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Abstract 15 

Natural and agricultural soils are important sources of nitrogen oxides (NOx), accounting for about 16 

10%-20% of the global NOx emissions. The increased application of nitrogen (N) fertilizer in agriculture 17 

has strongly enhanced the N availability of soils in the last several decades, leading to higher soil NOx 18 

emissions. However, the magnitude of the N fertilizer-induced soil NOx emissions remains poorly 19 

constrained due to limited field observations, resulting in divergent estimates. Here we integrate the 20 

results from meta-analyses of field manipulation experiments, emission inventories, atmospheric 21 

chemistry modelling and terrestrial biosphere modelling to investigate these uncertainties and the 22 

associated impacts on ground-level ozone and methane. The estimated present-day global soil NOx 23 

emissions induced by N fertilizer application vary substantially (0.84–2.2 Tg N yr-1) among different 24 

approaches with different spatial patterns. Simulations with the 3-D global chemical transport model 25 

GEOS-Chem demonstrate that N fertilization enhances global surface ozone concentrations during 26 

summertime in agricultural hotspots, such as North America, western Europe and eastern and southern 27 

Asia by 0.1 to 3.3 ppbv (0.2%-7.0%). Our results show that such spreads in soil NOx emissions also 28 

affect atmospheric methane concentrations, reducing the global mean by 6.7 (0.4%) ppbv to 16.6 (0.9%) 29 

ppbv as an indirect consequence of enhanced N fertilizer application. These results highlight the urgent 30 

need to improve the predictive understanding of soil NOx emission responses to fertilizer N inputs and 31 

its representation in atmospheric chemistry modelling.  32 
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1. Introduction 35 

Nitrogen oxides (NOx = NO + NO2), as one of the most important reactive atmospheric components, 36 

strongly affect the atmospheric oxidation capacity and further influence air quality (Gong et al., 2020; 37 

Zhai et al., 2021; Goldberg et al., 2022; Zhao et al., 2023), radiative forcing (Erisman et al., 2011; Pinder 38 

et al., 2012; Gong et al., 2024), as well as carbon (C) storage in terrestrial and marine ecosystems 39 

(Fowler et al., 2013; Fleischer et al., 2019; Rubin et al., 2023). The major source of present-day 40 

atmospheric NOx is fossil fuel combustion (Martin et al., 2003; Hoesly et al., 2018), but several non-41 

fossil-fuel sources, including emissions from soils, lightning and wildfire (Zhang et al., 2003), 42 

contribute around 30% of the global total NOx emissions (Delmas et al., 1997; Weng et al., 2020). 43 

However, these non-fossil-fuel sources have been widely regarded as ‘natural’ sources, where the 44 

perturbation by anthropogenic activities as well as the associated potentially significant effects on the 45 

N cycle are often overlooked. Meanwhile, strict clean-air actions have been applied in many countries 46 

in the past decades to sharply reduce the fossil-fuel sources of NOx (Jiang et al., 2022). As a result, non-47 

fossil sources of NOx will be increasingly important for future clean air policies.  48 

One of the most important non-fossil-fuel anthropogenic sources of NOx is through agricultural 49 

activities, which have been estimated to enhance soil NOx emissions by around 5%-30% (Wang et al., 50 

2022; Gong et al., 2024). To assess the soil NOx emissions induced by N fertilizer application (hereafter, 51 

SNOx-Fer), the most straightforward and widely-used method is applying the emission factor (EF), 52 

which indicates the proportion of N from fertilizer application emitted as NOx. The Intergovernmental 53 

Panel on Climate Change (IPCC) methodology recommended a constant EF value of 1.1% with an 54 

uncertainty range of 0.06% to 2.18% (Hergoualc'h et al., 2019). Other studies recommend slightly 55 

smaller uncertainty ranges (0.47% to 1.61%) based on different meta-analysis datasets (Stehfest and 56 

Bouwman, 2006; Liu et al., 2017; Skiba et al., 2021; Wang et al., 2022). This large uncertainty range 57 

results from the dependency of the response of soil NOx emissions on intricate soil biogeochemical 58 

processes, and it varies with crop types, soil texture, fertilizer types and application rate (Wang et al., 59 

2022). To date, limited field experiments are available to constrain this uncertainty range.  60 

Some studies have suggested using non-linear EF to take account of the observations that the EFs of 61 

soil reactive nitrogen gases tend to increase with increasing fertilizer application (Shcherbak et al., 2014; 62 

Jiang et al., 2017). Such an approach assumes that plants and soil microbes should have priority in 63 

accessing soil available N for their metabolic activities, while the excessive inorganic N can be used by 64 

nitrifiers and denitrifiers and loses as the gas form. Such a non-linear EF approach is more ecologically 65 

reasonable but there remain large uncertainties in assessing soil NOx due to the limited available field 66 

data. For example, Wang et al. (2024) examined the non-linear EF of soil NOx based on a global meta-67 

analysis and found a much lower EF (around 0-0.7%) than the IPCC-recommended linear EF (1.1%) 68 

within the range of normal agricultural crop N fertilizer loading (around 0-600 kg N ha-1 yr-1).   69 
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In many of the atmospheric chemical transport models (CTMs), SNOx-Fer is represented by the 70 

agriculture sector of NOx emission from an anthropogenic emission inventory (e.g. Emissions Database 71 

for Global Atmospheric Research (EDGAR) or Community Emissions Data System (CEDS)), which 72 

in general apply the linear EF method to estimate the agricultural NOx emissions (Hoesly et al., 2018; 73 

Janssens-Maenhout et al., 2019; Nicholas Hutchings et al., 2023) with the caveats described above. 74 

Furthermore, some advanced CTMs, e.g. the GEOS-Chem model, parametrize soil NOx emissions as a 75 

function of N availability as well as soil temperature and soil moisture (Steinkamp and Lawrence, 2011; 76 

Hudman et al., 2012). The currently widely used soil NOx scheme, known as the Berkeley-Dalhousie 77 

Soil NOx Parameterization (BDSNP), could dynamically simulate the spatiotemporal variations of soil 78 

NOx emissions, however, the responses of soil NOx to N fertilizer application are not fully examined 79 

(See the detailed parameterization in Sect. 2). 80 

Recently, another approach to modelling SNOx-Fer has emerged with the development of global, 81 

process-based terrestrial biosphere models (TBMs) with fully-coupled C and N cycles (Zaehle and 82 

Friend, 2010; Tian et al., 2019). Driven by data of N inputs (synthetic N fertilizer, N manure application 83 

and N deposition), CO2 concentrations and climate, these TBMs could simulate the coupled cycles of 84 

C and N in the terrestrial biosphere, mimic the competition on the available N between plants and 85 

microbes and calculate the rates of nitrification and denitrification (Zaehle and Dalmonech, 2011), 86 

which are the two microbial processes that determine the rates of soil NOx emissions. Even though 87 

TBMs provide a more ecologically-mechanistic description of the terrestrial N cycles, large 88 

uncertainties remain among different TBMs due to the varying parameterization and modelling schemes 89 

in biome N use strategies, mineralization of organic N, nitrification and denitrification processes (Kou-90 

Giesbrecht et al., 2023), which lead to varied responses of soil NOx to the increased N fertilizer inputs 91 

(Gong et al., 2024).  92 

In this study, we attempt to comprehensively quantify the uncertainties in current SNOx-Fer estimates 93 

by integrating results from meta-analyses, emission inventories, as well as CTMs and TBMs. We use 94 

this understanding to assess the associated effects of SNOx-Fer uncertainties on global O3 and CH4 95 

concentrations. Section 2 will introduce the N synthetic fertilizer and manure input data and the 96 

approaches used to estimate SNOx-Fer. Section 3 will introduce the CTM used in this study and the 97 

configuration of sensitivity experiments. Section 4 will first show the variations of SNOx-Fer among 98 

different approaches as well as the seasonal dynamics, and then analyze the associated uncertainties in 99 

global O3 and CH4 simulations. Finally, the conclusion and discussions of this study will be given in 100 

Section 5. 101 

 102 

2. Data and Methods 103 

2.1. Linear and Non-linear EFs and the global fertilizer N dataset 104 
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We first implement the most traditional method with a constant EF value to estimate the effects of N 105 

fertilizer application on soil NOx emissions, where the value of 1.1% (1.1% of N in the fertilizer will 106 

be emitted as NOx; named EFlinear hereafter) based on the most up-to-date IPCC methodology is adopted 107 

(Hergoualc'h et al., 2019). Furthermore, based on the latest meta-analysis dataset developed by Wang 108 

et al. (2024), a non-linear EF method (EFnon-linear) to describe the variations of soil NOx emissions with 109 

different N fertilizer loadings is also applied: 110 

𝐸𝐹𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟 = (0.22 + 0.008 ×  𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟𝑁)                                                                                          (1) 111 

where the EFnon-linear (%) is the non-linear EF and FertilizerN is the loading of fertilizer N application 112 

(kg N ha-1). The detailed derivation of this formula is presented in Wang et al. (2024), which follows a 113 

comparable method as presented by Shcherbak et al. (2014).  114 

We used the dataset of History of anthropogenic Nitrogen inputs (HaNi) (Tian et al., 2022) for the 115 

global rate of synthetic fertilizer and manure application, in order to estimate SNOx-Fer with both the  116 

linear and non-linear EF methods. The HaNi dataset includes grid-level annual loadings of (1) NH4
+-N 117 

synthetic fertilizer applied to cropland, (2) NO3
--N synthetic fertilizer applied to cropland, (3) NH4

+-N 118 

synthetic fertilizer applied to pasture, (4) NO3
--N synthetic fertilizer applied to pasture, (5) manure 119 

NH4
+-N application on cropland, (6) manure NO3

--N application on pasture, (7) manure NH4
+-N 120 

deposition on pasture, and (8) manure NO3
--N deposition on rangeland. We use a global map of land 121 

use class distribution (Hurtt et al., 2020) (Fig. S1) to convert the unit of N loading in HaNi from g N 122 

grid-1 to kg N (ha pasture)-1, kg N (ha rangeland)-1 or kg N (ha cropland-1). The annual N inputs from 123 

the HaNi dataset, which are summed by all N forms of synthetic fertilizer and manure, are evenly 124 

applied in the months of the growing season, while the rates of N inputs are set as zero during the non-125 

growing season. We define the growing season as monthly-mean 2-metre temperature greater than 5 126 

degrees Celsius (based on the MERRA2 reanalyzed dataset, see below Sect. 3) and the grid-level 127 

monthly-mean leaf area index (LAI) larger than 0.5 (based on the MODIS remote sensing dataset post-128 

processed by Yuan et al. (2011) and updated for the use of GEOS-Chem, 129 

http://geoschemdata.wustl.edu/ExtData/HEMCO/Yuan_XLAI/v2021-06/). Finally, the rates of 130 

synthetic fertilizer and manure N inputs in units of kg N (ha pasture/rangeland/cropland)-1 month-1 are 131 

utilized to estimate global SNOx-Fer with both the linear and non-linear EF approaches (Fig. S2). 132 

2.2. The emissions inventory CEDS 133 

We use the CEDS (Hoesly et al., 2018) for assessing  the fertilizer-induced soil NOx emissions in the 134 

emission inventories. CEDS is one of the most state-of-the-art emission inventories that 135 

comprehensively assesses the sources of dominant air pollutants from the pre-industrial period to the 136 

present day, which has been used as the standard emission inventory to drive CMIP6 models. The 137 

agricultural NOx emission in CEDS is fromEDGAR 4.3.1 ( https://edgar.jrc.ec.europa.eu/), where the 138 

http://geoschemdata.wustl.edu/ExtData/HEMCO/Yuan_XLAI/v2021-06/
https://edgar.jrc.ec.europa.eu/
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old IPCC methodology (Eggleston et al., 2006) is used with a constant EF value of 0.7% (0.7% of N in 139 

the fertilizer will be emitted as NOx) (Janssens-Maenhout et al., 2019).  140 

2.3. The BDSNP scheme 141 

The BDSNP scheme in CTMs was firstly developed by Yienger and Levy (1995), and then updated by 142 

Hudman et al. (2012). The emission of soil NOx (Snox) is described as: 143 

𝑆𝑛𝑜𝑥 = (𝐴𝑤,𝑏𝑖𝑜𝑚𝑒 + 𝑁𝑎𝑣𝑎𝑖𝑙 × 𝐸̅)  × 𝑓(𝑇) × 𝑔(𝜃) × 𝑃(𝑙𝑑𝑟𝑦)                                                              (2) 144 

Where f(T), g(𝜃) and P(ldry) indicate the effects of temperature, soil moisture and rain pulsing. Aw,biome 145 

is the wet biome-dependent emission (the baseline emission) from Steinkamp and Lawrence (2011). 146 

Navail is the soil available N mass in the top 10 cm (ng N m-2), which is calculated by:  147 

𝑁𝑎𝑣𝑎𝑖𝑙(𝑡) = 𝑁𝑎𝑣𝑎𝑖𝑙(0)𝑒−
𝑡

𝜏 + 𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟𝑁 × τ × (1 − 𝑒−
𝑡

𝜏)                                                                                    (3) 148 

Where the initial soil available N mass 𝑁𝑎𝑣𝑎𝑖𝑙(0) is prescribed. FertilizerN is the rate of fertilizer N 149 

application, which is set to zero outside the growing season. 𝜏 indicates the decay rate and is chosen as 150 

4 months based on the measurements within the top 10 cm of soil (Matson et al., 1998; Cheng et al., 151 

2004; Russell et al., 2011). However, it should be noted that the magnitude of global SNOx-Fer (i.e. the 152 

𝑁𝑎𝑣𝑎𝑖𝑙 × 𝐸̅) is scaled by the factor 𝐸̅ in Eq. (2) to meet 1.8 Tg N yr-1 before the canopy reduction, which 153 

is the value obtained in a previous meta-analysis study based on the fertilizer N input dataset in the 154 

2000s (Stehfest and Bouwman, 2006). As a result, the default BDSNP scheme in GEOS-Chem actually 155 

fails to capture the year-to-year variations of soil NOx emissions with the changing soil N availability. 156 

However, as the BDSNP scheme is still widely used by the community of atmospheric chemistry 157 

modelling (e.g. Lu et al., 2021; Wang et al., 2022; Huber et al., 2023), here we add another sensitivity 158 

experiment by scaling the 𝑁𝑎𝑣𝑎𝑖𝑙 in Eq.3 following the interannual variations of the HaNi fertilizer 159 

loadings:  160 

𝑁 𝑎𝑣𝑎𝑖𝑙(𝑖, 𝑗, 𝑦𝑟) = 𝑁𝑎𝑣𝑎𝑖𝑙(𝑖, 𝑗, 2000) ∗
𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟𝐻𝑎𝑁𝑖(𝑖,𝑗,𝑦𝑟)

𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟𝐻𝑎𝑁𝑖(𝑖,𝑗,2000)
                                                                   (4) 161 

Where 𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟𝐻𝑎𝑁𝑖(𝑖, 𝑗, 𝑦𝑟) represents the total N fertilizer loadings in the HaNi dataset at the grid 162 

of i latitude and j longitude in the yr year. With this modification, we could further examine how SNOx-163 

Fer responds to the N fertilizer enhancement in the GEOS-Chem BDSNP scheme. 164 

2.4. The TBM ensemble 165 

Simulated soil NOx emissions were provided by three TBMs (CLASSIC, OCN and ORCHIDEE) with 166 

fully-coupled C and N cycles included in the global nitrogen/N2O model inter-comparison project phase 167 

2 (NMIP2) (Tian et al., 2024). For each TBM model, anthropogenic fertilizer applications are estimated 168 

by the HaNi dataset (Tian et al., 2022), where the fertilizer types (NH4
+ and NO3

-; synthetic fertilizer 169 
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and manure) are explicitly distinguished in the model. The SNOx-Fer can be isolated by summing up 170 

the differences between sensitivity experiments SH1 and SH2 (the synthetic fertilizer contribution) and 171 

the differences between sensitivity experiments SH1 and SH3 (the manure contribution) (Table S1). It 172 

should be noted that the CLASSIC model did not isolate synthetic fertilizer and manure and thus only 173 

conducted one sensitivity experiment. The model ensemble mean is utilized to smooth the large 174 

discrepancies among different TBMs (Fig. S3) due to the varied terrestrial N-cycle representations, in 175 

particular, the varied nitrification and denitrification rates. 176 

 177 

3. The GEOS-Chem model and sensitivity experiment configuration  178 

The GEOS-Chem model is a frequently used state-of-the-art CTM with fully coupled NOx–Ox–179 

hydrocarbon–aerosol chemistry mechanism (Bey et al., 2001; Park et al., 2004). Here we applied 180 

version 12.0.0 to run the global simulation with a horizontal resolution of 2° latitude × 2.5° longitude. 181 

The simulations are driven by the Version two of modern era retrospective-analysis for research and 182 

application (MERRA2) reanalyzed meteorological dataset. The photolysis rates were computed by the 183 

Fast-JX scheme (Park et al., 2004). The atmospheric gas-phase chemistry is independently developed 184 

referring to the kinetics and products based on JPL recommendations (Bates et al., 2024) and solved by 185 

the Kinetic Pre-Processor (KPP) (Henze et al., 2007). Aerosol thermodynamic equilibrium is calculated 186 

by the ISORROPIA II package (Fountoukis and Nenes, 2007). In particular, the default soil NOx 187 

emissions are simulated by the BDSNP scheme as introduced above.  188 

In order to examine the uncertainties in SNOx-Fer and the associated effects on global surface O3 189 

concentrations, we first ran a reference simulation in 2019 (named Zero) with zero SNOx-Fer to exclude 190 

the influence of fertilizer application on soil NOx. Then eleven different experiments were performed 191 

by representing SNOx-Fer with CEDS agricultural NOx emissions (named CEDS), the default GEOS-192 

Chem BDSNP scheme (Eqs. 2-3, named BDSNP_coarse), the BDSNP scaled by the interannually 193 

varied HaNi N fertilizer loadings (Eq. 4, named BDSNP_coarse_scaled), the default GEOS-Chem 194 

BDSNP but with fine resolution of  0.5°× 0.625° (named BDSNP_fine), the TBM-simulated SNOx-Fer 195 

of each model as well as the ensemble mean (named NMIP2-OCN, NMIP2-CLASSIC, NMIP2-196 

ORCHIDEE and NMIP2, respectively), the linear EF (EF=1.1%) method (named Linear) and the non-197 

linear EF (Eq. 1) method (named Nonlinear), respectively. In particular, the BDSNP_fine is simulated 198 

offline, i.e., the atmospheric chemical and transport processes are not accounted due to the inconsistency 199 

of resolutions with the GEOS-Chem runs. All of the sensitivity experiments are driven by the 200 

meteorological field in 2019 with 6-month spin up, where the anthropogenic emissions of all other 201 

tracers also keep at the 2019 level following the CEDS inventory. Table 1 summarizes the eleven 202 

sensitivity experiments in GEOS-Chem. 203 
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In order to further examine the seasonality of SNOx-Fer and the associated impacts on ground-level O3 204 

in agricultural hotspot regions, we investigate how different SNOx-Fer approaches distribute the annual 205 

fertilizer seasonally (Table 1). The HaNi dataset, as well as the equivalently up-to-date fertilizer dataset 206 

(Adalibieke et al., 2023), only provide annual fertilizer application rates given the lack of specific 207 

information to distribute N fertilization seasonally. The CEDS, BDSNP and NMIP2 model approaches 208 

have their own specific monthly distribution, while the monthly distribution of fertilizer application in 209 

the linear and nonlinear EF is arbitrarily assumed to be even during the growing season. Here, we added 210 

two additional GEOS-Chem sensitivity experiments for the linear and non-linear approach, named 211 

Linear_7525 and Nonlinear_7525, which apply the seasonal pattern of the BDSNP scheme (Hudman 212 

et al., 2012), assuming that 75% of the annual fertilizer is applied in the first month of the growing 213 

season and the remaining  25% evenly applied in the rest of the growing months. 214 

 215 

Table 1. Summary of the sensitivity experiments in GEOS-Chem and the methods used by different 216 
SNOx-Fer estimating approaches to distribute the annual N fertilizer into monthly. 217 

 218 

SNOx-Fer 

estimating 

approch 

Experimental name in 

this study 
Emissions of SNOx-Fer 

Fertilizer monthly 

distribution 

None Zero Zero None 

Emission 

Factor 

(EF) 

Linear Linear EF Evenly distributed 

during the growing 

season Nonlinear Nonlinear EF 

Linear_7525 Linear EF 75% of the annual 

fertilizer is applied in 

the first month of 

growing season, while 

the rest 25% is evenly 

distributed in the rest 

growing months 

Nonlinear_7525 Nonlinear EF 

Emission 

inventory 
CEDS CEDS agricultural NOx sector Not clear 

BDSNP 

BDSNP_coarse 
GEOS-Chem default BDSNP with 

resolution of 2°×2.5° 75% of the annual 

fertilizer is applied in 

the first month of 

growing season, while 

the rest 25% is evenly 

distributed in the rest 

growing months 

BDSNP_coarse_scaled 

BDSNP scaled with the interannual 

variations of HaNi fertilizer 

loadings with resolution 2°×2.5° 

BDSNP_fine (offline) 
GEOS-Chem default BDSNP with 

resolution of 0.5°× 0.625° 
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Terrestrial 

biosphere 

models 

(TBMs) 

NMIP2-OCN OCN simulated SNOx-Fer 

Distributed the annual 

N fertilizer loadings 

into four equal doses in 

the first half of the 

growing season 

NMIP2-CLASSIC CLASSIC simulated SNOx-Fer 

Evenly distributed 

throughout the year in 

the tropics (between 

30S and 30N); Evenly 

distributed from spring 

equinox to fall equinox 

between 30N (30S) 

and 90N (90S) 

NMIP2-ORCHIDEE ORCHIDEE simulated SNOx-Fer 

Half of the annual N 

fertilizer applied on the 

first day of the 

growing season; The 

remaining half applied 

on the 30th day since 

the beginning of the 

growing season 

NMIP2 TBMs ensemble mean  

 219 

Because the default GEOS-Chem simulations used above do not account for interactive CH4 chemistry, 220 

we further conducted ten more sensitivity experiments with the special ‘CH4 run’ in GEOS-Chem (East 221 

et al., 2024; Fu et al., 2024) to assess variations in the atmospheric CH4 concentrations induced by the 222 

uncertain SNOx-Fer. The special CH4 run takes CH4 as the sole atmospheric transport tracer with various 223 

prescribed CH4 sources (summarized in Table S2), while the CH4 sinks include the tropospheric 224 

reactions with hydroxyl radical (OH) and chlorine, stratospheric loss and soil uptake. The global 225 

monthly mean OH concentrations archived from the ten sensitivity experiments (Table 1, except for the 226 

BDSNP_fine) are applied in the CH4 simulation to assess the SNOx-Fer effect on CH4 lifetime through 227 

perturbing atmospheric oxidation capacity. As a result, there are ten more associated sensitivity 228 

experiments with the CH4 run that correspond to the default GEOS-Chem simulations in Table 1 (except 229 

for the BDSNP_fine experiment). Each CH4 simulation ran for 15 years by repeating the meteorological 230 

forcings in 2019 to reach a semi-equilibrium with the prescribed emissions and OH concentrations. The 231 

last year of the simulation was utilized to analyze the influences of soil NOx on CH4 induced by N 232 

fertilizer application.  The simulated global surface CH4 concentrations driven by varied OH levels from 233 

different sensitivity experiments are shown in Fig. S5. 234 

 235 

4. Results 236 
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4.1 Varied SNOx-Fer among different approaches 237 

Figure 1 shows the historical time series of global SNOx-Fer over 1950-2019 estimated by different 238 

approaches, mainly driven by the substantial increases in global N fertilizer application. Almost all 239 

approaches except BDSNP showed enhancements in soil NOx emissions but with largely varied 240 

magnitudes from 0.6 to 2.1 Tg yr-1 over 1950-2019. The default BDSNP scheme in GEOS-Chem, which 241 

scales soil NOx emissions with time-variant temperature and soil moisture, but assumes constant N 242 

availability (see Methods), estimates relatively stable soil NOx emissions over 1980-2019. The 243 

annually-varied BDSNP scheme scaled by the HaNi N input dataset shows an increase in SNOx-Fer 244 

from 0.8 Tg N yr-1 in 1980 to 1.5 Tg N yr-1 in 2019, while the sharpest increase in the soil NOx emission 245 

is simulated by the TBM ensemble, mainly induced by the high estimates of the CLASSIC and 246 

ORCHIDEE models (Fig. S3). Soil NOx estimated by the non-linear EF approach shows a substantially 247 

weaker response to fertilizer inputs relative to other estimating approaches.  248 

 249 

Figure 1. Global estimates of N fertilizer-induced soil NOx emissions by different approaches. The 250 

black line (right Y axis) indicates global annual-mean N synthetic fertilizer and manure inputs over 251 

1950-2019 assessed from the HaNi dataset. The remaining  lines (left Y axis) indicate the N fertilizer-252 

induced soil NOx emissions over 1950-2019 estimated by different approaches, including the emission 253 

inventory (CEDS), linear and non-linear EF, the widely-used CTM parameterization with coarse 254 

resolution (2°×2.5°, BDSNP_coarse), fine resolution (0.5°×0.625°, BDSNP_fine) and interannually 255 

varied N availability (BNDSP_coarse_scaled), and the TBM ensembles (NMIP2). The light cyan 256 

shadows indicate the spread across three different TBMs in NMIP2.  257 

 258 

Figure 3 shows the global spatial patterns of SNOx-Fer among different approaches. Each approach 259 

shows consistent spatial patterns aligned with the distribution of N synthetic fertilizer and manure inputs 260 

(Fig. 2), where eastern U.S., western Europe, eastern and southern Asia are the hotspots with high soil 261 

NOx emissions. Notably, even though the TBM ensemble (NMIP2) and the Linear EF approach estimate 262 

similar global total SNOx-Fer, the spatial distributions of both estimates vary strongly. The SNOx-Fer 263 
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estimates from the NMIP2 ensemble are higher in agricultural hotspots (Table 2), but lower in regions 264 

with less synthetic fertilizer application, e.g. in parts of the Africa and South America (Figs. 3d and 3e), 265 

relative to the Linear EF approach. It is because plants and microbes have high priority to assess 266 

additional N in N-limited regions, which leads less N loss as the gas forms. However, in N-saturated 267 

regions, the applied N fertilizer is excessive for the living biomes, yielding a higher sensitivity of soil 268 

NOx emissions to N fertilizer application (Du and De Vries, 2025). Such N dynamics have been 269 

included in the C-N fully-coupled TBMs, but are not represented by the linear EF approach. 270 

 271 

Figure 2. The global spatial patterns of N synthetic fertilizer and manure application in 2019 from the 272 
HaNi dataset. 273 
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 274 

 275 

 276 

Figure 3. The N-fertilization-induced soil NOx emissions estimated by different approaches in 2019. 277 

(a) - (f) The soil NOx emissions induced by N fertilizer estimated by the CEDS agricultural sector, the 278 

default BDSNP scheme in GEOS-Chem with coarse resolution (2°×2.5°), the coarse-resolution 279 

BDSNP scheme in GEOS-Chem by interannually scaling the N availability using the HaNi dataset, 280 

the NMIP2 ensemble, the linear EF and non-linear EF, respectively. The global total budget of each 281 

estimate is given in the subtitles. 282 

 283 

Table 2. The annual soil NOx emissions (Gg N yr-1) induced by N fertilizer in 2019 in the eastern 284 

U.S., western Europe, eastern Asia, southern Asia and the global estimates by different approaches. 285 

The ranges in NMIP2 indicate the highest and lowest values among three TBMs (CLASSIC, 286 

ORCHIDEE and OCN) 287 

 

Eastern U.S. 

(35-45N, 75-

90W) 

Western Europe 

(35-60N, 10W-

20E) 

Eastern Asia 

(20-50N, 100-

125E) 

Southern Asia 

(10-30N, 70-

85E) 

Globe 

CEDS 20.9 99.1 190.0 104.8 1600 

BDSNP_corase 15.8 76.3 157.0 134.2 1150 
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BDSNP_corase_scaled 17.6 69.8 174.8 201.7 1500 

NMIP2 57.0  

[15.1, 100.9] 

206.3  

[67.4, 267.3] 

417.5  

[261.0, 598.1] 

382.4  

[78.4, 776.3] 

2210 

[1280, 

2740] 

Linear EF 54.3 181.0 376.4 214.7 2190 

Non-Linear EF 15.6 60.8 136.5 141.8 840 

 288 

4.2 The seasonal cycle of SNOx-Fer and the associated impact on O3 concentrations 289 

Figure 4 shows the seasonality of SNOx-Fer in four agricultural hotspot regions among different SNOx-290 

Fer estimating methods. In the temperate regions like Eastern U.S., Western Europe and Eastern Asia, 291 

the TBM ensemble NMIP2 shows very strong seasonal variations, which peaks during May to July in 292 

Eastern U.S., April to June in Western Europe and May to August in Eastern Asia, respectively. The 293 

seasonality of the linear and nonlinear EF methods is strongly dependent on the assumption of fertilizer 294 

application time (Table 1), where the monthly SNOx-Fer emissions are at similar levels during the 295 

growing season for the Linear and Nonlinear experiments, but peak in a pronounced manner in the 296 

northern-hemispheric springtime (around February to April) in the Linear_7525 and Nonlinear_7525 297 

cases. Although the BDSNP applies the same assumption of fertilizer application time as Linear_7525 298 

and Nonlinear_7525, the SNOx-Fer in BDSNP peaks much later (September to October in Eastern U.S., 299 

June to August in Western Europe and May to June in Eastern Asia). This arises because the EF methods 300 

estimate SNOx-Fer instantaneously in response to the fertilizer application, but the BDSNP scheme 301 

cumulates N fertilizer with a 4-month time window (Eq. 3). It is also very important the BDSNP 302 

includes the regulation of soil temperature and moisture on SNOx-Fer, both of which also have strong 303 

seasonality, but the EF methods do not. Furthermore, in the tropical regions of southern Asia, the 304 

NMIP2, Linear_7525 and Nonlinear_7525 experiments estimate the peak SNOx-Fer in the beginning 305 

of the year, while the SNOx-Fer of BDSNP reaches its highest in May due to the N cumulation 306 

assumption (Fig. 4d). The remainning methods, including the emissions inventory CEDS, the Linear 307 

and Nonlinear EF method, show very weak seasonality of SNOx-Fer in Southern Asia. 308 

The seasonality of ground-level monthly MDA8 O3 changes in response to the SNOx-Fer in general 309 

aligns with the monthly variations of SNOx-Fer among different estimating approaches (Fig. 5). The 310 

strongest enhancement of regional MDA8 O3 occurs during the northern-hemispheric summertime 311 

(June-August) for most of the estimating approaches in three temperate regions, when the absolute O3 312 

concentrations also reaches their highest. However, it should be noted that spring-peak SNOx-Fer in the 313 

Linear_7525 and the Nonlinear_7525 cases does not lead to high O3 enhancement in both western 314 

Europe and eastern Asia (Figs. 5b and 5c). The weak sensitivity of O3 to NOx during springtime is likely 315 

the result of the seasonal variations in other emissions (e.g. biogenic volatile organic compounds 316 
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(BVOCs)), which alter the chemical sensitivity regime. The responses of O3 to SNOx-Fer could also 317 

depend on the region (e.g. O3 enhancement also peaks during spring in Linear_7525 in Eastern U.S., 318 

Fig. 5a), spatial simulation resolution or different modelling chemical mechanisms. The O3 319 

enhancement in southern Asia is generally similar during northern-hemispheric spring and summer time 320 

for all of the SNOx-Fer estimating approaches (Fig. 5d), except for the BDSNP scheme, which simulates 321 

significantly higher O3 enhancement during May to July relative to February to April.  322 

 323 

Figure 4. The monthly regional SNOx-Fer (Gg N yr-1) in  (a) eastern U.S., (b) western Europe, (c) 324 
eastern Asia and (d) southern Asia with different SNOx-Fer estimating approaches. The cyan-blue 325 

shades indicate the spread among three different TBM models (CLASSIC, OCN and ORCHIDEE) in 326 
the NMIP2 ensemble.  327 

 328 
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 329 

Figure 5. Regionally-averaged monthly MDA8 O3 changes (ppbv) induced by SNOx-Fer in (a) eastern 330 
U.S., (b) western Europe, (c) eastern Asia and (d) southern Asia with different SNOx-Fer estimating 331 

approaches. The cyan-blue shades indicate the spread among three different TBM models (CLASSIC, 332 
OCN and ORCHIDEE) in the NMIP2 ensemble.  333 

 334 

4.3 Impacts of SNOx-Fer on surface O3 concentrations 335 

We next examine how the different SNOx-Fer estimates influence the surface O3 concentrations globally. 336 

Since soil NOx emissions typically peak during the summer period (Fig. 4), when O3 pollution tends to 337 

be most severe, we focus our analysis on the surface maximum daily 8-h averaged (MDA8) O3 338 

concentrations averaged over the northern hemisphere summer (June, July and August) based on the 339 

sensitivity experiments in Table 1. Figure 6 shows that the N fertilizer application enhanced the 340 

globally-averaged surface summertime O3 MDA8 concentrations by 0.04-0.30 ppbv in 2019. In 341 

agricultural regions, the enhancement of O3 concentrations due to SNOx-Fer reaches 0.1-3.3 ppbv 342 

(0.2%-7.0%). Figure 6 also highlights important differences in the spatial effect of NOx on O3, 343 

consistent with the regional effects on SNOx-Fer (Table 2), that the NMIP2 estimate of SNOx-Fer shows 344 

stronger contributions to the O3 concentrations than the linear EF approach in agricultural regions. The 345 

non-linear EF method leads to the lowest O3 enhancement, although both non-linear EF and TBMs 346 

estimate increasing soil NOx emissions with soil N availability.  347 
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 348 

Figure 6. Global simulated changes in surface MDA8 O3 concentrations induced by different 349 

estimating approaches of SNOx-Fer averaged over June, July and August in 2019. The differences are 350 

calculated between corresponding sensitivity experiments in Table 1 and the Zero experiment. The 351 

numbers in each subtitle are changes in the globally averaged summertime MDA8 O3 concentrations 352 

induced by SNOx-Fer.  353 

 354 

 355 

 356 

 357 
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 358 

Figure 7.  Changes in summertime averaged surface MDA8 O3 concentrations (positive Y axis) and 359 

global surface CH4 concentrations (negative Y axis) induced by SNOx-Fer uncertainties. The regional 360 

MDA8 O3 concentrations are averaged over eastern U.S. (35-45N, 75-90W), western Europe (35-361 

60N, 10W-20E), eastern Asia (20-50N, 100-125E) and southern Asia (10-30N, 70-85E).  362 

 363 

4.4 The impacts of SNOx-Fer uncertainties on global CH4 estimates 364 

Figure 7 shows that N fertilizer-induced soil NOx led to the reduction of globally averaged CH4 365 

concentrations ranging from 6.7 ppbv (0.4%) to 16.6 ppbv (0.9%) in 2019 by increasing atmospheric 366 

OH concentrations (Fig. S5), spatially aligned with the distributions of SNOx-Fer among different 367 

estimating approaches (Fig. 3). Because CH4 has a significantly longer atmospheric lifetime than either 368 

OH or NOx, the spatial differences in the impacts of SNOx-Fer on CH4 concentrations are insignificant 369 

(Fig. S4). As a result, we only focus on the globally averaged changes in CH4 concentrations.  The 370 

magnitude of this estimate is consistent with the recent estimate of around 17.4 ppbv by Gong et al. 371 

(2024), which relies on the same NMIP2 dataset and a simpler CH4 box model to calculate the impacts 372 

of NOx emissions on the atmospheric lifetime of CH4. This result highlights an important but indirect 373 

role of SNOx-Fer on atmospheric CH4 concentrations, which is an often-overlooked aspect for the global 374 

CH4 budget. However, the uncertainty range in our estimates clearly suggests the need to further 375 

improve our understanding of soil N biogeochemical processes to better predict global OH reactivity 376 

and to better constrain global CH4 budget.  377 

 378 
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5. Discussions 379 

In this study, we integrated knowledge from meta-analyses (Hergoualc'h et al., 2019; Wang et al., 2024), 380 

the emission inventory, parameterizations in CTMs and the TBM ensembles to better quantify the 381 

uncertainties in N fertilizer-induced soil NOx emissions and the associated impacts on global O3 and 382 

CH4 concentrations. Our results showed a large variation in the global soil NOx emissions associated 383 

with N fertilizer, ranging from 0.84 Tg N yr-1 to 2.2 Tg N yr-1 in 2019. This range of responses leads to 384 

an enhancement in summertime surface MDA8 O3 concentrations of 0.1 ppbv to 3.3 ppbv (0.2%-7.0%) 385 

in agricultural hotspot regions. The O3 enhancement is highest in eastern U.S., while it is not only 386 

determined by the SNOx-Fer emissions, but also the diverging sensitivities of O3 to NOx depending on 387 

different chemical regimes in GEOS-Chem (Fig. S6). The varied SNOx-Fer estimates also lead to a 388 

reduction in global CH4 concentrations of 6.7 ppbv (0.4%) to 16.6 ppbv (0.9%). These changes highlight 389 

a significant role of agricultural N use and soil N biogeochemical processes in affecting regional O3 390 

concentrations as well as controlling global greenhouse gases. In particular, with the worldwide 391 

reduction in fossil-fuel NOx emissions associated with clean-air actions (Jiang et al., 2022), control of 392 

agricultural soil NOx emissions becomes increasingly important to improve air quality and alleviate the 393 

associated public health risks.  394 

However, challenges remain in the accurate assessment of N fertilizer-induced soil NOx emissions.  On 395 

the one hand, the overall uncertainties of SNOx-Fer may still be underestimated. The EF-approach with 396 

fixed EF fails to adequately reflect the complexity in soil biogeochemical processes, which is reflected 397 

by the large ranges of EFs from 0.06% to 2.18% in a recent meta-analysis (Hergoualc'h et al., 2019). 398 

While the non-linear EF method represents an advance over the linear EF approach, as the effects of 399 

soil N saturation levels on soil N gas emissions are considered and therefore the approach yields 400 

relatively good performance in predicting soil N2O or NH3 emissions compared to observations 401 

(Shcherbak et al., 2014; Jiang et al., 2017), the limited availability of observations to constrain these 402 

responses and their limited spatiotemporal representativeness reduce the reliability of this approach. 403 

Most of the experimental data in Wang et al. (2024) are collected over China in the past ten years and 404 

thus may not be representative of other agricultural regions. Furthermore, 22 out of 55 data points are 405 

from vegetable cropping systems and orchard fields, where frequent irrigation may enhance soil 406 

moisture and thus inhibit the production of NOx via nitrification. Last but not least, other factors, such 407 

as soil texture, pH, soil organic carbon and fertilizer types, may also affect the response of soil NOx 408 

emissions to the loading of N fertilizer application, which are omitted by either the linear EF or non-409 

linear EF approach. As a result, more representative crop experiments with a gradient series of N 410 

addition are necessary to better constrain the soil NOx response to N fertilizer application.  411 

For the modelling of SNOx-Fer, on the one hand, recent developments of the parameterization of 412 

BDSNP in CTMs focused more on the soil NOx responses to changing temperature or soil moisture (e.g. 413 

Wang et al., 2021; Huber et al., 2023), while the accuracy of the soil N availability has been less 414 
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investigated. Even with the scaled N fertilizer loadings to interannually vary the N availability, BDSNP 415 

still showed a weaker increasing trend of SNOx-Fer in response to the N fertilizer enhancement relative 416 

to the empirical EF methods and the TBM simulations of NMIP2 in the past decades (Fig. 1). 417 

Nevertheless, it should be noted that the BDSNP scheme is also sensitive to the spatial resolution, where 418 

the coarse resolution may miss small-scale hotspots and thus underestimate the global SNOx-Fer, as the 419 

BDSNP_fine experiment shows in Fig. 1. On the other hand, terrestrial N availability is a key concept 420 

in the development of TBMs, as the process-based TBMs need a detailed description of the N cycle to 421 

understand nutrient limitation levels and associated C-N coupling. Nevertheless, the soil NOx emissions 422 

have been overlooked by the ecological modelling community because the low emissions may not be 423 

important for the terrestrial N cycle, resulting in a limited number of TBMs that include soil NOx 424 

emissions as well as large inter-model variations (Fig. S3). To further reduce the uncertainties in soil 425 

NOx emission estimates, the advantages of TBMs on representing soil N availability can be introduced 426 

into CTMs to better examine the effects of agricultural activities on atmospheric chemistry, but at the 427 

same time, the terrestrial N cycle needs to be further developed in TBMs to reduce inter-model 428 

variations and to better predict soil emissions of reactive N gases (not only NOx but also N2O and NH3). 429 

The seasonality of SNOx-Fer and the associated impacts on surface O3 concentrations are also important 430 

but poorly constrained. The most difficult challenge is to precisely estimate the monthly (or even daily) 431 

N fertilizer loadings on the global scale. Because the N fertilizer data underlying the gridded products 432 

is derived from the annual statistics by the Food and Agricultural Organization (FAO) 433 

(https://www.fao.org/faostat/en/#data), the HaNi dataset applied in this study, as well as the 434 

equivalently up-to-date fertilizer dataset (Adalibieke et al., 2023), only provides gridded, annual 435 

fertilizer application rates. In the EF approaches, the growing season is determined only by temperature 436 

and greenness in this study, which could result in a mismatch with the real crop or pasture calendar, 437 

especially ignoring the multiple-harvest crops per year. A refined calendar could further improve the 438 

prediction of SNOx-Fer seasonality. Furthermore, the NOx-VOCs-O3 chemical sensitivity regimes could 439 

be determined not only by soil NOx emissions, but also by other anthropogenic and biogenic emissions 440 

of NOx and VOCs, as well as the climate seasonal variations. Therefore, the seasonal cycles of the 441 

enhancement of O3 concentrations may not strictly follow the variations in SNOx-Fer, as our Linear_75 442 

sensitivity experiment implies in Western Europe and Eastern Asia (Figs. 5b and 5c). 443 

The impacts of the changes in short-lived air pollutants on the global CH4 budget have attracted 444 

increasing attention in recent years (Peng et al., 2022; Zhao et al., 2025), where NOx is one of the most 445 

important drivers. However, it should be noted that the sensitivity of CH4 lifetime to NOx emissions 446 

varies substantially among atmospheric chemistry models from -25% to -46% in response to the total 447 

NOx changes from the pre-industrial to present-day period (Thornhill et al., 2021). Because few studies 448 

investigated how NOx from agricultural sources affects CH4, it is difficult to assess if the overall impacts 449 

of SNOx-Fer on CH4 presented in this study based on the GEOS-Chem model are underestimated or 450 

https://www.fao.org/faostat/en/#data
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overestimated, even though certain uncertainties are expected. Nevertheless, our results indicate that 451 

SNOx-Fer could be an uncertain but important source in calculating future changes of the global CH4 452 

budget, the importance of which could  increase with future continuing reduction in fossil-fuel NOx 453 

emissions (Rao et al., 2017) 454 

Beyond the uncertainties remaining in different SNOx-Fer estimating approaches, an important but also 455 

difficult question is how to better evaluate the performances of each method, especially at the regional 456 

and global scales. The first-hand meta-data collected from the field experiments is actually not an 457 

independent source, as it has been used to establish both of the linear and nonlinear EF methods. More 458 

importantly, most of the field experiments are manipulation experiments with artificial fertilizer 459 

gradients, which may not fully represent the real-world spatiotemporally varied SNOx-Fer. Furthermore, 460 

we use O3 data from the national or continental air quality observational networks to evaluate simulated 461 

O3 concentrations as a potential consistency check of the SNOx-Fer (Fig. S7). However, the 462 

uncertainties in SNOx-Fer are expected to be far less important relative to the uncertainties in the 463 

nonlinearity of atmospheric chemistry, emissions of BVOCs or the deposition processes, which together 464 

determine the biases between observational and simulated O3 concentrations. As a result, it is 465 

inappropriate to determine the best SNOx-Fer estimate as the one with the best statistical metrics in O3 466 

simulation. Moreover, most of the sites that monitor air pollutants are located in the urban regions, 467 

where the industrial impacts are far more important than the agricultural sources. A real-time O3 468 

observational network in the cropland or pasture would be crucial to advance the understandings in 469 

SNOx-Fer and the associated impacts on air quality. Last but not least, the top-down retrievals of NOx 470 

emissions based on satellite NO2 products could also have the potential to better constrain SNOx-Fer, 471 

while gaps remain in how to precisely isolate the soil NOx emissions (Bertram et al., 2005; Lin et al., 472 

2024) and even the fertilizer contributions from the total NOx sources. Synergizing spatiotemporally 473 

detailed fertilizer management datasets with the top-down NOx retrievals with ultra-high resolutions, 474 

where the atmospheric NOx can be assumed to be dominantly affected by the soil sources in agricultural 475 

regions, could be one possible solution. However, more work is needed to integrate such big data in the 476 

future. 477 

To summarize, with a comprehensive investigation of different approaches to describe SNOx-Fer, our 478 

results reveal the uncertainties in quantifying SNOx-Fer and the associated important implications in 479 

simulating regional air quality and the global greenhouse gas CH4. However, the limited number of 480 

field experiments impedes accurate assessments of the soil NOx responses to N fertilizer application as 481 

well as improving its representation in both CTMs and TBMs, resulting in large uncertainties in 482 

estimates of N fertilizer-induced soil NOx emissions. We thus highlight the essential necessity to 483 

integrate knowledge between agricultural data, atmospheric chemistry modelling and soil 484 

biogeochemistry to better represent soil NOx emissions in models and improve our understanding of the 485 

associated effects on air quality and the global CH4 budget.  486 
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