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Abstract

Natural and agricultural soils are important sources of nitrogen oxides (NOy), accounting for about 10%
- 20% of the global NOx emissions. The increased application of nitrogen (N) fertilizer in agriculture
has strongly enhanced the N availability of soils in the last several decades, leading to higher soil NOx
emissions. However, the magnitude of the N fertilizer-induced soil NOx emissions remains poorly
constrained due to limited field observations, resulting in divergent estimates. Here we integrate the
results from meta-analyses of field manipulation experiments, emission inventories, atmospheric
chemistry modelling and terrestrial biosphere modelling to investigate these uncertainties and the
associated impacts on ground-level ozone and methane. The estimated present-day global soil NOy
emissions induced by N fertilizer application varies substantially (0.84-2.2 Tg N yr') among different
approaches with different spatial patterns. Simulations with the 3-D global chemical transport model
GEOS-Chem demonstrate that N fertilization enhances global surface ozone concentrations during
summertime in agricultural hotspots, such as North America, western Europe and eastern and southern
Asia by 0.3-1 to 3.3 ppbv_(0.2% - 7.0%). Our results show that such spreads in soil NOx emissions also
affect atmospheric methane concentrations, reducing the global mean by 7#16.7 (0.4%) ppbv to 16.6
(0.9%) ppbv as indirect consequence of enhanced N fertilizer application. These results highlight the
urgent need to improve the predictive understanding of soil NOx emission responses to fertilizer N

inputs and its representation in atmospheric chemistry modelling.
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1. Introduction

Nitrogen oxides (NO,=NO + NO,), as one of the most important reactive atmospheric components,
strongly affect the atmospheric oxidation capacity and further influence air quality (Gong et al., 2020;
Zhai et al., 2021; Goldberg et al., 2022; Zhao et al., 2023), radiative forcing (Erisman et al., 2011; Pinder
et al., 2012; Gong et al., 2024), as well as carbon (C) storage in terrestrial and marine ecosystems
(Fowler et al., 2013; Fleischer et al., 2019; Rubin et al., 2023). The major source of present-day
atmospheric NOx is fossil fuel combustion (Martin et al., 2003; Hoesly et al., 2018), but several non-
fossil-fuel sources, including emissions from soils, lightning and wildfire (Zhang et al., 2003),
contribute to around 30% of the global total NOx emissions (Delmas et al., 1997; Weng et al., 2020).
However, these non-fossil-fuel sources have been widely regarded as ‘natural’ sources, where the
perturbation by anthropogenic activities as well as the associated potentially significant effects on the
N cycle are often overlooked. Meanwhile, strict clean-air actions have been applied in many countries
in the past decades to sharply reduce the fossil-fuel sources of NOx (Jiang et al., 2022). As a result, non-

fossil sources of NOy will be increasingly important for future clean air policies.

One of the most important non-fossil-fuel anthropogenic sources of NOy is through agricultural
activities, which have been estimated to enhance soil NOy emissions by around 5%- 30% (Wang et al.,
2022; Gong et al., 2024). To assess the soil NOx emissions induced by N fertilizer application (hereafter,
SNOx-Fer), the most straightforward and widely-used method is applying the emission factor (EF),
which indicates the proportion of N from fertilizer application emitted as NOx. The Intergovernmental
Panel on Climate Change (IPCC) methodology recommended a constant EF value 1.1% with an
uncertainty range of 0.06% to 2.18% (Hergoualc'h et al., 2019). Other studies recommend slightly
smaller uncertainty ranges (0.47% to 1.61%) based on different meta-analysis datasets (Stehfest and
Bouwman, 2006; Liu et al., 2017; Skiba et al., 2021; Wang et al., 2022). This large uncertainty range
results from the dependency of the response of soil NOy emissions on intricate soil biogeochemical
processes and varies with crop types, soil texture, fertilizer types and application rate (Wang et al.,

2022). To date, limited field experiments are available to constrain this uncertainty range.

Some studies have suggested to use non-linear EF to take account of the observations that the EFs of
soil reactive nitrogen gases tend to increase with increasing fertilizer application (Shcherbak et al., 2014;
Jiang et al., 2017). Such approach assumes that plants and soil microbes should have priority to access
soil available N for their metabolic activities, while the excessive inorganic N can be used by nitrifiers
and denitrifiers and loses as the gas form. Such a non-linear EF approach is more ecologically
reasonable but there remain large uncertainties in assessing soil NOy due to the limited available field
data. For example, Wang et al. (2024) examined the non-linear EF of soil NOx based on a global meta-
analysis and found a much lower EF (around 0-0.7%) than the IPCC recommended linear EF (1.1%)
within the range of normal agricultural crop N fertilizer loading (around 0-600 kg N ha yr™).
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In many of the atmospheric chemical transport model (CTMs), SNOy-Fer is represented by the
agriculture sector of NOy emission from an anthropogenic emission inventory (e.g. Emissions Database
for Global Atmospheric Research (EDGAR) or Community Emissions Data System (CEDS)), which
in general apply the method of linear EF to estimate the agricultural NO, emissions (Hoesly et al., 2018;
Janssens-Maenhout et al., 2019; Nicholas Hutchings et al., 2023) with the caveats described above.
Furthermore, some advanced CTMs, e.g. the GEOS-Chem model, parametrizes soil NO emissions as
a function of N availability as well as soil temperature and soil moisture (Steinkamp and Lawrence,

2011; Hudman et al., 2012). The currently widely-used soil NOx scheme named by the Berkeley-

Dalhousie Soil NOx Parameterization (BDSNP) could dynamically simulate the spatiotemporal
variations of soil NOy emissions, however, the responses of soil NO, to N fertilizer application are not

fully examined (See the detailed parameterization in Sect. 2).}-however,fixesthe SNOFerinthe-year

00K ce the dotaila
a

Recently, another approach to modelling SNOy-Fer has emerged by the development of global, process-
based terrestrial biosphere models (TBMs) with fully-coupled C and N cycles (Zaehle and Friend, 2010;

Tian et al., 2019). Driven by data of N inputs (N synthesis fertilizer, N manure application and N
deposition), CO; concentrations and climate, these TBMs could simulate the coupled-cycles of C and
N in the terrestrial biosphere, mimic the competition on the available N between plants and microbes
and calculate the rates of nitrification and denitrification (Zaehle and Dalmonech, 2011), which are the
two microbial processes that determine the rates of soil NOx emissions. Even though TBMs provides a
more ecologically-mechanistic description of the terrestrial N cycles, large uncertainties remained
among different TBMs due to the varying parameterization and modelling schemes on biome N use
strategies, mineralization of organic N, nitrification and denitrification processes (Kou-Giesbrecht et
al., 2023), which lead to varied responses of soil NOy to the increased N fertilizer inputs (Gong et al.,
2024).

In this study, we attempt to comprehensively quantify the uncertainties in current SNOx-Fer estimates
by integrating results from meta-analyses, emission inventories, as well as CTMs and TBMs. We use
this understanding to assess the associated effects of SNOx-Fer uncertainties on global O3 and CH4
concentrations. Section 2 will introduce the N synthetic fertilizer and manure input data and each
approach to estimate SNOy-Fer. Section 3 will introduce the CTM model used in this study and the
configuration of sensitive experiments. Section 4 will firstly show the variations of SNOy-Fer among

different approaches_as well as the seasonal dynamics, and then analyze the associated uncertainties in

global O3 and CH4 simulations. Finally, the conclusion and discussions of this study will be given in

section 5.
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2. Data and Methods
2.1. Linear and Non-linear EFs and the global fertilizer N dataset

We firstly implement the most traditional method with a constant EF value to estimate the effects of N

fertilizer application on soil NOyx emissions, where the value of 1.1% (1.1% of N in the fertilizer will

be emitted as NOx; named as EFji..q hereafter) based on the most up-to-date IPCC methodology is

adopted (Hergoualc'h et al., 2019). Furthermore, based on the latest meta-analysis dataset developed by
Wang et al. (2024), a non-linear EF method (EF,on-iinear) to describe the variations of soil NOx emissions

with different N fertilizer loadings is also applied:
EFon—tinea = (0.22 4 0.008 x Fertilizery) €]

where the EFon-iinear (%) s the non-linear EF and Fertilizery is the loading of fertilizer N application
(kg N ha). The detailed derivation of this formula is presented by in Wang et al. (2024), which follows
a comparable method as presented by Shcherbak et al. (2014).

We used the dataset of History of anthropogenic Nitrogen inputs (HaNi) (Tian et al., 2022) for the
global rate of synthetic fertilizer and manure application, in order to estimate SNOy-Fer with both of
the linear and non-linear EF methods. The HaNi dataset includes grid-level annual loadings of (1) NH4"-
N synthetic fertilizer applied to cropland, (2) NOs™-N synthetic fertilizer applied to cropland, (3) NH4'-
N synthetic fertilizer applied to pasture, (4) NOs™-N synthetic fertilizer applied to pasture, (5) manure
NH4"-N application on cropland, (6) manure NOs-N application on pasture, (7) manure NHs"-N
deposition on pasture, (8) manure NOs™-N deposition on rangeland. We use a global map of land use
class distributions (Hurtt et al., 2020) (Fig. S1) to convert the unit of N loading in HaNi from g N grid
"to kg N (ha pasture)™’, kg N (ha rangeland)™ or kg N (ha cropland™). The annual N inputs from HaNi
dataset, which are summed by all N forms of synthetic fertilizer and manure, Fhe-annual- N-synthetie
fertilizer and-manure fromHaNi-dataset-are evenly applied in the months of growing season, while the

rates of N inputs are set as zero during the non-growing season. We define growing season as monthly-
mean 2-metre temperature larger than 5 degree Celsius (based on the MERRA?2 reanalyzed dataset, see
below Sect. 3) and the grid-level monthly-mean leaf area index (LAI) larger than 0.5 (based on MODIS
remote sensing dataset postprocessed by Yuan et al. (2011) and updated for the use of GEOS-Chem,
http://geoschemdata.wustl.edu/ExtData/ HEMCO/Yuan_XILAI/v2021-06/). Finally, the rates of

synthetic fertilizer and manure N inputs with the unit of kg N (ha pasture/rangeland/cropland)™ month®
!are utilized to estimate global SNOx-Fer with the both of the linear and non-linear EF approaches (Fig.

S2).

2.2. The emissions inventory CEDS
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We use the CEDS (Hoesly et al., 2018) for assessing the fertilizer-induced soil NOx emissions in the

emission inventories. CEDS is one of the most state-of-art emission inventories that comprehensively

assess the sources of dominant air pollutants from pre-industrial period to present days, which has been

used as the standard emission inventory to drive CMIP6 models. The agricultural NOy emissions in
CEDS is from the EDGAR 4.3.1 ( https://edgar.jrc.ec.europa.eu/ ), where the old IPCC methodology
(Eggleston et al., 2006) is used with a constant EF value of 0.7%_(0.7% of N in the fertilizer will be

emitted as NO,) (Janssens-Maenhout et al., 2019).
2.3. The BDSNP scheme

The BDSNP scheme in CTMs is firstly developed by Yienger and Levy (1995), and then updated by
Hudman et al. (2012). The emission of soil NOx (S.x) is described as:

Snox = (Aw,biome + Ngpair X E) X f(T) x g(8) X P(ldry) 2

Where f(T), g(6) and P(lary) indicate the effects of temperature, soil moisture and the rain pulsing.
Auwpiome 1S the wet biome-dependent emission (the baseline emission) from Steinkamp and Lawrence

(2011). Naaiis the soil available N mass in the top 10 cm (ng N m?), which is calculated by:

t t
Navail(t) = Navail(o)e_; + Fertilizery X X (1 — e_;) (3)

Where the initial soil available N mass N,,4i; (0) is prescribed. Fertilizery is the rate of fertilizer N
application, which is set as zero outside the growing season. 7 indicates the decay rate and is chosen as
4 months based on the measurement within the top 10 cm soil (Matson et al., 1998; Cheng et al., 2004;
Russell et al., 2011). However, it should be noted that magnitude of global SNOx-Fer (i.e. the Ngyqi X E)
is scaled by the factor E in Eq. (2) to meet 1.8 Tg N yr™' before the canopy reduction, which is the value

obtained in a previous meta-analysis study based on the fertilizer N input dataset in the—yearof1998
2000s (Stehfest and Bouwman, 2006). As a result, the default BBNSPBDSNP scheme in GEOS-Chem

actually fails to capture the year-to-year variations of soil NOy emissions with the changing soil N
availability. However, as the BBNSPBDSNP scheme is still widely used by the community of
atmospheric chemistry modelling (e.g. Lu et al., 2021; Wang et al., 2022; Huber et al., 2023), here-we

add another sensitivity experiment by scaling the N, 4;;.in Eq.3 following the interannual variations of

the HaNi fertilizer loadings:

Fertilizeryani(i,j,yT)

Navail(i'j:yr) = Navail(i:j: 2000) * (4)

Fertilizeryqni(i,j,2000)

Where Fertilizery,y; (i, ], yr)_represents the total N fertilizer loadings in HaNi dataset at the grid of i

latitude and j longitude in the yr year.With this modification, we could further examine how SNOy-Fer

responses to the N fertilizer enhancement in the GEOS-Chem BDSNP scheme.we—inecludeit-as—one
i onal method to.l | tios in il L NO,_emissions-induced by N_fortl
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2.4. The TBM ensemble

Simulated soil NOy emissions were provided by three TBMs (CLASSIC, OCN and ORCHIDEE) with
fully-coupled C and N cycles included in the global nitrogen/N,O model inter-comparison project phase
2 (NMIP2) (Tian et al., 2024). For each TBM model, anthropogenic fertilizer application are estimated
by the HaNi dataset (Tian et al., 2022), where the fertilizer types (NHs" and NO;'; synthetic fertilizer

and manure) are explicitly distinguished in the model.- The SNOx-Fer can be isolated by summing up

the differences between sensitivity experiments SH1 and SH2 (the synthetic fertilizer contribution) and
the differences between sensitivity experiments SH1 and SH3 (the manure contribution) (Table S1). It
should be noted that the CLASSIC model did not isolate synthetic fertilizer and manure and thus only
conducted one sensitivity experiment. The model ensemble mean is utilized to smooth the large
discrepancies among different TBMs (Fig. S2S3) due to the varied terrestrial N-cycle representations,

in particular, the varied nitrification and denitrification rates.

3. The GEOS-Chem model and sensitivity experiment configuration

The GEOS-Chem model is a frequently used state-of-the-art CTMs with fully coupled NOx—-Ox—
hydrocarbon—aerosol chemistry mechanism (Bey et al., 2001; Park et al., 2004). Here we applied the
version 12.0.0 to run the global simulation with a horizontal resolution of 2° latitude X 2.5° longitude.
The simulations are driven by the Version two of modern era retrospective-analysis for research and
application (MERRA?2) reanalyzed meteorological dataset. The photolysis rates were computed by Fast-
JX scheme (Park et al., 2004). The atmospheric gas-phase chemistry is— independently developed

referring to the kinetics and products based on JPL recommendations (Bates et al., 2024) and solved by

the Kinetic Pre-Processor (KPP) (Henze et al., 2007). Aerosol thermodynamic equilibrium is calculated

by the ISORROPIA 1II package (Fountoukis and Nenes, 2007). In particular, the default soil NOy

emissions are simulated by the BDSNP scheme as introduced above.

In order to examine the uncertainties in the SNOx-Fer and the associated effects on global surface O3
concentrations, we firstly run a reference simulation in 2019 (named Zero) with zero SNO-Fer to

exclude the influence of fertilizer application on soil NOx. Then five-cleven different experiments are

performed by representing SNOy-Fer with CEDS agricultural NOy emissions (named CEDS), the
default GEOS-Chem BDSNP-(Eg—2); scheme (Egs. 2-3, named BDSNP_coarse), the BDSNP scaled

by the interannually-varied HaNi N fertilizer loadings (Eq. 4, named BDSNP_coarse_scaled), the
default GEOS-Chem BDSNP but with fine resolution of 0.5°X% 0.625° (named BDSNP_fine), the
TBM-simulated ~-SNOy-Fer of each model as well as the ensemble_means (named NMIP2-OCN
NMIP2-CLASSIC, NMIP2-ORCHIDEE and NMIP2, respectively), the linear EF (EF=1.1%) method

6



206
207
208
209
210
211

212
213
214
215
216
217
218
219
220
221
222

223

224

225
226

227

(named Linear) and the non-linear EF (Eq. 1) method (named Nonlinear), respectively. In particular,

the BDSNP fine is simulated offline, i.e. the atmospheric chemical and transport processes are not

accounted due to the inconsistence of resolutions with the GEOS-Chem runs. All of the sensitivity

experiments are driven by the meteorological field in the year of 2019 with 6-month spin up, where the
anthropogenic emissions of all other tracers also keep at the level of 2019 following the CEDS inventory.

Table 1 summarizes the six-eleven sensitivity experiments in GEOS-Chem.

In order to further examine the seasonality of SNO-Fer and the associated impacts on ground-level O;

in agricultural hotspot regions, we investigate how different SNO-Fer approaches distribute the annual

fertilizer seasonally (Table 1). The HaNi dataset, as well as the equivalently up-to-date fertilizer dataset

(Adalibieke et al., 2023). only provide annual fertilizer application rates given the lack of specific

information to distribute the N fertilization seasonally. The CEDS, BDSNP and NMIP2 models

approaches have their own specific monthly distribution, while the monthly distribution of fertilizer

application in the linear and nonlinear EF are arbitrarily assumed to be even during growing season.

Here, we added two additional GEOS-Chem sensitivity experiments for the linear and non-linear

approach, named Linear 7525 and Nonlinear 7525, which apply the seasonal pattern of the BDSNP

scheme (Hudman et al., 2012), assuming that 75% of the annual fertilizer is applied in the first month

of growing season and the rest 25% evenly applied in the rest growing months.

Experimentname Emissions-of SNOx-Fer
Zero 9
€EDBS CEDS-agrieultural NO,-seetor
BDSNP BBSNP
R T blensemblomens
Einear B
Aonlinear Nen-HiearEE

Table 1. Summary of the sensitivity experiments in GEOS-Chem and the methods used by different
SNO,-Fer estimating approaches to distribute the annual N fertilizer into monthly.

SNO-Fer

. : Experimental name in .. Fertilizer monthly
estimating this stud Emissions of SNOy-Fer distribution
approch L0is SUay e
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229
230
231
232
233

None Zero Zero None
Linear Linear EF Evenly distributed
during the growing
Nonlinear Nonlinear EF season
Emission Linear 7525 Linear EF 75% of the annual
Factor fertilizer is applied in
(EF) the first month of
growing season, while
Nonlinear_7525 Nonlinear EF the rest 25% is evenly
distributed in the rest
growing months
—Em1s51on CEDS CEDS agricultural NOy sector Not clear
mventory - -
GEOS-Chem default BDSNP with
BDSNP_coarse resolution of 2°x2.5° 75% of the annual
fertilizer is applied in
BDSNP scaled with the interannual the first month of
BDSNP  BDSNP_coarse_scaled variations of HaNi fertilizer growing season, while
loadings with resolution 2°x2.5° the rest 25% is evenly
distributed in the rest
. GEOS-Chem default BDSNP with growing months
BDSNP_fine (offline) resolution of 0.5°x 0.625°
Distributed the annual
N fertilizer loadings
NMIP2-OCN OCN simulated SNOy-Fer into four equal doses in
the first half of the
growing season
Evenly distributed
Terrestrial throughout the year in
biosphere the tropics (between
models . 30S and 30N); Evenly
TBMs) NMIP2-CLASSIC CLASSIC simulated SNO-Fer distributed from spring

NMIP2-ORCHIDEE

ORCHIDEE simulated SNO-Fer

NMIP2

TBMs ensemble mean

equinox to fall equinox
between 30N (30S)

and 90N (90S)

Not clear

Because the default GEOS-Chem simulations used above do not account for interactive CH4 chemistry,

we further conducted six-ten more sensitivity experiments with the special ‘CH4 run’ in GEOS-Chem

(East et al., 2024; Fu et al., 2024) to assess the variations in the atmospheric CH4 concentrations induced

by the uncertain SNOy-Fer. The special CHy4 run takes CHs as the only one atmospheric transport tracer

with various prescribed CHs sources (summarized in Table S2), while the CHy4 sinks include the
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tropospheric reactions with hydroxyl radical (OH) and chlorine, stratospheric loss and soil uptake. The
global monthly mean OH concentrations archived from the six-ten sensitivity experiments (Table 1,

except for the BDSNP_fine) are applied in the CHs simulation to assess the SNOx-Fer effect on CHy

lifetime through perturbing atmospheric oxidation capacity. As a result, there will be six-ten more
associated sensitivity experiments with the CH4 run that corresponds to the default GEOS-Chem

simulations in Table 1 (except for the BDSNP_fine experiment). Each CH4 simulation runs for 15 years

by repeating the meteorological forcings in 2019 to reach a semi-equilibrium with the prescribed
emissions and OH concentrations. The last year of the simulation is utilized to analyze the influences
of soil NOx on CH4 induced by N fertilizer application. The simulated global surface CHj4
concentrations driven by varied OH levels from different sensitivity experiments are shown in Fig.

S3S5.

4. Results

4.1 Varied SNOx-Fer among different approaches

Figure 1a shows the historical time series of global SNOy-Fer over 1950-2019 estimated by different
approaches, which is mainly driven by the substantial increases in global N fertilizer application {Fig-

4b). Almost all approaches except BDSNP showed enhancements in soil NOy emissions but with largely
varied magnitudes from 0.6 to 2.12 Tg yr' over 1950-2019. The default BBNSPBDSNP scheme in

GEOS-Chem, which scales soil NOx emissions with time-variant temperature and soil moisture, but
assumes constant N availability (see Methods), estimates the relatively stable soil NO, emissions over
1980-2019. The annually-varied BDSNP scheme scaled by the HaNi N input dataset shows increase in
SNOy-Fer from 0.8 Tg N yr" in 1980 to 1.5 Tg N yr" in 2019, while tFhe sharpest increase of the soil

NOx emission is simulated by the TBM ensemble, mainly induced by the high estimates of the
CLASSIC and ORCHIDEE models (Fig. S2S3). Soil NOyx estimated by the non-linear EF approach

shows substantially weaker response to fertilizer inputs relative to other estimating approaches.
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Figure 1. Global estimates of N fertilizer-induced soil NO, emissions by different approaches. The

black line (right Y axis) indicates global annual-mean N synthetic fertilizer and manure inputs over

1950-2019 assessed from the HaNi dataset. The rest lines (left Y axis) indicate the N fertilizer-

induced soil NO, emissions over 1950-2019 estimated by different approaches, including emission

inventory (CEDS), linear and non-linear EF, the widely-used CTM parameterization with coarse

resolution (2°%2.5°, BDSNP corase), fine resolution (0.5°x0.625°.BDSNP fine) and interannually

10
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varied N availability (BNDSP_corase_scaled), and the TBM ensembles (NMIP2). The light cyan
shadows indicate the spread across three different TBMs in NMIP2.

Figure 2-3 shows the global spatial patterns of SNOx-Fer among different approaches. Each approach
shows consistent spatial patterns aligned with the distribution of N synthetic fertilizer and manure inputs
(Fig. 2a), where eastern U.S., western Europe, eastern and southern Asia are the hotspots with high soil
NOx emissions. Notably, even though the TBM ensemble (NMIP2) and the Linear EF approach estimate
similar global total SNOx-Fer, the spatial distributions of both estimates vary strongly. The SNOy-Fer
estimates by NMIP2 ensemble are higher in agricultural hotspots (Table 32), but lower in regions with
less synthetic fertilizer application, e.g. in part of the Africa and South America (Figs. 2d-3d and 2e3e),

relative to the Linear EF approach.- Because plants and microbes have high priority to assess additional

N in N-limited regions, which leads less N loss as the gas forms. However, in N-saturated regions, the

applied N fertilizer excessive for the living biomes, yielding a higher sensitivity of soil NOx emissions

to N fertilizer application (Du and De Vries, 2025). Such N dynamics have been included in the C-N
fully-coupled TBMs, but fail to be represented by the linear EF approach.’Fhisresultistikely-due-te

ho aynly anracan 1on—of N_dunamai 1N BN\ hich eld highe oan S O NO
3 A v o ’ 3 Y

90N
60N | <
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308 —

60S —
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Figure 2. The global spatial patterns of N synthetic fertilizer and manure application in 2019 from the
HaNi dataset.
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295 Figure 3. The N-fertilization induced soil NOy emissions estimated by different approaches in 2019.

296 (a) - (f) The soil NOy emissions induced by N fertilizer estimated by the CEDS agricultural sector, the

297 default BDSNP scheme in GEOS-Chem with coarse resolution (2°x2.5°), the coarse-resolution

298 BDSNP scheme in GEOS-Chem by interannually scaling the N availability using the HaNi dataset,

299 the NMIP2 ensemble, the linear EF and non-linear EF, respectively. The global total budget of each

300 estimate is given in the sub-titles.
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308 Table 32. The annual soil NOy emissions (Gg N yr'") induced by N fertilizer in 2019 in the eastern

309 U.S., western Europe, eastern Asia, southern Asia as well as the global estimates by different
310 approaches. The ranges in NMIP2 indicate the highest and lowest values among three TBMs
311 (CLASSIC, ORCHIDEE and OCN)
Eastern U.S. Western Europe Eastern Asia Southern Asia
(35-45N, 75- (35-60N, 10W- (20-50N, 100- (10-30N, 70- Globe
90W) 20E) 125E) 85E)
CEDS 20.9 99.1 190.0 104.8 1600
BDSNP_corase 15.8 H2176.3 2292157.0 185-7134.2 1390115




BDSNP_corase_scaled 17.6 9.8 174.8 201.7

NMIP2 57.0 206.3 417.5 382.4
[15.1, 100.9] [67.4,267.3] [261.0, 598.1] [78.4,776.3]

Linear EF 54.3 181.0 376.4 214.7

Non-Linear EF 15.6 60.8 136.5 141.8
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4.2 The seasonal cycle of SNO,-Fer and the associated impact on O3 concentrations

Figure 4 shows the seasonality of SNOy-Fer in four agricultural hotspot regions among different SNO,-

Fer estimating methods. In the temperate regions like Eastern U.S., Western Europe and Eastern Asia,

the TBM ensembles NMIP2 shows very strong seasonal variations, which reaches highest during May

to July in Eastern U.S., April to June in Western Europe and May to August in Eastern Asia, respectively.

The seasonality of the linear and nonlinear EF methods is strongly dependent on the assumption of

fertilizer applying time (Table 1), where the monthly SNO,-Fer emissions are at similar levels during

the growing season for the Linear and Nonlinear experiments, but peak in a pronounced manner in the

north-hemispheric spring time (around February to April) in the Linear 7525 and Nonlinear 7525 cases.

Although the BDSNP applies the same assumption of fertilizer applying time as Linear 7525 and
Nonlinear 7525, the SNO«-Fer in BDSNP peaks much later (September to October in Eastern U.S.,

June to August in Western Europe and May to June in Eastern Asia). This arises because the EF methods

estimate SNO,-Fer instantaneously in response to the fertilizer application, but the BDSNP scheme

cumulates N fertilizer with a 4-months time window (Eq. 3). It is also very important the BDSNP

includes the regulation of soil temperature and moisture on SNOy-Fer, both of which also have strong

seasonality, but the EF methods do not. Furthermore, in the tropical regions of Southern Asia, the

NMIP2, Linear_7525 and Nonlinear 7525 experiments estimate the peak SNO,-Fer in the beginning

of the year, while the SNO«-Fer of BDSNP reaches highest in May due to the N cumulation assumption
(Fig. 4d). The rest methods, including the emissions inventory CEDS, the Linear and Nonlinear EF

method, show very weak seasonality of SNOy-Fer in Southern Asia.

The seasonality of ground-level monthly MDAS& Os changes in response to the SNO-Fer in general

aligns with the monthly variations of SNOx-Fer among different estimating approaches (Fig. 5). The

strongest enhancement of regional MDAS8 O; shows during the north-hemispheric summertime (June-

August) for most of the estimating approaches in three temperate regions, when the absolute O;

concentrations also reaches highest. However, it should be noted that spring-peak SNO,-Fer in the

Linear 7525 and the Nonlinear 7525 cases does not lead to high Os enhancement in both Western
Europe and Eastern Asia (Figs. 5b and 5¢). The weak sensitivity of Os; to NOy during springtime is

likely the result of the seasonal variations in other emissions (e.g. biogenic volatile organic compounds
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341 (BVOCs))., which alter the chemical sensitivity regime. The responses of Oz to SNOy-Fer could also

342 depend on regions (e.g. O; enhancement also peaks during spring in Linear 7525 in Eastern U.S.. Fig.

343 5a), spatial simulating resolution or different modelling chemical mechanisms. The O; enhancement in

344 Southern Asia is generally similar during north-hemispheric spring and summer time for all of the

345 SNOy-Fer estimating approaches (Fig. 5d), except for the BDSNP scheme, which stimulates

346 significantly higher O; enhancement during May to July relative to February to April.
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348 Figure 4. The monthly regional SNO,-Fer (Gg N yr!) in the (a) Eastern U.S., (b) Western Europe, (c)
349 Eastern Asia and (d) Southern Asia with different SNO,-Fer estimating approaches. The cyan-blue
350 shades indicate the spreads among three different TBM models (CLASSIC, OCN and ORCHIDEE) in
351 the NMIP2 ensemble.
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Figure 5. The regionally-averaged monthly MDAS8 Oj; changes (ppbv) induced by SNOy-Fer in the (a)
Eastern U.S., (b) Western Europe, (¢) Eastern Asia and (d) Southern Asia with different SNOy-Fer
estimating approaches. The cyan-blue shades indicate the spreads among three different TBM models
(CLASSIC, OCN and ORCHIDEE) in the NMIP2 ensemble.

4.2-3 Impacts of SNOx-Fer on surface O3 concentrations

We next examine how the different SNOx-Fer estimates influence the surface O3 concentrations globally.
Since soil NOx emissions typically peak during the summer period_(Fig. 5), when O; pollution tends to
be most severe, we focus our analysis on the surface maximum daily 8-h averaged (MDAS) O;
concentrations averaged over the northern hemisphere summer (June, July and August) based on the
sensitivity experiments in Table 1. Figure 3-6 shows that the N fertilizer application enhanced the
globally-averaged surface summertime O3 MDAS concentrations by 0.6904-0.30 ppbv in 2019. In
agricultural regions, the enhancement of O3 concentrations due to SNOy-Fer reaches 0.31-3.3 ppbv (0.2%
- 7.0%) (Fig. 46). Figure 4-6 also highlights important differences in the spatial effect of NOx on Os,
consistent with the regional effects on SNOx-Fer (Table 32), that the NMIP2 estimate of SNOx-Fer
shows stronger contributions to the O3 concentrations than the linear EF approach in agricultural regions.
The non-linear EF method leads to the lowest O3 enhancement, although both non-linear EF and TBMs

estimates increasing soil NOx emissions with soil N availability.
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numbers in each sub-title are changes in the global averaged summertime MDAS& O; concentrations

induced by SNO,-Fer.
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Figure 47. Changes in summertime averaged surface MDAS O3 concentrations (positive Y axis) and
global surface CH4 concentrations (negative Y axis) induced by SNOx-Fer uncertainties. The regional
MDAS Oj; concentrations are averaged over Eastern U.S. (35-45N, 75-90W), Western Europe (35-
60N, 10W-20E), Eastern Asia (20-50N, 100-125E) and Southern Asia (10-30N, 70-85E).

4.3-4 The impacts of SNOx-Fer uncertainties on global CH,4 estimates

Figure 4-7 shows that N fertilizer-induced soil NOy induced the reduction of global averaged CH,4

concentrations ranging from 74+6.7 ppbv_(0.4%) to 16.6 ppbv_(0.9%) in 2019 by increasing affeeting
atmospheric OH concentrations (Fig. S4S5):), spatially aligned with the distributions of SNOy-Fer

among different estimating approaches (Fig. 3). Because CH4 has a significantly longer atmospheric

lifetime than either OH or NO,, the spatial differences in the impacts of SNOy-Fer on CHy

concentrations are insignificant (Fig. S4). As a result, we only focus on the globally averaged changes

in CHy4 concentrations.  This magnitude of this estimate is consistent with recent estimates of around

17.4 ppbv by Gong et al. (2024), which relies on the same NMIP2 dataset and a simpler CH4 box model
to calculate the impacts of NOy emissions on the atmospheric lifetime of CH4. This result highlights an
important but indirect role of SNOx-Fer on atmospheric CHs concentrations, which is an often-
overlooked aspect for the global CH4 budget. However, the uncertainty range in our estimates clearly
suggests the need to further improve our understanding in soil N biogeochemical processes to better

predict global OH reactivity as well as close global CH4 budget.
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5. Discussions

In this study, we integrated knowledge from meta-analyses (Hergoualc'h et al., 2019; Wang et al., 2024),

the emission inventory, parameterizations in CTMs and the TBM ensembles to better quantify the
uncertainties in N fertilizer-induced soil NOx emissions and the associated impacts on global O3 and
CH4 concentrations. Our results showed a large variation of the global soil NOy emissions associated
with N fertilizer, ranging from 0.84 Tg N yr™' to 2.2 Tg N yr'' in 2019. This range of responses leads to
an enhancement in summertime surface MDAS8 O3 concentrations of 0.3-1 ppbv to 3.3 ppbv_(0.2%-
7.0%) in agricultural hotspot regions. The O3 enhancement is highest in eastern U.S., while it is not

only determined by the SNO,-Fer emissions. but also the diverging sensitivities of O3 to NOy depending
on different chemical regime in GEOS-Chem (Fig. S6). The varied SNOy-Fer estimates also lead to-and
a reduction in global CH4 concentrations of 7346.7 ppbv_(0.4%) to 16.6 ppbv_(0.9%). These changes

highlight a significant role of agricultural N use and soil N biogeochemical processes in affecting
regional O3 concentrations as well as controlling global greenhouse gases. In particular, with the
worldwide reduction in fossil-fuel NOy emissions associated with clean-air actions (Jiang et al., 2022),
control of agricultural soil NOx emissions becomes increasingly important to improve air quality and

alleviate the associated public health risks.

However, challenges remain in the accurate assessment of N fertilizer-induced soil NOx emissions. On
the one hand, the overall uncertainties of SNOx-Fer may still be underestimated. The EF-approach with
fixed EF fails to adequately reflect the complexity in soil biogeochemical processes, which is reflected
by the large ranges of EFs from 0.06% to 2.18% in a recent meta-analysis (Hergoualc'h et al., 2019).
While the non-linear EF method represents an advance over the linear EF approach, as the effects of
soil N saturation levels on soil N gas emissions are considered and therefore the approach yields
relatively good performance in predicting soil N>O or NHs emissions compared to observations
(Shcherbak et al., 2014; Jiang et al., 2017), the limited availability of observations to constrain these
responses and their limited spatiotemporal representativeness reduce the reliability of this approach.
Most of the experimental data in Wang et al. (2024) are collected over China in the past ten years and
thus may not be representative of other agricultural regions. Furthermore, 22 out of 55 data points are
from vegetable cropping systems and orchard fields, where frequent irrigation may enhance soil
moisture and thus inhibit the production of NOy via nitrification. Last but not least, other factors, such
as soil texture, pH, soil organic carbon and fertilizer types, may also affect the response of soil NOy
emissions to the loading of N fertilizer application, which are omitted by either the linear EF or non-
linear EF approach. As a result, more representative crop experiments with a gradient series of N

addition are necessary to better constrain the soil NOx response to N fertilizer application.

For the modelling of SNO-Fer, on the one hand, recent developments of the parameterization of

BDSNP in CTMs focused more on the soil NOy responses to changing temperature or soil moisture (e.g.

Wang et al., 2021; Huber et al., 2023). while the accuracy of the soil N availability has been less
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investigated. Even with the scaled N fertilizer loadings to interannually vary the N availability, BDSNP

still showed weaker increasing trend of SNOy-Fer in response to the N fertilizer enhancement relative

to_the empirical EF methods and the TBM simulations of NMIP2 in the past decades (Fig. 1).

Nevertheless, it should be noted that the BDSNP scheme is also sensitive to the spatial resolution, where

the coarse resolution may miss small-scale hotspots and thus underestimate the global SNOy-Fer, as the
BDSNP_fine experiment shows in Fig. 1. On the other hand,On-the-otherhand;recent-developments-of

AV a ed—mao
V o - O

in-predictionsby-CTHMs—Meanwhile; terrestrial N availability is a key concept in the development of
TBMs, as the process-based TBMs need detailed description of the N cycle to understand nutrient

limitation levels and associated C-N coupling. Nevertheless, the soil NOx emissions have been
overlooked by the ecological modelling community because the low emissions may not be important
for the terrestrial N cycle, resulting in a limited number of TBMs that include soil NOx emissions as
well as large inter-model variations (Fig. S2). To further reduce the uncertainties in soil NOy emission
estimates, the advantages of TBMs on representing soil N availability can be introduced into CTMs to
better examine the effects of agricultural activities on atmospheric chemistry, but at the same time, the
terrestrial N cycle needs to be further developed in TBMs to reduce inter-model variations and to better

predict soil emissions of reactive N gases (not only NOy but also N,O and NH3).

The seasonality of SNO«-Fer and the associated impacts on surface Os concentrations are also important

but poorly constrained. The most difficult challenge is to precisely estimate the monthly (or even daily)

N fertilizer loadings in the global scale. Because the N fertilizer data underlying the gridded products

1s derived from the annual statistics by the Food and Agricultural Organization (FAO)

(https://www.fao.org/faostat/en/#data), the HaNi dataset applied this study. as well as the equivalently

up-to-date fertilizer dataset (Adalibieke et al., 2023), only provides gridded, annual fertilizer application

rates. In the EF approaches, the growing season is determined only by temperature and greenness in

this study, which could result in a mismatch with the real crop or pasture calendar, especially ignoring

the multiple-harvest crops per year. A refined calendar could further improve the prediction of SNOy-

Fer seasonality. Furthermore, the NO,-VOCs-0Os; chemical sensitivity regimes could be determined by

not only soil NOy emissions, but also other anthropogenic and biogenic emissions of NO, and VOCs,

as well as the climate seasonal variations. Therefore, the seasonal cycles of the enhancement of Os

concentrations may not strictly follow the variations in SNOx-Fer, as our Linear 75 sensitivity

experiment implies in Western Europe and Eastern Asia (Figs. 5b and 5¢).
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The impacts of the changes in short-lived air pollutants on global CH4 budget have attracted increasing

attention in recent years (Peng et al., 2022; Zhao et al., 2025), where NOy is one of the most important

drivers. However, it should be noted that the sensitivity of CHy lifetime to NOx emissions varies

substantially among atmospheric chemistry models from -25% to -46% in response to the total NOy

changes from pre-industrial to present-day period (Thornhill et al., 2021). Because few studies

investigated how NOy from agricultural sources affects CHy, it is difficult to assess if the overall impacts

of SNOy-Fer on CH4 presented in this study based on the GEOS-Chem model are underestimated or

overestimated, even though certain uncertainties are expected. Nevertheless, our results indicate that

SNOy-Fer could be one uncertain but important source in calculating future changes of the global CHy

budget, the importance of which could be increasing with future continuing reduction in fossil-fuel NOx

emissions (Rao et al., 2017)

Beyond the uncertainties remaining in different SNO,-Fer estimating approaches, an important but also

difficult question is how to better evaluate the performances of each methods, especially in the regional

and global scales. The first-hand meta-data collected from the field experiments is actually not an

independent source, as it has been used to establish both of the linear and nonlinear EF methods. More

importantly, most of the field experiments are manipulation experiments with artificial fertilizer

gradients, which may not fully represent the real-world spatiotemporally varied SNO-Fer. Furthermore,

we use Os data from the national or continental air quality observational networks to evaluate simulated

O; concentrations as a potential consistency check of the SNO.-Fer (Fig. S7). However, the

uncertainties in SNOx-Fer are expected to be far less important relative to the uncertainties in the

nonlinearity of atmospheric chemistry, emissions of BVOCs or the deposition processes, which together

determined the biases between observational and simulated O; concentrations. As a result, it is

inappropriate to determine the best SNO,-Fer estimate as the one with the best statistic metrics in Os

simulation. Moreover, most of the sites that monitoring air pollutants are located in the urban regions,

where the industrial impacts are far more important than the agricultural sources. A real-time O;

observational network in the cropland or pasture would be crucial to advance the understandings in

SNO\-Fer and the associated impacts on air quality. Last but not least, the top-down retrievals of NOy

emissions based on satellite NO, products could also have the potential to better constrain SNO-Fer,

while gaps remained in how to precisely isolate the soil NOy emissions (Bertram et al., 2005; Lin et al.,

2024) and even the fertilizer contributions from the total NOy sources. Synergizing spatiotemporally

detailed fertilizer management dataset with the top-down NO retrievals with ultra-high resolutions,

where the atmospheric NOy can be assumed to be dominantly affected by the soil sources in agricultural

regions, could be one possible solution. However, more work is needed to integrate such a big data in

the future.

To summarize, with a comprehensive investigation of different approaches to describe SNOy-Fer, our

results revealed the uncertainties in quantifying SNOy-Fer and associated important implications in
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simulating regional air quality and the global greenhouse gas CHjthe-assectatedimpertantunecertainties

H.,. However, the limited number of

field experiments impedes accurate assessments of the soil NOy responses to N fertilizer application as
well as improving its representation in both CTMs and TBMs, resulting in large uncertainties in
estimates of N fertilizer-induced soil NOx emissions. We thus highlight the essential necessity to
integrate knowledge between agricultural data, atmospheric chemistry modelling and soil
biogeochemistry to better represent soil NOx emissions in models and improve our understanding of the

associated effects on air quality and the global CH4 budget.
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