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Abstract 16 

Natural and agricultural soils are important sources of nitrogen oxides (NOx), accounting for about 10% 17 

- 20% of the global NOx emissions. The increased application of nitrogen (N) fertilizer in agriculture 18 

has strongly enhanced the N availability of soils in the last several decades, leading to higher soil NOx 19 

emissions. However, the magnitude of the N fertilizer-induced soil NOx emissions remains poorly 20 

constrained due to limited field observations, resulting in divergent estimates. Here we integrate the 21 

results from meta-analyses of field manipulation experiments, emission inventories, atmospheric 22 

chemistry modelling and terrestrial biosphere modelling to investigate these uncertainties and the 23 

associated impacts on ground-level ozone and methane. The estimated present-day global soil NOx 24 

emissions induced by N fertilizer application varies substantially (0.84–2.2 Tg N yr-1) among different 25 

approaches with different spatial patterns. Simulations with the 3-D global chemical transport model 26 

GEOS-Chem demonstrate that N fertilization enhances global surface ozone concentrations during 27 

summertime in agricultural hotspots, such as North America, western Europe and eastern and southern 28 

Asia by 0.3 1 to 3.3 ppbv (0.2% - 7.0%). Our results show that such spreads in soil NOx emissions also 29 

affect atmospheric methane concentrations, reducing the global mean by 7.16.7 (0.4%) ppbv to 16.6 30 

(0.9%) ppbv as indirect consequence of enhanced N fertilizer application. These results highlight the 31 

urgent need to improve the predictive understanding of soil NOx emission responses to fertilizer N 32 

inputs and its representation in atmospheric chemistry modelling.  33 

 34 
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1. Introduction 36 

Nitrogen oxides (NOx=NO + NO2), as one of the most important reactive atmospheric components, 37 

strongly affect the atmospheric oxidation capacity and further influence air quality (Gong et al., 2020; 38 

Zhai et al., 2021; Goldberg et al., 2022; Zhao et al., 2023), radiative forcing (Erisman et al., 2011; Pinder 39 

et al., 2012; Gong et al., 2024), as well as carbon (C) storage in terrestrial and marine ecosystems 40 

(Fowler et al., 2013; Fleischer et al., 2019; Rubin et al., 2023). The major source of present-day 41 

atmospheric NOx is fossil fuel combustion (Martin et al., 2003; Hoesly et al., 2018), but several non-42 

fossil-fuel sources, including emissions from soils, lightning and wildfire (Zhang et al., 2003), 43 

contribute to around 30% of the global total NOx emissions (Delmas et al., 1997; Weng et al., 2020). 44 

However, these non-fossil-fuel sources have been widely regarded as ‘natural’ sources, where the 45 

perturbation by anthropogenic activities as well as the associated potentially significant effects on the 46 

N cycle are often overlooked. Meanwhile, strict clean-air actions have been applied in many countries 47 

in the past decades to sharply reduce the fossil-fuel sources of NOx (Jiang et al., 2022). As a result, non-48 

fossil sources of NOx will be increasingly important for future clean air policies.  49 

One of the most important non-fossil-fuel anthropogenic sources of NOx is through agricultural 50 

activities, which have been estimated to enhance soil NOx emissions by around 5%- 30% (Wang et al., 51 

2022; Gong et al., 2024). To assess the soil NOx emissions induced by N fertilizer application (hereafter, 52 

SNOx-Fer), the most straightforward and widely-used method is applying the emission factor (EF), 53 

which indicates the proportion of N from fertilizer application emitted as NOx. The Intergovernmental 54 

Panel on Climate Change (IPCC) methodology recommended a constant EF value 1.1% with an 55 

uncertainty range of 0.06% to 2.18% (Hergoualc'h et al., 2019). Other studies recommend slightly 56 

smaller uncertainty ranges (0.47% to 1.61%) based on different meta-analysis datasets (Stehfest and 57 

Bouwman, 2006; Liu et al., 2017; Skiba et al., 2021; Wang et al., 2022). This large uncertainty range 58 

results from the dependency of the response of soil NOx emissions on intricate soil biogeochemical 59 

processes and varies with crop types, soil texture, fertilizer types and application rate (Wang et al., 60 

2022). To date, limited field experiments are available to constrain this uncertainty range.  61 

Some studies have suggested to use non-linear EF to take account of the observations that the EFs of 62 

soil reactive nitrogen gases tend to increase with increasing fertilizer application (Shcherbak et al., 2014; 63 

Jiang et al., 2017). Such approach assumes that plants and soil microbes should have priority to access 64 

soil available N for their metabolic activities, while the excessive inorganic N can be used by nitrifiers 65 

and denitrifiers and loses as the gas form. Such a non-linear EF approach is more ecologically 66 

reasonable but there remain large uncertainties in assessing soil NOx due to the limited available field 67 

data. For example, Wang et al. (2024) examined the non-linear EF of soil NOx based on a global meta-68 

analysis and found a much lower EF (around 0-0.7%) than the IPCC recommended linear EF (1.1%) 69 

within the range of normal agricultural crop N fertilizer loading (around 0-600 kg N ha-1 yr-1).   70 
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In many of the atmospheric chemical transport model (CTMs), SNOx-Fer is represented by the 71 

agriculture sector of NOx emission from an anthropogenic emission inventory (e.g. Emissions Database 72 

for Global Atmospheric Research (EDGAR) or Community Emissions Data System (CEDS)), which 73 

in general apply the method of linear EF to estimate the agricultural NOx emissions (Hoesly et al., 2018; 74 

Janssens-Maenhout et al., 2019; Nicholas Hutchings et al., 2023) with the caveats described above. 75 

Furthermore, some advanced CTMs, e.g. the GEOS-Chem model, parametrizes soil NOx emissions as 76 

a function of N availability as well as soil temperature and soil moisture (Steinkamp and Lawrence, 77 

2011; Hudman et al., 2012). The currently widely-used soil NOx scheme named by the Berkeley-78 

Dalhousie Soil NOx Parameterization (BDSNP) could dynamically simulate the spatiotemporal 79 

variations of soil NOx emissions, however, the responses of soil NOx to N fertilizer application are not 80 

fully examined (See the detailed parameterization in Sect. 2).), however, fixes the SNOx-Fer in the year 81 

of 1998 (See the detailed parameterization in Sect. 2). As a result, such parameterization in CTMs do 82 

not capture the effect of increasing agricultural N fertilizer application on soil NOx emissions as well 83 

as the associated impacts on atmospheric chemistry. 84 

Recently, another approach to modelling SNOx-Fer has emerged by the development of global, process-85 

based terrestrial biosphere models (TBMs) with fully-coupled C and N cycles (Zaehle and Friend, 2010; 86 

Tian et al., 2019). Driven by data of N inputs (N synthesis fertilizer, N manure application and N 87 

deposition), CO2 concentrations and climate, these TBMs could simulate the coupled-cycles of C and 88 

N in the terrestrial biosphere, mimic the competition on the available N between plants and microbes 89 

and calculate the rates of nitrification and denitrification (Zaehle and Dalmonech, 2011), which are the 90 

two microbial processes that determine the rates of soil NOx emissions. Even though TBMs provides a 91 

more ecologically-mechanistic description of the terrestrial N cycles, large uncertainties remained 92 

among different TBMs due to the varying parameterization and modelling schemes on biome N use 93 

strategies, mineralization of organic N, nitrification and denitrification processes (Kou-Giesbrecht et 94 

al., 2023), which lead to varied responses of soil NOx to the increased N fertilizer inputs (Gong et al., 95 

2024).  96 

In this study, we attempt to comprehensively quantify the uncertainties in current SNOx-Fer estimates 97 

by integrating results from meta-analyses, emission inventories, as well as CTMs and TBMs. We use 98 

this understanding to assess the associated effects of SNOx-Fer uncertainties on global O3 and CH4 99 

concentrations. Section 2 will introduce the N synthetic fertilizer and manure input data and each 100 

approach to estimate SNOx-Fer. Section 3 will introduce the CTM model used in this study and the 101 

configuration of sensitive experiments. Section 4 will firstly show the variations of SNOx-Fer among 102 

different approaches as well as the seasonal dynamics, and then analyze the associated uncertainties in 103 

global O3 and CH4 simulations. Finally, the conclusion and discussions of this study will be given in 104 

section 5. 105 
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 106 

2. Data and Methods 107 

2.1. Linear and Non-linear EFs and the global fertilizer N dataset 108 

We firstly implement the most traditional method with a constant EF value to estimate the effects of N 109 

fertilizer application on soil NOx emissions, where the value of 1.1% (1.1% of N in the fertilizer will 110 

be emitted as NOx; named as EFlinear hereafter) based on the most up-to-date IPCC methodology is 111 

adopted (Hergoualc'h et al., 2019). Furthermore, based on the latest meta-analysis dataset developed by 112 

Wang et al. (2024), a non-linear EF method (EFnon-linear) to describe the variations of soil NOx emissions 113 

with different N fertilizer loadings is also applied: 114 

𝐸𝐹௡௢௡ି௟௜௡௘௔ = (0.22 + 0.008 × 𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟ே)                                                                                          (1) 115 

where the EFnon-linear (%) is the non-linear EF and FertilizerN is the loading of fertilizer N application 116 

(kg N ha-1). The detailed derivation of this formula is presented by in Wang et al. (2024), which follows 117 

a comparable method as presented by Shcherbak et al. (2014).  118 

We used the dataset of History of anthropogenic Nitrogen inputs (HaNi) (Tian et al., 2022) for the 119 

global rate of synthetic fertilizer and manure application, in order to estimate SNOx-Fer with both of 120 

the linear and non-linear EF methods. The HaNi dataset includes grid-level annual loadings of (1) NH4
+-121 

N synthetic fertilizer applied to cropland, (2) NO3
--N synthetic fertilizer applied to cropland, (3) NH4

+-122 

N synthetic fertilizer applied to pasture, (4) NO3
--N synthetic fertilizer applied to pasture, (5) manure 123 

NH4
+-N application on cropland, (6) manure NO3

--N application on pasture, (7) manure NH4
+-N 124 

deposition on pasture, (8) manure NO3
--N deposition on rangeland. We use a global map of land use 125 

class distributions (Hurtt et al., 2020) (Fig. S1) to convert the unit of N loading in HaNi from g N grid-126 
1 to kg N (ha pasture)-1, kg N (ha rangeland)-1 or kg N (ha cropland-1). The annual N inputs from HaNi 127 

dataset, which are summed by all N forms of synthetic fertilizer and manure, The annual N synthetic 128 

fertilizer and manure from HaNi dataset are evenly applied in the months of growing season, while the 129 

rates of N inputs are set as zero during the non-growing season. We define growing season as monthly-130 

mean 2-metre temperature larger than 5 degree Celsius (based on the MERRA2 reanalyzed dataset, see 131 

below Sect. 3) and the grid-level monthly-mean leaf area index (LAI) larger than 0.5 (based on MODIS 132 

remote sensing dataset postprocessed by Yuan et al. (2011) and updated for the use of GEOS-Chem, 133 

http://geoschemdata.wustl.edu/ExtData/HEMCO/Yuan_XLAI/v2021-06/). Finally, the rates of 134 

synthetic fertilizer and manure N inputs with the unit of kg N (ha pasture/rangeland/cropland)-1 month-135 
1 are utilized to estimate global SNOx-Fer with the both of the linear and non-linear EF approaches (Fig. 136 

S2). 137 

2.2. The emissions inventory CEDS 138 
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We use the CEDS (Hoesly et al., 2018) for assessing  the fertilizer-induced soil NOx emissions in the 139 

emission inventories. CEDS is one of the most state-of-art emission inventories that comprehensively 140 

assess the sources of dominant air pollutants from pre-industrial period to present days, which has been 141 

used as the standard emission inventory to drive CMIP6 models. The agricultural NOx emissions in 142 

CEDS is from the EDGAR 4.3.1 ( https://edgar.jrc.ec.europa.eu/ ), where the old IPCC methodology 143 

(Eggleston et al., 2006) is used with a constant EF value of 0.7% (0.7% of N in the fertilizer will be 144 

emitted as NOx) (Janssens-Maenhout et al., 2019).  145 

2.3. The BDSNP scheme 146 

The BDSNP scheme in CTMs is firstly developed by Yienger and Levy (1995), and then updated by 147 

Hudman et al. (2012). The emission of soil NOx (Snox) is described as: 148 

𝑆௡௢௫ = ൫𝐴௪,௕௜௢௠௘ + 𝑁௔௩௔௜௟ × 𝐸ത൯  × 𝑓(𝑇) × 𝑔(𝜃) × 𝑃(𝑙ௗ௥௬)                                                              (2) 149 

Where f(T), g(𝜃) and P(ldry) indicate the effects of temperature, soil moisture and the rain pulsing. 150 

Aw,biome is the wet biome-dependent emission (the baseline emission) from Steinkamp and Lawrence 151 

(2011). Navail is the soil available N mass in the top 10 cm (ng N m-2), which is calculated by:  152 

𝑁௔௩௔௜௟(𝑡) = 𝑁௔௩௔௜௟(0)𝑒ି
೟

ഓ + 𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟ே × τ × (1 − 𝑒ି
೟

ഓ)                                                                                    (3) 153 

Where the initial soil available N mass 𝑁௔௩௔௜௟(0) is prescribed. FertilizerN is the rate of fertilizer N 154 

application, which is set as zero outside the growing season. 𝜏 indicates the decay rate and is chosen as 155 

4 months based on the measurement within the top 10 cm soil (Matson et al., 1998; Cheng et al., 2004; 156 

Russell et al., 2011). However, it should be noted that magnitude of global SNOx-Fer (i.e. the 𝑁௔௩௔௜௟ × 𝐸ത) 157 

is scaled by the factor 𝐸ത in Eq. (2) to meet 1.8 Tg N yr-1 before the canopy reduction, which is the value 158 

obtained in a previous meta-analysis study based on the fertilizer N input dataset in the year of 1998 159 

2000s (Stehfest and Bouwman, 2006). As a result, the default BDNSPBDSNP scheme in GEOS-Chem 160 

actually fails to capture the year-to-year variations of soil NOx emissions with the changing soil N 161 

availability. However, as the BDNSPBDSNP scheme is still widely used by the community of 162 

atmospheric chemistry modelling (e.g. Lu et al., 2021; Wang et al., 2022; Huber et al., 2023), here we 163 

add another sensitivity experiment by scaling the 𝑁௔௩௔௜௟ in Eq.3 following the interannual variations of 164 

the HaNi fertilizer loadings:  165 

𝑁 ௔௩௔௜௟(𝑖, 𝑗, 𝑦𝑟) = 𝑁௔௩௔௜௟(𝑖, 𝑗, 2000) ∗
ி௘௥௧௜௟௜௭௘௥ಹೌಿ೔(௜,௝,௬௥)

ி௘௥௧௜௟௜௭௘௥ಹೌಿ೔(௜,௝,ଶ଴଴଴)
                                                                   (4) 166 

Where 𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟ு௔ே௜(𝑖, 𝑗, 𝑦𝑟) represents the total N fertilizer loadings in HaNi dataset at the grid of i 167 

latitude and j longitude in the yr year.With this modification, we could further examine how SNOx-Fer 168 

responses to the N fertilizer enhancement in the GEOS-Chem BDSNP scheme.we include it as one 169 

optional method to better represent the uncertainties in the soil NOx emissions induced by N fertilizer 170 



6 
 

application. The soil NOx emissions are off-line simulated over 1980-2019 within the framework of the 171 

Harmonized Emissions Component (HEMCO) in GEOS-Chem, which can be accessed in 172 

http://geoschemdata.wustl.edu/ExtData/HEMCO/OFFLINE_SOILNOX/ . 173 

2.4. The TBM ensemble 174 

Simulated soil NOx emissions were provided by three TBMs (CLASSIC, OCN and ORCHIDEE) with 175 

fully-coupled C and N cycles included in the global nitrogen/N2O model inter-comparison project phase 176 

2 (NMIP2) (Tian et al., 2024). For each TBM model, anthropogenic fertilizer application are estimated 177 

by the HaNi dataset (Tian et al., 2022), where the fertilizer types (NH4
+ and NO3

-; synthetic fertilizer 178 

and manure) are explicitly distinguished in the model.. The SNOx-Fer can be isolated by summing up 179 

the differences between sensitivity experiments SH1 and SH2 (the synthetic fertilizer contribution) and 180 

the differences between sensitivity experiments SH1 and SH3 (the manure contribution) (Table S1). It 181 

should be noted that the CLASSIC model did not isolate synthetic fertilizer and manure and thus only 182 

conducted one sensitivity experiment. The model ensemble mean is utilized to smooth the large 183 

discrepancies among different TBMs (Fig. S2S3) due to the varied terrestrial N-cycle representations, 184 

in particular, the varied nitrification and denitrification rates. 185 

3. The GEOS-Chem model and sensitivity experiment configuration  186 

The GEOS-Chem model is a frequently used state-of-the-art CTMs with fully coupled NOx–Ox–187 

hydrocarbon–aerosol chemistry mechanism (Bey et al., 2001; Park et al., 2004). Here we applied the 188 

version 12.0.0 to run the global simulation with a horizontal resolution of 2° latitude × 2.5° longitude. 189 

The simulations are driven by the Version two of modern era retrospective-analysis for research and 190 

application (MERRA2) reanalyzed meteorological dataset. The photolysis rates were computed by Fast-191 

JX scheme (Park et al., 2004). The atmospheric gas-phase chemistry is  independently developed 192 

referring to the kinetics and products based on JPL recommendations (Bates et al., 2024) and solved by 193 

the Kinetic Pre-Processor (KPP) (Henze et al., 2007). Aerosol thermodynamic equilibrium is calculated 194 

by the ISORROPIA II package (Fountoukis and Nenes, 2007). In particular, the default soil NOx 195 

emissions are simulated by the BDSNP scheme as introduced above.  196 

In order to examine the uncertainties in the SNOx-Fer and the associated effects on global surface O3 197 

concentrations, we firstly run a reference simulation in 2019 (named Zero) with zero SNOx-Fer to 198 

exclude the influence of fertilizer application on soil NOx. Then five eleven different experiments are 199 

performed by representing SNOx-Fer with CEDS agricultural NOx emissions (named CEDS), the 200 

default GEOS-Chem BDSNP (Eq. 2), scheme (Eqs. 2-3, named BDSNP_coarse), the BDSNP scaled 201 

by the interannually-varied HaNi N fertilizer loadings (Eq. 4, named BDSNP_coarse_scaled), the 202 

default GEOS-Chem BDSNP but with fine resolution of  0.5°× 0.625° (named BDSNP_fine), the 203 

TBM-simulated  SNOx-Fer of each model as well as the ensemble means (named NMIP2-OCN, 204 

NMIP2-CLASSIC, NMIP2-ORCHIDEE and NMIP2, respectively), the linear EF (EF=1.1%) method 205 
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(named Linear) and the non-linear EF (Eq. 1) method (named Nonlinear), respectively. In particular, 206 

the BDSNP_fine is simulated offline, i.e. the atmospheric chemical and transport processes are not 207 

accounted due to the inconsistence of resolutions with the GEOS-Chem runs. All of the sensitivity 208 

experiments are driven by the meteorological field in the year of 2019 with 6-month spin up, where the 209 

anthropogenic emissions of all other tracers also keep at the level of 2019 following the CEDS inventory. 210 

Table 1 summarizes the six eleven sensitivity experiments in GEOS-Chem. 211 

In order to further examine the seasonality of SNOx-Fer and the associated impacts on ground-level O3 212 

in agricultural hotspot regions, we investigate how different SNOx-Fer approaches distribute the annual 213 

fertilizer seasonally (Table 1). The HaNi dataset, as well as the equivalently up-to-date fertilizer dataset 214 

(Adalibieke et al., 2023), only provide annual fertilizer application rates given the lack of specific 215 

information to distribute the N fertilization seasonally. The CEDS, BDSNP and NMIP2 models 216 

approaches have their own specific monthly distribution, while the monthly distribution of fertilizer 217 

application in the linear and nonlinear EF are arbitrarily assumed to be even during growing season. 218 

Here, we added two additional GEOS-Chem sensitivity experiments for the linear and non-linear 219 

approach, named Linear_7525 and Nonlinear_7525, which apply the seasonal pattern of the BDSNP 220 

scheme (Hudman et al., 2012), assuming that 75% of the annual fertilizer is applied in the first month 221 

of growing season and the rest 25% evenly applied in the rest growing months. 222 

Table 1. Summary of the sensitivity experiments in GEOS-Chem. 223 

Experiment name Emissions of SNOx-Fer 

Zero 0 

CEDS CEDS agricultural NOx sector 

BDSNP BDSNP 

NMIP2 TBM ensemble mean 

Linear Linear EF 

Nonlinear Non-linear EF 

 224 

Table 1. Summary of the sensitivity experiments in GEOS-Chem and the methods used by different 225 
SNOx-Fer estimating approaches to distribute the annual N fertilizer into monthly. 226 

 227 

SNOx-Fer 
estimating 
approch 

Experimental name in 
this study 

Emissions of SNOx-Fer 
Fertilizer monthly 

distribution 
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None Zero Zero None 

Emission 
Factor 
(EF) 

Linear Linear EF Evenly distributed 
during the growing 

season Nonlinear Nonlinear EF 

Linear_7525 Linear EF 75% of the annual 
fertilizer is applied in 

the first month of 
growing season, while 
the rest 25% is evenly 
distributed in the rest 

growing months 

Nonlinear_7525 Nonlinear EF 

Emission 
inventory 

CEDS CEDS agricultural NOx sector Not clear 

BDSNP 

BDSNP_coarse 
GEOS-Chem default BDSNP with 

resolution of 2°×2.5° 75% of the annual 
fertilizer is applied in 

the first month of 
growing season, while 
the rest 25% is evenly 
distributed in the rest 

growing months 

BDSNP_coarse_scaled 
BDSNP scaled with the interannual 

variations of HaNi fertilizer 
loadings with resolution 2°×2.5° 

BDSNP_fine (offline) 
GEOS-Chem default BDSNP with 

resolution of 0.5°× 0.625° 

Terrestrial 
biosphere 
models 
(TBMs) 

NMIP2-OCN OCN simulated SNOx-Fer 

Distributed the annual 
N fertilizer loadings 

into four equal doses in 
the first half of the 

growing season 

NMIP2-CLASSIC CLASSIC simulated SNOx-Fer 

Evenly distributed 
throughout the year in 
the tropics (between 

30S and 30N); Evenly 
distributed from spring 
equinox to fall equinox 

between 30N (30S) 
and 90N (90S) 

NMIP2-ORCHIDEE ORCHIDEE simulated SNOx-Fer Not clear 

NMIP2 TBMs ensemble mean  

 228 

Because the default GEOS-Chem simulations used above do not account for interactive CH4 chemistry, 229 

we further conducted six ten more sensitivity experiments with the special ‘CH4 run’ in GEOS-Chem 230 

(East et al., 2024; Fu et al., 2024) to assess the variations in the atmospheric CH4 concentrations induced 231 

by the uncertain SNOx-Fer. The special CH4 run takes CH4 as the only one atmospheric transport tracer 232 

with various prescribed CH4 sources (summarized in Table S2), while the CH4 sinks include the 233 
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tropospheric reactions with hydroxyl radical (OH) and chlorine, stratospheric loss and soil uptake. The 234 

global monthly mean OH concentrations archived from the six ten sensitivity experiments (Table 1, 235 

except for the BDSNP_fine) are applied in the CH4 simulation to assess the SNOx-Fer effect on CH4 236 

lifetime through perturbing atmospheric oxidation capacity. As a result, there will be six ten more 237 

associated sensitivity experiments with the CH4 run that corresponds to the default GEOS-Chem 238 

simulations in Table 1 (except for the BDSNP_fine experiment). Each CH4 simulation runs for 15 years 239 

by repeating the meteorological forcings in 2019 to reach a semi-equilibrium with the prescribed 240 

emissions and OH concentrations. The last year of the simulation is utilized to analyze the influences 241 

of soil NOx on CH4 induced by N fertilizer application.  The simulated global surface CH4 242 

concentrations driven by varied OH levels from different sensitivity experiments are shown in Fig. 243 

S3S5. 244 

4. Results 245 

4.1 Varied SNOx-Fer among different approaches 246 

Figure 1a shows the historical time series of global SNOx-Fer over 1950-2019 estimated by different 247 

approaches, which is mainly driven by the substantial increases in global N fertilizer application (Fig. 248 

1b). Almost all approaches except BDSNP showed enhancements in soil NOx emissions but with largely 249 

varied magnitudes from 0.6 to 2.12 Tg yr-1 over 1950-2019. The default BDNSPBDSNP scheme in 250 

GEOS-Chem, which scales soil NOx emissions with time-variant temperature and soil moisture, but 251 

assumes constant N availability (see Methods), estimates the relatively stable soil NOx emissions over 252 

1980-2019. The annually-varied BDSNP scheme scaled by the HaNi N input dataset shows increase in 253 

SNOx-Fer from 0.8 Tg N yr-1 in 1980 to 1.5 Tg N yr-1 in 2019, while tThe sharpest increase of the soil 254 

NOx emission is simulated by the TBM ensemble, mainly induced by the high estimates of the 255 

CLASSIC and ORCHIDEE models (Fig. S2S3). Soil NOx estimated by the non-linear EF approach 256 

shows substantially weaker response to fertilizer inputs relative to other estimating approaches.  257 
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  258 

Figure 1. Global estimates of N fertilizer-induced soil NOx emissions by different approaches. (a) The 259 

global annual-mean N fertilizer-induced soil NOx emissions over 1950-2019 estimated by emission 260 

inventory (CEDS), linear and non-linear EF, the widely-used CTM parameterization (BDSNP) and 261 

the TBM ensembles (NMIP2). (b) The global annual-mean N synthetic fertilizer and manure inputs 262 

over 1950-2019 assessed from the HaNi dataset.  263 

 264 

Figure 1. Global estimates of N fertilizer-induced soil NOx emissions by different approaches. The 265 

black line (right Y axis) indicates global annual-mean N synthetic fertilizer and manure inputs over 266 

1950-2019 assessed from the HaNi dataset. The rest lines (left Y axis) indicate the N fertilizer-267 

induced soil NOx emissions over 1950-2019 estimated by different approaches, including emission 268 

inventory (CEDS), linear and non-linear EF, the widely-used CTM parameterization with coarse 269 

resolution (2°×2.5°, BDSNP_corase), fine resolution (0.5°×0.625°,BDSNP_fine) and interannually 270 
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varied N availability (BNDSP_corase_scaled),  and the TBM ensembles (NMIP2). The light cyan 271 

shadows indicate the spread across three different TBMs in NMIP2.  272 

 273 

Figure 2 3 shows the global spatial patterns of SNOx-Fer among different approaches. Each approach 274 

shows consistent spatial patterns aligned with the distribution of N synthetic fertilizer and manure inputs 275 

(Fig. 2a), where eastern U.S., western Europe, eastern and southern Asia are the hotspots with high soil 276 

NOx emissions. Notably, even though the TBM ensemble (NMIP2) and the Linear EF approach estimate 277 

similar global total SNOx-Fer, the spatial distributions of both estimates vary strongly. The SNOx-Fer 278 

estimates by NMIP2 ensemble are higher in agricultural hotspots (Table 32), but lower in regions with 279 

less synthetic fertilizer application, e.g. in part of the Africa and South America (Figs. 2d 3d and 2e3e), 280 

relative to the Linear EF approach.  Because plants and microbes have high priority to assess additional 281 

N in N-limited regions, which leads less N loss as the gas forms. However, in N-saturated regions, the 282 

applied N fertilizer excessive for the living biomes, yielding a higher sensitivity of soil NOx emissions 283 

to N fertilizer application (Du and De Vries, 2025). Such N dynamics have been included in the C-N 284 

fully-coupled TBMs, but fail to be represented by the linear EF approach.’This result is likely due to 285 

the explicit representation of N dynamics in TBMs, which yields a higher sensitivity of soil NOx 286 

emissions to N fertilizer application in N saturated region, and therefore deviations from the linear EF 287 

approach. 288 

 289 

Figure 2. The global spatial patterns of N synthetic fertilizer and manure application in 2019 from the 290 
HaNi dataset. 291 
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 292 

 293 

 294 

Figure 3. The N-fertilization induced soil NOx emissions estimated by different approaches in 2019. 295 

(a) - (f) The soil NOx emissions induced by N fertilizer estimated by the CEDS agricultural sector, the 296 

default BDSNP scheme in GEOS-Chem with coarse resolution (2°×2.5°), the coarse-resolution 297 

BDSNP scheme in GEOS-Chem by interannually scaling the N availability using the HaNi dataset, 298 

the NMIP2 ensemble, the linear EF and non-linear EF, respectively. The global total budget of each 299 

estimate is given in the sub-titles. 300 
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 301 

Figure 2. The global spatial patterns of N synthetic fertilizer and manure application and the N-302 

fertilization induced soil NOx emissions estimated by different approaches in 2019. (a) The N 303 

synthetic fertilizer and manure application in 2019 from the HaNi dataset. (b) - (f) The soil NOx 304 

emissions induced by N fertilizer estimated by the CEDS agricultural sector, the BDNSP scheme in 305 

GEOS-Chem, the NMIP2 ensemble, the linear EF and non-linear EF, respectively.  306 

 307 

Table 32. The annual soil NOx emissions (Gg N yr-1) induced by N fertilizer in 2019 in the eastern 308 

U.S., western Europe, eastern Asia, southern Asia as well as the global estimates by different 309 

approaches. The ranges in NMIP2 indicate the highest and lowest values among three TBMs 310 

(CLASSIC, ORCHIDEE and OCN) 311 

 

Eastern U.S. 

(35-45N, 75-

90W) 

Western Europe 

(35-60N, 10W-

20E) 

Eastern Asia 

(20-50N, 100-

125E) 

Southern Asia 

(10-30N, 70-

85E) 

Globe 

CEDS 20.9 99.1 190.0 104.8 1600 

BDSNP_corase 15.8 112.176.3 229.2157.0 185.7134.2 13901150 
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BDSNP_corase_scaled 17.6 69.8 174.8 201.7 1500 

NMIP2 57.0  
[15.1, 100.9] 

206.3  
[67.4, 267.3] 

417.5  
[261.0, 598.1] 

382.4  
[78.4, 776.3] 

2210 
[1280, 
2740] 

Linear EF 54.3 181.0 376.4 214.7 2190 

Non-Linear EF 15.6 60.8 136.5 141.8 840 

 312 

4.2 The seasonal cycle of SNOx-Fer and the associated impact on O3 concentrations 313 

Figure 4 shows the seasonality of SNOx-Fer in four agricultural hotspot regions among different SNOx-314 

Fer estimating methods. In the temperate regions like Eastern U.S., Western Europe and Eastern Asia, 315 

the TBM ensembles NMIP2 shows very strong seasonal variations, which reaches highest during May 316 

to July in Eastern U.S., April to June in Western Europe and May to August in Eastern Asia, respectively. 317 

The seasonality of the linear and nonlinear EF methods is strongly dependent on the assumption of 318 

fertilizer applying time (Table 1), where the monthly SNOx-Fer emissions are at similar levels during 319 

the growing season for the Linear and Nonlinear experiments, but peak in a pronounced manner in the 320 

north-hemispheric spring time (around February to April) in the Linear_7525 and Nonlinear_7525 cases. 321 

Although the BDSNP applies the same assumption of fertilizer applying time as Linear_7525 and 322 

Nonlinear_7525, the SNOx-Fer in BDSNP peaks much later (September to October in Eastern U.S., 323 

June to August in Western Europe and May to June in Eastern Asia). This arises because the EF methods 324 

estimate SNOx-Fer instantaneously in response to the fertilizer application, but the BDSNP scheme 325 

cumulates N fertilizer with a 4-months time window (Eq. 3). It is also very important the BDSNP 326 

includes the regulation of soil temperature and moisture on SNOx-Fer, both of which also have strong 327 

seasonality, but the EF methods do not. Furthermore, in the tropical regions of Southern Asia, the 328 

NMIP2, Linear_7525 and Nonlinear_7525 experiments estimate the peak SNOx-Fer in the beginning 329 

of the year, while the SNOx-Fer of BDSNP reaches highest in May due to the N cumulation assumption 330 

(Fig. 4d). The rest methods, including the emissions inventory CEDS, the Linear and Nonlinear EF 331 

method, show very weak seasonality of SNOx-Fer in Southern Asia. 332 

The seasonality of ground-level monthly MDA8 O3 changes in response to the SNOx-Fer in general 333 

aligns with the monthly variations of SNOx-Fer among different estimating approaches (Fig. 5). The 334 

strongest enhancement of regional MDA8 O3 shows during the north-hemispheric summertime (June-335 

August) for most of the estimating approaches in three temperate regions, when the absolute O3 336 

concentrations also reaches highest. However, it should be noted that spring-peak SNOx-Fer in the 337 

Linear_7525 and the Nonlinear_7525 cases does not lead to high O3 enhancement in both Western 338 

Europe and Eastern Asia (Figs. 5b and 5c). The weak sensitivity of O3 to NOx during springtime is 339 

likely the result of the seasonal variations in other emissions (e.g. biogenic volatile organic compounds 340 
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(BVOCs)), which alter the chemical sensitivity regime. The responses of O3 to SNOx-Fer could also 341 

depend on regions (e.g. O3 enhancement also peaks during spring in Linear_7525 in Eastern U.S., Fig. 342 

5a), spatial simulating resolution or different modelling chemical mechanisms. The O3 enhancement in 343 

Southern Asia is generally similar during north-hemispheric spring and summer time for all of the 344 

SNOx-Fer estimating approaches (Fig. 5d), except for the BDSNP scheme, which stimulates 345 

significantly higher O3 enhancement during May to July relative to February to April.  346 

 347 

Figure 4. The monthly regional SNOx-Fer (Gg N yr-1) in the (a) Eastern U.S., (b) Western Europe, (c) 348 
Eastern Asia and (d) Southern Asia with different SNOx-Fer estimating approaches. The cyan-blue 349 

shades indicate the spreads among three different TBM models (CLASSIC, OCN and ORCHIDEE) in 350 
the NMIP2 ensemble.  351 

 352 
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 353 

Figure 5. The regionally-averaged monthly MDA8 O3 changes (ppbv) induced by SNOx-Fer in the (a) 354 
Eastern U.S., (b) Western Europe, (c) Eastern Asia and (d) Southern Asia with different SNOx-Fer 355 

estimating approaches. The cyan-blue shades indicate the spreads among three different TBM models 356 
(CLASSIC, OCN and ORCHIDEE) in the NMIP2 ensemble.  357 

 358 

4.2 3 Impacts of SNOx-Fer on surface O3 concentrations 359 

We next examine how the different SNOx-Fer estimates influence the surface O3 concentrations globally. 360 

Since soil NOx emissions typically peak during the summer period (Fig. 5), when O3 pollution tends to 361 

be most severe, we focus our analysis on the surface maximum daily 8-h averaged (MDA8) O3 362 

concentrations averaged over the northern hemisphere summer (June, July and August) based on the 363 

sensitivity experiments in Table 1. Figure 3 6 shows that the N fertilizer application enhanced the 364 

globally-averaged surface summertime O3 MDA8 concentrations by 0.0904-0.30 ppbv in 2019. In 365 

agricultural regions, the enhancement of O3 concentrations due to SNOx-Fer reaches 0.31-3.3 ppbv (0.2% 366 

- 7.0%) (Fig. 46). Figure 4 6 also highlights important differences in the spatial effect of NOx on O3, 367 

consistent with the regional effects on SNOx-Fer (Table 32), that the NMIP2 estimate of SNOx-Fer 368 

shows stronger contributions to the O3 concentrations than the linear EF approach in agricultural regions. 369 

The non-linear EF method leads to the lowest O3 enhancement, although both non-linear EF and TBMs 370 

estimates increasing soil NOx emissions with soil N availability.  371 
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 372 

Figure 6. Global simulated changes in surface MDA8 O3 concentrations induced by different 373 

estimating approaches of SNOx-Fer averaged over June, July and August in 2019. The differences are 374 

calculated between corresponding sensitivity experiments in Table 1 and the Zero experiment. The 375 

numbers in each sub-title are changes in the global averaged summertime MDA8 O3 concentrations 376 

induced by SNOx-Fer.  377 

 378 
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 379 

Figure 3. Global simulated changes in surface MDA8 O3 concentrations induced by different 380 

estimating approaches of SNOx-Fer averaged over June, July and August in 2019. The differences are 381 

calculated between corresponding sensitivity experiments in Table 1 and the Zero experiment. The 382 

numbers in each sub-title are changes in the global averaged summertime MDA8 O3 concentrations 383 

induced by SNOx-Fer.  384 

 385 

 386 

 387 
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 388 

Figure 47.  Changes in summertime averaged surface MDA8 O3 concentrations (positive Y axis) and 389 

global surface CH4 concentrations (negative Y axis) induced by SNOx-Fer uncertainties. The regional 390 

MDA8 O3 concentrations are averaged over Eastern U.S. (35-45N, 75-90W), Western Europe (35-391 

60N, 10W-20E), Eastern Asia (20-50N, 100-125E) and Southern Asia (10-30N, 70-85E).  392 

 393 

4.3 4 The impacts of SNOx-Fer uncertainties on global CH4 estimates 394 

Figure 4 7 shows that N fertilizer-induced soil NOx induced the reduction of global averaged CH4 395 

concentrations ranging from 7.16.7 ppbv (0.4%) to 16.6 ppbv (0.9%) in 2019 by increasing affecting 396 

atmospheric OH concentrations (Fig. S4S5).), spatially aligned with the distributions of SNOx-Fer 397 

among different estimating approaches (Fig. 3). Because CH4 has a significantly longer atmospheric 398 

lifetime than either OH or NOx, the spatial differences in the impacts of SNOx-Fer on CH4 399 

concentrations are insignificant (Fig. S4). As a result, we only focus on the globally averaged changes 400 

in CH4 concentrations.   This magnitude of this estimate is consistent with recent estimates of around 401 

17.4 ppbv by Gong et al. (2024), which relies on the same NMIP2 dataset and a simpler CH4 box model 402 

to calculate the impacts of NOx emissions on the atmospheric lifetime of CH4. This result highlights an 403 

important but indirect role of SNOx-Fer on atmospheric CH4 concentrations, which is an often-404 

overlooked aspect for the global CH4 budget. However, the uncertainty range in our estimates clearly 405 

suggests the need to further improve our understanding in soil N biogeochemical processes to better 406 

predict global OH reactivity as well as close global CH4 budget.  407 

 408 
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5. Discussions 409 

In this study, we integrated knowledge from meta-analyses (Hergoualc'h et al., 2019; Wang et al., 2024), 410 

the emission inventory, parameterizations in CTMs and the TBM ensembles to better quantify the 411 

uncertainties in N fertilizer-induced soil NOx emissions and the associated impacts on global O3 and 412 

CH4 concentrations. Our results showed a large variation of the global soil NOx emissions associated 413 

with N fertilizer, ranging from 0.84 Tg N yr-1 to 2.2 Tg N yr-1 in 2019. This range of responses leads to 414 

an enhancement in summertime surface MDA8 O3 concentrations of 0.3 1 ppbv to 3.3 ppbv (0.2%-415 

7.0%) in agricultural hotspot regions. The O3 enhancement is highest in eastern U.S., while it is not 416 

only determined by the SNOx-Fer emissions, but also the diverging sensitivities of O3 to NOx depending 417 

on different chemical regime in GEOS-Chem (Fig. S6). The varied SNOx-Fer estimates also lead to and 418 

a reduction in global CH4 concentrations of 7.16.7 ppbv (0.4%) to 16.6 ppbv (0.9%). These changes 419 

highlight a significant role of agricultural N use and soil N biogeochemical processes in affecting 420 

regional O3 concentrations as well as controlling global greenhouse gases. In particular, with the 421 

worldwide reduction in fossil-fuel NOx emissions associated with clean-air actions (Jiang et al., 2022), 422 

control of agricultural soil NOx emissions becomes increasingly important to improve air quality and 423 

alleviate the associated public health risks.  424 

However, challenges remain in the accurate assessment of N fertilizer-induced soil NOx emissions.  On 425 

the one hand, the overall uncertainties of SNOx-Fer may still be underestimated. The EF-approach with 426 

fixed EF fails to adequately reflect the complexity in soil biogeochemical processes, which is reflected 427 

by the large ranges of EFs from 0.06% to 2.18% in a recent meta-analysis (Hergoualc'h et al., 2019). 428 

While the non-linear EF method represents an advance over the linear EF approach, as the effects of 429 

soil N saturation levels on soil N gas emissions are considered and therefore the approach yields 430 

relatively good performance in predicting soil N2O or NH3 emissions compared to observations 431 

(Shcherbak et al., 2014; Jiang et al., 2017), the limited availability of observations to constrain these 432 

responses and their limited spatiotemporal representativeness reduce the reliability of this approach. 433 

Most of the experimental data in Wang et al. (2024) are collected over China in the past ten years and 434 

thus may not be representative of other agricultural regions. Furthermore, 22 out of 55 data points are 435 

from vegetable cropping systems and orchard fields, where frequent irrigation may enhance soil 436 

moisture and thus inhibit the production of NOx via nitrification. Last but not least, other factors, such 437 

as soil texture, pH, soil organic carbon and fertilizer types, may also affect the response of soil NOx 438 

emissions to the loading of N fertilizer application, which are omitted by either the linear EF or non-439 

linear EF approach. As a result, more representative crop experiments with a gradient series of N 440 

addition are necessary to better constrain the soil NOx response to N fertilizer application.  441 

For the modelling of SNOx-Fer, on the one hand, recent developments of the parameterization of 442 

BDSNP in CTMs focused more on the soil NOx responses to changing temperature or soil moisture (e.g. 443 

Wang et al., 2021; Huber et al., 2023), while the accuracy of the soil N availability has been less 444 
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investigated. Even with the scaled N fertilizer loadings to interannually vary the N availability, BDSNP 445 

still showed weaker increasing trend of SNOx-Fer in response to the N fertilizer enhancement relative 446 

to the empirical EF methods and the TBM simulations of NMIP2 in the past decades (Fig. 1). 447 

Nevertheless, it should be noted that the BDSNP scheme is also sensitive to the spatial resolution, where 448 

the coarse resolution may miss small-scale hotspots and thus underestimate the global SNOx-Fer, as the 449 

BDSNP_fine experiment shows in Fig. 1. On the other hand,On the other hand, recent developments of 450 

the parameterization of BDNSP in CTMs focused more on the soil NOx responses to changing 451 

temperature or soil moisture (e.g. Wang et al., 2021; Huber et al., 2023), while assuming time invariant 452 

soil N availability as shown in Eq. 2.  As demonstrated by the comparison of BDNSP with the 453 

predictions from both the empirical EF methods and the TBM simulations of NMIP2, this lack of 454 

consideration of N availability and soil N legacy will introduce errors when analyzing long-term trends 455 

in predictions by CTMs. Meanwhile, terrestrial N availability is a key concept in the development of 456 

TBMs, as the process-based TBMs need detailed description of the N cycle to understand nutrient 457 

limitation levels and associated C-N coupling. Nevertheless, the soil NOx emissions have been 458 

overlooked by the ecological modelling community because the low emissions may not be important 459 

for the terrestrial N cycle, resulting in a limited number of TBMs that include soil NOx emissions as 460 

well as large inter-model variations (Fig. S2). To further reduce the uncertainties in soil NOx emission 461 

estimates, the advantages of TBMs on representing soil N availability can be introduced into CTMs to 462 

better examine the effects of agricultural activities on atmospheric chemistry, but at the same time, the 463 

terrestrial N cycle needs to be further developed in TBMs to reduce inter-model variations and to better 464 

predict soil emissions of reactive N gases (not only NOx but also N2O and NH3). 465 

The seasonality of SNOx-Fer and the associated impacts on surface O3 concentrations are also important 466 

but poorly constrained. The most difficult challenge is to precisely estimate the monthly (or even daily) 467 

N fertilizer loadings in the global scale. Because the N fertilizer data underlying the gridded products 468 

is derived from the annual statistics by the Food and Agricultural Organization (FAO) 469 

(https://www.fao.org/faostat/en/#data), the HaNi dataset applied this study, as well as the equivalently 470 

up-to-date fertilizer dataset (Adalibieke et al., 2023), only provides gridded, annual fertilizer application 471 

rates. In the EF approaches, the growing season is determined only by temperature and greenness in 472 

this study, which could result in a mismatch with the real crop or pasture calendar, especially ignoring 473 

the multiple-harvest crops per year. A refined calendar could further improve the prediction of SNOx-474 

Fer seasonality. Furthermore, the NOx-VOCs-O3 chemical sensitivity regimes could be determined by 475 

not only soil NOx emissions, but also other anthropogenic and biogenic emissions of NOx and VOCs, 476 

as well as the climate seasonal variations. Therefore, the seasonal cycles of the enhancement of O3 477 

concentrations may not strictly follow the variations in SNOx-Fer, as our Linear_75 sensitivity 478 

experiment implies in Western Europe and Eastern Asia (Figs. 5b and 5c). 479 
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The impacts of the changes in short-lived air pollutants on global CH4 budget have attracted increasing 480 

attention in recent years (Peng et al., 2022; Zhao et al., 2025), where NOx is one of the most important 481 

drivers. However, it should be noted that the sensitivity of CH4 lifetime to NOx emissions varies 482 

substantially among atmospheric chemistry models from -25% to -46% in response to the total NOx 483 

changes from pre-industrial to present-day period (Thornhill et al., 2021). Because few studies 484 

investigated how NOx from agricultural sources affects CH4, it is difficult to assess if the overall impacts 485 

of SNOx-Fer on CH4 presented in this study based on the GEOS-Chem model are underestimated or 486 

overestimated, even though certain uncertainties are expected. Nevertheless, our results indicate that 487 

SNOx-Fer could be one uncertain but important source in calculating future changes of the global CH4 488 

budget, the importance of which could be increasing with future continuing reduction in fossil-fuel NOx 489 

emissions (Rao et al., 2017) 490 

Beyond the uncertainties remaining in different SNOx-Fer estimating approaches, an important but also 491 

difficult question is how to better evaluate the performances of each methods, especially in the regional 492 

and global scales. The first-hand meta-data collected from the field experiments is actually not an 493 

independent source, as it has been used to establish both of the linear and nonlinear EF methods. More 494 

importantly, most of the field experiments are manipulation experiments with artificial fertilizer 495 

gradients, which may not fully represent the real-world spatiotemporally varied SNOx-Fer. Furthermore, 496 

we use O3 data from the national or continental air quality observational networks to evaluate simulated 497 

O3 concentrations as a potential consistency check of the SNOx-Fer (Fig. S7). However, the 498 

uncertainties in SNOx-Fer are expected to be far less important relative to the uncertainties in the 499 

nonlinearity of atmospheric chemistry, emissions of BVOCs or the deposition processes, which together 500 

determined the biases between observational and simulated O3 concentrations. As a result, it is 501 

inappropriate to determine the best SNOx-Fer estimate as the one with the best statistic metrics in O3 502 

simulation. Moreover, most of the sites that monitoring air pollutants are located in the urban regions, 503 

where the industrial impacts are far more important than the agricultural sources. A real-time O3 504 

observational network in the cropland or pasture would be crucial to advance the understandings in 505 

SNOx-Fer and the associated impacts on air quality. Last but not least, the top-down retrievals of NOx 506 

emissions based on satellite NO2 products could also have the potential to better constrain SNOx-Fer, 507 

while gaps remained in how to precisely isolate the soil NOx emissions (Bertram et al., 2005; Lin et al., 508 

2024) and even the fertilizer contributions from the total NOx sources. Synergizing spatiotemporally 509 

detailed fertilizer management dataset with the top-down NOx retrievals with ultra-high resolutions, 510 

where the atmospheric NOx can be assumed to be dominantly affected by the soil sources in agricultural 511 

regions, could be one possible solution. However, more work is needed to integrate such a big data in 512 

the future. 513 

To summarize, with a comprehensive investigation of different approaches to describe SNOx-Fer, our 514 

results revealed the uncertainties in quantifying SNOx-Fer and associated important implications in 515 
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simulating regional air quality and the global greenhouse gas CH4the associated important uncertainties 516 

in simulating regional air quality and the global greenhouse gas CH4. However, the limited number of 517 

field experiments impedes accurate assessments of the soil NOx responses to N fertilizer application as 518 

well as improving its representation in both CTMs and TBMs, resulting in large uncertainties in 519 

estimates of N fertilizer-induced soil NOx emissions. We thus highlight the essential necessity to 520 

integrate knowledge between agricultural data, atmospheric chemistry modelling and soil 521 

biogeochemistry to better represent soil NOx emissions in models and improve our understanding of the 522 

associated effects on air quality and the global CH4 budget.  523 
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