1 Supplementary Information for

2

Uncertainties in fertilizer-induced emissions of soil nitrogen oxide and the associated 3 impacts on ground-level ozone and methane 4 Cheng Gong^{1*}, Yan Wang², Hanqin Tian^{3,4}, Sian Kou-Giesbrecht⁵, Nicolas Vuichard⁶ and Sönke 5 Zaehle¹ 6 7 ¹ Max Planck Institute for Biogeochemistry, Jena, 07745, Germany ² State Key Laboratory of Subtropical Silviculture, College of Environment and Resources, College of 8 9 Carbon Neutrality, Zhejiang A&F University, Hangzhou, 311300, China ³Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science 10 and Society, Boston College, Chestnut Hill, MA, USA 11 ⁴Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA, USA 12 ⁵Department of Earth and Environmental Sciences, Dalhousie University, Halifax, Nova Scotia, 13 14 ⁶Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), 15 16 Université Paris-Saclay, Gif-sur-Yvette, France 17 18 19 20 21 Including: 22 2 Tables; 23 4 Figures

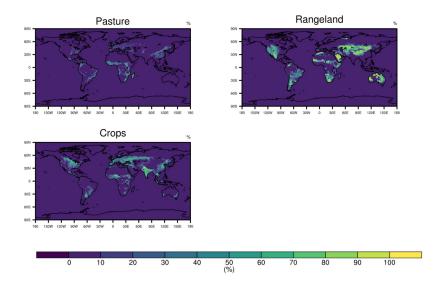


Figure S1. The global pattern of land-use categories used in this study to transform the unit of N fertilizer loadings from kg N per hectare grid area to kg N per hectare pasture, rangeland or crop. The map is from the Land-Use Harmonization (LUH2) (https://luh.umd.edu/)

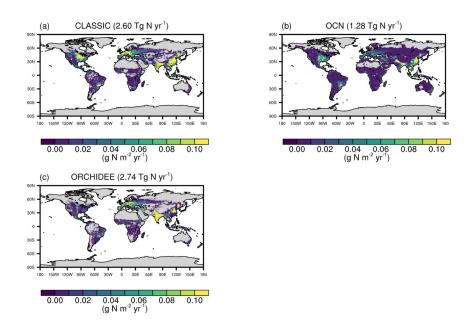


Figure S2. The global pattern of N fertilizer-induced soil NO_x emissions in 2019 simulated by three NMIP2 members. (a) the CLASSIC model; (b) the OCN model and (c) the ORCHIDEE model.

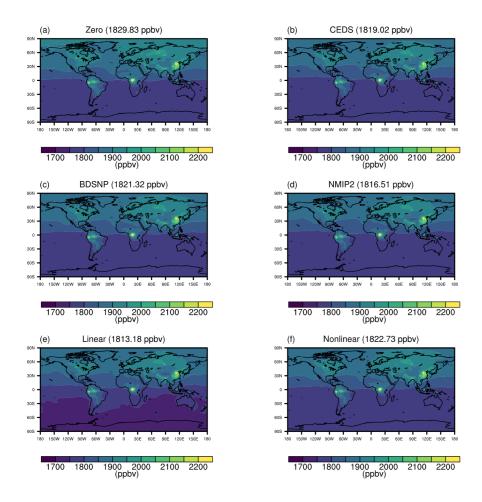


Figure S3. The simulated global surface CH₄ concentrations with different sensitivity experiments. The OH concentrations of each experiment are obtained from the corresponded GEOS-Chem sensitivity experiments with full chemistry mechanisms.

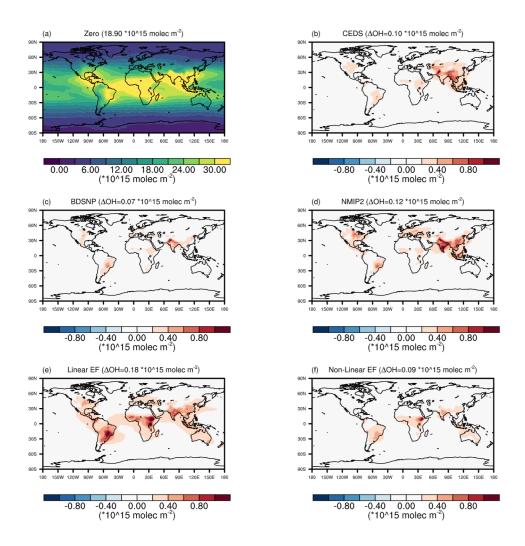


Figure S4. The annual-mean tropospheric column OH concentrations simulated by different GEOS-Chem sensitivity experiments. (a) The OH spatial pattern in the Zero simulation. (b)-(f) The differences of annual-mean tropospheric column OH between varied sensitivity experiments and the Zero experiments. The numbers in the sub-titles are the global averages of tropospheric column OH.

Table S1. NMIP2 configuration and sensitivity experiments to isolate the contributions of synthetic fertilizer and manure to the soil NO_x emissions. '1850' indicates that the loading of synthetic fertilizer or manure is fixed at the level of 1850, while '1850-2019' indicates transient loadings based on the HaNi dataset. Other environmental forcings, e.g. the climate data, CO₂ concentration and land use change, are followed the historical transient data from 1850 to 2019 in each sensitivity experiment.

Experiment name	Synthetic fertilizer application	Manure application
SH1	1850-2019	1850-2019
SH2	1850	1850-2019
SH3	1850-2019	1850

	This study	IPCC AR6*
	Sources	
Fossil fuels	117.6	115 (114-116)
Agriculture and waste	238.9	208 (192-230)
Livestock	121.7	109 (106-115)
Rice cultivation	36.5	31 (25-37)
Waste water and landfill	80.7	64 (55-77)
Biomass burning and biofuels	17.4	30 (22-39)
Biomass burning	17.4	17 (14-26)
Biofuels		10 (8-13)
Other anthropogenic sources	24	
Wetland	144	149 (102-182)
Other natural sources	104.6**	222 (143-306)
Sum of sources	646.5	727 (581-872)
	Sinks	
Total chemical loss	623	602 (496-754)
Soil absorption	17	30 (11-49)
Sum of sinks	640	632 (507-803)

^{*}Values are from the bottom-up estimates over 2008-2017

References

53

54

55

56 57

58

59

- 60 Canadell.J.G, Monteiro, P. M. S., Costa, M. H., Cunha, L. C. d., Cox, P. M., Eliseev, A. V., Henson, S.,
- 61 Ishii, M., Jaccard, S., Koven, C., Lohila, A., Patra, P. K., Piao, S., Rogelj, J., Syampungani, S., Zaehle, S.,
- and Zickfeld, a. K.: Global Carbon and other Biogeochemical Cycles and Feedbacks. In Climate
- 63 Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment
- Report of the Intergovernmental Panel on Climate Change, 673–816,
- 65 https://doi.org/10.1017/9781009157896.007, 2021.

^{**} This other natural sources in GEOS-Chem is scaled up from 13.6 to 104.6 Tg CH₄ yr⁻¹ to keep the balance of the total CH₄ budget, as the natural sources of CH₄ remained largest uncertainties among all sectors.