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Abstract

Natural and agricultural soils are important sources of nitrogen oxides (NOy), accounting for about 10%
- 20% of the global NOy emissions. The increased application of nitrogen (N) fertilizer in agriculture
has strongly enhanced the N availability of soils in the last several decades, leading to higher soil NOx
emissions. However, the magnitude of the N fertilizer-induced soil NOy emissions remains poorly
constrained due to limited field observations, resulting in divergent estimates. Here we integrate the
results from meta-analyses of field manipulation experiments, emission inventories, atmospheric
chemistry modelling and terrestrial biosphere modelling to investigate these uncertainties and the
associated impacts on ground-level ozone and methane. The estimated present-day global soil NOy
emissions induced by N fertilizer application varies substantially (0.84-2.2 Tg N yr') among different
approaches with different spatial patterns. Simulations with the 3-D global chemical transport model
GEOS-Chem demonstrate that N fertilization enhances global surface ozone concentrations during
summertime in agricultural hotspots, such as North America, western Europe and eastern and southern
Asia by 0.1 to 3.3 ppbv (0.2% - 7.0%). Our results show that such spreads in soil NOy emissions also
affect atmospheric methane concentrations, reducing the global mean by 6.7 (0.4%) ppbv to 16.6 (0.9%)
ppbv as indirect consequence of enhanced N fertilizer application. These results highlight the urgent
need to improve the predictive understanding of soil NOy emission responses to fertilizer N inputs and

its representation in atmospheric chemistry modelling.

*Correspondence to: Cheng Gong (cgong@bgc-jena.mpg.de)
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1. Introduction

Nitrogen oxides (NO,=NO + NO,), as one of the most important reactive atmospheric components,
strongly affect the atmospheric oxidation capacity and further influence air quality (Gong et al., 2020;
Zhai et al., 2021; Goldberg et al., 2022; Zhao et al., 2023), radiative forcing (Erisman et al., 2011; Pinder
et al., 2012; Gong et al., 2024), as well as carbon (C) storage in terrestrial and marine ecosystems
(Fowler et al., 2013; Fleischer et al., 2019; Rubin et al., 2023). The major source of present-day
atmospheric NOx is fossil fuel combustion (Martin et al., 2003; Hoesly et al., 2018), but several non-
fossil-fuel sources, including emissions from soils, lightning and wildfire (Zhang et al., 2003),
contribute to around 30% of the global total NOx emissions (Delmas et al., 1997; Weng et al., 2020).
However, these non-fossil-fuel sources have been widely regarded as ‘natural’ sources, where the
perturbation by anthropogenic activities as well as the associated potentially significant effects on the
N cycle are often overlooked. Meanwhile, strict clean-air actions have been applied in many countries
in the past decades to sharply reduce the fossil-fuel sources of NOx (Jiang et al., 2022). As a result, non-

fossil sources of NOy will be increasingly important for future clean air policies.

One of the most important non-fossil-fuel anthropogenic sources of NOy is through agricultural
activities, which have been estimated to enhance soil NOy emissions by around 5%- 30% (Wang et al.,
2022; Gong et al., 2024). To assess the soil NOx emissions induced by N fertilizer application (hereafter,
SNOx-Fer), the most straightforward and widely-used method is applying the emission factor (EF),
which indicates the proportion of N from fertilizer application emitted as NOx. The Intergovernmental
Panel on Climate Change (IPCC) methodology recommended a constant EF value 1.1% with an
uncertainty range of 0.06% to 2.18% (Hergoualc'h et al., 2019). Other studies recommend slightly
smaller uncertainty ranges (0.47% to 1.61%) based on different meta-analysis datasets (Stehfest and
Bouwman, 2006; Liu et al., 2017; Skiba et al., 2021; Wang et al., 2022). This large uncertainty range
results from the dependency of the response of soil NOy emissions on intricate soil biogeochemical
processes and varies with crop types, soil texture, fertilizer types and application rate (Wang et al.,

2022). To date, limited field experiments are available to constrain this uncertainty range.

Some studies have suggested to use non-linear EF to take account of the observations that the EFs of
soil reactive nitrogen gases tend to increase with increasing fertilizer application (Shcherbak et al., 2014;
Jiang et al., 2017). Such approach assumes that plants and soil microbes should have priority to access
soil available N for their metabolic activities, while the excessive inorganic N can be used by nitrifiers
and denitrifiers and loses as the gas form. Such a non-linear EF approach is more ecologically
reasonable but there remain large uncertainties in assessing soil NOy due to the limited available field
data. For example, Wang et al. (2024) examined the non-linear EF of soil NOx based on a global meta-
analysis and found a much lower EF (around 0-0.7%) than the IPCC recommended linear EF (1.1%)

within the range of normal agricultural crop N fertilizer loading (around 0-600 kg N ha yr™).
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In many of the atmospheric chemical transport model (CTMs), SNOy-Fer is represented by the
agriculture sector of NOx emission from an anthropogenic emission inventory (e.g. Emissions Database
for Global Atmospheric Research (EDGAR) or Community Emissions Data System (CEDS)), which
in general apply the method of linear EF to estimate the agricultural NOx emissions (Hoesly et al., 2018;
Janssens-Maenhout et al., 2019; Nicholas Hutchings et al., 2023) with the caveats described above.
Furthermore, some advanced CTMs, e.g. the GEOS-Chem model, parametrizes soil NO emissions as
a function of N availability as well as soil temperature and soil moisture (Steinkamp and Lawrence,
2011; Hudman et al., 2012). The currently widely-used soil NOx scheme named by the Berkeley-
Dalhousie Soil NOx Parameterization (BDSNP) could dynamically simulate the spatiotemporal
variations of soil NOx emissions, however, the responses of soil NOy to N fertilizer application are not

fully examined (See the detailed parameterization in Sect. 2)..

Recently, another approach to modelling SNOx-Fer has emerged by the development of global, process-
based terrestrial biosphere models (TBMs) with fully-coupled C and N cycles (Zaehle and Friend, 2010;
Tian et al., 2019). Driven by data of N inputs (N synthesis fertilizer, N manure application and N
deposition), CO, concentrations and climate, these TBMs could simulate the coupled-cycles of C and
N in the terrestrial biosphere, mimic the competition on the available N between plants and microbes
and calculate the rates of nitrification and denitrification (Zaehle and Dalmonech, 2011), which are the
two microbial processes that determine the rates of soil NOx emissions. Even though TBMs provides a
more ecologically-mechanistic description of the terrestrial N cycles, large uncertainties remained
among different TBMs due to the varying parameterization and modelling schemes on biome N use
strategies, mineralization of organic N, nitrification and denitrification processes (Kou-Giesbrecht et
al., 2023), which lead to varied responses of soil NOx to the increased N fertilizer inputs (Gong et al.,
2024).

In this study, we attempt to comprehensively quantify the uncertainties in current SNOy-Fer estimates
by integrating results from meta-analyses, emission inventories, as well as CTMs and TBMs. We use
this understanding to assess the associated effects of SNOy-Fer uncertainties on global O3 and CHy
concentrations. Section 2 will introduce the N synthetic fertilizer and manure input data and each
approach to estimate SNOx-Fer. Section 3 will introduce the CTM model used in this study and the
configuration of sensitive experiments. Section 4 will firstly show the variations of SNOy-Fer among
different approaches as well as the seasonal dynamics, and then analyze the associated uncertainties in
global O3 and CH4 simulations. Finally, the conclusion and discussions of this study will be given in

section 5.

2. Data and Methods

2.1. Linear and Non-linear EFs and the global fertilizer N dataset

3
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We firstly implement the most traditional method with a constant EF value to estimate the effects of N
fertilizer application on soil NOy emissions, where the value of 1.1% (1.1% of N in the fertilizer will
be emitted as NOy; named as EFji.. hereafter) based on the most up-to-date IPCC methodology is
adopted (Hergoualc'h et al., 2019). Furthermore, based on the latest meta-analysis dataset developed by
Wang et al. (2024), a non-linear EF method (EFon-iinear) to describe the variations of soil NOx emissions

with different N fertilizer loadings is also applied:
EFon_tinea = (0.2240.008 x Fertilizery) €]

where the EFoniinear (%) is the non-linear EF and Fertilizery is the loading of fertilizer N application
(kg N ha). The detailed derivation of this formula is presented by in Wang et al. (2024), which follows
a comparable method as presented by Shcherbak et al. (2014).

We used the dataset of History of anthropogenic Nitrogen inputs (HaNi) (Tian et al., 2022) for the
global rate of synthetic fertilizer and manure application, in order to estimate SNO-Fer with both of
the linear and non-linear EF methods. The HaNi dataset includes grid-level annual loadings of (1) NH,'-
N synthetic fertilizer applied to cropland, (2) NOs™-N synthetic fertilizer applied to cropland, (3) NH4'-
N synthetic fertilizer applied to pasture, (4) NOs™-N synthetic fertilizer applied to pasture, (5) manure
NH,"-N application on cropland, (6) manure NO5-N application on pasture, (7) manure NH4"-N
deposition on pasture, (8) manure NO3-N deposition on rangeland. We use a global map of land use
class distributions (Hurtt et al., 2020) (Fig. S1) to convert the unit of N loading in HaNi from g N grid
"to kg N (ha pasture)™’, kg N (ha rangeland)™ or kg N (ha cropland™). The annual N inputs from HaNi
dataset, which are summed by all N forms of synthetic fertilizer and manure, are evenly applied in the
months of growing season, while the rates of N inputs are set as zero during the non-growing season.
We define growing season as monthly-mean 2-metre temperature larger than 5 degree Celsius (based
on the MERRAZ2 reanalyzed dataset, see below Sect. 3) and the grid-level monthly-mean leaf area index
(LAI) larger than 0.5 (based on MODIS remote sensing dataset postprocessed by Yuan et al. (2011) and
updated for the use of GEOS-Chem,
http://geoschemdata.wustl.edu/ExtData/HEMCO/Yuan_XLAI/v2021-06/). Finally, the rates of

synthetic fertilizer and manure N inputs with the unit of kg N (ha pasture/rangeland/cropland)™ month®
" are utilized to estimate global SNOx-Fer with the both of the linear and non-linear EF approaches (Fig.
S2).

2.2. The emissions inventory CEDS

We use the CEDS (Hoesly et al., 2018) for assessing the fertilizer-induced soil NOy emissions in the
emission inventories. CEDS is one of the most state-of-art emission inventories that comprehensively
assess the sources of dominant air pollutants from pre-industrial period to present days, which has been

used as the standard emission inventory to drive CMIP6 models. The agricultural NOy emissions in
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CEDS is from the EDGAR 4.3.1 ( https://edgar.jrc.ec.europa.cu/ ), where the old IPCC methodology
(Eggleston et al., 2006) is used with a constant EF value of 0.7% (0.7% of N in the fertilizer will be
emitted as NOyx) (Janssens-Maenhout et al., 2019).

2.3. The BDSNP scheme

The BDSNP scheme in CTMs is firstly developed by Yienger and Levy (1995), and then updated by
Hudman et al. (2012). The emission of soil NOx (S,.x) is described as:

Snox = (Aw,biome + Navail X E) X f(T) X 9(9) X P(ldry) (2)

Where f(T), g(6) and P(lay) indicate the effects of temperature, soil moisture and the rain pulsing.
Auwpiome 1S the wet biome-dependent emission (the baseline emission) from Steinkamp and Lawrence

(2011). Navairis the soil available N mass in the top 10 cm (ng N m™), which is calculated by:

t t
Novait(t) = Ngpai(0)e = + Fertilizery X tX (1 —e 7) 3)

Where the initial soil available N mass N,,,4i; (0) is prescribed. Fertilizery is the rate of fertilizer N
application, which is set as zero outside the growing season. T indicates the decay rate and is chosen as
4 months based on the measurement within the top 10 cm soil (Matson et al., 1998; Cheng et al., 2004;
Russell et al., 2011). However, it should be noted that magnitude of global SNO,-Fer (i.e. the Nypqi X E)
is scaled by the factor E in Eq. (2) to meet 1.8 Tg N yr'! before the canopy reduction, which is the value
obtained in a previous meta-analysis study based on the fertilizer N input dataset in 2000s (Stehfest and
Bouwman, 2006). As a result, the default BDSNP scheme in GEOS-Chem actually fails to capture the
year-to-year variations of soil NOx emissions with the changing soil N availability. However, as the
BDSNP scheme is still widely used by the community of atmospheric chemistry modelling (e.g. Lu et
al., 2021; Wang et al., 2022; Huber et al., 2023), here we add another sensitivity experiment by scaling

the Nyyqi; in Eq.3 following the interannual variations of the HaNi fertilizer loadings:

Fertilizeryqni(i,j,yT)

N gvait (6, J, Y1) = Napair (i, j, 2000) * @)

Fertilizeryqni(i,j,2000)

Where Fertilizery,y; (i, ], yr) represents the total N fertilizer loadings in HaNi dataset at the grid of i
latitude and j longitude in the yr year. With this modification, we could further examine how SNOy-Fer
responses to the N fertilizer enhancement in the GEOS-Chem BDSNP scheme.

2.4. The TBM ensemble

Simulated soil NOy emissions were provided by three TBMs (CLASSIC, OCN and ORCHIDEE) with
fully-coupled C and N cycles included in the global nitrogen/N,O model inter-comparison project phase
2 (NMIP2) (Tian et al., 2024). For each TBM model, anthropogenic fertilizer application are estimated
by the HaNi dataset (Tian et al., 2022), where the fertilizer types (NH4" and NO5’; synthetic fertilizer
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and manure) are explicitly distinguished in the model. The SNOx-Fer can be isolated by summing up
the differences between sensitivity experiments SH1 and SH2 (the synthetic fertilizer contribution) and
the differences between sensitivity experiments SH1 and SH3 (the manure contribution) (Table S1). It
should be noted that the CLASSIC model did not isolate synthetic fertilizer and manure and thus only
conducted one sensitivity experiment. The model ensemble mean is utilized to smooth the large
discrepancies among different TBMs (Fig. S3) due to the varied terrestrial N-cycle representations, in

particular, the varied nitrification and denitrification rates.

3. The GEOS-Chem model and sensitivity experiment configuration

The GEOS-Chem model is a frequently used state-of-the-art CTMs with fully coupled NOx—Ox—
hydrocarbon—aerosol chemistry mechanism (Bey et al., 2001; Park et al., 2004). Here we applied the
version 12.0.0 to run the global simulation with a horizontal resolution of 2° latitude X 2.5° longitude.
The simulations are driven by the Version two of modern era retrospective-analysis for research and
application (MERRA2) reanalyzed meteorological dataset. The photolysis rates were computed by Fast-
JX scheme (Park et al., 2004). The atmospheric gas-phase chemistry is independently developed
referring to the kinetics and products based on JPL recommendations (Bates et al., 2024) and solved by
the Kinetic Pre-Processor (KPP) (Henze et al., 2007). Aerosol thermodynamic equilibrium is calculated
by the ISORROPIA 1II package (Fountoukis and Nenes, 2007). In particular, the default soil NOy

emissions are simulated by the BDSNP scheme as introduced above.

In order to examine the uncertainties in the SNOy-Fer and the associated effects on global surface O3
concentrations, we firstly run a reference simulation in 2019 (named Zero) with zero SNOy-Fer to
exclude the influence of fertilizer application on soil NOx. Then eleven different experiments are
performed by representing SNOx-Fer with CEDS agricultural NOx emissions (named CEDS), the
default GEOS-Chem BDSNP scheme (Egs. 2-3, named BDSNP_coarse), the BDSNP scaled by the
interannually-varied HaNi N fertilizer loadings (Eq. 4, named BDSNP_ coarse scaled), the default
GEOS-Chem BDSNP but with fine resolution of 0.5°% 0.625° (named BDSNP _fine), the TBM-
simulated SNOy-Fer of each model as well as the ensemble mean (named NMIP2-OCN, NMIP2-
CLASSIC, NMIP2-ORCHIDEE and NMIP2, respectively), the linear EF (EF=1.1%) method (named
Linear) and the non-linear EF (Eq. 1) method (named Nonlinear), respectively. In particular, the
BDSNP fine is simulated offline, i.e. the atmospheric chemical and transport processes are not
accounted due to the inconsistence of resolutions with the GEOS-Chem runs. All of the sensitivity
experiments are driven by the meteorological field in the year of 2019 with 6-month spin up, where the
anthropogenic emissions of all other tracers also keep at the level of 2019 following the CEDS inventory.

Table 1 summarizes the eleven sensitivity experiments in GEOS-Chem.
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In order to further examine the seasonality of SNOx-Fer and the associated impacts on ground-level O3
in agricultural hotspot regions, we investigate how different SNOx-Fer approaches distribute the annual
fertilizer seasonally (Table 1). The HaNi dataset, as well as the equivalently up-to-date fertilizer dataset
(Adalibieke et al., 2023), only provide annual fertilizer application rates given the lack of specific
information to distribute the N fertilization seasonally. The CEDS, BDSNP and NMIP2 models
approaches have their own specific monthly distribution, while the monthly distribution of fertilizer
application in the linear and nonlinear EF are arbitrarily assumed to be even during growing season.
Here, we added two additional GEOS-Chem sensitivity experiments for the linear and non-linear
approach, named Linear 7525 and Nonlinear 7525, which apply the seasonal pattern of the BDSNP
scheme (Hudman et al., 2012), assuming that 75% of the annual fertilizer is applied in the first month

of growing season and the rest 25% evenly applied in the rest growing months.

Table 1. Summary of the sensitivity experiments in GEOS-Chem and the methods used by different
SNOx-Fer estimating approaches to distribute the annual N fertilizer into monthly.

SNOy-Fer . . o
L Experimental name in . Fertilizer monthly
estimating . Emissions of SNOx-Fer S
this study distribution
approch
None Zero Zero None
Linear Linear EF Evenly distributed
during the growing
Nonlinear Nonlinear EF season
Emission Linear 7525 Linear EF 75% of the annual
Factor fertilizer is applied in
(EF) the first month of
growing season, while
Nonlinear 7525 Nonlinear EF the rest 25% is evenly
distributed in the rest
growing months
EmlSSlon CEDS CEDS agricultural NOy sector Not clear
mventory
GEOS-Chem default BDSNP with
BDSNP_coarse resolution of 2°%2.5° 75% of the annual
fertilizer is applied in
BDSNP scaled with the interannual the first month of
BDSNP  BDSNP_coarse scaled variations of HaNi fertilizer growing season, while
loadings with resolution 2°X2.5° the rest 25% is evenly
distributed in the rest
GEOS-Chem default BDSNP with growing months

BDSNP_fine (offline) resolution of 0.5°X 0.625°
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Distributed the annual
N fertilizer loadings
NMIP2-OCN OCN simulated SNOx-Fer into four equal doses in
the first half of the
growing season

Evenly distributed
Terrestrial throughout the year in

biosphere the tropics (between
models . 30S and 30N); Evenly
(TBMs) NMIP2-CLASSIC CLASSIC simulated SNOx-Fer distributed from spring
equinox to fall equinox

between 30N (30S)

and 90N (90S)

NMIP2-ORCHIDEE ORCHIDEE simulated SNOx-Fer Not clear

NMIP2 TBMs ensemble mean

Because the default GEOS-Chem simulations used above do not account for interactive CH4 chemistry,
we further conducted ten more sensitivity experiments with the special ‘CH4 run’ in GEOS-Chem (East
et al., 2024; Fu et al., 2024) to assess the variations in the atmospheric CH4 concentrations induced by
the uncertain SNOx-Fer. The special CH4 run takes CH4 as the only one atmospheric transport tracer
with various prescribed CH4 sources (summarized in Table S2), while the CHy sinks include the
tropospheric reactions with hydroxyl radical (OH) and chlorine, stratospheric loss and soil uptake. The
global monthly mean OH concentrations archived from the ten sensitivity experiments (Table 1, except
for the BDSNP _fine) are applied in the CH4 simulation to assess the SNOy-Fer effect on CH, lifetime
through perturbing atmospheric oxidation capacity. As a result, there will be ten more associated
sensitivity experiments with the CHs run that corresponds to the default GEOS-Chem simulations in
Table 1 (except for the BDSNP_fine experiment). Each CHs simulation runs for 15 years by repeating
the meteorological forcings in 2019 to reach a semi-equilibrium with the prescribed emissions and OH
concentrations. The last year of the simulation is utilized to analyze the influences of soil NOy on CHs4
induced by N fertilizer application. The simulated global surface CH4 concentrations driven by varied

OH levels from different sensitivity experiments are shown in Fig. S5.

4. Results
4.1 Varied SNOy-Fer among different approaches
Figure 1 shows the historical time series of global SNOy-Fer over 1950-2019 estimated by different

approaches, which is mainly driven by the substantial increases in global N fertilizer application.

Almost all approaches except BDSNP showed enhancements in soil NOy emissions but with largely
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varied magnitudes from 0.6 to 2.1 Tg yr™' over 1950-2019. The default BDSNP scheme in GEOS-Chem,
which scales soil NOx emissions with time-variant temperature and soil moisture, but assumes constant
N availability (see Methods), estimates the relatively stable soil NOx emissions over 1980-2019. The
annually-varied BDSNP scheme scaled by the HaNi N input dataset shows increase in SNOx-Fer from
0.8 Tg N yr' in 1980 to 1.5 Tg N yr' in 2019, while the sharpest increase of the soil NOx emission is
simulated by the TBM ensemble, mainly induced by the high estimates of the CLASSIC and
ORCHIDEE models (Fig. S3). Soil NOy estimated by the non-linear EF approach shows substantially

weaker response to fertilizer inputs relative to other estimating approaches.

Fertilizer-induced soil NO, emissions

[
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1
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o
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— Global fertilizer loading [~ 200
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Soil NOx from fertilizer (Tg N yr")
Fertilizer and manure application (Tg N yr')
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Figure 1. Global estimates of N fertilizer-induced soil NOy emissions by different approaches. The
black line (right Y axis) indicates global annual-mean N synthetic fertilizer and manure inputs over
1950-2019 assessed from the HaNi dataset. The rest lines (left Y axis) indicate the N fertilizer-
induced soil NOy emissions over 1950-2019 estimated by different approaches, including emission
inventory (CEDS), linear and non-linear EF, the widely-used CTM parameterization with coarse
resolution (2°%2.5°, BDSNP_corase), fine resolution (0.5°%0.625°, BDSNP_fine) and interannually
varied N availability (BNDSP_corase scaled), and the TBM ensembles (NMIP2). The light cyan
shadows indicate the spread across three different TBMs in NMIP2.

Figure 3 shows the global spatial patterns of SNOx-Fer among different approaches. Each approach
shows consistent spatial patterns aligned with the distribution of N synthetic fertilizer and manure inputs
(Fig. 2), where eastern U.S., western Europe, eastern and southern Asia are the hotspots with high soil
NOx emissions. Notably, even though the TBM ensemble (NMIP2) and the Linear EF approach estimate
similar global total SNOx-Fer, the spatial distributions of both estimates vary strongly. The SNOy-Fer
estimates by NMIP2 ensemble are higher in agricultural hotspots (Table 2), but lower in regions with
less synthetic fertilizer application, e.g. in part of the Africa and South America (Figs. 3d and 3e),
relative to the Linear EF approach. Because plants and microbes have high priority to assess additional

N in N-limited regions, which leads less N loss as the gas forms. However, in N-saturated regions, the
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applied N fertilizer excessive for the living biomes, yielding a higher sensitivity of soil NOx emissions

to N fertilizer application (Du and De Vries, 2025). Such N dynamics have been included in the C-N

fully-coupled TBMs, but fail to be represented by the linear EF approach.’.

N fertilizer loading in 2019 (207.96 Tg N yr)
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Figure 2. The global spatial patterns of N synthetic fertilizer and manure application in 2019 from the
HaNi dataset.
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Figure 3. The N-fertilization induced soil NOy emissions estimated by different approaches in 2019.

(a) - (f) The soil NOy emissions induced by N fertilizer estimated by the CEDS agricultural sector, the



279 default BDSNP scheme in GEOS-Chem with coarse resolution (2°X2.5°), the coarse-resolution
280 BDSNP scheme in GEOS-Chem by interannually scaling the N availability using the HaNi dataset,
281 the NMIP2 ensemble, the linear EF and non-linear EF, respectively. The global total budget of each
282 estimate is given in the sub-titles.
283
284 Table 2. The annual soil NOx emissions (Gg N yr'') induced by N fertilizer in 2019 in the eastern
285 U.S., western Europe, eastern Asia, southern Asia as well as the global estimates by different
286 approaches. The ranges in NMIP2 indicate the highest and lowest values among three TBMs
287 (CLASSIC, ORCHIDEE and OCN)
Eastern U.S. Western Europe Eastern Asia Southern Asia
(35-45N, 75- (35-60N, 10W- (20-50N, 100- (10-30N, 70- Globe
90W) 20E) 125E) 85E)
CEDS 20.9 99.1 190.0 104.8 1600
BDSNP_corase 15.8 76.3 157.0 134.2 1150
BDSNP_corase scaled 17.6 69.8 174.8 201.7 1500
NMIP2 57.0 206.3 417.5 382.4 [ﬁég
[15.1,100.9] [67.4, 267.3] [261.0, 598.1] [78.4, 776.3] 2740]’
Linear EF 54.3 181.0 376.4 2147 2190
Non-Linear EF 15.6 60.8 136.5 141.8 840
288
289 4.2 The seasonal cycle of SNOx-Fer and the associated impact on O3 concentrations
290  Figure 4 shows the seasonality of SNOx-Fer in four agricultural hotspot regions among different SNO,-
291  Fer estimating methods. In the temperate regions like Eastern U.S., Western Europe and Eastern Asia,
292  the TBM ensembles NMIP2 shows very strong seasonal variations, which reaches highest during May
293  to Julyin Eastern U.S., April to June in Western Europe and May to August in Eastern Asia, respectively.
294  The seasonality of the linear and nonlinear EF methods is strongly dependent on the assumption of
295  fertilizer applying time (Table 1), where the monthly SNOx-Fer emissions are at similar levels during
296  the growing season for the Linear and Nonlinear experiments, but peak in a pronounced manner in the
297  north-hemispheric spring time (around February to April) in the Linear 7525 and Nonlinear 7525 cases.
298  Although the BDSNP applies the same assumption of fertilizer applying time as Linear 7525 and
299  Nonlinear 7525, the SNOx-Fer in BDSNP peaks much later (September to October in Eastern U.S.,
300  Juneto August in Western Europe and May to June in Eastern Asia). This arises because the EF methods
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estimate SNOx-Fer instantaneously in response to the fertilizer application, but the BDSNP scheme
cumulates N fertilizer with a 4-months time window (Eq. 3). It is also very important the BDSNP
includes the regulation of soil temperature and moisture on SNOx-Fer, both of which also have strong
seasonality, but the EF methods do not. Furthermore, in the tropical regions of Southern Asia, the
NMIP2, Linear 7525 and Nonlinear 7525 experiments estimate the peak SNOx-Fer in the beginning
of the year, while the SNO-Fer of BDSNP reaches highest in May due to the N cumulation assumption
(Fig. 4d). The rest methods, including the emissions inventory CEDS, the Linear and Nonlinear EF

method, show very weak seasonality of SNOy-Fer in Southern Asia.

The seasonality of ground-level monthly MDAS8 O3 changes in response to the SNOy-Fer in general
aligns with the monthly variations of SNOy-Fer among different estimating approaches (Fig. 5). The
strongest enhancement of regional MDAS8 O3 shows during the north-hemispheric summertime (June-
August) for most of the estimating approaches in three temperate regions, when the absolute O3
concentrations also reaches highest. However, it should be noted that spring-peak SNOy-Fer in the
Linear 7525 and the Nonlinear 7525 cases does not lead to high Os; enhancement in both Western
Europe and Eastern Asia (Figs. 5b and 5c¢). The weak sensitivity of O3 to NOy during springtime is
likely the result of the seasonal variations in other emissions (e.g. biogenic volatile organic compounds
(BVOCs)), which alter the chemical sensitivity regime. The responses of O3 to SNOy-Fer could also
depend on regions (e.g. O3 enhancement also peaks during spring in Linear 7525 in Eastern U.S., Fig.
Sa), spatial simulating resolution or different modelling chemical mechanisms. The O3 enhancement in
Southern Asia is generally similar during north-hemispheric spring and summer time for all of the
SNOy-Fer estimating approaches (Fig. 5d), except for the BDSNP scheme, which stimulates
significantly higher O3 enhancement during May to July relative to February to April.
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324 Figure 4. The monthly regional SNO,-Fer (Gg N yr™') in the (a) Eastern U.S., (b) Western Europe, (c)
325 Eastern Asia and (d) Southern Asia with different SNO-Fer estimating approaches. The cyan-blue
326  shades indicate the spreads among three different TBM models (CLASSIC, OCN and ORCHIDEE) in
327 the NMIP2 ensemble.
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Figure 5. The regionally-averaged monthly MDAS O; changes (ppbv) induced by SNOx-Fer in the (a)
Eastern U.S., (b) Western Europe, (c) Eastern Asia and (d) Southern Asia with different SNOx-Fer
estimating approaches. The cyan-blue shades indicate the spreads among three different TBM models
(CLASSIC, OCN and ORCHIDEE) in the NMIP2 ensemble.

4.3 Impacts of SNOx-Fer on surface O3 concentrations

We next examine how the different SNOx-Fer estimates influence the surface Os concentrations globally.
Since soil NOx emissions typically peak during the summer period (Fig. 5), when O3 pollution tends to
be most severe, we focus our analysis on the surface maximum daily 8-h averaged (MDAS) Os;
concentrations averaged over the northern hemisphere summer (June, July and August) based on the
sensitivity experiments in Table 1. Figure 6 shows that the N fertilizer application enhanced the
globally-averaged surface summertime O3 MDAS concentrations by 0.04-0.30 ppbv in 2019. In
agricultural regions, the enhancement of O3 concentrations due to SNOy-Fer reaches 0.1-3.3 ppbv (0.2%
- 7.0%) (Fig. 6). Figure 6 also highlights important differences in the spatial effect of NOx on O3,
consistent with the regional effects on SNOx-Fer (Table 2), that the NMIP2 estimate of SNO-Fer shows
stronger contributions to the O3 concentrations than the linear EF approach in agricultural regions. The
non-linear EF method leads to the lowest O3 enhancement, although both non-linear EF and TBMs

estimates increasing soil NOx emissions with soil N availability.
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Figure 7. Changes in summertime averaged surface MDAS8 O3 concentrations (positive Y axis) and
global surface CH4 concentrations (negative Y axis) induced by SNOx-Fer uncertainties. The regional
MDAS Oj; concentrations are averaged over Eastern U.S. (35-45N, 75-90W), Western Europe (35-
60N, 10W-20E), Eastern Asia (20-50N, 100-125E) and Southern Asia (10-30N, 70-85E).

4.4 The impacts of SNOy-Fer uncertainties on global CH4 estimates

Figure 7 shows that N fertilizer-induced soil NOy induced the reduction of global averaged CHa
concentrations ranging from 6.7 ppbv (0.4%) to 16.6 ppbv (0.9%) in 2019 by increasing atmospheric
OH concentrations (Fig. S5), spatially aligned with the distributions of SNOy-Fer among different
estimating approaches (Fig. 3). Because CH4 has a significantly longer atmospheric lifetime than either
OH or NOx, the spatial differences in the impacts of SNOx-Fer on CH4 concentrations are insignificant
(Fig. S4). As a result, we only focus on the globally averaged changes in CH4 concentrations. This
magnitude of this estimate is consistent with recent estimates of around 17.4 ppbv by Gong et al. (2024),
which relies on the same NMIP2 dataset and a simpler CHs box model to calculate the impacts of NOx
emissions on the atmospheric lifetime of CHa. This result highlights an important but indirect role of
SNOx-Fer on atmospheric CHy4 concentrations, which is an often-overlooked aspect for the global CHy
budget. However, the uncertainty range in our estimates clearly suggests the need to further improve
our understanding in soil N biogeochemical processes to better predict global OH reactivity as well as

close global CH4 budget.
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5. Discussions

In this study, we integrated knowledge from meta-analyses (Hergoualc'h et al., 2019; Wang et al., 2024),
the emission inventory, parameterizations in CTMs and the TBM ensembles to better quantify the
uncertainties in N fertilizer-induced soil NOx emissions and the associated impacts on global O3 and
CH4 concentrations. Our results showed a large variation of the global soil NOy emissions associated
with N fertilizer, ranging from 0.84 Tg N yr™' to 2.2 Tg N yr'' in 2019. This range of responses leads to
an enhancement in summertime surface MDA O3 concentrations of 0.1 ppbv to 3.3 ppbv (0.2%-7.0%)
in agricultural hotspot regions. The O3 enhancement is highest in eastern U.S., while it is not only
determined by the SNOy-Fer emissions, but also the diverging sensitivities of O3 to NOx depending on
different chemical regime in GEOS-Chem (Fig. S6). The varied SNOx-Fer estimates also lead to a
reduction in global CH4 concentrations of 6.7 ppbv (0.4%) to 16.6 ppbv (0.9%). These changes highlight
a significant role of agricultural N use and soil N biogeochemical processes in affecting regional O3
concentrations as well as controlling global greenhouse gases. In particular, with the worldwide
reduction in fossil-fuel NOy emissions associated with clean-air actions (Jiang et al., 2022), control of
agricultural soil NOx emissions becomes increasingly important to improve air quality and alleviate the

associated public health risks.

However, challenges remain in the accurate assessment of N fertilizer-induced soil NOx emissions. On
the one hand, the overall uncertainties of SNOx-Fer may still be underestimated. The EF-approach with
fixed EF fails to adequately reflect the complexity in soil biogeochemical processes, which is reflected
by the large ranges of EFs from 0.06% to 2.18% in a recent meta-analysis (Hergoualc'h et al., 2019).
While the non-linear EF method represents an advance over the linear EF approach, as the effects of
soil N saturation levels on soil N gas emissions are considered and therefore the approach yields
relatively good performance in predicting soil N.O or NH; emissions compared to observations
(Shcherbak et al., 2014; Jiang et al., 2017), the limited availability of observations to constrain these
responses and their limited spatiotemporal representativeness reduce the reliability of this approach.
Most of the experimental data in Wang et al. (2024) are collected over China in the past ten years and
thus may not be representative of other agricultural regions. Furthermore, 22 out of 55 data points are
from vegetable cropping systems and orchard fields, where frequent irrigation may enhance soil
moisture and thus inhibit the production of NOy via nitrification. Last but not least, other factors, such
as soil texture, pH, soil organic carbon and fertilizer types, may also affect the response of soil NOy
emissions to the loading of N fertilizer application, which are omitted by either the linear EF or non-
linear EF approach. As a result, more representative crop experiments with a gradient series of N

addition are necessary to better constrain the soil NOx response to N fertilizer application.

For the modelling of SNOy-Fer, on the one hand, recent developments of the parameterization of
BDSNP in CTMs focused more on the soil NOx responses to changing temperature or soil moisture (e.g.

Wang et al., 2021; Huber et al., 2023), while the accuracy of the soil N availability has been less
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investigated. Even with the scaled N fertilizer loadings to interannually vary the N availability, BDSNP
still showed weaker increasing trend of SNOx-Fer in response to the N fertilizer enhancement relative
to the empirical EF methods and the TBM simulations of NMIP2 in the past decades (Fig. 1).
Nevertheless, it should be noted that the BDSNP scheme is also sensitive to the spatial resolution, where
the coarse resolution may miss small-scale hotspots and thus underestimate the global SNOy-Fer, as the
BDSNP _fine experiment shows in Fig. 1. On the other hand, terrestrial N availability is a key concept
in the development of TBMs, as the process-based TBMs need detailed description of the N cycle to
understand nutrient limitation levels and associated C-N coupling. Nevertheless, the soil NOy emissions
have been overlooked by the ecological modelling community because the low emissions may not be
important for the terrestrial N cycle, resulting in a limited number of TBMs that include soil NOy
emissions as well as large inter-model variations (Fig. S2). To further reduce the uncertainties in soil
NOx emission estimates, the advantages of TBMs on representing soil N availability can be introduced
into CTMs to better examine the effects of agricultural activities on atmospheric chemistry, but at the
same time, the terrestrial N cycle needs to be further developed in TBMs to reduce inter-model

variations and to better predict soil emissions of reactive N gases (not only NOx but also N,O and NHs).

The seasonality of SNOx-Fer and the associated impacts on surface O3 concentrations are also important
but poorly constrained. The most difficult challenge is to precisely estimate the monthly (or even daily)
N fertilizer loadings in the global scale. Because the N fertilizer data underlying the gridded products
is derived from the annual statistics by the Food and Agricultural Organization (FAO)
(https://www.fao.org/faostat/en/#data), the HaNi dataset applied this study, as well as the equivalently

up-to-date fertilizer dataset (Adalibieke et al., 2023), only provides gridded, annual fertilizer application
rates. In the EF approaches, the growing season is determined only by temperature and greenness in
this study, which could result in a mismatch with the real crop or pasture calendar, especially ignoring
the multiple-harvest crops per year. A refined calendar could further improve the prediction of SNO-
Fer seasonality. Furthermore, the NO4-VOCs-O; chemical sensitivity regimes could be determined by
not only soil NOy emissions, but also other anthropogenic and biogenic emissions of NOyx and VOCs,
as well as the climate seasonal variations. Therefore, the seasonal cycles of the enhancement of O;
concentrations may not strictly follow the variations in SNOx-Fer, as our Linear 75 sensitivity

experiment implies in Western Europe and Eastern Asia (Figs. 5b and 5c¢).

The impacts of the changes in short-lived air pollutants on global CH4 budget have attracted increasing
attention in recent years (Peng et al., 2022; Zhao et al., 2025), where NOy is one of the most important
drivers. However, it should be noted that the sensitivity of CHj4 lifetime to NOx emissions varies
substantially among atmospheric chemistry models from -25% to -46% in response to the total NOx
changes from pre-industrial to present-day period (Thornhill et al., 2021). Because few studies
investigated how NOy from agricultural sources affects CHa, it is difficult to assess if the overall impacts

of SNOx-Fer on CH4 presented in this study based on the GEOS-Chem model are underestimated or
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overestimated, even though certain uncertainties are expected. Nevertheless, our results indicate that
SNOx-Fer could be one uncertain but important source in calculating future changes of the global CH4
budget, the importance of which could be increasing with future continuing reduction in fossil-fuel NOx

emissions (Rao et al., 2017)

Beyond the uncertainties remaining in different SNOx-Fer estimating approaches, an important but also
difficult question is how to better evaluate the performances of each methods, especially in the regional
and global scales. The first-hand meta-data collected from the field experiments is actually not an
independent source, as it has been used to establish both of the linear and nonlinear EF methods. More
importantly, most of the field experiments are manipulation experiments with artificial fertilizer
gradients, which may not fully represent the real-world spatiotemporally varied SNOx-Fer. Furthermore,
we use O3 data from the national or continental air quality observational networks to evaluate simulated
O3 concentrations as a potential consistency check of the SNO«-Fer (Fig. S7). However, the
uncertainties in SNOy-Fer are expected to be far less important relative to the uncertainties in the
nonlinearity of atmospheric chemistry, emissions of BVOC:s or the deposition processes, which together
determined the biases between observational and simulated O; concentrations. As a result, it is
inappropriate to determine the best SNOy-Fer estimate as the one with the best statistic metrics in O3
simulation. Moreover, most of the sites that monitoring air pollutants are located in the urban regions,
where the industrial impacts are far more important than the agricultural sources. A real-time O3
observational network in the cropland or pasture would be crucial to advance the understandings in
SNOx-Fer and the associated impacts on air quality. Last but not least, the top-down retrievals of NOx
emissions based on satellite NO, products could also have the potential to better constrain SNOy-Fer,
while gaps remained in how to precisely isolate the soil NOx emissions (Bertram et al., 2005; Lin et al.,
2024) and even the fertilizer contributions from the total NOyx sources. Synergizing spatiotemporally
detailed fertilizer management dataset with the top-down NOx retrievals with ultra-high resolutions,
where the atmospheric NOy can be assumed to be dominantly affected by the soil sources in agricultural
regions, could be one possible solution. However, more work is needed to integrate such a big data in

the future.

To summarize, with a comprehensive investigation of different approaches to describe SNOy-Fer, our
results revealed the uncertainties in quantifying SNOx-Fer and associated important implications in
simulating regional air quality and the global greenhouse gas CH4. However, the limited number of
field experiments impedes accurate assessments of the soil NOy responses to N fertilizer application as
well as improving its representation in both CTMs and TBMs, resulting in large uncertainties in
estimates of N fertilizer-induced soil NOx emissions. We thus highlight the essential necessity to
integrate knowledge between agricultural data, atmospheric chemistry modelling and soil
biogeochemistry to better represent soil NOy emissions in models and improve our understanding of the

associated effects on air quality and the global CH4 budget.
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