 in Table 1.

322 Table 1. Overview of campaign schedule and total number of flights for eBC and PNC measurements. Campaigns with
323 a dryer are indicated with an asterisk.

	Season	Campaign Dates	Number of flights (eBC)	Number of flights (PNC)	Measurement height (m AGL)
NAOK	Summer	July 31 to August 4, 2023	20	18	4,50,100,150,230
	Summer*	August 13, 2024*	12*	---	4*,230*
	Winter	February 12 to 16, 2024	15	15	4,50,100,150,230
Prague	Summer	August 14 to 20, 2023	22	21	4,50,100
	Summer*	June–July 18 to 23, 2024*	21*	21*	4*,50*,100*
	Winter	December 12 to 18, 2023	17	17	4,50,100

334
335 2.2.6. Additional variables
336 At NAOK, two aethalometers AE33 were available as reference instruments: one at the ground with a PM_{10}
337 sampling inlet (Leckel GmbH) at 4 m AGL and the other installed at the top of the tower, i.e., at 230 m with the
338 same sampling head as on the ground. The data from these aethalometers were compared with the drone-based

339 measurements while the drone hovered at corresponding heights. The AE33 at the ground uses a Nafion dryer
340 (custom-made, TROPOS, Leipzig, Germany) to remove moisture from the sample stream, whereas AE33 at 230
341 m was connected to a Nafion dryer but was not supplied with dry air during the summer of 2023 and winter
342 campaigns. An Optical Particle Sizer (OPS) (model 3330, TSI Inc., USA), without any dryer to ensure similar
343 measurement conditions, was placed at 4 m for comparison with the measurement from OPC on the drone. In
344 addition, temperature, RH, global radiation, wind speed and direction, and gaseous concentrations were obtained
345 from standard measurements at multiple tower heights (50 m, 125 m, and 240 m) and ground level (4 m) (Dvorská
346 et al., 2015), and ceilometer CL51 (Vaisala, Finland) was used for every hour boundary layer [height \(BLH\)](#)
347 information (Julaha et al., 2025) [at NAOK.](#) ([Julaha et al., 2025](#))

348 [In Prague, long-term measurements alongside the building include data on temperature, RH, wind speed,](#)
349 [gaseous concentrations, and particulate matter concentrations, monitored at ground level, 10 m, and at the top of](#)
350 [a 50m high building \(Table 2\) \(Ramatheerthan et al., 2024\). Since ground-based ceilometer measurements for the](#)
351 [BLH were not available at the site, boundary layer height predictions were obtained from ERA5, a fifth-generation](#)
352 [ECMWF \(European Centre for Medium Weather Forecasting\) reanalysis model produced by the Copernicus](#)
353 [Climate Change Service \(C3S\). The hourly boundary layer height was obtained for the duration of campaigns](#)
354 [\(Hersbach et al., 2023\). The consistency between ERA5-derived and ceilometer-observed BLH values was](#)
355 [previously assessed \(Julaha et al., 2025\), showing good agreement at NAOK. Consequently, ERA5 data were](#)
356 [considered reliable for estimating BLH at the urban site.](#)

357 [Normality was evaluated using the Shapiro–Wilk test \(\$p < 0.05\$ \). Since the data were non-normally](#)
358 [distributed, the Kruskal–Wallis test was used to determine significant differences in eBC \(and PNC\)](#)
359 [concentrations between sampling heights. Sample sizes \(\$N\$ \) are shown on boxplots. All groups had \$N \geq 10\$,](#)
360 [satisfying the minimum requirement \(\$N > 5\$ \) for reliable Kruskal–Wallis testing of small, non-normal datasets](#)
361 [\(Conover, 1999; Sheskin, 2003\).](#)

362 The percentage difference (PD) was calculated to evaluate variability across measurements for
363 comparing data across different heights and conditions:

364
$$PD = \frac{X_{ref} - X_{drone}}{X_{ref}} * 100, \quad (2)$$

365 where X_{ref} is concentration from reference device and X_{drone} is concentration from device on drone. The same
366 approach was taken also for calculating the difference between heights.

367 The wind shear between the heights was calculated as the difference in wind speed (ΔWS) divided by
368 the difference in altitude (Δz):

369
$$Wind Shear = \frac{\Delta WS}{\Delta z}, \quad (3)$$

370 given in m/s per 100 m.

	Instruments	variables	Measurement heights (m AGL)	
			NAOK	Prague

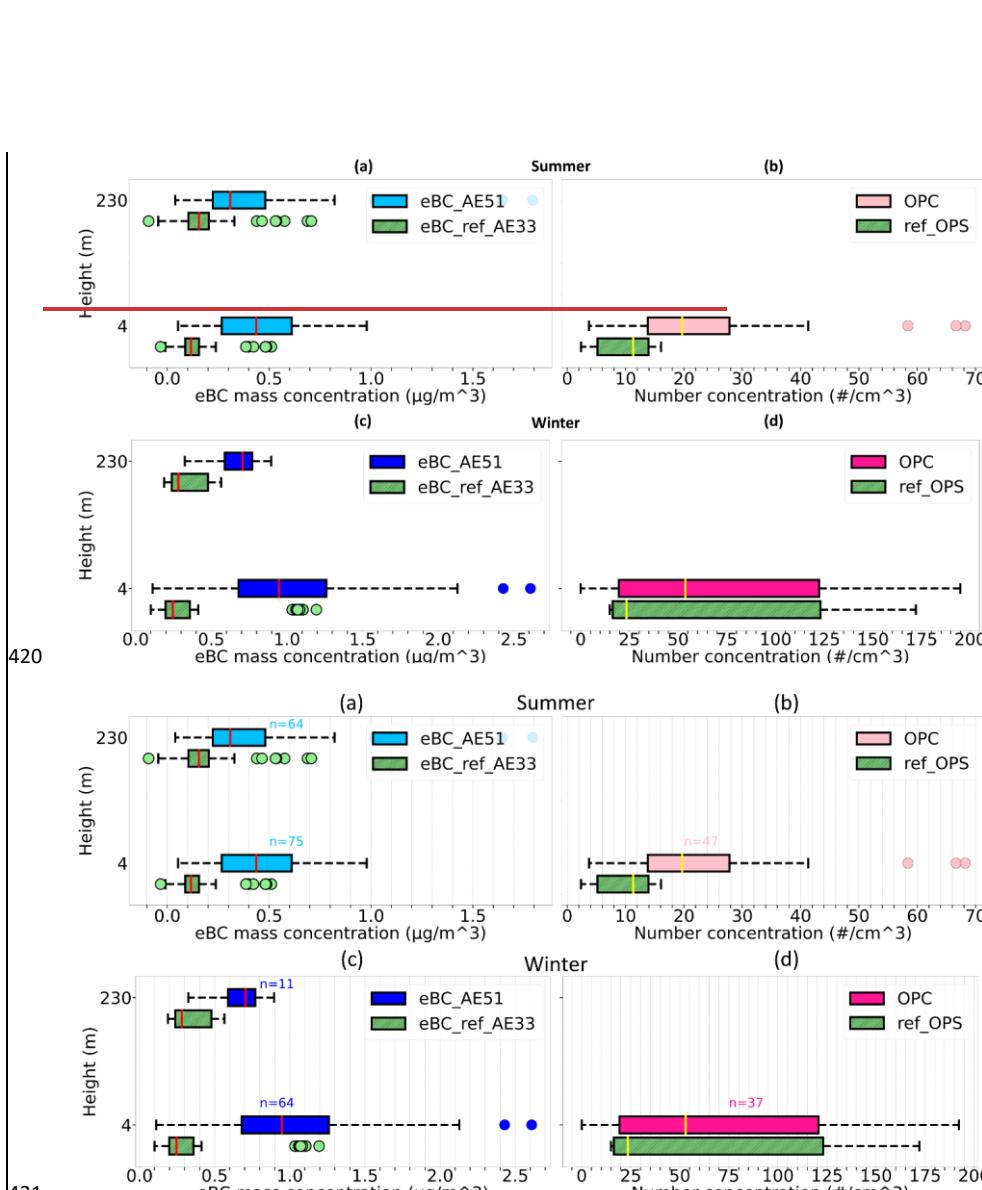
Drone	AethLabs AE51	eBC	4, 50, 100, 150, 230	4, 50, 100
	Alphasense OPC N3	PNC	4, 50, 100, 150, 230	4, 50, 100
	BME and SHT85	T, RH, P	4, 50, 100, 150, 230	4, 50, 100
	Arduino HYT939p	T, RH	4, 50, 100, 150, 230	4, 50, 100
	Drone (DJI Mavic 3 Classic)	ws	4, 50, 100, 150, 230	4, 50, 100
Fixed	Magee AE33	eBC	4, 230	-
	TSI OPS 3330	PNC	4	-
	Vaisala Ceilometer CL51	BLH/MLH	ground	-
	Tower measurements	T, RH, P, ws, wd	410, 50, 125, 240	-
	ENVISENS M-22-017	Global Radiation	ground	50
	Envitech ED-19-004, ED-19-005	PM	-	10, 50
	Aeroqual AQS1, Envitech M-22-016, M-22-017	NO2, O3, CO	-	2, 50
	Davis Vantage Pro2, Meteopress MD1017, MD1016	T, H, P, ws	-	10, 50
	ERA5	BLH	-	-

371 **Table 2. Variables and instrumentation used in this study.**

372
373 In Prague, long-term measurements alongside the building include data on temperature, RH, wind speed,
374 gaseous concentrations, and particulate matter concentrations, monitored at ground level, 10 m, and at the top of
375 a 50 m high building (Table 2) (Ramatheerthan et al., 2024). Since ground-based measurements for the boundary
376 layer were not available at the site, boundary layer height predictions were obtained from ERA5, a fifth-generation
377 ECMWF (European Centre for Medium Weather Forecasting) reanalysis model produced by the Copernicus
378 Climate Change Service (C3S). The hourly boundary layer height was obtained for the duration of campaigns
379 (Hersbach et al., 2023).

380 3. Results and Discussion

381 3.1. Intercomparison and effect of RH on eBC and PNC measurements


382 To assess the reliability of drone-based aerosol observations, the eBC and PNC measured while hovering the
383 drone were compared with the observations from the reference devices from the NAOK tower at 4 m and 230 m
384 for both the summer and winter campaigns. Because the reference instruments were available only at the NAOK
385 site, the validation of drone-based measurements based on 15 days of measurements was performed exclusively
386 there, providing basis for assessing instrument performance under real ambient conditions.

387 The AE51 on the drone overestimated the median reference eBC mass concentration by approximately
388 276 % at 4 m and by 99 % at 230 m during summer, with absolute differences of 0.32 $\mu\text{g}/\text{m}^3$ and 0.15 $\mu\text{g}/\text{m}^3$,
389 respectively. The smaller overestimation at the top of the tower 230 m can be due to similar measurement
390 conditions as both AE33 at 230 m and the AE51 on the drone were operating without any dryer (except Nafion

391 without dry air in front of the AE33, which may have partially influenced the moisture content of the sampled
392 air). The higher difference at 4m during the summer is likely due to high RH affecting the eBC measurements;
393 while a Nafion dryer was installed in front of the AE33 on the ground, the AE51 on the drone without a dryer was
394 strongly influenced. [This was further confirmed when the RH dropped below 40 % on 3 August, 2023, and eBC](#)
395 [mass concentrations from AE51 on the drone were comparable with the reference devices at both 4 m and 230 m,](#)
396 [as indicated by Kruskal-Wallis \(KW\) test showing no significant difference \(p > 0.05\) \(Figure S9\)](#) [This was further](#)
397 [confirmed when the RH dropped below 40 % on one day \(3 August, 2023\), and eBC mass concentrations from](#)
398 [AE51 on the drone were comparable at both 4m and 230m with the reference devices at both 4m and 230m, as](#)
399 [indicated by Kruskal-Wallis \(KW\) test showing no significant difference \(p > 0.05\) \(Figure S8S9\).](#)

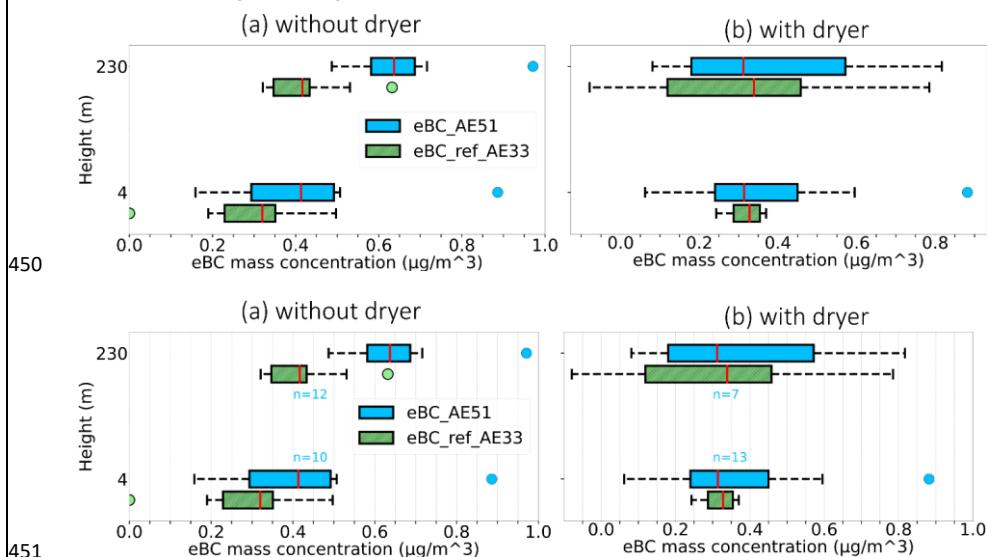
400 During the winter campaign, median drone-based measurements using AE51 overestimated eBC mass
401 concentrations by 285 % (0.7 $\mu\text{g}/\text{m}^3$) at 4 m and by 150 % (0.4 $\mu\text{g}/\text{m}^3$) at 230 m compared to the reference AE33
402 observations (Figure 3). This can be attributed again to the influence of humidity—at 4m, the AE33 was operated
403 with a dryer, and the temperature gradient between inside the measurement container and the external environment
404 at 230 m likely contributed to some drying effects as the sample travelled from the colder outdoor to the warmer
405 indoor environment.

406 The PNC from OPC on the drone also showed overestimation compared to the OPS reference
407 observations by 75 % (8 #/cm³) and 129 % (30 #/cm³) during summer and winter, respectively. The comparison
408 was made using the same size bins, with the ~~first bin of the OPC skipped and~~ interpolation applied to align the
409 bins between the two instruments. Both the OPC and OPS measurements were conducted without a dryer for both
410 seasons, thus measuring aerosol PNC at ambient RH. The observed difference can be attributed to different
411 sampling orientations: OPC inlet sampled horizontally against the wind, while OPS had a vertical inlet, causing
412 different influence on sampling in both instruments. For OPS, the sampling showed overestimation within 10 %
413 for PM_{2.5} up to wind speed of 6 m/s. In contrast, for OPC, overestimation jumped to 60 % and 125 % for PM_{2.5} at
414 wind speeds of 4m/s and 6m/s, respectively. As a result, OPC tends to report higher particle concentration than
415 the OPS, which contributes to the discrepancies observed in the PNC values. [Furthermore, the absence of drying](#)
416 [likely enhanced apparent particle sizes during high-RH periods; however, internal OPC-N3 RH records indicate](#)
417 [that all measurements were performed at RH < 80 %. The slightly elevated internal temperature of the OPC](#)
418 [reduces in-flow humidity, thereby suppressing hygroscopic particle growth. Consequently, humidity-related](#)
419 [artefacts were limited and do not affect the interpretation of relative vertical and seasonal variability.](#)

422 **Figure 3.** Boxplots of (a) eBC mass concentration and (b) PNC from drone vs. reference devices [\(interpolation](#)
423 [applied\) in the 0.35–10 \$\mu\text{m}\$ size range](#) from the tower at 4 m and 230 m during the summer 2023 campaign at NAOK;
424 c) and d) the same for winter 2024. Boxes show median and IQR; whiskers extend to 1.5×IQR; points beyond are
425 outliers (Tukey). Each point is a 1-min mean; n = number of points (1-min means) per altitude.

426
427 To address the effect of RH on eBC concentrations from drone measurements, a homemade silica gel
428 dryer was installed on the drone. A test to evaluate the dryer's performance was conducted on August 13, 2024,
429 a typical summer day with a temperature of 28 °C, RH varying from 50% to 90%, and a wind speed of 2-3 m/s.
430 Additionally, the aethalometer on the top of the tower at NAOK was equipped with a nafion dryer to ensure

427 Formatted: Indent: First line: 0.5"


431 consistent comparison between the two AE33 at different levels and between AE33 and AE51 under varying RH
432 levels throughout the day. The eBC measurements were done with and without the dryer at the drone and
433 compared to the AE33 eBC concentrations at the tower (both with Nafion dryers).

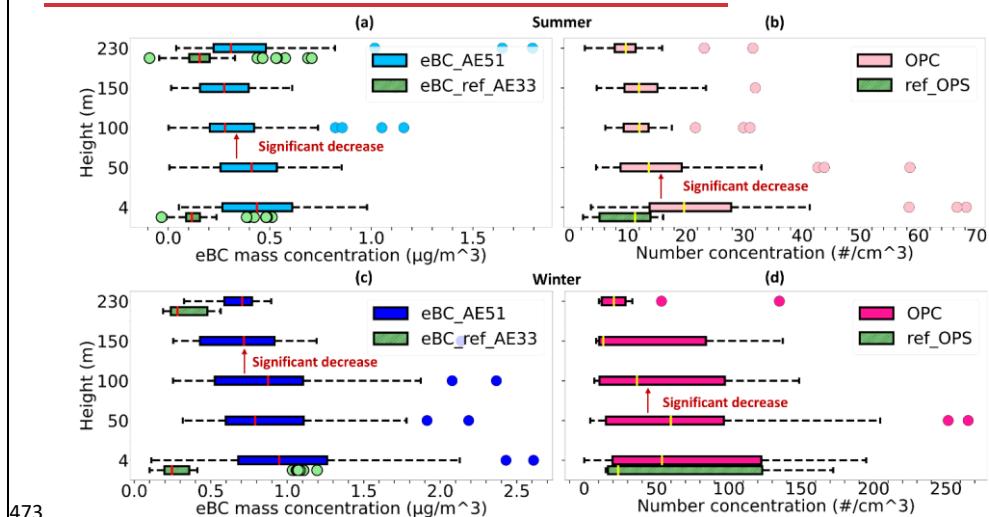
434 During this particular summer day, the AE51 on the drone without the dryer overestimated eBC mass
435 concentrations by 29 % ($0.09 \mu\text{g}/\text{m}^3$) at 4 m and by 53 % ($0.22 \mu\text{g}/\text{m}^3$) at 230 m compared to the reference AE33
436 (Figure 4a). After installing the silica gel dryer on the drone, the eBC measurements were closely aligned with
437 the reference observations, with the difference reduced to under 10% ($0.01 \mu\text{g}/\text{m}^3$ at 4 m and $0.02 \mu\text{g}/\text{m}^3$ at 230
438 m) at both heights (Figure 4b). This highlights the significant role of the dryer in minimizing the humidity impacts
439 and enhancing the accuracy of eBC mass concentration measurements from the micro-aethalometer AE51. These
440 findings further confirm the reliability of the drone platform and its effectiveness in providing eBC measurements
441 that compare well with long-term tower observations. [The AE51, like other single-spot aethalometers, can
442 respond to light-scattering aerosols. This effect was minimized by using a dryer and verified by the close
443 agreement with AE33 data, so any positive bias from non-absorbing particles was considered negligible.](#)

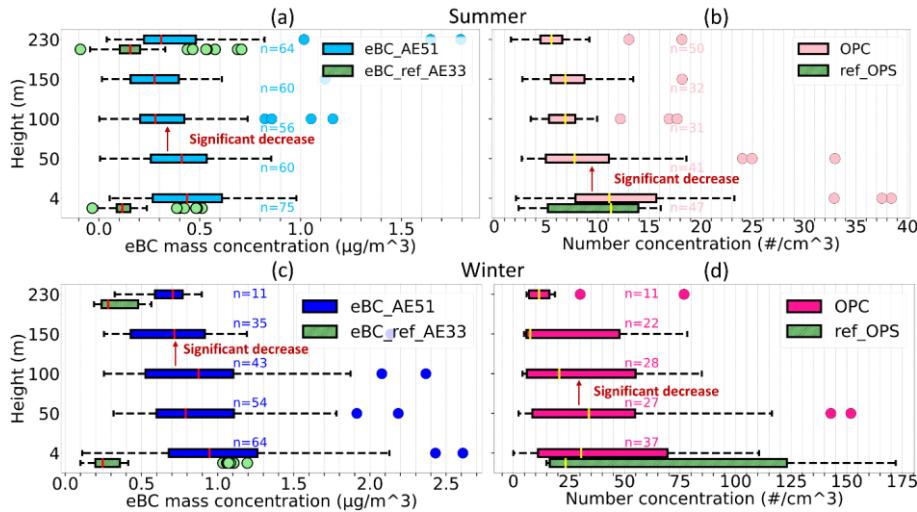
444 [The strong overestimation of eBC by the AE51 under high relative humidity is consistent with
445 hygroscopic growth of scattering aerosols, which increases apparent light attenuation \(Cai et al., 2013\). Water
446 uptake by soluble particles can amplify both scattering and absorption on the AE51's filter, artificially inflating
447 the reported eBC. This bias is especially problematic in mobile measurements, where the RH fluctuates rapidly.
448 By installing a silica-gel dryer to maintain RH below ~ 40 %, the humidity-induced artifact was eliminated, and
449 AE51 readings aligned well with reference AE33 measurements.](#)

Formatted: Font color: Auto

Formatted: Font color: Auto

452 [Figure 4. Boxplots of eBC mass concentration from drone and reference devices on the tower at NAOK during a
453 summer day \(August 13, 2024\) at 4 m and 230 m \(a\) without the dryer and \(b\) with the dryer. Boxes show median and
454 IQR; whiskers extend to \$1.5 \times \text{IQR}\$; points beyond are outliers. Each point is a 1-min mean; n = number of points \(1-
455 min means\) per altitude.](#)

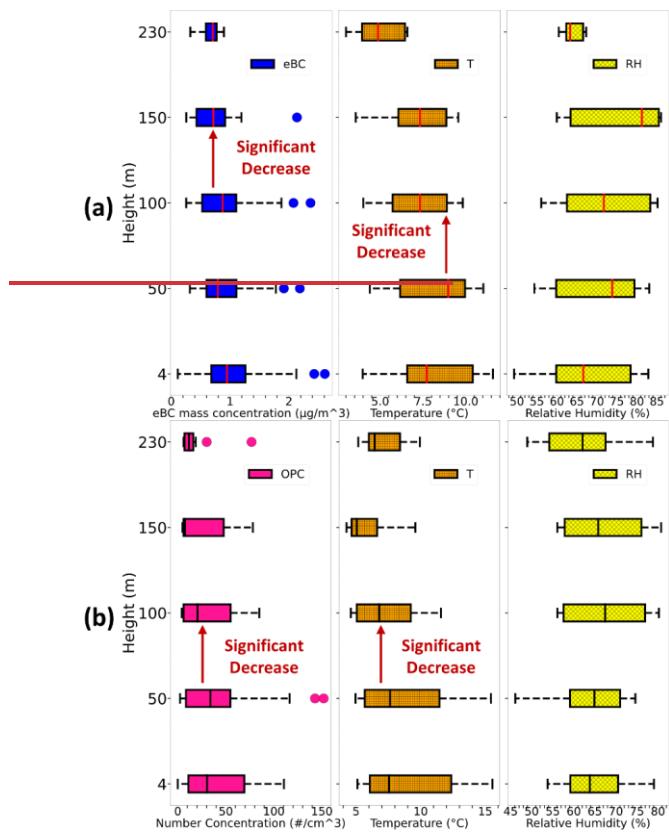

Formatted: Font: 9 pt, Bold, Font color: Auto

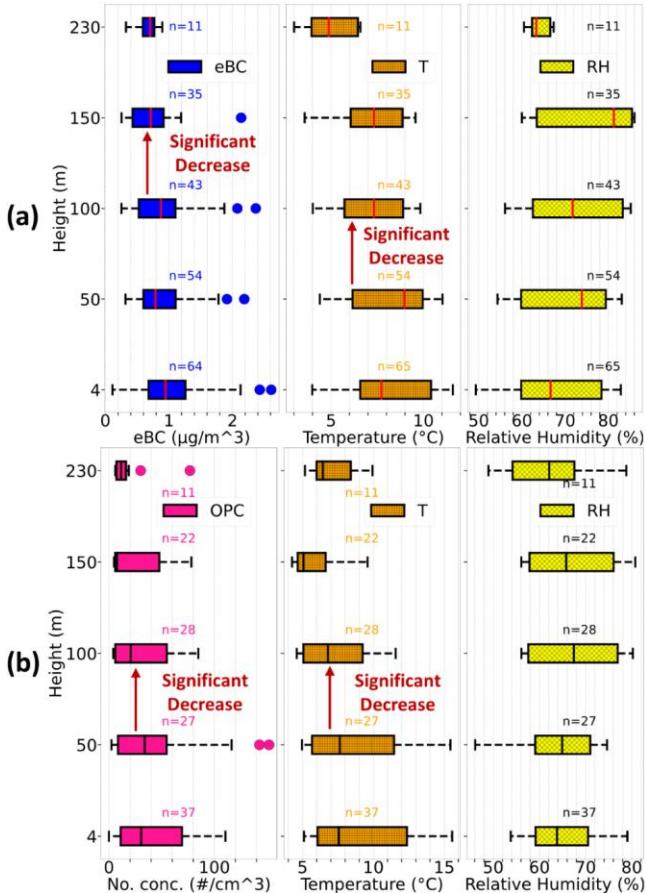

456 **Figure 4. Boxplots of eBC mass concentration from drone and reference devices on the tower at NAOK during a**
 457 **summer day (August 13, 2024) at 4 m and 230 m (a) without the dryer and (b) with the dryer.**

458 **3.2. Aerosol vertical profile at the rural site**

459 Vertical profiles of eBC mass concentrations without the silica gel dryer and PNC were measured while hovering
 460 the drone at different heights (4 m, 50 m, 100 m, 150 m, and 230 m) during the summer 2023 and winter 2024 at
 461 NAOK simultaneously with the reference instruments (Figure 5). During summer, eBC mass concentration
 462 remained relatively uniform up to the height of 50 m, followed by a decrease of 32 % ($0.13 \mu\text{g}/\text{m}^3$) between 50
 463 and 100m. Conversely, PNC dropped by 30 % ($6 \#/ \text{cm}^3$) between 4 m and 50 m. In winter, eBC mass concentration
 464 stayed constant up to 100 m and decreased by 18 % ($0.16 \mu\text{g}/\text{m}^3$) between 100 m and 150 m. PNCs were constant
 465 from the ground to 50 m but decreased by 39 % ($24 \#/ \text{cm}^3$) between 50 m and 100 m. The significance of the
 466 increase or decrease in eBC mass concentration and PNC was tested by the Kruskal-Wallis (KW) test ($p < 0.05$).
 467 When plotted using native (non-interpolated) bins, the OPC-N3 and OPS show closer agreement (see Figure 5).

468 The general decrease of both eBC and PNC with height indicates that surface sources dominate aerosol
 469 loading at this rural site and that vertical mixing was insufficient to fully homogenize the boundary layer. Similar
 470 vertical gradients have been observed in background and rural settings, where limited turbulence allows
 471 combustion-derived fine particles to accumulate near the ground, resulting in declining concentrations aloft
 472 (Harm-Altstädter et al., 2024; Samad et al., 2020).




474
 475 **Figure 5.** Boxplots of (a) eBC mass concentration and (b) PNC from the drone ([no interpolation applied full size range used](#)) while hovering at different altitudes during summer, [2023](#) at NAOK; (c) eBC mass concentration and (d) PNC from the drone while hovering at different altitudes during winter, [2024](#) at NAOK. [Boxes show median and IQR; whiskers extend to 1.5×IQR; points beyond are outliers \(Tukey\)](#). n = number of points (1-min means) per altitude. [Each point is a 1-min mean; \$n\$ = number of points per altitude](#).

480 Simultaneously, the vertical gradient of temperature and RH were examined during the winter campaign
 481 to explain the vertical changes in eBC and PNC. The eBC, PNC, temperature, and RH comparison revealed no
 482 significant temperature variation from the ground to 50m for both eBC mass and PNC (Figure 6). [The nearly](#)
 483 [uniform \(isothermal\) temperature profile \(\$\Delta T \approx 0.05\$ °C between 4 m and 50 m\) indicates very weak vertical](#)
 484 [temperature gradients and limited turbulent exchange, which can promote accumulation of eBC and PNC near the](#)
 485 [surface. Such near-isothermal conditions correspond to a shallow, stable mixed boundary layer, typical of winter](#)
 486 [mornings in mid-latitude regions, when solar heating is too weak to drive convective turbulence and mix the](#)
 487 [surface air upward \(Steenneveld, 2014\). Previous studies reported similar near-surface accumulation of pollutants](#)
 488 [under weak or isothermal temperature. The uniform temperature suggests stable atmospheric conditions that likely](#)
 489 [contributed to the accumulation of eBC and PNC within the first 50 m. Previous studies reported such patterns,](#)
 490 [where primary emissions near the surface get trapped under stable atmospheric conditions, leading to elevated](#)
 491 [concentrations of pollutants near the ground \(Marucci and Carpentieri, 2019; Wang et al., 2018b\).](#)

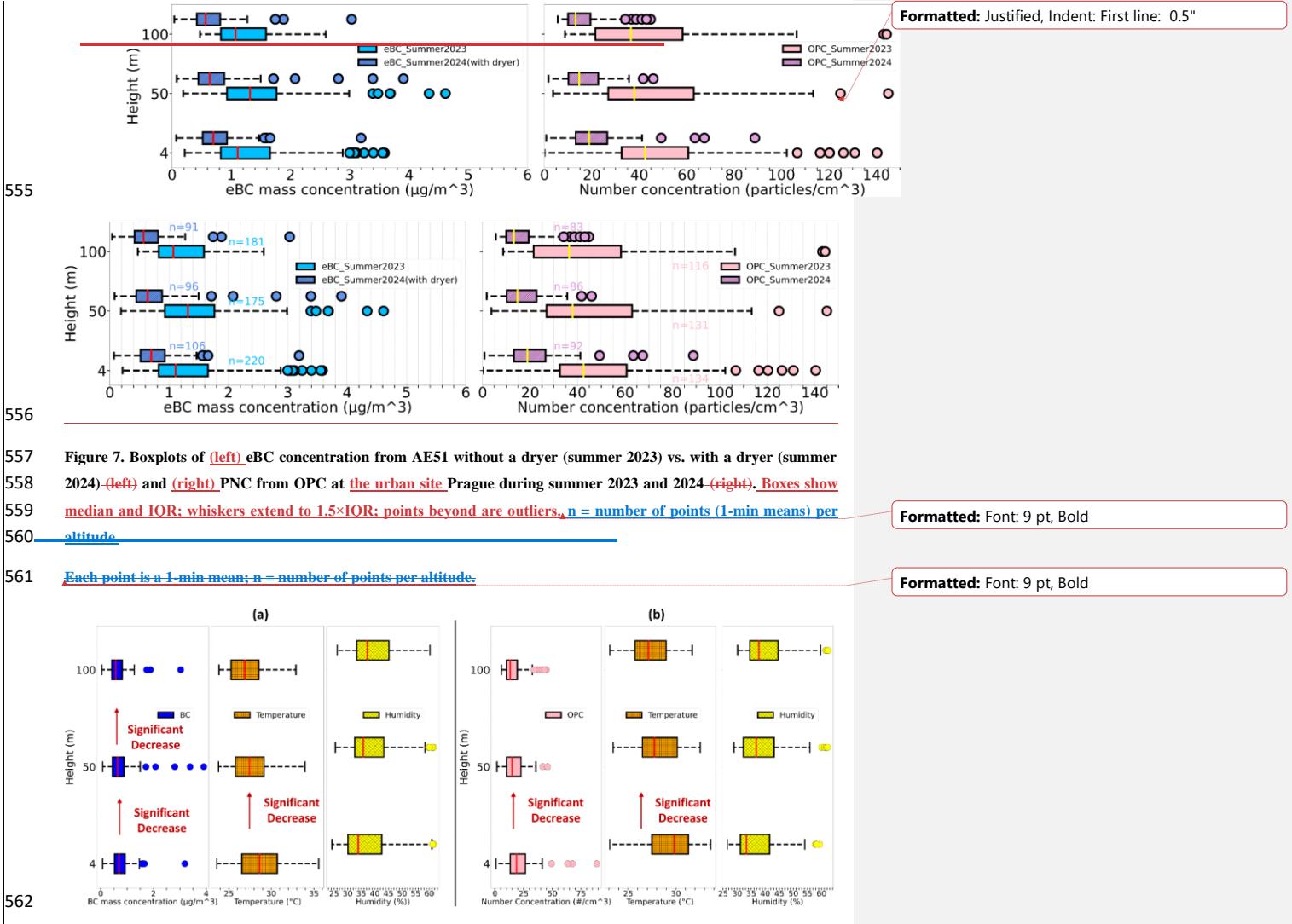
492 The temperature started to decrease with height above 50 m, and the PNCs decreased, while eBC mass
 493 concentrations remained constant up to 100 m despite the temperature changes. This vertical pattern is similar to
 494 the summer measurements, where eBC mass was uniform up to 50 m, and PNC decreased from the ground. [This](#)
 495 [difference between eBC and PNC with altitude likely reflects particle size and lifetime differences: eBC, mostly](#)
 496 [sub-micron, has lower deposition velocities and longer residence times, while larger or semi-volatile particles](#)
 497 [dominating PNC are more prone to settling and condensation losses. Deposition velocity increases markedly with](#)
 498 [particle size \(Donateo et al., 2023\), making dry deposition a key driver of size-dependent vertical gradients. This](#)

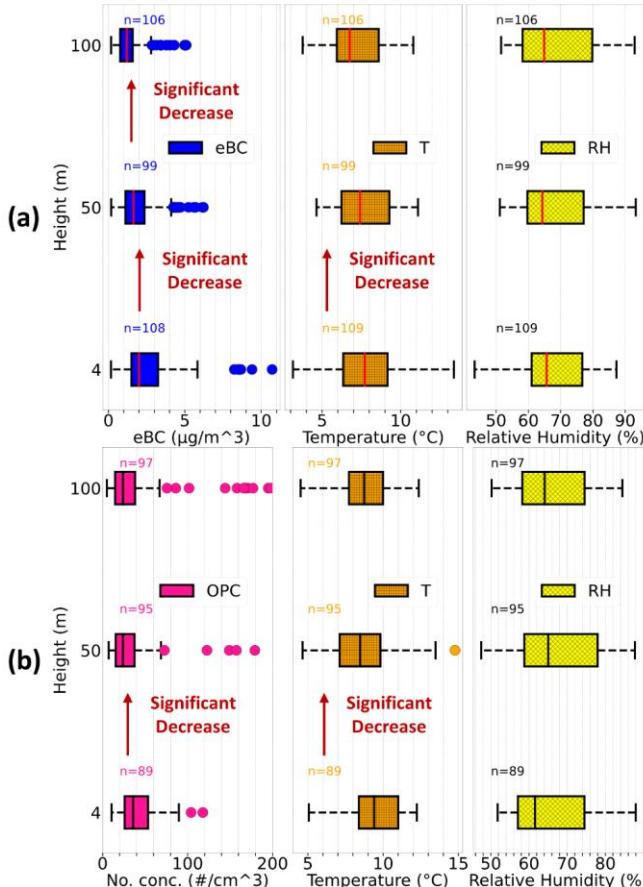
499 indicates that differences in particle size may have brought the observed changes in PNC compared to the
500 unaffected eBC mass concentrations. The consistency across seasons suggests that eBC is well mixed within the
501 lower mixed layer, while PNC is governed more by local production and removal processes such as coagulation
502 and hygroscopic growth.

504
505 **Figure 6. Boxplots of (a) vertical distribution of eBC mass concentration from AE51 without dryer, temperature, and**
506 **RH, and (b) vertical distribution of PNC from OPC, temperature, and RH on the drone at [rural site](#) NAOK from**
507 **during winter 2024 February 12 to 16, 2024. Boxes show median and IQR; whiskers extend to $1.5 \times \text{IQR}$; points beyond**
508 **are outliers. n = number of points (1-min means) per altitude. Each point is a 1-min mean; n = number of points per**
509 **altitude.**

510 Further, the decrease in eBC mass concentration with height was more pronounced in summer (32 %)
511 compared to winter (18 %) at NAOK. On the contrary, PNC decreased with height more during winter (39 %)
512 than in summer (30 %). These contrasting patterns reflect the role of meteorology and emissions: in summer,
513 deeper boundary layers and convective mixing disperse eBC more aloft, whereas in winter, shallow mixing retains
514 it near the surface. The steep winter decline of PNC likely arises because heating emissions emit coarser or semi-
515 volatile particles that are efficiently lost with height, but in summer, new particle formation produces many fine
516 particles that distribute more uniformly (Gao et al., 2012; Kulmala et al., 2004). While vertical mixing influences
517 the vertical distribution of particles, the behavior of eBC vertical distributions reflects the combination of particle
518 size and atmospheric stability rather than primarily depending on vertical mixing alone (Wang et al., 2018). Our

519 results suggest that at least two aerosol populations of different sizes and sources were measured during the year,
520 thus with different vertical behaviors. This was confirmed by comparison to reference AE33 data from the tower;
521 in winter, biomass/wood burning contributed 48% and 44% of eBC measured by AE33 at 4 m and 230 m,
522 respectively, leading to a higher absorption Ångström exponent (AAE) of 1.6 and 1.5, respectively, while in
523 summer (AAE of 1.19 and 1.24, respectively), fossil fuel combustion (AAE of 1.19 and 1.24, respectively) was
524 the main source of eBC at NAOK, and biomass burning contributing to 18% and 22% of eBC, respectively.


525 **3.3. Aerosol vertical profiles at the urban site**


526 At the urban site, eBC mass concentration and PNC measurements were conducted up to 100 m during summer
527 in two different years – 2023 and 2024. The eBC mass concentrations were measured without the dryer from
528 August 14 to August 20, 2023, and with the dryer from June-July 18 to June-July 23, 2024. During both summers,
529 eBC mass concentration and PNC were uniform up to the height of 100m (Figure 7). This consistency can be
530 attributed to several factors. The high number of traffic emission sources at the site contributes to high and
531 relatively stable eBC concentrations in the lower atmosphere, similar to the results of (Liu et al., 2023). Also,
532 enhanced thermal convection and the urban heat island effect facilitate effective vertical mixing (Battaglia et al.,
533 2017). Furthermore, wind shear above 2.0 m/s per 100 m between all the heights (4-50m and 50-100m) during
534 both years supports the vertical transport of pollutants. The combination of convective and mechanical turbulence
535 facilitates the rapid vertical redistribution of aerosols, resulting in a uniform eBC and PNC profile despite strong
536 surface emissions. The presence of strong local sources in the city is further supported by Czech
537 Hydrometeorological Institute (CHMI) ground-based PM₁₀ observations from nearby Karlín (traffic site) and
538 Kobylisy (urban background) stations, which show higher concentrations and distinct diurnal peaks consistent
539 with local traffic and resuspension activity (Figure S10).

540 The deeper and thermally driven convective boundary layer during summer further increased turbulence,
541 and vertical mixing helped to distribute the particles more evenly within the lower atmospheric layers, thereby
542 homogenizing the particle concentrations. The agreement between summer campaigns with and without the dryer
543 also confirms that under low-to-moderate RH conditions (< 50 %), humidity effects on eBC were minimal in the
544 well-mixed daytime atmosphere.

545 The lower eBC and PNC concentrations observed in summer 2024 compared with summer 2023 can be
546 attributed to meteorology, measurement configuration, and emission changes. Firstly, during 2024, the wind speed
547 (Figure S11) and boundary layer height (Figure S12) were higher, thereby enhancing ventilation and dilution of
548 surface emissions. Secondly, a dryer was used with AE51 during the summer of 2024, thereby reducing the
549 humidity-related overestimation that had affected the summer 2023 measurements. And finally, higher pollutant
550 concentrations were measured in 2023 compared to 2024 in Prague, both by ground-level and 50 m PM data
551 directly at the Prague site (Figure S13), and also at a nearby (2.3 km of the measurement site) CHMI national air
552 quality network station Prague–Karlín station (Figure S14). This independent observation supports the UAV
553 findings and confirms that the interannual difference primarily reflects meteorological variability and reduced
554 local emissions in 2024.

Formatted: Indent: First line: 0.5"

Formatted: Centered

563

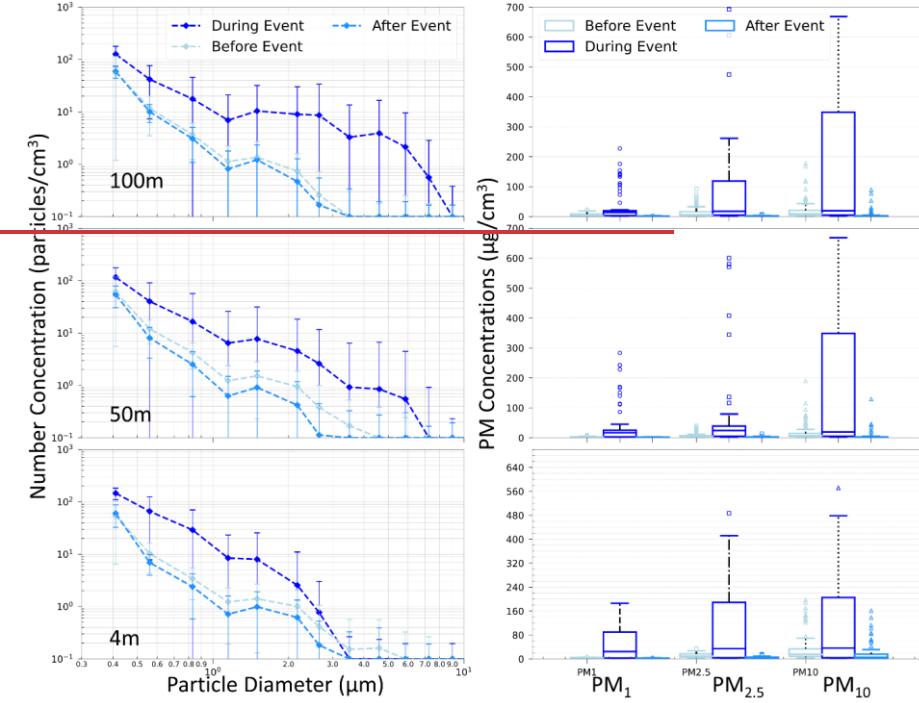
564 Figure 8. Boxplots of (a) eBC mass concentration from AE51 without dryer vs. Temperature vs. RH, and (b) PNC from
 565 OPC vs. Temperature vs. RH on the drone at Prague from December 12 to December 18, 2023. Boxes show median
 566 and IQR; whiskers extend to 1.5×IQR; points beyond are outliers. n = number of points (1-min means) per altitude.

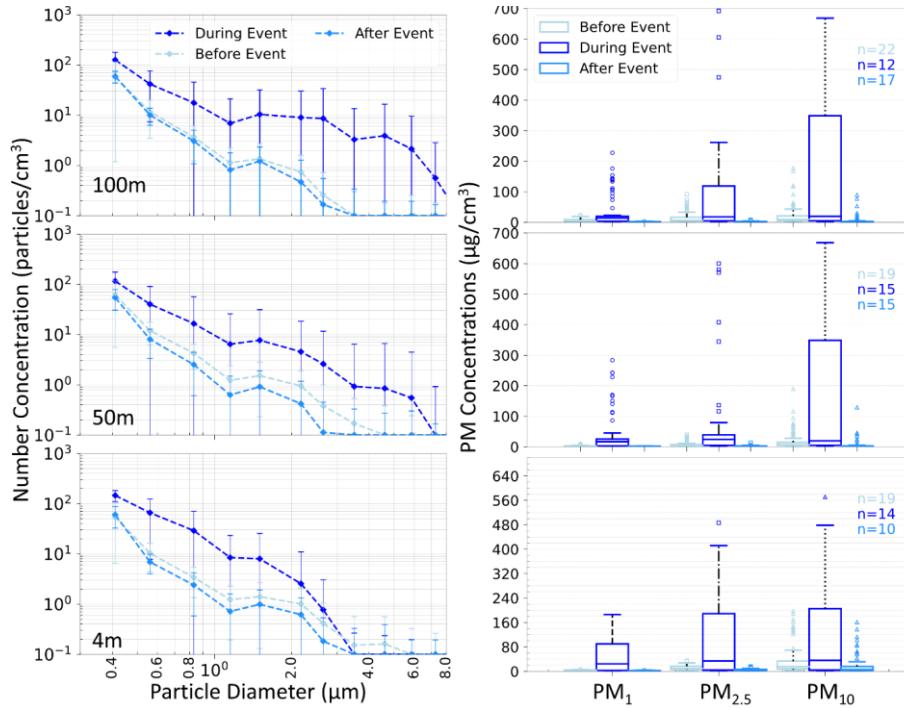
567 Each point is a 1-min mean; n = number of points per altitude.

568 During the winter campaign at Prague from December 12 to December 18, 2023, a significant reduction
 569 in both eBC mass concentration and PNC with increasing altitude was observed (Figure 8), contrasting with the
 570 summer pattern. Specifically, eBC mass concentration decreased with height up to 100 m, while PNC dropped to
 571 50 m from the ground and remained constant between 50 and 100 m. This behavior is mainly influenced by the
 572 combination of strong emission sources in the urban environments, as described previously, and typical stable
 573 atmospheric conditions in winter, preventing primarily influenced by the combination of strong emission sources
 574 in urban environments (Figure S10), as described previously, and the weak vertical temperature gradient ($\Delta T \approx$
 575 0.06 °C between 4 m and 50 m), which prevents does not support vertical mixing. During winter, reduced solar
 576 heating and long nocturnal cooling produce a shallow, near-isothermal boundary layer which suppresses

577 [turbulence and confines pollutants near the surface](#) (Marucci and Carpentieri, 2019; Wang et al., 2018a). [The](#)
578 [resulting weak turbulent diffusion, rather than a distinct temperature inversion, explains the accumulation of eBC](#)
579 [and PNC within the lowest tens of meters](#). The relatively smaller wind shear (1.1 m/s per 100 m between 50 – 100
580 m) further suppresses vertical mixing, trapping pollutants near the surface (Figure [S9S11](#)). As a result, pollution
581 remains confined closer to the emission sources, leading to higher concentrations near the ground and a more
582 pronounced decrease with height (Kotthaus et al., 2023). Additionally, the urban heat island effect intensifies
583 during stable conditions, causing temperature contrast between urban and rural areas, further reducing the vertical
584 dispersion of pollutants (Haeffelin et al., 2024).

585 Several outliers (extremely high levels) were detected in the eBC mass and PNC. During summer, the
586 outliers can be linked to increased turbulences and [daytime convective activities tend to flatten vertical gradients](#)
587 [within the mixed layer, yet they can increase temporal variability at a fixed location by intermittently transporting](#)
588 [near-surface plumes \(e.g., traffic, cooking, construction\) to the sampling height. Therefore, these outliers are](#)
589 [episodic plume encounters rather than persistent stratification, typically present during the warmer months, which](#)
590 [lead to more variability in pollutant dispersion \(Lumet et al., 2024\)](#). Fewer outliers were observed at NAOK for
591 eBC and PNC during winter, but more pronounced outliers were present in winter measurements at Prague. This
592 high concentration was due to [an elevated winter pollution high pollution](#) event between December 13 and 14,
593 2023. This event was marked by a sharp rise in PM levels, as confirmed by low visibility signals from the drone
594 at 100 m and ongoing PM measurements at the site (Figure [S10S16](#)). The vertical variation and other
595 characteristics of this pollution episode were thus further studied to get a better understanding of the influence of
596 such an event on air quality.


597 3.4. [Vertical variation during an elevated winter pollution high pollution event in Prague](#)


598 An increase in eBC mass concentration and PNC characterized Prague's [winter pollution](#) event in December 2023.
599 The event started on December 13th at 13:00 and lasted until the morning of December 14th, 2023. This
600 concentration increase was primarily attributed to a low and stable boundary layer reaching 105 m above the
601 ground (Figure [S11S16](#)). The vertical variation of eBC and PNC, along with the size distribution, was assessed to
602 evaluate the changes one day before (i.e. December 12) and comprised 5 vertical profiles of eBC and 4 profiles
603 of PNC. During the event, 3 profiles for both eBC and PNC were measured, all showing a substantial increase in
604 concentrations at all heights (4m, 50m, and 100m) compared to the period before the pollution episode (Figure
605 [S12S17](#)).

606 The highest increase in eBC concentrations during the event was observed at 100 m, with a 192% (2.5
607 $\mu\text{g}/\text{m}^3$) increase in median eBC levels compared to that before the event. Though less pronounced, the increase in
608 eBC concentration was also seen at 50 m and 4 m, with 130% (1.548 $\mu\text{g}/\text{m}^3$) and 56% (1.766 $\mu\text{g}/\text{m}^3$) increase,
609 respectively. The observed increase in eBC concentration at 100 m, just at the PBL height, suggests that while
610 ground-level emission had some impact, local atmospheric conditions allowed for some degree of vertical
611 transport of eBC from the above layer, likely influenced by long-distance transported particles. This is supported
612 by the back trajectory analyses, showing a change in trajectories from south [west](#) to west at the beginning of the
613 event, associated with [fast](#) transport of continental air masses from [both longer distances and higher altitudes, with](#)
614 [the upper levels \(arriving at 500 m\) changing first](#) (Figure [S13S18](#)). The drone measurements not only support

615 the measurements at the building (Figure S10S15), showing higher PM_{2.5} and PM₁₀ concentrations at 50 m
616 compared to 10 m results, but also provide measurements at 100 m, confirming the largest enhancement in eBC
617 concentration during the event above the building compared to the ground and 50 m. Such vertical layering is
618 consistent with many winter haze cases where polluted residual-layer air overlies a shallow, stagnant boundary
619 layer, yielding dual source contributions—local near-surface emissions plus advected/aged aerosol aloft (Sun et
620 al., 2016).

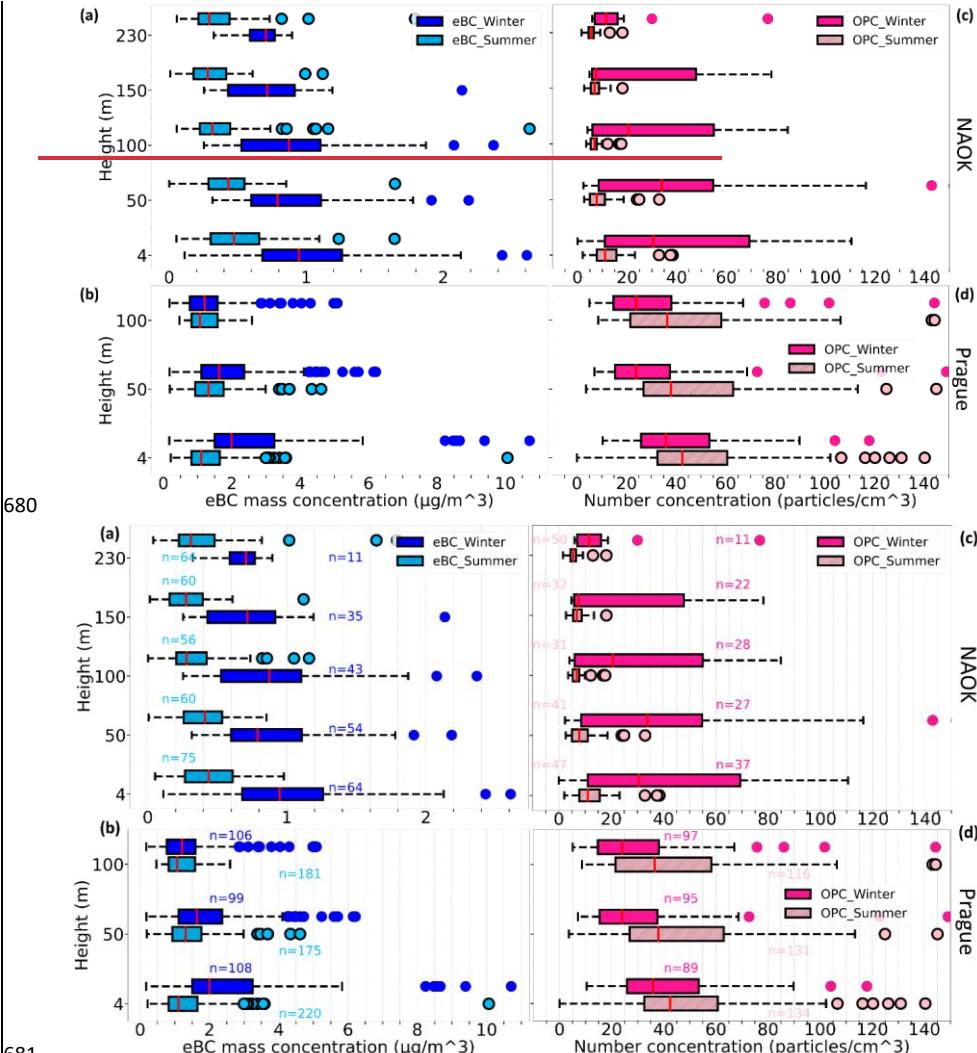
621 In contrast, PNC showed the highest increase at 4 m and 50 m in comparison to the day before the pollution event,
622 where PNC increased by 840 % (238 particles/cm³) and 860 % (151 #/cm³), respectively, with a less pronounced
623 increase at 100 m (460 %, 137 #/cm³). This suggests that some particles, most likely generated from ground
624 sources, remained concentrated near the surface due to the limited vertical dispersion during the pollution episode.
625 Prior to the event, eBC concentrations exhibited a significant decrease (by 73 %) from the ground up to 100 m,
626 and PNC decreased by 38 % between 4 m and 50 m. However, the trend was notably altered during the event,
627 with no significant change in both eBC and PNC with the height, indicating that daytime mixing has weakened,
628 allowing accumulation of pollutants throughout the shallow boundary layer.

631 **Figure 9.** Mean particle number concentration dependence on particle size from OPC on the drone at different heights
 632 before, during, and after [an elevated winter 2023 pollution event in Prague](#). [n = number of points](#)
 633 [\(1-min means\) per altitude](#).

634 The particle number size distributions at various heights reveal additional information (Figure 9). At 4m,
 635 the concentration of particles smaller than 3 μm increased significantly during the event compared to the
 636 distribution before the event, highlighting the production and accumulation of small particles near the ground.
 637 [These particles likely stem from incomplete combustion and secondary formation under stagnant conditions,](#)
 638 [where condensation of semi-volatile vapors and coagulation processes enhance fine particle numbers](#) (Gani et al.,
 639 2019; Zheng et al., 2023). In contrast, at 50 m and 100 m, concentrations of all particles were increased during
 640 the event, up to sizes of 10 μm . With the height, mainly the concentration of intermodal fraction, i.e., in sizes
 641 between 2.5 and 10 μm , increased in concentrations, potentially indicating contribution from longer distance
 642 transported aerosol and mixing processes that redistribute particles vertically. Before the event, particles up to 4
 643 μm in diameter were observed near the ground due to winter stable atmospheric conditions (Gani et al., 2019),
 644 which restricted vertical mixing and limited dispersion of pollutants. During the event, a substantial increase in
 645 larger particles was observed at 100 m (and partly also at 50 m), while almost no change was observed at the
 646 ground level concentrations, remaining below 0.1 #/cm³, suggesting contributions from long-range transport
 647 disconnected from the ground. A significant increase in PM mass was also observed across all heights (4 m, 50
 648 m, and 100 m) (Figure S14S19). PM₁ and PM_{2.5} dominated the mass concentrations across all heights during the

649 event, while PM_{10} saw the largest increase at 100 m, again suggesting contributions from coarse particles and
650 vertical mixing.

651 **3.5. Seasonal Contrast**


652 The vertical profiles of eBC mass concentration and PNCs during the summer and winter campaigns were
653 compared, revealing significant differences in the seasonal vertical patterns between the two stations.

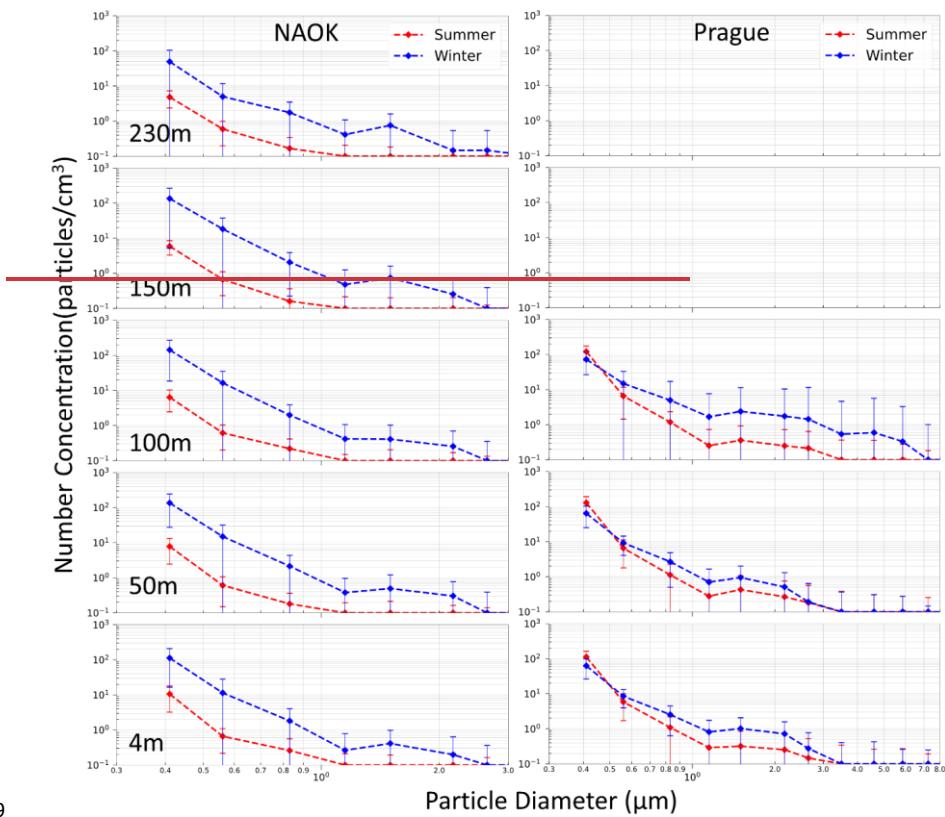
654 At NAOK in winter, a 100% ($0.45 \mu\text{g}/\text{m}^3$) higher eBC mass concentration up to 50 m was found
655 compared to summer (Figure 10a). This difference can be attributed to more stable atmospheric conditions
656 (isothermic to temperature inversion) hindering vertical mixing and to an increased number of sources during
657 winter. At 100 m, the difference between winter and summer eBC mass concentration surged to 200% ($0.5 \mu\text{g}/\text{m}^3$),
658 as in summer, a decrease in eBC concentrations was observed above 50 m, while it was observed from 100 m in
659 winter. The upward shift of the gradient during winter indicates a shallower mixed layer that traps pollutants
660 within the lowest 100 m. Such seasonal layering of black-carbon aerosols has also been observed in at NAOK
661 (Mbengue et al., 2020). In contrast, during the winter campaign at Prague, eBC mass concentration was 80% ($0.88 \mu\text{g}/\text{m}^3$)
662 higher at the ground level compared to summer, but the difference decreased to 24% ($0.32 \mu\text{g}/\text{m}^3$) at 50
663 m (Figure 10b). No significant difference in eBC mass concentrations in summer and winter was found at 100 m,
664 indicating effective dispersion at this altitude at Prague, likely influenced by local factors such as the surrounding
665 plateau, which alters airflow patterns and enhances the mixing of pollutants above the top of the valley. This
666 suggests that while surface emissions dominate near ground level, mechanical turbulence generated by buildings
667 and local topography enhances mixing aloft, mitigating vertical gradients

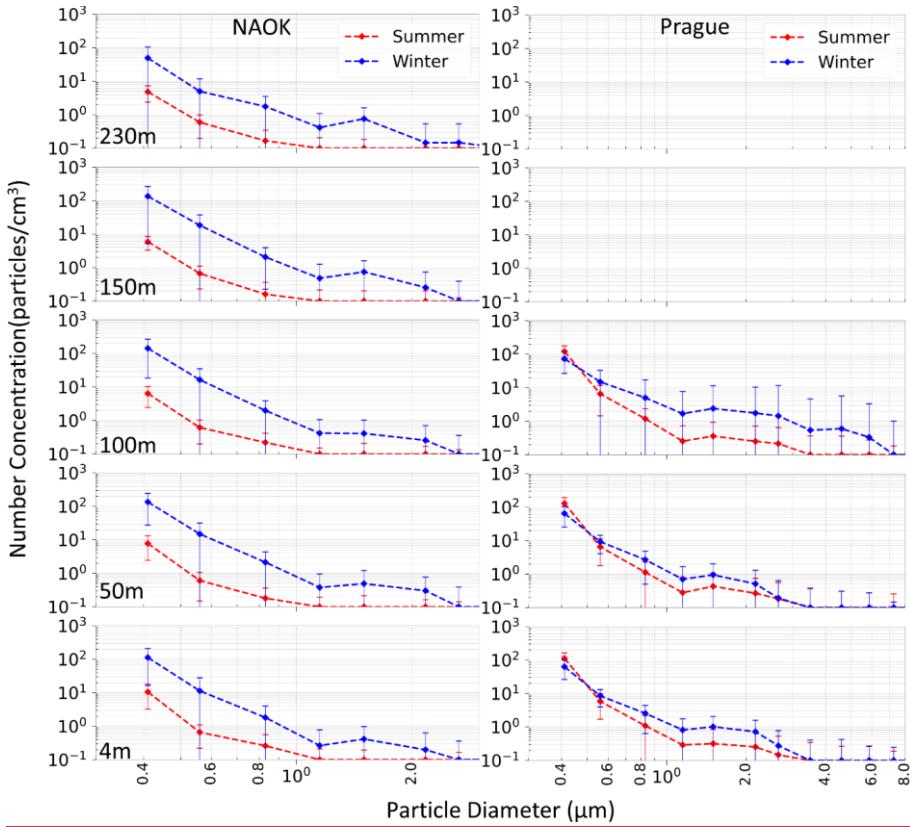
668 For PNC at NAOK, a 200% ($19 \#/cm^3$) increase was observed at ground level during winter compared
669 to summer, which extended to 336% ($26 \#/cm^3$) at 50 m and 200% ($148 \#/cm^3$) at 100m (Figure 10c). However,
670 at 150 m, the winter-summer difference was indistinguishable dropped (differed only by to 10% ($1 \#/cm^3$) during
671 the campaign

672 suggesting that particles disperse horizontally more rapidly than vertically at this altitude, likely
673 due to atmospheric stability restricting vertical movements during winter. This is further supported by wind shear
674 values between 100 – 150 m, which were 1.6 m/s per 100 m during summer, indicating higher turbulence and
675 stronger vertical mixing. In contrast, winter exhibited lower wind shear (0.5 m/s per 100 m), signaling reduced
turbulence and weaker vertical mixing (Figure S9S11), favoring horizontal dispersion over vertical transport.

676 In contrast, in Prague, the PNC behaved differently i.e., higher concentration was measured in summer
677 compared to winter. The particle concentrations decreased with the height more during winter compared to
678 summer (Figure 10d), with only a small difference at the ground level (15%) ($7 \#/cm^3$) and a higher difference at
679 50 m and 100 m (36%, i.e. $10 \#/cm^3$ and 34%, i.e. $12 \#/cm^3$ respectively).

682 **Figure 10.** Boxplots of eBC mass concentration from AE51 and PNC from OPC on the drone during summer 2023 and
683 winter 2024 at (a, c) NAOK and summer 2023 and winter 2023 at (b, d) Prague. Boxes show median and IQR; whiskers
684 extend to $1.5 \times \text{IQR}$; points beyond are outliers. n = number of points (1-min means) per altitude. Each point is a 1-min
685 mean; n = number of points per altitude.


Formatted: Font: 10 pt, Not Bold


686 To understand these patterns further, particle size distribution was examined for the summer and winter
687 campaigns at NAOK and Prague (Figure 11). It is important to note that the size distribution analysis excluded
688 the high pollution event for Prague to avoid skewed results. At the NAOK site, the observed increase in PNC
689 during winter compared to summer was primarily due to increased PM_{1} (particles less than or equal to 1 μm in
690 size) across all the heights. Both seasons showed a general decline in concentration as particle size increased;

691 ~~however, with~~ winter concentrations ~~were~~ consistently higher across all sizes (up to 3 μm). ~~likely due to limited~~
692 ~~vertical mixing and increased~~. This suggests that the increase in PNC during winter at NAOOK is primarily due to
693 ~~fine mode particles of size up to 3 μm , but most of the increase lies in the PM_{2.5} fraction, often associated with~~
694 ~~combustion sources and secondary formation from like residential heating emissions (Hand et al., 2012)~~. In
695 ~~contrast, summer exhibits lower concentrations and across smaller particle sizes PM_{2.5} fraction. As a result, in~~
696 ~~winter, the PNC over 1 #/cm³ were observed up to 1 μm at all heights, while in summer, the concentrations~~
697 ~~decreased below 1 #/cm³ for particles larger than 500 nm, likely due to enhanced vertical mixing and reduced~~
698 ~~emission sources.~~

Formatted: Superscript

Formatted: Superscript

701 **Figure 11.** Log-Log plot of the variation of mean particle number concentration with particle size from OPC on the
 702 drone at different heights during summer 2023 (red) and winter 2024 (blue) at NAOK (left) and summer 2023 (red)
 703 and winter 2023 (blue) at Prague (right).

704 At the urban site, Prague, the size distribution analysis showed a significant increase in the average
 705 particle count for particles with sizes between 0.5 – 3 μm during the winter month (Dec, 2023) compared to the
 706 summer month (Aug, 2023) winter compared to summer across all heights. Despite this increase, PNC was higher
 707 in summer than in winter (Figure 10d) due to higher summer concentrations in the smallest size bin, < 0.5 μm (Figure 11). Although based on the limited number
 708 of flights and counts < 1 # cm^{-3} for particles over 1 μm (Figure 11), this finding is consistent with ground-based
 709 observations from the national network (Figure S20), also showing higher concentrations of PM_{10} in Aug 2023
 710 than in Dec 2023.

711 **Formatted:** Subscript

712 OPC-N3 due to its detection limit of ~0.3 μm cannot directly capture new particle formation events and
 713 the subsequent growth that may be the reason for the increase in concentrations. The photochemistry-related origin
 714 of the summer aerosol in the smallest measurable bins is however supported by the higher concentration of
 715 nitrogen dioxide (NO_2) during the summer (Figure S21), combined with increased sunlight (Figure S22), both of

716 which promote the photochemical production of secondary particles. Although not fully recorded by OPC due to
717 its size limit, these particles could be attributed to new particle formation from photochemical reactions. This is
718 supported by the higher concentration of nitrogen dioxide (NO_2) during summer (Figure S15), combined with
719 increased sunlight (Figure S16). Indeed, regions with higher NO_x levels, such as urban areas, tend to have more
720 frequent and intense new particle formation events (Gao et al., 2012; Kulmala et al., 2004). (Zíková and Ždímal,
721 2013)

722 The larger particles (2.5 - 8 μm) showed a more significant increase during winter in Prague, particularly
723 at 100m, further suggesting contributions from regional or long-range transported sources.

724 4. Summary and conclusions

725 This study presents a campaign-based comprehensive analysis of vertical measurements of eBC mass
726 concentration and PNC using drone-based profiling at a rural (NAOK) and an urban (Prague) site in the Czech
727 Republic during different seasons. A comparison of drone-deployed instruments with reference measurements at
728 various heights of fixed observational platforms (tall tower and building) was performed under various RH
729 conditions and RH control strategies.

730 The results show the effectiveness of drones for vertical profiling, offering results comparable to
731 reference instruments at various heights between 0 and 230 m and suggesting the applicability of drone eBC and
732 PNC measurements also in higher altitudes. When mounted on a drone, eBC mass concentrations from AE51 with
733 dryer were comparable at the ground and 230 m with the reference devices. Without the dryer, the eBC mass
734 concentration was overestimated by 276 % and 285% compared to the reference devices on the ground during
735 summer and winter, respectively, attributed to higher ambient RH levels. In comparison, results differ by less than
736 10 % from the reference when using a dryer. Thus, drying significantly reduces measurement discrepancies,
737 highlighting the importance of drying in minimizing the impact of RH, particularly for eBC measurements. While
738 the dryer study demonstrates close agreement on a single day, a multi-day validation with the dryer installed
739 remains a priority for future work, as our These findings emphasize the necessity of a drying system even on
740 drone-based measurement platforms. While the dryer study demonstrates close agreement on a single day, a multi-
741 day validation with the dryer installed remains a priority for future work.

742 At the rural site (NAOK), eBC mass concentration and PNC decreased with height during both seasons,
743 though the height at which the decrease began was higher in winter than in summer. eBC mass concentrations
744 were uniformly distributed up to the first 50 m in summer and up to 100 m in winter. PNC decreased with the
745 height from the ground in summer, while it stayed uniform up to 50 m in winter, probably due to the stable
746 atmospheric conditions during this season, which also led to higher concentrations for height from the ground in
747 summer, while it remained uniform up to 50 m in winter, probably due to weak vertical temperature gradients (ΔT
748 $\approx 0.05^\circ\text{C}$ and limited turbulent mixing during this season, which also led to higher concentrations of both eBC
749 and PNC compared to summer. The higher concentrations during winter at NAOK were primarily driven by fine
750 particles (PM_1) associated with combustion sources such as residential heating. However, our results suggest that
751 at least two aerosol populations of different sizes and sources were measured during the year, thus with different
752 vertical behaviors.

753 Conversely, at the urban site (Prague), both eBC and PNC were more uniform across altitudes in summer,
754 facilitated by strong-local emission sources (supported by local air-quality data) and enhanced vertical mixing
755 driven by the urban heat island effect. eBC mass concentration and PNC in winter decrease with height, reflecting
756 limited vertical mixing due to near-isothermal conditions ($\Delta T \approx 0.06 \text{ }^{\circ}\text{C}$) and weak wind shear to more stable
757 atmospheric conditions. PNC was higher in summer, likely due to increased secondary particle formation driven
758 by elevated levels of gaseous precursors and photochemical reactions. These seasonal differences emphasize the
759 interplay between emission strength, boundary-layer dynamics, and secondary formation processes in shaping
760 vertical aerosol patterns.

761 During a winter high pollution event in Prague, both eBC and PNC concentrations increased, with long-
762 range transport contributing to high eBC mass at 100m, while PNC remained concentrated near the surface. The
763 largest enhancement aloft coincided with the estimated boundary-layer top, suggesting entrainment of aged,
764 transported aerosols above a shallow mixing layer, while near-surface PNC reflected trapped local emissions.
765 These emphasize the dynamic interaction of local emissions, atmospheric stability, and long-range transport
766 aerosols in shaping vertical concentration profiles, undecipherable by only ground-based measurements. Using
767 drone-based measurements to capture vertical variation in air quality offers valuable insights into pollutant
768 dynamics.

769 While the measurements presented here offer new insights into the vertical variability of eBC and PNC
770 at rural and urban sites, they represent short-term case studies under specific meteorological and seasonal
771 conditions. Therefore, the observed vertical structures and seasonal contrasts should be interpreted as site-specific
772 patterns rather than generalized tendencies. Nonetheless, the study demonstrates the capability of UAV-based
773 systems to capture vertical pollutant gradients with high spatial resolution, highlighting their potential for
774 complementing long-term monitoring and model validation efforts.

775 **Author contribution**

776 KJ, DB, and NZ designed the experiments. KJ carried out all the experiments. KJ was also responsible for
777 conceptualization, methodology, validation, formal analysis, investigation, data curation, visualization, and
778 writing of the original draft. DB contributed to methodology and writing – review & editing. NZ was responsible
779 for validation, supervision, and writing – review & editing. SM was responsible for data curation and contributed
780 to writing – review & editing. VZ contributed to writing – review & editing, funding acquisition, and resources.

781 **Data availability**

782 The dataset including drone measured data and from reference devices and meteorological instruments, covering
783 both rural and urban sites across different seasons is available at JULAHA, KAJAL (2025),
784 “Drone_rural_urban”, Mendeley Data, V1, doi: 10.17632/snbp6w49v9.1

785 **Acknowledgment**

786 We gratefully acknowledge the financial support provided by the National Research Infrastructure Support Project
787 - ACTRIS Participation of the Czech Republic (ACTRIS-CZ LM2023030) and CzeCOS (LM2023048), funded
788 by the Ministry of Education, Youth and Sports of the Czech Republic, and the Czech Science Foundation under
789 grant 24-10768S, ICPF Internal Grant Agency (IGA - 028001) and Charles University Grant Agency (grant
790 number 98124). We also thank colleagues from the Košetice observatory and Department of Atmospheric Physics,

791 Prague, for providing the meteorological data. Special Thanks to our technicians, Petr Roztočil and Rohit, for
792 preparing the Arduino datalogger and Airstream Dryer.

793 **References**

794 Alas, H. D. C., Müller, T., Weinhold, K., Pfeifer, S., Glojek, K., Gregorič, A., Močnik, G., Drinovec, L., Costabile, F., Ristorini, M., and Wiedensohler, A.: Performance of microAethalometers: Real-world Field Intercomparisons from Multiple Mobile Measurement Campaigns in Different Atmospheric Environments, *Aerosol Air Qual. Res.*, 20, 2640–2653, <https://doi.org/10.4209/aaqr.2020.03.0113>, 2020.

795 Metrostav: <https://www.metrostav.cz/en/segments/tunnelling/references/28-blanka-tunnel-complex>, last access: 11 December 2024.

796 Babu, S. S., Moorthy, K. K., Manchanda, R. K., Sinha, P. R., Satheesh, S. K., Vajja, D. P., Srinivasan, S., and Kumar, V. H. A.: Free tropospheric black carbon aerosol measurements using high altitude balloon: Do BC layers build “their own homes” up in the atmosphere?: FREE TROPOSPHERIC BLACK CARBON AEROSOL, *Geophys. Res. Lett.*, 38, n/a-n/a, <https://doi.org/10.1029/2011GL046654>, 2011.

797 Barbieri, L., Kral, S. T., Bailey, S. C. C., Frazier, A. E., Jacob, J. D., Reuder, J., Brus, D., Chilson, P. B., Crick, C., Detweiler, C., Doddi, A., Elston, J., Foroutan, H., González-Rocha, J., Greene, B. R., Guzman, M. I., Houston, A. L., Islam, A., Kemppinen, O., Lawrence, D., Pillar-Little, E. A., Ross, S. D., Sama, M. P., Schmale, D. G., Schuyler, T. J., Shankar, A., Smith, S. W., Waugh, S., Dixon, C., Borenstein, S., and de Boer, G.: Intercomparison of Small Unmanned Aircraft System (sUAS) Measurements for Atmospheric Science during the LAPSE-RATE Campaign, *Sensors*, 19, 2179, <https://doi.org/10.3390/s19092179>, 2019.

798 Battaglia, M. A., Douglas, S., and Hennigan, C. J.: Effect of the Urban Heat Island on Aerosol pH, *Environ. Sci. Technol.*, 51, 13095–13103, <https://doi.org/10.1021/acs.est.7b02786>, 2017.

799 Bezantakos, S., Costi, M., Barmpounis, K., Antoniou, P., Vouterakos, P., Kelehis, C., Sciare, J., and Biskos, G.: Qualification of the Alphasense optical particle counter for inline air quality monitoring, *Aerosol Science and Technology*, 55, 361–370, 2020.

800 Boer, G. de, Diehl, C., Jacob, J., Houston, A., Smith, S. W., Chilson, P., Schmale, D. G., Intrieri, J., Pinto, J., Elston, J., Brus, D., Kemppinen, O., Clark, A., Lawrence, D., Bailey, S. C. C., Sama, M. P., Frazier, A., Crick, C., Natalie, V., Pillar-Little, E., Klein, P., Waugh, S., Lundquist, J. K., Barbieri, L., Kral, S. T., Jensen, A. A., Dixon, C., Borenstein, S., Hesselius, D., Human, K., Hall, P., Argrow, B., Thornberry, T., Wright, R., and Kelly, J. T.: Development of Community Capabilities, and Understanding through Unmanned Aircraft-Based Atmospheric Research: The LAPSE-RATE Campaign, <https://doi.org/10.1175/BAMS-D-19-0050.1>, 2020.

801 Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., and Koch, D.: Bounding the role of black carbon in the climate system: A scientific assessment, *Journal of geophysical research: Atmospheres*, 118, 5380–5552, 2013.

802 Brady, J. M., Stokes, M. D., Bonnardel, J., and Bertram, T. H.: Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements, *Environ. Sci. Technol.*, 50, 1376–1383, <https://doi.org/10.1021/acs.est.5b05320>, 2016.

803 Brus, D., Gustafsson, J., Vakkari, V., Kemppinen, O., de Boer, G., and Hirsikko, A.: Measurement report: Properties of aerosol and gases in the vertical profile during the LAPSE-RATE campaign, *Atmospheric Chemistry and Physics*, 21, 517–533, <https://doi.org/10.5194/acp-21-517-2021>, 2021.

804 Brus, D., Le, V., Kuula, J., and Doulgeris, K.: Data collected by a drone backpack for air quality and atmospheric state measurements during Pallas Cloud Experiment 2022 (PaCE2022), *Earth System Science Data Discussions*, 2025, 1–14, 2025.

805 Cai, J., Yan, B., Kinney, P. L., Perzanowski, M. S., Jung, K.-H., Li, T., Xiu, G., Zhang, D., Olivo, C., and Ross, J.: Optimization approaches to ameliorate humidity and vibration related issues using the microAeth black carbon monitor for personal exposure measurement, *Aerosol Science and Technology*, 47, 1196–1204, 2013.

Formatted: Font: (Default) Times New Roman

Formatted: Justified

836 Cappelletti, D., Petroselli, C., Mateos, D., Herreras, M., Ferrero, L., Losi, N., Gregorić, A., Frangipani, C., La
837 Porta, G., and Lonardi, M.: Vertical profiles of black carbon and nanoparticles pollutants measured by a tethered
838 balloon in Longyearbyen (Svalbard islands), *Atmospheric Environment*, 290, 119373, 2022.

839 Chacón-Mateos, M., Laquai, B., Vogt, U., and Stubenrauch, C.: Evaluation of a low-cost dryer for a low-cost
840 optical particle counter, *Atmospheric Measurement Techniques*, 15, 7395–7410, 2022.

841 Chen, D., Liao, H., Yang, Y., Chen, L., Zhao, D., and Ding, D.: Simulated impacts of vertical distributions of
842 black carbon aerosol on meteorology and PM 2.5 concentrations in Beijing during severe haze events,
843 *Atmospheric Chemistry and Physics*, 22, 1825–1844, 2022.

844 Chi, X., Winderlich, J., Mayer, J.-C., Panov, A. V., Heimann, M., Birmili, W., Heintzenberg, J., Cheng, Y., and
845 Andreae, M. O.: Long-term measurements of aerosol and carbon monoxide at the ZOTTO tall tower to
846 characterize polluted and pristine air in the Siberian taiga, *Atmospheric Chemistry and Physics*, 13, 12271–12298,
847 2013.

848 Chilinski, M. T., Markowicz, K. M., and Markowicz, J.: Observation of vertical variability of black carbon
849 concentration in lower troposphere on campaigns in Poland, *Atmospheric Environment*, 137, 155–170,
850 <https://doi.org/10.1016/j.atmosenv.2016.04.020>, 2016.

851 [Conover, W. J.: Practical nonparametric statistics, john wiley & sons, 1999.](#)

852 Corrigan, C., Roberts, G., Ramana, M., Kim, D., and Ramanathan, V.: Capturing vertical profiles of aerosols and
853 black carbon over the Indian Ocean using autonomous unmanned aerial vehicles, *Atmospheric Chemistry and
854 Physics*, 8, 737–747, 2008.

855 CSD: <https://www.rsd.cz/silnice-a-dalnice/scitani-dopravy>, last access: 11 December 2024.

856 Ding, A. J., Huang, X., Nie, W., Sun, J. N., Kerminen, V. -M., Petäjä, T., Su, H., Cheng, Y. F., Yang, X. -Q.,
857 Wang, M. H., Chi, X. G., Wang, J. P., Virkkula, A., Guo, W. D., Yuan, J., Wang, S. Y., Zhang, R. J., Wu, Y. F.,
858 Song, Y., Zhu, T., Zilitinkevich, S., Kulmala, M., and Fu, C. B.: Enhanced haze pollution by black carbon in
859 megacities in China, *Geophysical Research Letters*, 43, 2873–2879, <https://doi.org/10.1002/2016GL067745>,
860 2016.

861 Donateo, A., Pappaccogli, G., Famulari, D., Mazzola, M., Scoto, F., and Decesari, S.: Characterization of size-
862 segregated particles' turbulent flux and deposition velocity by eddy correlation method at an Arctic site,
863 *Atmospheric Chemistry and Physics*, 23, 7425–7445, 2023.

864 Dvorská, A., Sedlák, P., Schwarz, J., Fusek, M., Hanuš, V., Vodička, P., and Trusina, J.: Atmospheric station
865 Křešín u Pacova, Czech Republic—a Central European research infrastructure for studying greenhouse gases,
866 aerosols and air quality, *Advances in Science and Research*, 12, 79–83, 2015.

867 Ferrero, L., Ritter, C., Cappelletti, D., Moroni, B., Močnik, G., Mazzola, M., Lupi, A., Becagli, S., Traversi, R.,
868 and Cataldi, M.: Aerosol optical properties in the Arctic: The role of aerosol chemistry and dust composition in a
869 closure experiment between Lidar and tethered balloon vertical profiles, *Science of the total environment*, 686,
870 452–467, 2019.

871 Gani, S., Bhandari, S., Seraj, S., Wang, D. S., Patel, K., Soni, P., Arub, Z., Habib, G., Hildebrandt Ruiz, L., and
872 Apte, J. S.: Submicron aerosol composition in the world's most polluted megacity: the Delhi Aerosol Supersite
873 study, *Atmospheric Chemistry and Physics*, 19, 6843–6859, 2019.

874 Gao, J., Chai, F., Wang, T., Wang, S., and Wang, W.: Particle number size distribution and new particle formation:
875 New characteristics during the special pollution control period in Beijing, *Journal of Environmental Sciences*, 24,
876 14–21, [https://doi.org/10.1016/S1001-0742\(11\)60725-0](https://doi.org/10.1016/S1001-0742(11)60725-0), 2012.

877 Good, N., Mölter, A., Peel, J. L., and Volckens, J.: An accurate filter loading correction is essential for assessing
878 personal exposure to black carbon using an Aethalometer, *J Expo Sci Environ Epidemiol*, 27, 409–416,
879 <https://doi.org/10.1038/jes.2016.71>, 2017.

880 Haeffelin, M., Ribaud, J.-F., Kotthaus, S., Dupont, J.-C., Lemonsu, A., and Masson, V.: Effect of nocturnal urban
881 boundary layer stability and mixing on temperature contrasts between built-up environments and urban parks,
882 Copernicus Meetings, <https://doi.org/10.5194/egusphere-egu24-19030>, 2024.

883 Hagan, D. H. and Kroll, J. H.: Assessing the accuracy of low-cost optical particle sensors using a physics-based
884 approach, *Atmospheric Measurement Techniques*, 13, 6343–6355, <https://doi.org/10.5194/amt-13-6343-2020>,
885 2020.

886 Harm-Altstädter, B., Voß, A., Aust, S., Bärfuss, K., Bretschneider, L., Merkel, M., Pätzold, F., Schlerf, A.,
887 Weinhold, K., Wiedensohler, A., Winkler, U., and Lampert, A.: First study using a fixed-wing drone for
888 systematic measurements of aerosol vertical distribution close to a civil airport, *Frontiers in Environmental
889 Science*, 12, <https://doi.org/10.3389/fenvs.2024.1376980>, 2024.

890 Hedworth, H., Page, J., Sohl, J., and Saad, T.: Investigating errors observed during UAV-based vertical
891 measurements using computational fluid dynamics, *Drones*, 6, 253, 2022.

892 Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu,
893 R., and Rozum, I.: ERA5 hourly data on single levels from 1979 to present, Copernicus climate change service
894 (c3s) climate data store (cds), 10, 2018.

895 Julaha, K., Ždímal, V., Holubová Šmejkalová, A., Komíková, K., and Zíková, N.: Boundary layer and mixing
896 layer height: Models vs. Ground-based measurements intercomparison, *Atmospheric Research*, 315, 107897,
897 <https://doi.org/10.1016/j.atmosres.2024.107897>, 2025.

898 Kotthaus, S., Haeffelin, M., Céspedes, J., Van Hove, M., Drouin, M.-A., Dupont, J.-C., and Foret, G.: Urban
899 atmosphere dynamics for air quality applications: Atmospheric boundary layer height and wind profiles from
900 ground-based remote sensing networks, *EGU-13154*, <https://doi.org/10.5194/egusphere-egu23-13154>, 2023.

901 Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W., and McMurry,
902 P. H.: Formation and growth rates of ultrafine atmospheric particles: a review of observations, *Journal of Aerosol
903 Science*, 35, 143–176, <https://doi.org/10.1016/j.jaerosci.2003.10.003>, 2004.

904 Lampert, A., Pätzold, F., Asmussen, M. O., Lobitz, L., Krüger, T., Rausch, T., Sachs, T., Wille, C., Sotomayor
905 Zakharov, D., and Gaus, D.: Studying boundary layer methane isotopy and vertical mixing processes at a rewetted
906 peatland site using an unmanned aircraft system, *Atmospheric Measurement Techniques*, 13, 1937–1952, 2020.

907 Lee, J.: Performance test of microaeth® AE51 at concentrations lower than 2 µg/m³ in indoor laboratory, *Applied
908 Sciences*, 9, 2766, 2019.

909 Li, J., Von Salzen, K., Peng, Y., Zhang, H., and Liang, X.: Evaluation of black carbon semi–direct radiative effect
910 in a climate model, *JGR Atmospheres*, 118, 4715–4728, <https://doi.org/10.1002/jgrd.50327>, 2013.

911 Liang, Y., Wu, C., Wu, D., Liu, B., Li, Y. J., Sun, J., Yang, H., Mao, X., Tan, J., and Xia, R.: Vertical distributions
912 of atmospheric black carbon in dry and wet seasons observed at a 356-m meteorological tower in Shenzhen, South
913 China, *Science of the Total Environment*, 853, 158657, 2022.

914 Liu, B., Wu, C., Ma, N., Chen, Q., Li, Y., Ye, J., Martin, S. T., and Li, Y. J.: Vertical profiling of fine particulate
915 matter and black carbon by using unmanned aerial vehicle in Macau, China, *Science of The Total Environment*,
916 709, 136109, <https://doi.org/10.1016/j.scitotenv.2019.136109>, 2020.

917 Liu, H., Pan, X., Lei, S., Zhang, Y., Du, A., Yao, W., Tang, G., Wang, T., Xin, J., and Li, J.: Vertical distribution
918 of black carbon and its mixing state in the urban boundary layer in summer, *Atmospheric Chemistry and Physics*,
919 23, 7225–7239, 2023.

920 Marucci, D. and Carpentieri, M.: Effect of local and upwind stratification on flow and dispersion inside and above
921 a bi-dimensional street canyon, *Building and Environment*, 156, 74–88, 2019.

922 Masey, N., Ezani, E., Gillespie, J., Sutherland, F., Lin, C., Hamilton, S., Heal, M. R., and Beverland, I. J.:
923 Consistency of urban background black carbon concentration measurements by portable AE51 and reference

924 AE22 aethalometers: Effect of corrections for filter loading, *Aerosol and Air Quality Research*, 20, 329–340,
925 2020.

926 Mbengue, S., Serfozo, N., Schwarz, J., Ziková, N., Holubová, S. A., and Holoubek, I.: Characterization of
927 Equivalent Black Carbon at a regional background site in Central Europe: Variability and source apportionment ★,
928 *Environmental Pollution*, 260, 113771, <https://doi.org/10.1016/j.envpol.2019.113771>, 2020.

929 Mbengue, S., Ziková, N., Schwarz, J., Vodička, P., Šmejkalová, A. H., and Holoubek, I.: Mass absorption cross-
930 section and absorption enhancement from long term black and elemental carbon measurements: A rural
931 background station in Central Europe, *Science of The Total Environment*, 794, 148365,
932 <https://doi.org/10.1016/j.scitotenv.2021.148365>, 2021.

933 Mbengue, S., Vodička, P., Komíková, K., Ziková, N., Schwarz, J., Prokeš, R., Sucháková, L., Julaha, K.,
934 Ondráček, J., and Holoubek, I.: Different approaches to explore the impact of COVID-19 lockdowns on
935 carbonaceous aerosols at a European rural background site, *Science of The Total Environment*, 164527, 2023.

936 Miyakawa, T., Mordovskoi, P., and Kanaya, Y.: Evaluation of black carbon mass concentrations using a
937 miniaturized aethalometer: Intercomparison with a continuous soot monitoring system (COSMOS) and a single-
938 particle soot photometer (SP2), *Aerosol Science and Technology*, 54, 811–825, 2020.

939 Mizera, J., Havelcová, M., Machovič, V., Borecká, L., and Vörös, D.: Neutron Activation Analysis in Urban
940 Geochemistry: Impact of Traffic Intensification after Opening the Blanka Tunnel Complex in Prague, *Minerals*,
941 12, 281, <https://doi.org/10.3390/min12030281>, 2022.

942 Moteki, N.: Climate-relevant properties of black carbon aerosols revealed by in situ measurements: a review, *Prog
943 Earth Planet Sci*, 10, 12, <https://doi.org/10.1186/s40645-023-00544-4>, 2023.

944 Myhre, G., Myhre, C. E. L., Samset, B. H., and Storelvmo, T.: Aerosols and their relation to global climate and
945 climate sensitivity, *Nature Education Knowledge*, 4, 7, 2013.

946 Nurowska, K. and Markowicz, K. M.: Determination of hygroscopic aerosol growth based on the OPC-N3
947 counter, *Atmosphere*, 15, 61, 2023.

948 Nurowska, K., Mohammadi, M., Malinowski, S., and Markowicz, K.: Applicability of the low-cost OPC-N3
949 optical particle counter for micropysical measurements of fog, *Atmospheric Measurement Techniques*, 16,
950 2415–2430, 2023.

951 Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo,
952 G., and Sugimoto, N.: Recommendations for reporting "black carbon" measurements, *Atmospheric Chemistry
953 and Physics*, 13, 8365–8379, 2013.

954 Ramana, M., Ramanathan, V., Feng, Y., Yoon, S., Kim, S., Carmichael, G., and Schauer, J.: Warming influenced
955 by the ratio of black carbon to sulphate and the black-carbon source, *Nature Geoscience*, 3, 542–545, 2010.

956 Ramanathan, V. and Carmichael, G.: Global and regional climate changes due to black carbon, *Nature geoscience*,
957 1, 221–227, 2008.

958 Ramatheerthan, S. K., Peiker, J., Crespo, N. M., and Kozubek, M.: Monitoring Extreme Meteorological and
959 Pollution Events in Prague: A Station Data Based Analysis, *WDS'24 Proceedings of Contributed Papers —
960 Physics* (eds. J. Šafránková and J. Pavlů), 9–18, 2024.

961 Renard, J.-B., Michoud, V., and Giacomoni, J.: Vertical profiles of pollution particle concentrations in the
962 boundary layer above Paris (France) from the optical aerosol counter LOAC onboard a touristic balloon, *Sensors*,
963 20, 1111, 2020.

964 Samad, A., Vogt, U., Panta, A., and Uprety, D.: Vertical distribution of particulate matter, black carbon and ultra-
965 fine particles in Stuttgart, Germany, *Atmospheric Pollution Research*, 11, 1441–1450, 2020.

966 Samset, B. H., Myhre, G., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., Bellouin, N., Diehl, T.,
967 and Easter, R. C.: Black carbon vertical profiles strongly affect its radiative forcing uncertainty, *Atmospheric*
968 *Chemistry and Physics*, 13, 2423–2434, 2013.

969 Schulz, H., Zanatta, M., Bozem, H., Leaitch, W. R., Herber, A. B., Burkart, J., Willis, M. D., Kunkel, D., Hoor,
970 P. M., and Abbatt, J. P.: High Arctic aircraft measurements characterising black carbon vertical variability in
971 spring and summer, *Atmospheric Chemistry and Physics*, 19, 2361–2384, 2019.

972 Schwarz, J. P., Gao, R. S., Fahey, D. W., Thomson, D. S., Watts, L. A., Wilson, J. C., Reeves, J. M., Darbeheshti,
973 M., Baumgardner, D. G., Kok, G. L., Chung, S. H., Schulz, M., Hendricks, J., Lauer, A., Kärcher, B., Slowik, J.
974 G., Rosenlof, K. H., Thompson, T. L., Langford, A. O., Loewenstein, M., and Aikin, K. C.: Single-particle
975 measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower
976 stratosphere, *J. Geophys. Res.*, 111, 2006JD007076, <https://doi.org/10.1029/2006JD007076>, 2006.

977 Sheskin, D. J.: *Handbook of parametric and nonparametric statistical procedures*, Chapman and hall/CRC, 2003.

978 Steeneveld, G.-J.: Current challenges in understanding and forecasting stable boundary layers over land and ice,
979 *Frontiers in Environmental Science*, 2, 41, 2014.

980 Sun, T., Wu, C., Wu, D., Liu, B., Sun, J. Y., Mao, X., Yang, H., Deng, T., Song, L., Li, M., Li, Y. J., and Zhou,
981 Z.: Time-resolved black carbon aerosol vertical distribution measurements using a 356-m meteorological tower
982 in Shenzhen, *Theor Appl Climatol*, 140, 1263–1276, <https://doi.org/10.1007/s00704-020-03168-6>, 2020.

983 Sun, Y., Chen, C., Zhang, Y., Xu, W., Zhou, L., Cheng, X., Zheng, H., Ji, D., Li, J., and Tang, X.: Rapid formation
984 and evolution of an extreme haze episode in Northern China during winter 2015, *Scientific reports*, 6, 27151,
985 2016.

986 Villa, T. F., Salimi, F., Morton, K., Morawska, L., and Gonzalez, F.: Development and validation of a UAV based
987 system for air pollution measurements, *Sensors*, 16, 2202, 2016.

988 Vodička, P., Schwarz, J., Cusack, M., and Ždímal, V.: Detailed comparison of OC/EC aerosol at an urban and a
989 rural Czech background site during summer and winter, *Science of the Total Environment*, 518, 424–433, 2015.

990 Wang, H., Sun, Z., Li, H., Gao, Y., Wu, J., and Cheng, T.: Vertical-distribution characteristics of atmospheric
991 aerosols under different thermodynamic conditions in Beijing, *Aerosol and Air Quality Research*, 18, 2775–2787,
992 2018a.

993 Wang, J., Flagan, R. C., and Seinfeld, J. H.: Diffusional losses in particle sampling systems containing bends and
994 elbows, *Journal of Aerosol Science*, 33, 843–857, 2002.

995 Wang, Q., Sun, Y., Xu, W., Du, W., Zhou, L., Tang, G., Chen, C., Cheng, X., Zhao, X., Ji, D., Han, T., Wang, Z.,
996 Li, J., and Wang, Z.: Vertically resolved characteristics of air pollution during two severe winter haze episodes in
997 urban Beijing, China, *Atmospheric Chemistry and Physics*, 18, 2495–2509, <https://doi.org/10.5194/acp-18-2495-2018>, 2018b.

998 Wang, Y., Vogel, J. M., Lin, Y., Pan, B., Hu, J., Liu, Y., Dong, X., Jiang, J. H., Yung, Y. L., and Zhang, R.:
1000 Aerosol microphysical and radiative effects on continental cloud ensembles, *Advances in Atmospheric Sciences*,
1001 35, 234–247, 2018c.

1002 von der Weiden, S.-L., Drewnick, F., and Borrmann, S.: Particle Loss Calculator – a new software tool for the
1003 assessment of the performance of aerosol inlet systems, *Atmospheric Measurement Techniques*, 2, 479–494,
1004 <https://doi.org/10.5194/amt-2-479-2009>, 2009.

1005 Weltje, G. J. and Roberson, S.: Numerical methods for integrating particle-size frequency distributions,
1006 *Computers & Geosciences*, 44, 156–167, <https://doi.org/10.1016/j.cageo.2011.09.020>, 2012.

1007 Wu, C., Liu, B., Wu, D., Yang, H., Mao, X., Tan, J., Liang, Y., Sun, J. Y., Xia, R., and Sun, J.: Vertical profiling
1008 of black carbon and ozone using a multicopter unmanned aerial vehicle (UAV) in urban Shenzhen of South China,
1009 *Science of the Total Environment*, 801, 149689, 2021.

1010 Xie, C., Xu, W., Wang, J., Wang, Q., Liu, D., Tang, G., Chen, P., Du, W., Zhao, J., and Zhang, Y.: Vertical
1011 characterization of aerosol optical properties and brown carbon in winter in urban Beijing, China, *Atmospheric*
1012 *Chemistry and Physics*, 19, 165–179, 2019.

1013 Zheng, Y., Miao, R., Zhang, Q., Li, Y., Cheng, X., Liao, K., Koenig, T. K., Ge, Y., Tang, L., and Shang, D.:
1014 Secondary formation of submicron and supermicron organic and inorganic aerosols in a highly polluted urban
1015 area, *Journal of Geophysical Research: Atmospheres*, 128, e2022JD037865, 2023.

1016 Zhu, Y., Wu, Z., Park, Y., Fan, X., Bai, D., Zong, P., Qin, B., Cai, X., and Ahn, K.-H.: Measurements of
1017 atmospheric aerosol vertical distribution above North China Plain using hexacopter, *Science of The Total*
1018 *Environment*, 665, 1095–1102, <https://doi.org/10.1016/j.scitotenv.2019.02.100>, 2019.

1019

Formatted: Font: (Default) Times New Roman, 10 pt