
1 
 

Response to Referee #2 

Title: Uncertainties in fertilizer-induced emissions of soil nitrogen oxide and the associated impacts 
on ground-level ozone and methane 

MS number: egusphere-2025-1416 

Authors: Cheng Gong, Yan Wang, Hanqin Tian, Sian Kou-Giesbrecht, Nicolas Vuichard, and Sönke 
Zaehle 

 

Comments: 

The manuscript titled “Uncertainties in fertilizer-induced emissions of soil nitrogen oxide and the 
associated impacts on ground-level ozone and methane,” written by Gong et al., quantifies the 
uncertainties in soil NOx emissions induced by N fertilizer application (SNOx-Fer) using different 
estimation approaches and investigates the associated impacts on the simulation of global O3 and 
CH4 concentrations. Overall, this manuscript is well-structured, and the conclusion is important. 
However, I would like to raise two major concerns and several minor suggestions for improvement. 

Response: 

We appreciate reviewer’s acknowledgment on the importance of our work and the constructive 
comments to help further improve this work. The manuscript has been revised accordingly. Please see 
our point-to-point response below. 

 

Major concerns: 

I can tell by Figures 2, 3, 4, and Section 4.2 that, in general, regions with higher SNOx-Fer have higher 
O3 enhancement. Is this an approximately linear relationship? Does this relationship vary across 
different sensitivity experiments and different regions? Providing a more detailed analysis of the 
response of the O3 simulation to NOx estimations would further highlight the importance of this work. 
The same concern also applies to the OH/CH4 simulation. 

Response: 

Thank you for this valuable point. The responses of O3 to NOx changes could vary a lot depending on 
the local NOx/VOC ratios, the magnitude of NOx perturbation and metrological variations. Therefore, 
it is not a simply linear relationship. We agree that the analysis you suggested could help us better 
understand O3 in which region is more sensitive to the SNOx-Fer changes, at least in the GEOS-Chem 
model. Here we further examined the monthly MDA8 O3 changes in response to SNOx-Fer across all 
simulated grids in four representative hotspot regions (Fig. R1). Our results show the sensitivities of O3 
to SNOx-Fer changes are all positive, i.e. O3 increase with enhanced SNOx-Fer, which might because 
of the relatively coarse resolution, but vary a lot among different regions and different SNOx-Fer 
estimating approaches. The Eastern U.S. in general has the strongest sensitivity, while sensitivities in 
the rest three regions are similar. Nevertheless, the R2 of the linear regressions are not very high (0.04-
0.68), indicating the strong non-linearity behind the O3-NOx-VOCs chemistry.  
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Figure R1. The sensitivity of changes in monthly MDA8 O3 concentrations (ppbv) to the SNOx-Fer 
changes (μg N m-2 s-1) among different approaches in four agricultural hotspot regions. Each dot 

indicates the monthly SNOx-Fer emissions and associated monthly MDA8 O3 changes induced by 
SNOx-Fer on a simulated grid. The different SNOx-Fer estimating approaches are indicated by lines 

with different colors.   

 

Similar patterns are also found in the response of OH to SNOx-Fer changes (Fig. R2). Furthermore, 
because CH4 has much longer lifetime and thus the atmospheric transport could smooth the local CH4 
changes induced by varied OH, the regional CH4 changes are more determined by the global signals 
rather than local SNOx-Fer perturbation. Nevertheless, we could still find discrepancies in the responses 
of ground-level CH4 to SNOx-Fer among different regions and different SNOx-Fer estimates (Fig. R3), 
indicating the strong non-linearity in CH4-OH-NOx chemistry.  
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Figure R2.  The sensitivity of changes in monthly column OH concentrations (*1015 molec m-2) to the 
SNOx-Fer changes (μg N m-2 s-1) among different approaches in four agricultural hotspot regions. 

Each dot indicates the monthly SNOx-Fer emissions and associated monthly OH changes induced by 
SNOx-Fer on a simulated grid. The different SNOx-Fer estimating approaches are indicated by lines 

with different colors.   

 

 

Figure R3. The sensitivity of changes in monthly ground-level CH4 concentrations (ppbv) to the 
SNOx-Fer changes (μg N m-2 s-1) among different approaches in four agricultural hotspot regions. 
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Each dot indicates the monthly SNOx-Fer emissions and associated monthly CH4 changes induced by 
SNOx-Fer on a simulated grid. The different SNOx-Fer estimating approaches are indicated by lines 

with different colors. 

 

We have added discussions about this: 

‘This range of responses leads to an enhancement in summertime surface MDA8 O3 concentrations of 
0.3 1 ppbv to 3.3 ppbv (0.2%-7.0%) in agricultural hotspot regions. The O3 enhancement is highest in 
eastern U.S., while it is not only determined by the SNOx-Fer emissions, but also the diverging 
sensitivities of O3 to NOx depending on different chemical regime in GEOS-Chem (Fig. S6). The 
varied SNOx-Fer estimates also lead to a reduction in global CH4 concentrations of 6.7 ppbv (0.4%) 
to 16.6 ppbv (0.9%) …’ 

 

In Lines 125–129, the growing season is defined using monthly-mean 2-meter temperature and leaf 
area index instead of using some crop calendar datasets. While this approach is straightforward and 
climate-driven, it may oversimplify the actual crop phenology in diverse agricultural systems. Given 
that the rates of N inputs are set to zero during the non-growing season, this definition directly controls 
the temporal pattern of fertilizer application and thus significantly affects the estimates of fertilizer-
induced NOx emissions. If crop-specific growing seasons are not distinguishable in this study, the 
authors should at least discuss the potential implications of this assumption in the discussion section. 

Response: 

We acknowledge that reviewer raised an important issue when applying the EF method to assess SNOx-
Fer, while the rest SNOx-Fer estimating approaches in this study are not dependent on this growing 
season definition. However, we are afraid that the more detailed crop calendar dataset (e.g. Minoli et 
al., 2019; Minoli et al., 2022) may still not be sufficient. It is not only because the consistent calendar 
datasets of pasture and rangeland are not available, but more importantly, the fertilizer management 
(e.g. how was the annual total fertilizer application distributed across months) should be the key factor 
that influence the seasonal cycles of SNOx-Fer. However, to our knowledge, the dataset that records 
the seasonal fertilizer distribution is not available yet.  

The definition of growing season used in this study is not only depending on the climate, but also relies 
on the realistic plant greenness index (e.g. LAI). Such method is also widely used to identify the 
phenology of agricultural land cover (e.g. used by the Food and Agriculture Organization of the 
United Nations 
https://agriculture.africageoportal.com/datasets/d9944082e3c6421098464b1016fbae58/about). As this 
study only focus on the annual and monthly (not day-to-day) variations of SNOx-Fer, we believe that 
such simplified definition is sufficient to capture the dominant pattern.  

We have explicitly addressed the seasonality analysis among different SNOx-Fer approaches in the 
revised manuscript (Sect. 4.2 and Figs. 4-5. See the response to Reviewer #1). We discuss the 
uncertainties induced by the definition of growing season in the revised manuscript as below: 

‘In the EF approaches, the growing season is determined only by temperature and greenness in this 
study, which could result in a mismatch with the real crop or pasture calendar, especially ignoring the 
multiple-harvest crops per year. A refined calendar could further improve the prediction of SNOx-Fer 
seasonality.’ 

 

Minor points: 
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Are there any top-down methods for estimating NOx emissions? If so, it would be beneficial for the 
authors also to describe it in the introduction, allowing for a more comprehensive review of the 
estimation approaches. 

Response: 

Top-down method could more precisely assess the total NOx emissions from all sources. However, 
distinguishing different sources is always challenging. Although there are some studies are able to 
isolate soil NOx emissions by assuming the fossil-fuel emissions inventory is accurate or only applying 
the retrieval in pixels without significant industrial activities (e.g. Bertram et al., 2005; Lin et al., 2024), 
it is still very difficult to further isolate the background and fertilizer-induced soil NOx emissions.  

We have added it as a discussion point in the revised manuscript: 

‘…. Last but not least, the top-down retrievals of NOx emissions based on satellite NO2 products could 
also have the potential to better constrain SNOx-Fer, while gaps remained in how to precisely isolate 
the soil NOx emissions (Bertram et al., 2005; Lin et al., 2024) and even the fertilizer contributions from 
the total NOx sources. Synergizing the top-down NOx retrievals with ultra-high resolutions, where it 
can be assumed that the atmospheric NOx is dominantly affected by the soil sources in agricultural 
regions, with spatiotemporally detailed fertilizer management dataset could be one possible solution. 
However, more work is definitely needed to integrate such a big data in the future.’ 

 

Section 2.2: Consider also adding one or two sentences to describe why this specific inventory is chosen. 

Response: 

We have added the reason as: 

‘We use the CEDS (Hoesly et al., 2018) for assessing  the fertilizer-induced soil NOx emissions in the 
emission inventories. CEDS is one of the most state-of-art emission inventories that comprehensively 
assess the sources of dominant air pollutants from pre-industrial period to present days, which has been 
used as the standard emission inventory to drive CMIP6 models.’ 

 

Figure 1: Consider merging (a) and (b) into a single figure using a secondary Y-axis for fertilizer input, 
which would help the reader better interpret the relationship between nitrogen inputs and SNOx-Fer 
across approaches.  

Response: 

We have revised the Fig. 1 following both of your and the other reviewer’s comment as: 
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Figure 1. Global estimates of N fertilizer-induced soil NOx emissions by different approaches. The 

black line (right Y axis) indicates global annual-mean N synthetic fertilizer and manure inputs over 

1950-2019 assessed from the HaNi dataset. The rest lines (left Y axis) indicate the N fertilizer-

induced soil NOx emissions over 1950-2019 estimated by different approaches, including emission 

inventory (CEDS), linear and non-linear EF, the widely-used CTM parameterization with coarse 

resolution (2°×2.5°, BDSNP_corase), fine resolution (0.5°×0.625°,BDSNP_fine) and interannually 

varied N availability (BNDSP_corase_scaled),  and the TBM ensembles (NMIP2). The light cyan 

shadows indicate the spread across three different TBMs in NMIP2.  

 

 

Section 4.2 and 4.3: When reporting changes in O3 and CH4 concentrations, consider also providing 
percentage changes rather than only providing the ppbv changes. 

Response: 

The percentage changes relative to the simulated concentrations have been added accordingly. 

 

The HaNi dataset provided N inputs for cropland, pasture, and rangeland. Consider also providing the 
NOx emissions from cropland, pasture, and rangeland in the Supplementary Information. 

Response: 

Added. 
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Figure S2. The spatial patterns of SNOx-Fer in pasture, rangeland and crops estimated by linear EF 
and non-linear EF approaches in 2019. The global total budget of each estimate is given in the sub-

titles. 

Given the large differences in simulated surface O3 concentrations across the different SNOx-Fer 
estimation methods (e.g., Fig. 3 and 4), it would be valuable to include a brief comparison with surface 
O3 observations. While a full validation is beyond the scope of this study, even a qualitative comparison 
could help indicate which NOx emission estimation method may better reproduce observed O3 levels 
in key agricultural regions. 

Response: 

We compared our simulated summertime monthly MDA8 O3 concentrations against the ground-level 
observations in Eastern U.S. (https://www.epa.gov/aqs), Western Europe (https://ebas-
data.nilu.no/Default.aspx) and China (https://www.cnemc.cn/en/) (Figure S7).  The site-level 
observational O3 concentrations are averaged on each simulated grid. Note that the differences in SNOx-
Fer estimates are not sufficient to explain the model systematic bias, but they are likely induced by 
uncertainties in other processes such as non-linear chemistry, transport and deposition.  

We think it is an open question about how to properly evaluate which SNOx-Fer approaches are accurate. 
As we also mentioned above, the high-resolution top-down NOx retrievals could be another possible 
solution but there are also uncertainties in how to precisely isolate the SNOx-Fer from the total NOx 
emissions. We are glad to add discussions in the end to point out this question: 

‘Beyond the uncertainties remaining in different SNOx-Fer estimating approaches, an important but also 
difficult question is how to better evaluate the performances of each methods, especially in the regional 
and global scales. The first-hand meta-data collected from the field experiments is actually not an 
independent source, as it has been used to establish both of the linear and nonlinear EF methods. More 
importantly, most of the field experiments are manipulation experiments with artificial fertilizer 
gradients, which may not fully represent the real-world spatiotemporally varied SNOx-Fer. Furthermore, 
we use O3 data from the national or continental air quality observational networks to evaluate simulated 
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O3 concentrations as a potential consistency check of the SNOx-Fer (Fig. S7). However, the 
uncertainties in SNOx-Fer are expected to be far less important relative to the uncertainties in the 
nonlinearity of atmospheric chemistry, emissions of BVOCs or the deposition processes, which together 
determined the biases between observational and simulated O3 concentrations. As a result, it is 
inappropriate to determine the best SNOx-Fer estimate as the one with the best statistic metrics in O3 
simulation. Moreover, most of the sites that monitor air pollutants are located in the urban regions, 
where the industrial impacts are far more important than the agricultural sources. A real-time O3 
observational network in the cropland or pasture would be crucial to advance the understandings in 
SNOx-Fer and the associated impacts on air quality. Last but not least, the top-down retrievals of NOx 
emissions based on satellite NO2 products could also have the potential to better constrain SNOx-Fer, 
while gaps remained in how to precisely isolate the soil NOx emissions (Bertram et al., 2005; Lin et al., 
2024) and even the fertilizer contributions from the total NOx sources. Synergizing spatiotemporally 
detailed fertilizer management dataset with the top-down NOx retrievals with ultra-high resolutions, 
where the atmospheric NOx can be assumed to be dominantly affected by the soil sources in agricultural 
regions, could be one possible solution. However, more work is needed to integrate such a big data in 
the future.’ 

 

Figure S7. The comparison of monthly-averaged O3 MDA8 concentrations between site-level 
observations and the GEOS-Chem simulations. The observational dataset in Eastern U.S., Western 

Europe and China are assessed via the Air Quality System (AQS, https://www.epa.gov/aqs), European 
Monitoring and Evaluation Programme (EMEP, https://ebas-data.nilu.no/Default.aspx) and China 

National Environmental Monitoring Centre (CNEMC, https://www.cnemc.cn/en/), respectively. Each 
dot indicates one simulated grid, where the observed O3 concentrations are calculated by averaging all 

observational sites. The GEOS-Chem sensitivity experiments with different SNOx-Fer estimating 
approaches are indicated by different colors. 
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