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Abstract. Marine primary organic aerosols (POA) are important components of the marine climate system, regulating solar
radiation budget and cloud dynamics. Despite their importance, there is a lack of extensive long-term observations of POA
properties, introducing great uncertainty in their parameterization in models. The lack of information originated from the
complexity of POA chemical composition, very few long-term high-resolution measurements of clean marine air, and the
difficulty in performing source apportionment techniques over a long-term period. In this study, we utilize a comprehensive
high-resolution time-of-flight aerosol mass spectrometer dataset spanning a decade (2009-2018) and introduce a machine
learning approach to differentiate-and-quantify-thecontribution-of-distinguish between marine POA fror-and marine secondary
organic aerosol (SOA). Results indicate that marine POA concentrations peak during summer months and reach lowest levels
in winter. On average, marine POA constitutes 51% (ranging from 21% to 76%) of the marine organic aerosol annually and
up to 63% (48% to 75%) in summer. With the differentiated POA and SOA, we found diverse impacts of POA and SOA on
aerosol hygroscopicity and mixing state. Increase in POA reduces the hygroscopicity and leads to external state of mixing,
while the increase in SOA sustains the relatively high hygroscopicity and leads to internal mixing. This study provides
observational dataset for marine POA and SOA and their diverse impacts on aerosol hygroscopicity, emphasizing a better
appreciation of marine POA and SOA to improve the climate projections.

1 Introduction

Marine aerosols constitute a large portion of the global aerosol budget and are pivotal in regulating the Earth’s climate system
(Fitzgerald, 1991; O’Dowd and Leeuw, 2007). It has been known for quite some time that marine aerosols contain a significant
amount of organic matter (Blanchard, 1964). Cavalli et al. (2004) and O’Dowd et al. (2004) show the great contribution of
organic matter in the Northeast Atlantic marine aerosol during periods of high biological activities. These marine organic

aerosol originates from two sources: (1) bubble bursting that scavenges surface-active organic matter and other biogenic
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materials (bacteria, viruses and detritus), producing primary organic aerosol (POA) (Barger and Garrett, 1970; Blanchard,
1964; Blanchard and Woodcock, 1957); (2) oxidation of marine volatile organic compounds (VOCs) such as dimethy! sulfide,
aliphatic amines, isoprene and monoterpenes, which can form secondary organic aerosol (SOA) (Bates et al., 1992; Bonsang
et al., 1988; Charlson et al., 1987; Facchini et al., 2008; Meskhidze and Nenes, 2006; Wohl et al., 2023; Zheng et al., 2020).

Marine POA is crucial for regulating cloud properties, acting as cloud condensation nuclei (CCN) or ice nuclei (IN).
Ovadnevaite et al. (2011a) documented a marine POA plume with a peak POA concentration of up to 3.8 pg m in Northeast
Atlantic, which is comparable to levels found in European continental air. Ovadnevaite et al. (2011b) further highlighted that
marine POA has low hygroscopicity but high CCN potential. Additionally, sea spray tank experiments have demonstrated a
significant correlation between seawater nanophytoplankton cell abundances and sea spray CCN number fluxes (Sellegri et
al., 2021).

Incorporating marine POA into global models necessitates a comprehensive understanding of source strength and
environmental response of POA. O’Dowd et al. (2008) proposed an integrated organic-inorganic sea spray source function
that accounted for a size-dependent contribution of POA to total sea spray aerosol. Further parameterization efforts have
considered factors such as chlorophyll-a concentration and wind speed (Gantt et al., 2011; Gantt et al., 2012; Rinaldi et al.,
2013), which have been integrated into global chemical transport models. However, the influence of marine biota on the
chemical composition and cloud activation properties of POA remains a contentious topic. O’Dowd et al. (2015) observed

significant changes in the CCN activities of sea spray aerosol during a phytoplankton plume over Northeast Atlantic, whereas

Quinn et al. (2014) and Bates et al. (2020) reported no substantial alterations in CCN activity over Northwest Atlantic.

In summary, the source intensity, chemical composition, mixing state, and cloud condensation activation potential of marine
POA remain poorly understood (Gantt and Meskhidze, 2013) with large discrepancies between modelled and measured POA
(Gantt et al., 2015). A major challenge in improving POA parameterization and modelling is the lack of long-term datasets,
which are critical for both understanding the environmental drivers of POA emissions, and developing emission schemes for
regional or global chemical transport models. The majority of the available data, such as that in Rinaldi et al. (2013), are
derived from filter measurements that require extended sampling durations and result in low time resolution (days to weeks).
Although filter-based methods can distinguish POA from SOA by using chemical molecular fingerprints (O’Dowd et al.,
2004), they suffer from low temporal resolution, limiting their ability to capture dynamic changes in aerosol composition

(minutes to hours).

The deployment of the Aerosol Mass Spectrometer (AMS) in both coastal and remote marine atmospheres has provided an
opportunity to improve the POA parameterization and refine model predictions (Choi et al., 2017; Huang et al., 2018;
Ovadnevaite et al., 2014; Saliba et al., 2020; Sanchez et al., 2020; Schmale et al., 2013; Willis et al., 2017). The AMS enables
near-real-time measurements of aerosol chemical composition (DeCarlo et al., 2004, 2006), including organic aerosol (OA),

non-sea salt sulfate (nss-SO.), ammonium (NHs.), nitrate, methanesulphonic acid (Ovadnevaite et al., 2014) and sea salt
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(Ovadnevaite et al., 2012). While POA and SOA can be differentiated using their mass spectra fingerprints through positive
matrix factorization (PMF), this method faces challenges in high time resolution long-term data sets due to the required

workforce and computational cost (Chevassus et al., 2024).

In this study, we developed a machine learning (ML) model to differentiate the contributions of marine POA and SOA from
the measured total marine OA, using long-term marine aerosol measurements obtained by an AMS at the Mace Head
Atmospheric Research Station. This model effectively identified and quantified contributions from the marine POA from SOA.

The impacts of POA and SOA on aerosol hygroscopicity were then investigated.

2 Methods
2.1 Data and instrumentation

Aerosol measurements were conducted at the Mace Head Atmospheric Research Station (53°19’ N, 9°54’ W) on the west coast
of Ireland from 2009 to 2018. The station, regularly exposed to clean marine air masses from the North Atlantic, has been a

representative site for studying clean marine acerosols for several decades (O’Dowd et al., 2014).

We employed a High-Resolution Time-of-Flight AMS (DeCarlo et al., 2004) at Mace Head (Ovadnevaite et al., 2014) to
measure the PM; (particulate matter with diameter smaller than 1 pm) chemical composition including organic acrosol (OA),
non-sea-salt sulfate (nss-SO4), sea salt, methanesulfonic acid (MSA) (Ovadnevaite et al., 2014), ammonium (NH,), and nitrate
(NO3). Additionally, black carbon (BC) was measured using a Multi-Angle Absorption Photometer (MAAP) to trace
anthropogenic emissions. Meteorological conditions were also recorded, including air temperature, pressure, precipitation,

relative humidity, wind speed, and wind direction.

The humidified tandem differential mobility analyzer (HTDMA) (Swietlicki et al., 2000) was used to measure aerosol<
hygroscopic growth at a fixed relative humidity of 90% for aerosol with selected dried sizes of 35, 50, 75, 110, and 165 nm.
The growth factors measured by HTDMA were inverted using a piecewise linear function (Gysel et al., 2009)and-converted

1

~a,b _
C'F;naan - ?’Lf”'b

b
J’ GF ¢(GF,D)dGF
a

The arithmetic mean GF (GFmean) Was calculated as:

GFean = f GF c(GF,D)dGF

(st o BRE: 02H




90

95

|100

105

110

To quantify the mixing state, the GF spread factor (SF), defined as the standard deviation of the GF-PDF divided by the GFmean,

was calculated as:

(2 (GF = GFpean)? c(GF, D)AGF)""”

SF
GFmean A

The GF was measured at 90% RH, however, the RH of the second DMA fluctuated slightly with the ambient temperature. The

data between 88-92% RH were corrected using the k-K&hler theory according to formula derived from Petters and Kreidenweis

(2007):
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where ay, is the water activity, and obtained by K&hler theory:
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Where o5 is the surface tension of the droplet, vy is the partial molar volume of water, R is the universal gas constant, T is the

temperature, and D is the diameter of the droplet. The surface tension is assumed to be 0.072 mN m-%.

Data from the AMS and MAAP data-were averaged to a 10-minute resolution, while the meteorological records were initially
recorded hourly and later downscaled to 10-minute intervals using linear interpolation to enlarge the dataset’s availability. Any
gaps in the AMS or MAAP data that contain invalid measurements were removed. Hourly boundary layer-tayer heights were
obtained from ERA5 (Hersbach et al., 2020) and downscaled to 10-minute resolution using linear interpolation.

2.2 Clean sector criteria and machine learning strategy

To differentiate between marine POA and SOA in Mace Head atmospheric research station (MHD), this study employs an ML

model to predict the mass concentration of marine SOA. Subsequently, POA concentrations are obtained by subtracting SOA
from the measured total OA. Marine SOA was chosen as the ML model predictor, because SOA is expected to be impacted

by environmental factors and less is known about POA, emission strengthen and source regions. To ensure the high quality of

the SOA production period, we implemented multiple screening criteria to minimize the influence of anthropogenic and marine
primary signatures. First, we applied clean sector criteria, limiting BC concentration to less than 15 ng m-3 and selecting wind
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direction between 190 and 300 <(O’Dowd et al., 2014), to exclude continental outflows and ship plumes. The clean sector
criteria, which have been established and applied in various MHD research studies (O’Dowd et al., 2014; Ovadnevaite et al.,

2014; Xu et al., 2022), were employed to isolate marine air masses from anthropogenic influences.

We then applied additional filtering processes to reduce the impact of POA production. We further refined the data by keeping
instances with wind speed below 6 m/s and sea salt mass concentration under 0.03 pg m to minimize the concentration of
marine POA. Finally, we retained only those data points where nss-SO4 was the dominant component (nss-SO4/OA > 4) to
ensure a predominantly secondary source. We presumed that in these selected data, OA was predominantly SOA, with the
contribution of POA represented by a minor and constant background concentration (POAug).

Subsequently, we employed a support vector regression (SVR)_(Awad et al., 2015) trained on these rigorously selected SOA
production periods. SVR was chosen for its generlizabilitygeneralizability in handling small datasets and its resistance to
overfitting (Ghimire et al., 2022; Juang and Hsieh, 2009). Unlike tree-based models like random forest (Breiman, 2001), SVR

model can predict continuous values (Ma et al., 2003; Tang et al., 2024). The hyperparameters, including the penalty coefficient

(C) and gamma (y) of the Radial Basis Functions (RBF) kernel were tuned via grid research. The model targeted OA
concentration, using nss-SO4, MSA, NH., and meteorological parameters (temperature, relative humidity, boundary layer
height, wind direction, and pressure) as predictors. We also included hours of the day to capture diurnal variations. Predictors
not directly linked to secondary production, e.g., sea salt, NOs, and BC, are excluded to avoid over-fitting and ensure
generalizability, even though including these might have enhanced the model performance in the training dataset. Wind speed

was used to select the SOA production period, therefore, it was not suitable as a predictor. A summary of the variables

employed as predictors is shown in Table 1. The SVR were trained using ‘tidymodel 1.3.0° framework using R programming
software (version 4.4.3).

Table 1. Predictors used for SOA ML model.

Predictors Acronyms Source Rationale

Hour of the day hour to capture any diurnal
pattern

nss-SO4 SO4 AMS measurement Secondary aerosol marker

MSA MSA AMS measurement Secondary aerosol marker

NH4 NH4 AMS measurement Secondary aerosol marker

Temperature temp Meteorological records Known to influence
secondary processes

Rain rain Meteorological records Related to wet removal

wind direction wddir Meteorological records Related to sources -

Boundary layer height blh ERAJ5 reanalysis Related to concentration

(tattemis
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The selected SOA production periods were split by the year 2015: data before 2015 were used to train the modelmede. The
training dataset covered a significant fraction of the variabilities of predictors, as illustrated in Fig. S1. The hyperparameters
of the SOA-SVR model were optimized using grid search and 5-fold cross validation. The data after 2015, which was unseen
for the training process, was used to challenge the model’s generalizability. Overall, there are 1700 hours of SOA production
periods, and 477 hours (27.8%) after 2015.

A schematic diagram of the proposed methodology is shown in Fig. 1. Initially, the clean marine dataset was extracted by
applying the clean sector criteria, followed by additional filtering processes to minimize the influence of POA. To assess the
representativeness of the selected data as secondary sources, the Fuzzy C-Means (FCM) clustering method _(Bezdek et al.
1984) was utilized. Subsequently, data were divided into training, validation, and test sets for ML, with SOA (including minor
POAy) as the predictive variable. To mitigate experimental uncertainties, cross-validation and Monte Carlo simulations were
performed. The study further investigated the magnitude of the POAy, values. Finally, ML method was applied on the clean
marine air masses data to predict marine SOA concentrations, enabling the differentiation of marine POA concentrations within

the total marine OA.
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Figure 1. The proposed data processing and model construction workflow. POAbg represents the assumed constant POA background
concentration. ML (chem + met + time) represents the machine learning model that uses chemical composition, meteorological and
time parameters as predictors.

2.3 Fuzzy-C Means clustering

FCM is a clustering algorithm that enables the grouping of data points into multiple clusters with varying degrees of
membership. Unlike traditional hard clustering techniques, where each data point is assigned to a single cluster, FCM assigns

membership levels to each data point, indicating the degree to which it belongs to each cluster. This soft clustering approach
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is particularly useful when dealing with complex datasets where boundaries between clusters are not well-defined or overlap
significantly. By optimizing an objective function that minimizes the weighted sum of squared errors, FCM iteratively updates
the cluster centers and membership degrees, providing a flexible and robust means of uncovering underlying patterns and
structures within data. In this study, the input variables for the FCM model included chemical components (SeaSalt, Org, NO3,

S04, NH4, MSA, and BC), as well as meteorological parameters — temperature (temp), relative humidity (rhum), wind speed

(wdsp), and wind direction (wddir). We randomly selected 10,000 samples and retained only those with positive concentrations

for all chemical components. The data were then log10-transformed and Z-score standardized. The FCM model was configured

with 5 clusters, a fuzziness exponent of 1.2, and Euclidean distance as the distance metric.

3 Results and Discussions
3.1 Performance of ML model in SOA production period

We first examined the aerosol composition in the selected secondary marine aerosol dataset. In these SOA production periods,
nss-SO4 constituted 68.9 +8.7% of the PM1 mass, followed by OA at 12.1 +3.4%, and MSA at 6.8 +4.0%. The average
concentration of sea salt and wind speed were 0.015 +0.009 ug m= and 4.6 1.2 m/s, respectively. The MSA to nss-SOs ratio
was 0.10 £0.06, aligning with previous findings at the same site (Ovadnevaite et al., 2014). BC concentrations remained well
below the 15 ng m= threshold, averaging at 6.0 3.7 ng m*3. Taken together, this chemical composition indicates the selected

data mainly originated from secondary sources.

To ensure the representativeness of the selected training data as secondary sources, we applied FCM method on the clean
marine dataset to identify the characteristics of chemical and meteorological parameters from typical sources. Compared to
more conventionally used k-means clustering, FCM allows data instances to belong to multiple clusters with varying degrees
of membership (or probability). The membership is used to determine how strongly each data instance belongs to each cluster.
The FCM clustering, which is independent of the selection of SOA production periods, provides further validation and
examination of the data selection for model training. We selected those with any cluster membership higher than 80% to show
the clustering center of each cluster. As shown in Fig. S2a, the 2" factor, which is featured by low sea-salt, low wind speed
and high temperature, is most likely to be of the secondary origin. This factor also showed high MSA and nss-SO,, supporting
the selection criteria for SOA production period. Indeed, the highest possibility of the selected training data is found to be the

2 factor (Fig. S2b), reaffirming the SOA production characteristics.

Subsequently, we employed the SVR model, leveraging the clean marine dataset, to predict OA (SOA + POA,) concentrations.
Cross-validation yields Pearson’s R of 0.97 for training and validation datasets, demonstrating the model’s accuracy in

predicting total OA (SOA + POAp,)OA concentration using the selected predictors. The slopes between estimated SOA

+POAsg and measured OA were 0.97 for both the train-training and validation data, indicating robust pattern recognition across
most concentration ranges. The model also exhibited great generalizability and performed consistently well on an unseen

8
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185 dataset (Fig. 2c), with a Pearson’s R value of 0.94 and a slope of 0.98 between observed OA and estimated SOA + POAny,

reaffirming the model’s efficacy in modeling the complex dynamics of SOA.
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Figure 2. Observed OA versus predicted (SOA +POAxyg) for (a) training, (b) validation and (c) test datasets. Data density is illustrated
190 using a color gradient with darker colour indicating lower data density. Black lines denote the 1:1 correspondence lines, blue lines

represent regression lines.

Permutation importance analysis highlighted nss-SO4 and MSA as the most influential variables, followed by NH4 (Fig. S3a).
Partial dependent plots (Fig. S3b) indicate a nonlinear relationship between SOA and increasing levels of nss-SO4 and MSA.
While these plots do not imply a causal relationship, they highlight the complexity of the interactions and underscore the
195 importance of employing a machine learning model to effectively capture such intricate patterns. Various meteorological

parameters were also found to influence SOA concentration, especially relative humidity and precipitation, but to a lower

9



extent. It should be noted that the nss-SO4, which albeit being marine secondary species, exhibit different formation dynamics

and timescales with marine SOA, which might induce some extent of uncertainty. However, both marine SOA and nss-SO4

might originateeriginated from marine biological activities. Furthermore, marine air masses arrivingarrived in MHD isare
200 expected to advected over Northeast Atlantic for several days. The use of nss-SO4 can also be supported by the high correlation

between nss-SO4 and MSA, which exhibit different atmospheric formation dynamics.
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Figure 3. (a) the relative importance of different predictors. The hour and month were transformed with cosine functions. The month

and hour were transformed to preserve continuity in the data. (b) The partial dependence of estimated SOA to different predictors.
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numerically far apart while they are temporally close. FhereforeTherefore, the hour of the day to periodic functions is simulated

with cosine functions hour = cos(hour*(2pi/12) ).

In this study, one of the major assumptions of this approach is to assume that the OA in the selected secondary marine data for
training the model is dominated by SOA. To evaluate the potential influence of POA contributions in those secondary marine
data cases on entire clean marine dataset, we conducted a sensitivity analysis. We assumed that POApg constitutes 5% to 30%
of OA. As shown in Fig. S4S3, compared to the original assumption, the monthly averaged concentration of POA
systematically increased throughout most of the year, except during winter, when alternative assumption predicted POA
concentrations lower than 0, which is, of course, non-physical. Then, we applied the model on the entire clean marine dataset
and tried different fixed POAu values iteratively. As shown in Fig. S554, the POApg of 0.01 pg m™ yields the least nonphysical
predictions (either POA or SOA lower than 0). Therefore the POAyg of 0.01 pug m™ was used in the following calculation.
Based on this strategy, SOA concentrations were predicted, enabling the estimation of POA concentrations. Furthermore, if
POA production period is defined as periods with POA concentrations exceeding 0.1 pg m-3 for more than 12 hours, there
were more than 60 such POA production periods during the 10-year period (Fig. S6S5). Detecting these POA production

periods allows for detailed characterization, potentially enhancing its parameterization.

Note that the measurement itself contains relatively large uncertainty, compared to summertime measurement. Indeed, we
manually tuned the POAyg value to minimize the negative values. This is supported by previous studies that marine is a large
organic pool (Quinn et al., 2014). Given the inherent uncertainties in aerosol measurements, as well-documented in previous
study (Ovadnevaite et al., 2014), we further quantified the uncertainties associated with ML model using Monte Carlo
simulations. To do this, we performed a robustness test by randomly validating the model 1000 times, each time excluding
20% of the data from the training set. The lower and upper limits of the estimated POA seasonality are shown in Fig. S7S6,
which is similar to the original model. The Monte Carlo ensembles demonstrated negligible differences in the contribution of

POA, indicating stable model performance across different scenarios. While it should be noted that the Monte Carlo

bootstrapping is used to assess the random uncertainties, potential uncertainties associated with possible systematic
uncertainties requirereguires further investigationinvestigations.

To validate the ML-based POA concentrations, we further compared it with PMF-based POA concentrations from Chevassus
etal. (2024). The PMF-based source apportionment was conducted for about one month. The Pearson’s correlation coefficient
between ML-based POA and PMF-based POA was about 0.91, indicating strong agreement between the two methods (Fig.
43). Compared to the conventional AMS-based OA source apportionment techniques, e.g., PMF, this ML approach requires
significantly fewer computational resources and is less dependent on detailed knowledge of the mass spectra signatures of
marine POA and SOA. For example, the model performed equally well even after removing MSA as a predictor (Fig. S8S7).
Given that MSA can only be resolved by high-resolution AMS, this suggests that our approach could be extended to Aerosol

Chemical Species Monitor (ACSM) data, which is more affordable and widely used but has lower mass resolution. This would

11
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enable broader applications of our method, offering a more comprehensive understanding of marine POA over global oceans.
Finally, although secondary production of OA and nss-SO. rely on similar meteorological conditions, it should be noted that
many marine VOC species do not share the same sources and oxidization pathways as DMS and its derivatives. For example,
some VOCs are produced by different organisms or abiotically from sea surface microlayer (Ciuraru et al., 2015; Mungall et
al., 2017), which could introduce additional uncertainty in the SOA quantification based on high nss-SO. periods, which adds

to the uncertainty for POA attribution as well.
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Figure 43. The comparison between machine learning-derived POA and HR-PMF POA. The HR-PMF POA data is taken from
Chevassus et al. (2024). The blue line is regression line and grey area represents 95% confidence interval. The black line represents

1:1 line. Pearson’s correlation coefficient and the equation of regression line are shown in the top left.

3.2 Case study and long-term seasonality

The evaluation of the model’s performance has shown a clear relationship between SOA and the predictor variables in the
chosen SOA production period. Assuming there is little and constant contribution from POApg, the estimated SOA
concentration should be similar to the measured OA. We then evaluated the model’s performance in well-defined cases over
finer time scales. During a typical SOA production period from 11 to 14" August 2011 (Fig. 4a), which was not included in
the training dataset because of the slightly elevated sea salt above the threshold of 0.03 pg m, the measured OA closely
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followed the variation of nss-SO4 and MSA, with Pearson’s R values of over 0.80 and 0.84, respectively. These high
correlations indicate a predominant secondary source of OA. The model’s estimates of SOA concentrations were very close
to the measured total OA (Fig. 4b), with an OA/SOA ratio of 1.03 +0.04. This further suggests that the ML model is able to
predict the variability of SOA.

In contrast, during a well-documented marine POA plume, from 13" to 18" August 2009 (Fig. 54c), the OA dominated the
PM; concentration and showed little correlation with nss-SO,4 or MSA (Pearson’s R of 0.05 and 0.08, respectively). Notably,
the estimated SOA deviates significantly from the observed OA (Fig. 54d). In this instance, the SOA estimated by the ML
model accounted for only about 20% of the total OA during the plume, underscoring the significant contribution of marine
POA. The different performance, presented in Fig. 54, is expected. In Fig. 54a, the model is mostly influenced by the nss-SOs,
a marker for secondary species, leading to a great agreement between modelled SOA and observed OA. Conversely, Fig. 54db
shows a significant discrepancy between modelled SOA and observed OA. The difference is largely attributed to the
contribution of POA. This case was reported by Ovadnevaite et al. (2011a), in which the marine POA was identified using
HR-ToF-AMS mass spectra, and the SOA during the period was not quantified.
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Figure 54. Case study of (a-b) SOA production period and (c-d) POA production period. (a,c) time series of PM1 chemical species
and (b,de) measured OA versus estimated SOA, the colour presents data density with darker colour indicating lower data density,

the black lines represent 1:1 lines.

The cases of SOA and POA production periods indicate the model’s capability to predict the SOA and POA levels. As
illustrated in Fig. 65, both POA and SOA reached their peak in June and dropped to their lowest during the winter months.
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Typically, median concentrations of SOA were higher than those of POA across most months, except for May. However, POA
concentrations spiked periodically, highlighted by outliers. The mean relative contribution of POA to total OA, detailed in Fig.
65h, shows the lowest contribution in winter and the largest from May to July, peaking at approximately 50% and slightly later
in summer than SOA. The pattern corresponds with the enhanced marine activities in later spring and early summer of the
North Atlantic, involving extensive phytoplankton proliferation and other marine organisms that release organic matter into

the atmosphere through wave breaking and bubble bursting.

Itis important to note that the total marine OA concentrations during winter at Mace Head are very low, introducing substantial
uncertainty in OA separation during this season. The minimal POA concentration observed in winter suggests a distinct
relationship between total OA, secondary species, and environmental factors. This relationship closely mirrors the dynamics
observed in SOA. As shown in Fig. S9S8, the estimated SOA closely aligns with measured OA throughout the winter, pointing
to low contribution from POA. Conversely, during the summer, numerous data points shown in Fig. S9-S8 deviate to the right

of the 1:1 lines, indicating a substantial contribution from POA.
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Figure 65. The seasonality of POA and SOA. (a) boxplot of mass concentration of POA (dark green) and SOA (purple), the horizontal

lines represent median, the boxes represent 25t and 75™ quantile, and the whiskers represent 1.5 inter-quarter ranges. Note that
outliers are not fully shown to ease to visualization. (b) The contribution of POA to total OA, the line represents the monthly median,
and the shaded area represents the 25% and 75™ quantile.

The differentiation of POA from SOA is further substantiated by additional correlation analysis. As shown in Fig. S16S9, the
correlation between OA and nss-SO4 across the entire clean marine dataset is relatively low, at approximately 0.17, suggesting
that nss-SO4 explains less than 3% of the variability of marine OA. Upon decoupling the OA into POA and SOA, we observed
distinct correlation patterns: the correlation between SOA and nss-SO4 increased to 0.88, reflecting a strong linkage. Whereas
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for POA, it decreased to 0.08. This stark contrast underscores the different sources and atmospheric behaviors of marine POA
and SOA. This different correlation analysis provides a clear delineation of how POA and SOA contribute to marine OA and
emphasizes the capacity of advanced modeling techniques and long-term observations to unravel complex atmospheric
processes.

The potential sources of POA and SOA were investigated using the Potential Source Contribution Function (PSCF) combined
with air mass backward trajectories (Mansour et al., 2020). As shown in Fig. 76, POA likely originates from the Northeast
Atlantic polar marine regions (Fig. 76a), which are recognized as biologically active waters. In contrast, SOA sources are
traced to tropical marine regions (Fig. 76b). The identified POA sources align with previous studies suggesting that regional
marine biological activity is a key driver of POA production (O’Dowd et al., 2004; Sellegri et al., 2021). For SOA, enhanced
photochemical reactions in lower-latitude waters likely promote the formation of secondary species. The distinct source regions
of marine POA and SOA underscore the need for models to incorporate specific parameterisation schemes that account for

these spatial and mechanistic differences.
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Figure 76. The potential source contribution function analysis of marine POA (a) and SOA (b). Redish colour represents higher
probability.

In contrast to prior studies that relied on filter-based measurements with limited temporal resolution, this study introduces a
ML framework to systematically differentiate and quantify marine POA and SOA. While seasonal variations in POA/SOA
have been reported previously, our decade-long dataset—the most extensive of its kind to date—provides unprecedented
resolution to constrain and develop POA and SOA parameterization for climate models. Furthermore, the distinct source
regions identified for POA (polar marine zones) and SOA (tropical waters) underscore their divergent formation mechanisms.

Current model estimated of global emissions of POA span from 6.9 - 76 Tg year for <1 um emissions and global source of
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SOA were thought to be substantially smaller than marine POA. Our measurements found similar contribution of POA and
SOA. While it has to be noted that some fractionfractional of SOA were transformed via atmospheric aging from POA, which
is difficult to quantifygquantified. Recent study found the photochemical reactions in the sea-air interface produceproduces
substantial VOC as the precursors of marine SOA (Briggemann et al., 2018), the complex sources of SOA highlighthighlights
the need for field observational data to challenge the models. The combined sensitivity to marine biological activities and
photochemistry of marine OA was also supported by Sanchez et al. (2020), whowhich found high correlation with downward
shortwave flux and net primary production, while they did not separate POA and SOA.

3.3 Impact of marine organic aerosol to aerosol hygroscopicity and mixing state

The long-term marine POA and SOA time series now enable an assessment of their influence on aerosol hygroscopicity —a
relationship previously uncertain. As shown in Fig. 8a7, increasing POA concentrations from 0.1 to 1 ug m reduces the
hygroscopicity parameter (k) across all particle sizes, dropping values from ~0.5 to below 0.25. This finding contrasts with
earlier experimental work suggesting POA production has negligible effects on aerosol hygroscopicity and CCN activity
(Quinn et al., 2014), but aligns with our prior case study highlighting the inherently low hygroscopicity of POA
(Ovadnevaite et al., 2011b). Quinn et al. (2014) investigated the impact of marine POA on its cloud condensation nuclei
using a sea sweep devicedevices, they found no significant difference of POA contribution at different oceanic regions with
diverse ranges of chlorophyll-a, and they attributed the POA to the ocean carbon pool. However, based on our field
measurements, it is unlikely that ocean carbon pool induces such large variations of the observed POA, underscoring the

importance of oceanic biological activities.

As for the SOA, the increasing SOA concentrations from 0.1 to 0.3 ug m only slightly reduce xHtoma Values (from 0.5 to
0.45) for particles between 50 and 165 nm, with no significant change observed for 35 nm particles. This muted response may
arise from co-varying increases in secondary species such as nss-SOs*~ or MSA, which help maintain hygroscopicity at
relatively high levels. This is consistent with our recent high-temporal online measurement, which shows a simultaneous
increase in SOA and nss-SO4? during particle growth (Xu et al., 2024; Zheng et al., 2020). These results underscore the distinct
roles of POA and SOA in modulating aerosol water uptake and cloud-forming potential, emphasizing the need to explicitly
represent OA composition and sources in climate models.
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Figure 87. The impact of POA (a) and SOA (b) on aerosol hygroscopicity parameter (kHtoma) at different sizes. The analysis was
limited to April to August to minimize the seasonal variations. The black lines represent medians, dark shaded areas represent 25
to 75t percentiles, darker shaded areas represent 10t to 90t percentiles.

The influence of POA and SOA on aerosol mixing state was further investigated using the spread factor, calculated from
growth-factor probability density functions (Xu et al., 2020). A spread factor of 0 indicates a theoretically internal mixture,
while higher values reflect increasing external mixing. Based on established thresholds (Swietlicki et al., 2008; Xu et al.,
2019), a spread factor of <0.05 is classified as internal mixture, whereas values >0.2 signify external mixing. POA and SOA
exhibit divergent impacts on aerosol mixing state. As shown in Fig. 98a, increasing the POA contribution from 0% to 100%

elevates the spread factor, suggesting POA production promotes external mixing. Conversely, SOA accumulation drives the



system toward a more internally mixed state. This aligns with aerosol aging processes, where particles tend to homogenize
over time. Accurately representing the hygroscopicity and mixing-state dynamics of POA and SOA is critical for assessing
their climatic impacts, as these properties directly influence aerosol-cloud interactions and radiative forcing.
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4 Conclusion

Quantifying marine POA and SOA traditionally relies on PMF applied to aerosol mass spectra, which is challenging for long-
term data. This study presents a data-driven ML framework to identify and quantify marine POA by leveraging temporal data
patterns rather than chemical mass signatures. The ML model, trained on rigorously selected SOA-dominated periods, was
applied to a multi-year aerosol dataset, enabling the identification of numerous POA production events. At Mace Head, marine
POA constitutes ~50% of total marine organic aerosol (OA), increasing to 63% during late spring and early summer. Unlike
PMF, this ML approach proves particularly effective for disentangling OA components in complex, long-term environments
where high-resolution AMS data are unavailable.

Combined with aerosol hygroscopicity measurements, our analysis reveals distinct climatic impacts: marine POA significantly
reduces aerosol hygroscopicity and promotes external mixing, whereas SOA exhibits weaker effects. These findings
underscore the need to accurately quantify marine POA abundance and its influence on cloud-relevant properties. A key
limitation lies in the selection of SOA-dominated periods for model training; future work should optimize ML performance
for smaller or less curated datasets. Additionally, validating these marine POA results with global oceanic measurements is
essential to refine POA parameterizations in climate and chemical transport models.
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