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Abstract. Conventional radar-based hydrometeor classification algorithms identify the dominant hydrometeor type within

a resolved radar volume, while newer techniques estimate the proportions of individual hydrometeor classes (hydrometeor

partitioning ratios, HPRs) within a mixture. These newer algorithms (HMCDP
P ) are based on dual-polarization measurements

from ground-based radars (GR), while to date no comparable algorithms for space-borne radars (SR) with dual-frequency

capabilities exist. This study (1) further improves HPR estimates based on GR dual-polarization measurements, (2) exploits the5

combination of dual-frequency SR and dual-polarization GR to introduce HPRs based on dual-frequency observations only, and

(3) evaluates GR- and SR-based HPR retrievals. To achieve these objectives, dual-polarization measurements of NEXRAD’s

GRs are matched with those of the dual-frequency precipitation radar of the Global Precipitation Measurement Core satellite.

All matched volumes are represented by averaged dual-frequency and dual-polarization observations and several hundred

GR sub-volumes classified with standard hydrometeor classification. The latter are used to calculate quasi-HPRs (qHPRs).10

qHPRs and averaged dual-frequency and dual-polarization variables of the training dataset are used to derive covariances and

centroids for each hydrometeor class. They serve as the basis for dual-frequency and dual-polarization based HPR retrievals

within HMCP and are applied to the test dataset. The ensuing evaluation of HPR retrievals is performed with the qHPRs of

the test dataset. HPRs show for most hydrometeor classes high correlations with the qHPRs and confirm the overall good

HMCP performance. However, dual-polarization based classification performance is superior to dual-frequency ones. Both15

underestimate snow, overestimate graupel, and result in low correlations for big drops.

1 Introduction

Hydrometeor classifications (HMC) using ground-based polarimetric weather radars (GR) observations play an essential role,

e.g. to refine quantitative precipitation estimation (Giangrande and Ryzhkov, 2008; Chen et al., 2017; Cifelli et al., 2011), to

detect hail and estimate its size and damage potential (Ortega et al., 2016; Ryzhkov et al., 2013; Ackermann et al., 2023) and20

to identify freezing rain (Thompson et al., 2014), which can serve as a warning system for transport infrastructure (Trömel

et al., 2017). The majority of HMCs identify the dominant hydrometeor type within each resolved radar volume exploiting

measurements from dual-polarization (DP) weather radars and specific classification methods. The most commonly used clas-

sification methods are based on the fuzzy logic approach (Dolan and Rutledge, 2009; Dolan et al., 2013; Zrnić et al., 2001a;
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Straka et al., 2000; Thompson et al., 2014; Ribaud et al., 2016; Park et al., 2009), but there are also methods that rely on the25

Bayesian approach (Yang et al., 2019; Marzano et al., 2007) or clustering techniques (Grazioli et al., 2015; Ribaud et al., 2019;

Lukach et al., 2020; Besic et al., 2016). More detailed description of hydrometeor mixtures (Besic et al., 2018) are the so-called

hydrometeor partitioning ratios (HPRs), which represent estimates of the proportion of the polarimetric signal originating from

a specific hydrometeor class within a resolved radar volume. Besic et al. (2018) provided a methodology to estimate HPRs,

which was subsequently refined in Trömel et al. (2023). HPRs have recently been utilized to study microphysics and dynamics30

of precipitation (Gehring et al., 2020, 2022), to verify microphysical retrievals (Billault-Roux et al., 2023; Planat et al., 2021)

and to evaluate hydrometeor distributions in NWP models (Trömel et al., 2021; Vignon et al., 2019; Jang et al., 2021; Shrestha

et al., 2022; Trömel et al., 2023).

Only a few space-borne measurement platforms with radars exist or have existed in the past: CloudSat (Stephens et al.,

2002), designed for observations of clouds and light precipitation, the Tropical Rainfall Measuring Mission (TRMM; Liu35

et al., 2012), which is the first precipitation satellite with a Ku-band precipitation radar (PR) on board, and its successor the

Global Precipitation Measurement core satellite (GPM) with the first Dual-Frequency Precipitation Radar (DPR) measuring

precipitation at Ku-band and Ka-band frequencies (Hou et al., 2014). Rain rates estimated from space-borne radars (SR) are

significantly affected by the hydrometeor types located within a resolved measurement volume (Liao and Meneghini, 2022).

SR-derived HMCs, using the DPR e.g., are based on very simple subdivisions of the hydrometeors. The detection of the melting40

layer (ML) top and bottom is used to distinguish between solid, liquid and melting hydrometeors (Le et al., 2016). Additional

two-dimensional classifications are provided for snow (flagSurfaceSnowfall; Le et al., 2017)), graupel/hail (flagGraupelHail;

Le and Chandrasekar, 2021a) and hail (flagHail; Le and Chandrasekar, 2021b) and are based on the so-called precipitation

type index (PTI). The PTI is derived from the storm top height (STH), the maximum measured reflectivity at Ku-band and

the average slope of the dual-frequency ratio profile. Mroz et al. (2017) presented several hail detection algorithms based on45

DF profile observations but also on brightness temperature measurements of GPMs Microwave Imager (GMI). All products

do not provide information on the vertical distribution of these hydrometeor classes and are not considered in DPRs rain rates

estimation (Iguchi et al., 2010). Seiki (2021) was the first to develop a three-dimensional HMC based on dual-frequency (DF)

measurements, but only for hail detection.

In this study, the HMC scheme from Trömel et al. (2023) (HMCP; introduced by (Pejcic et al., 2021)), estimating HPRs in50

DP-space (HMCDP
P ), is refined and extended to the DF-space (HMCDF

P ). For this purpose, satellite-based DF observations

from GPM’s DPR are combined with ground-based DP measurements from NEXRAD’s S-band WSR-88D radars. In order to

combine the high-resolution GR and the low-resolution SR data, the DF and DP measurements are averaged to obtain data with

approximately equal volumes, so-called superobbed data. Each superobbed observation then contains information about the

partitioning ratios of the different dominant hydrometeor classes (quasi hydrometeor partitioning ratio, qHPR), approximated55

by the relative occurrences of the dominant hydrometeor classes in high-resolution radar bins within the supperobbed volume

as determined by conventional DP-based HMC. These qHPRs are used as a basis for the derivation of the HPRs in DF and DP

space. Subsequently, the HPRs estimated with HMCP from either superobbed DF or DP measurements are validated using the

qHPR estimates.
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Sect. 2 introduces the SR and GR measurements and their processing, followed by the explanations of the merging procedure60

and the qHPR derivation. Sect. 3 explains the methodology for HPR estimates. The results are shown in Sect. 4 followed by a

conclusion in Sect. 5. All abbreviations can be found in Tab. C.

Figure 1. NEXRAD weather radar (WSR-88D) sites provided and quality controlled by the GPM-GV and exploited in this study. The 150 km

range for an elevation angle of 0.5° is illustrated as gray circle. The colored dots indicate the location of the respective radar and the number

of GPM overpasses in the period between 2014 and 2023 used in this study. The total number of used radar sites is indicated in the lower left

corner.

2 Data

2.1 Space-borne radar observations

The DPR onboard the GPM Core Observatory (Iguchi and Meneghini, 2021) comprises two radars: the Ku-band Precipitation65

Radar (KuPR, 13.6 GHz) and the Ka-band Precipitation Radar (KaPR, 35.5 GHz). The DPR provides measurements with a
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vertical resolution of 250 m, over-sampled every 125 m, and a horizontal resolution of approximately 5 km due to the satellite’s

altitude of 407 km before the orbit boost in November 2023 (Kubota et al., 2024).

Initially, the KuPR operated across a 245 km wide swath (49 beams), while the KaPR was limited to a narrower central

swath of 125 km (25 beams), nested within the KuPR swath. The KaPR employed two distinct scanning modes: Measure-70

ments with a vertical resolution of 250 m, fully overlapping the central part of the KuPR swath (High-Resolution Mode).

Measurements with a vertical resolution of 500 m, where the scan pattern was laterally shifted by half a footprint (24 beams)

in the cross-track direction (Shifted Scan Mode, Hou et al., 2014).

On 21 May 2018, the scanning strategy was updated to extend the KaPR swath to 245 km, matching the KuPR swath

width. The 24 beams were moved to the outer parts of the swath. This adjustment ensured that all footprints in the extended75

KaPR swath included DF measurements, significantly enhancing data consistency and coverage (Iguchi et al., 2010). Single-

frequency beams are not considered in this study. To derive parameters of the drop size distribution, precipitation rates and

attenuation corrected Ku-band and Ka-band reflectivities in logarithmic space, the measured Ka-band (Zm
Ka) and Ku-band

(Zm
Ku) reflectivities are processed in various modules described in more detail in Iguchi et al. (2010). The DF ratio

DFR= Zm
Ku −Zm

Ka (1)80

is the difference between Zm
Ku and Zm

Ka reflectivities in logarithmic space. In stratiform precipitation DFR is mainly affected

by non-Rayleigh scattering effects and path-integrated attenuation. In the solid phase, attenuation by frozen hydrometeors is

negligible for both frequencies and does not significantly change DFR. In contrast, the non-Rayleigh scattering effects play

a major role and lead to an increase of the DFR with increasing hydrometeor diameters (Le et al., 2016; Iguchi et al., 2018).

Also, DFR in the solid region depends on the density of hydrometeors and their degree of riming. According to the Mie theory85

an increase in DFR is expected with decreasing density of fluffy non-rimed solid hydrometeors with low Zm
Ku (Seiki, 2021).

For a fixed DFR Zm
Ku increases with the ice particles degree of riming. However, this is only valid in stratiform precipitation

and if DFR>1 dB (Tridon et al., 2019). In the melting layer (ML) we observe an increase in Zm
Ku due to the changes in the

refractive index, particle size and concentration (Ryzhkov and Zrnic, 2019). As a consequence, both non-Rayleigh scattering

effects and attenuation increase the DFR and result in a pronounced "bump", called the DFR bright band, in the vertical90

profile of the DFR (Le et al., 2016). In the liquid phase, attenuation mainly controls the DFR. Ka-band measurements are

much more affected by attenuation compared to measurements at Ku-band and lead to an increase in DFR towards the ground.

This increase is even more pronounced in convective precipitation where higher precipitation rates, thus the attenuation values,

are observed. Furthermore, convection promotes the presence of large hydrometeors such as graupel, hail or drop diameter

exceeding 0.8 mm (Mroz et al., 2024) that contribute to non-Rayleigh related DFR increase. In deep convective cores, the95

typical vertical profile of DFR can be distorted by multiple scattering at Ka-band . In extreme multi-scattering conditions,

attenuation of the high frequency radar observations is compensated by multiple scattering effects in the upper part of the

atmosphere which results in the so-called DFR-knee, i.e. a decrease in DFR towards the ground (Battaglia et al., 2014).
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The overall vertical structure of the DFR is used to categorize the measurements into different rain types (RT, stratiform,

convective, other, see Le et al. (2016)) and to determine the ML thickness and height, and is used to distinguish between liquid,100

solid and melting precipitation regions (Iguchi et al., 2010; Le and Chandrasekar, 2012).

2.2 Ground-based radar observations

DP measurements of the NEXRAD WSR-88D S-band weather radars are exploited for this study. In total, 757 volume scans

measured between 2014 and 2023 of the radar sites shown in Fig. 1 are considered. Measurements were selected to ensure

that the GPM overflight took place at the closest point in time. A balanced number of convective and stratiform events is105

maintained to ensure a good representation of less frequently occurring hydrometeors like hail. The range resolution of the

utilized NEXRAD radars is 250 m with a maximum elevation angle of 19.5◦ and 1◦ degree azimuthal resolution for higher

elevation. Only quality-controlled GR observations provided by NASA’s GPM Ground Validation program (GPM-GV) are

used. The eastern GR sites of the NEXRAD network are predominantly used in the GPM-GV. GPM-GVs quality control

includes the removal of non-precipitating echoes with different thresholds and phase unfolding. In addition, GPM-GV also110

provides vertical temperature information from model soundings (Pippitt et al., 2013).

The vertical temperature profiles are interpolated linearly at the beam center (Tc) and at the respective outer beam edges (3

dB beam width). From now on referred to Tt as temperature at the top beam edge and Tb as the temperature at the bottom beam

edge. All radar bins with Tb<0°C are classified as solid and all those with Tt>4°C as liquid. All other radar measurements

are considered as partly melted. Additional GR processing e.g. phase processing, GR calibration and attenuation correction are115

explained in more detail in the appendix A.

The applied standard HMC (HMCZ; Zrnić et al., 2001b) to identify the dominant hydrometeor type in a resolved radar

volume and used to estimate the qHPRs is based on two dimensional membership functions (MSF) defined in Park et al. (2009)

with slightly modified hydrometeor types and MSF-parameters. The predefined hydrometeor types are light rain, moderate rain,

heavy rain, big drops, rain/hail, graupel, crystals, dry snow, wet snow, plates/dendrites and hail. The hydrometeor classes are120

generally abbreviated to HMk where k = 1, . . . , n with n=11. For more information on HMCZ, we refer to the appendix B .

2.3 GR-SR Merging

The volume matching method (VMM) is performed with ωradlib (Heistermann et al., 2013) and represents a well-known

method for transferring SR and GR measurements to comparably sized volumes. In a first step all DP measurements of all GR

bins within the SR footprint are averaged (DP, Fig. 2, left, plan view). Secondly, the DF observations of all SR bins (vertical125

resolution 125 m) within the GR beamwidth are averaged (DF, Fig. 2, right, side view). For more details see Warren et al.

(2018) or Pejcic et al. (2022). This results in equally sized superobbed volumes described by averaged DP variables ZH, ZDR,

KDP and ρHV and averaged DF variables Z
m

Ku, Z
m

Ka and DFR, from now on called sample Si (Fig. 2, top center and Fig. A1,

blue box). Furthermore, each Si contains a mean temperature (T) and a rain type index (RT). RT is convective if more then

10% of the GR pixels in a Si are defined as convective (RT= 2), otherwise RT is defined as stratiform (RT= 1). Si also130
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includes the number of dominant hydrometeor classes N(HMk) classified with HMCZ on the original GR radar grid (Fig. A1,

blue box). For each Si the N(HMk) are used to calculate the qHPRk via

qHPRk =
N (HMk)∑n
k=0N (HMk)

. (2)

Note that qHPRs only represent estimators for the HPRs. E.g., due to their disproportionate influence on the polarimetric

moments, hail or graupel may be classified as the dominant hydrometeor class in radar volumes despite low HPR. This can lead135

to overestimated qHPR for graupel and hail. In this study only Si with at least 50 valid GR pixels, well-defined stratiform or

convective SR profiles and DPR detected precipitation (flagPrecip) are considered. Si showing strong differential attenuation

due to hot spots above the ML or depolarization streaks (Ryzhkov and Zrnic, 2019) leading to negative ZDR stripes are ex-

cluded. Furthermore, SR observations below 15.5 dBZ at Ku-band (Liao and Meneghini, 2022) and 18 dBZ at Ka-band (Mroz

et al., 2024) are not considered.140

Figure 2. Schematic illustration of the workflow to derive and evaluate the HPR with HMCP based on DF, DP and qHPRk (center) by

comparing SR (in blue) and GR (in black) observations. The plan view on the left and the side view on the right site. The hydrometeor classes

are indicated with colored H1, H2 and H3

80% of the Si, including DF, DP measurements and qHPRs, serve as training data for the HMCP (Fig. 2, center) and the

remaining 20% of the Si are utilized as test dataset for the evaluation. Sect. 4.1 presents results for one case study entirely

independent of the test and training dataset used.
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3 Hydrometeor partitioning Ratios (HPR)

In the following, we interpret the polarimetric measurements as multidimensional vectors and thus assume HPRs can be de-145

termined based on multidimensional distribution functions pk for the different hydrometeor classes. If the multidimensional

measurement approaches the mean of a specific pk, the HPRk for that particular hydrometeor class k, increases, and vice

versa, the farther away it is, the smaller the HPRk becomes (Besic et al., 2018; Trömel et al., 2023). Trömel et al. (2023) intro-

duced HMCP as a modified version compared to Besic et al. (2018). This section details further advancements of HMCP and

additionally transfers the methodology from DP to DF observation space.150

The supperobbed variables in samples Si are stored in the multidimensional observation vector

Xi
DP =



ZH

ZDR

KDP

ρHV

RT


(3)

including the averaged DP variables ZH, ZDR, KDP and ρHV, together with the rain type index RT. Similarly, the multidi-

mensional DF observation vector

Xi
DF =


Z

m

Ku

DFR
m

Ku−Ka

RT

 (4)155

includes the averaged DF variables Z
m

Kuand DFR, together with RT. The ensuring description of the algorithm refers to an

observation vector Xi and is valid for both multidimensional vectors XDF
i and XDP

i .

In order to derive pk, weighted centroids

µk =

∑n
i=1wiXi∑n
i=1wi

(5)

and weighted covariance matrices160

Ck =

∑n
i=1wi

(
(Xi −µk)(Xi −µk)

⊤)∑n
i=1wi

(6)

are calculated with the weighting factors wi= qHPRk based on all available Si for each hydrometeor class k in DP and DF

space. Besic et al. (2016) and Trömel et al. (2023) apply a clustering algorithms to the multidimensional DP measurements and

identified clusters are then assigned to specific hydrometeor classes using state-of-the-art HMC. Centroids µk (in Trömel et al.

(2023) also Ck) are then calculated for these clusters. However, non-physical clusters in terms of precipitation microphysics165

and strict boundaries between clustered data may arise, which have an impact on the calculations of centroids and covariance

matrices in polarimetric space. Instead, the use of qHPR as weighting factors enables a more physical transition between the
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DP or DF variables for different hydrometeor classes. The multidimensional distribution functions pk are calculated based on

centroids µk and covariances Ck (Eq.5 and Eq.6) assuming a multivariate normal distribution

pk(X|µk,Ck) = Λ exp

(
−1

2
(X −µk)

TCk
−1(X −µk)

)
(7)170

with the transpose of a matrix (·)T, the dimension d of the multivariate normal distribution and Λ = 1/
√
(2π)d|Ck|, where | · |

denotes the the determinant (Trömel et al., 2023). The multivariate normal distribution pk replaces the exponential distribution

used in Besic et al. (2018), allowing a more suitable elliptical (instead of only spherical) distributions of DP or DF variables

for different hydrometeor classes. Besic et al. (2018) use the entropy to determine the shape of pk, which is a purely statistical

method. The inherent assumption is that the entropy and thus the mixing is highest exactly between two centroids. Trömel175

et al. (2023) describe the shape of pk with the observed distribution of the DP measurements in multidimensional space using

the covariance matrices. Including now the qHPRs, as weighted factors, the centroids and covariance matrices are no longer

restricted to the clusters with strict boundaries in polarimetric space, instead overlapping distributions are enabled.

The value of a pk(µk) equals 1 according for an unmixed observation (Besic et al., 2018), of only one specific hydrometeor

class. Therefore, each pk(X) is normalized with pk(µk):180

p̃k =
pk(X)

pk(µk)
. (8)

Finally, HPRs for different hydrometeor classes k are estimated as follows:

HPRk =
Wk(T ) p̃k∑n
k=1Wk(T ) p̃k

. (9)

The weighting functions Wk(T) suppress HPR estimates of hydrometeor classes in unexpected temperature regions. Wk(T)

are derived from statistics of the relative occurrence of the different hydrometeor classes (N(HMk)) in 2°C intervals between185

-80°C and 32°C. Resulting estimates of partitioning ratios for different hydrometeor classes k are referred to as HPRDP
k and

HPRDF
k in DP and DF space, respectively.

4 Results

4.1 Multidimensional distribution function pk in polarimetric and dual-frequency space

The p̃k of the DP (Fig. 3) and DF variables (Fig. 4d, e and f), as well as of RT (Fig. 4a, b and c) for each hydrometeor class190

k are derived based on the training data set (Fig. 2, center) as described in Sect. 3 and represent the basis for the HMCP.

The hydrometeor classes are analyzed separately in the regions where they are most likely to occur, e.g. light rain, moderate

rain, heavy rain and big drops in the liquid region, plates/dendrites, ice crystals and snow in the solid region and wet snow,

graupel, hail and rain/hail in the solid, liquid and melting region (mixed). Note that the figures mentioned above illustrate only

two-dimensional representations of the multidimensional p̃k, normalized according to Eq. 8 without weighting Wk(T ).195
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In DP space, the centroids of the hydrometeor classes light rain, moderate rain, heavy rain (Fig. 3a, d and g) show in the ZH-

ZDR and ZH-KDP plane an increasing ZH with increasing ZDR and KDP respectively . With increasing ZH ρHV is decreasing

due to droplet growth and the associated increase in droplet flattening in liquid precipitation (Straka et al., 2000). The big

drops centroid shows an increased ZDR compared to light rain, moderate rain, heavy rain (Bechini and Chandrasekar, 2015).

In DP space of the solid region (Fig. 3b, e and h), the centroids of plates/dendrites differ from crystals with respect to high200

ZDR and KDP values, which is in line with expected characteristics of ice particles especially in the dendritic growth layer

(DGL). Dry snow instead is characterized by reduced ZDR and KDP values but higher ZH values, which is due to the increase

in particle size and decrease in density during aggregation processes. As expected the p̃k for plates/dendrites show reduced

ρHV values due to the diversity of ice particles in the DGL (Trömel et al., 2019; Thompson et al., 2014). With regard to the

mixed hydrometeors (Fig. 3c, f and i) ZH of the wet snow centroid is much lower compared to the ones of graupel, rain/hail205

and hail. The latter shows the highest ZH. ρHV is the lowest in wet snow, followed by the two hail classes and then graupel.

Hail and graupel show lower ZDR values compared to rain/hail and wet snow due the impact of tumbling of hail and potentially

conical shapes of graupel (Straka et al., 2000).

In DF space (only Zm
Ku-DFRspace is shown) the centroids for liquid hydrometeors (Fig. 4d) show the typical behavior

with increasing DFR and increasing Zm
Ku due to increasing attenuation effects transitioning from light rain to heavy rain (Le210

and Chandrasekar, 2012). An even more pronounced increase in DFR with rising Zm
Ku is observed for big drops. This can be

attributed to the additional influence of non-Rayleigh scattering effects when the droplet diameter exceeds 0.8 mm (Mroz et al.,

2024). DFR show an increase for both crystals and snow with increasing Zm
Ku due to the increasing impact of non-Rayleigh

effects with increasing particle diameter (Fig. 4e). Graupel, wet snow and rain/hail (Fig. 4f) show increased DFR due to a

combination of increased diameters, riming and attenuation effects (Le and Chandrasekar, 2021a; Tridon et al., 2019). Note215

that DF variables do not significantly differ between rain/hail and hail nor between crystals and plates/dendrites (not shown).

As a consequence the hydrometeor classes are merged to rain/hail and crystals.

Big drops, graupel, rain/hail and hail are mostly restricted to convective precipitation where heavy rain has higher tendency to

appear also in stratiform precipitation. Light rain, wet snow, dry snow, crystals and plates/dendrites are restricted to stratiform

precipitation where wet snow, dry snow, crystals and plates/dendrites can occur with lower probabilities also in convection220

(Fig. 4a, b and c).

4.2 Evaluation with quasi hydrometeor partitioning ratios

In order to evaluate the DF- and DP-based HPR retrievals, HMCP estimates (E) of the test dataset are compared to the qHPR

serving as the reference (R), with the following statistical metrics:

BIAS =

√√√√ 1

N

N∑
i=1

(Ei −Ri) , (10)225
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Figure 3. Normalized probability density functions p̃k of the DP variables ZH against ZDR (a, b, and c), ZH against KDP (d, e and f) and

ZH against ρHV (g, h and i) for liquid hydrometeors (light rain, moderate rain, heavy rain and big drops, left column), solid hydrometeors

(plates/dendrites, dry snow, crystals, center column) and mixed phase hydrometeors (rain/hail, wet snow, graupel and hail, right column).

The different contour lines indicating the probabilities of the given p̃k for the different hydrometeor classes.
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Figure 4. Normalized probability density function p̃k of ZH in relation to the RT (a, b and c) and the DF variables (Zm
Ku in relation to DFR ,

d, e and f), for liquid hydrometeors (light rain, moderate rain, heavy rain and big drops, left column), solid hydrometeors (plates/dendrites,

dry snow, crystals, center column) and mixed phase hydrometeors (rain/hail, wet snow, graupel and hail, right column). The different contour

lines indicating the probabilities of the given p̃k for the different hydrometeor classes.

RMSE =

√√√√ 1

N

N∑
i=1

(Ei −Ri)
2 and (11)

CCP =

∑N
i=1

(
Ei −E

)(
Ri −R

)√∑N
i=1

(
Ei −E

)2∑N
i=1

(
Ri −R

)2 . (12)

R and E denote the mean values of Ri and Ei, respectively. A comparison between the qHPRs and HPRs based on the

DF and DP variables results in high CCP for several hydrometeor classes. E.g., CCPs higher than 0.8, are achieved with the

DP-based retrievals for light rain, moderate rain, heavy rain, wet snow, crystals and dry snow and with the DF-based retrievals230
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for light rain, moderate rain, and dry snow (Fig. 5a, b, c, d, e, o, m, q and r). The lowest correlations occur with HPRDP
k and

HPRDF
k of big drops (Fig. 5g and h) followed by HPRDF

k of rain/hail and crystals and HPRDP
k of plates/dendrites (Fig. 5j, n

and t). The largest underestimations can be found in snow in both the DP and DF space, with a BIAS up to -5.15% (Fig.5,

q and r) followed the HPRDP
k of light rain and moderate rain and HPRDF

k of crystals and wet snow (Fig.5, a, c, n and p).

Pronounced HPR overestimation occurs for heavy rain, graupel for DF- and DP-based retrievals as well as for HPRDP
k of big235

drops (Fig. 5e, f, g, k, and l). The comparison of hail HPRs shows an overestimation of rain/hail and hail HPRDP
k and small

underestimation of HPRDF
k of rain/hail (Fig. 5i, j and s). Note that qHPR estimated from the dominant hydrometeor classes

may overestimate the actual partitioning ratios due to the disproportional impact of hail on DP variables. As a consequence the

biases in HPRDP
k of rain/hail and hail may be even more pronounced than indicated by the qHPR-based evaluation. BIAS and

RMSE values are small for the hail classes and big drops, which can be attributed to their overall low HPR values.240

In summary the DP-based retrievals outperform the ones based on DF in terms of CCP and RMSE, in most cases also with

respect to the BIAS values. This can be attributed to the higher information content of DP compared to DF measurements, for

example, regarding the shape, orientation and homogeneity of the hydrometeors within the measurement volume. Except for

the big drops estimates, the retrievals for liquid hydrometeors in both DF- and DP-space, achieve a higher accuracy compared

to the retrievals for the solid hydrometeor classes, reflecting the increased complexity and variability of DP and DF signals for245

solid and mixed hydrometeors.

4.3 Case study

To verify and illustrate the plausibility of the HMCP retrievals, a GPM overflight is directly compared to the KDDC NEXRAD

GR and a pseudo range height indicator (RHI) is generated along DPRs along-track scan (Fig. 6a, blue dashed and red solid

lines). The DP (Fig. 6b, d, f and h) and DF (Fig. 6c, e and g) variables are exploited to derive and compare the HPRDP
k (Fig. 8)250

and HPRDF
k (Fig. 7) with the HMCP.

A comparison of the GR and SR measurements (Fig. 6) reveals a slight discrepancy in the STH. While GR measurements

indicate a STH of approximately 15 km, SR indicate lower values due to the KuPR and KaPR sensitivity (Iguchi et al., 2010).

The precipitation event can be subdivided into a stratiform and convective region. According to the GR-based RT classification,

the convective area starts at a distance of 60 km from the GR, while the SR classification indicates that the convective area starts255

at a distance of 50 km. This discrepancy is likely attributable to the presence of a bright band located approximately at 3.5 km

height characterized by increased ZH, ZDR, and reduced ρHV values, which is not properly identified by the DPR between

50 km and 60 km range and thus partly classified as a convective region. Additionally, the GR has identified further convective

areas up to a distance of 40 km, which may not be detected by SR due to their relatively small scale. The GR beams of

higher elevation angles are affected by differential attenuation in the ML resulting in negative ZDR (Fig. 6d). At distances of260

approximately 80 km and beyond, the measurements at low elevation angles are partially affected by non-uniform beam filling

(NBF), characterized by extreme high ϕDP (not shown) and low ρHV values (Ryzhkov and Zrnic, 2019). In the convective

region, the impact of attenuation on SR near surface measurements is significant, especially at Ka-band (not shown). The

signal partially drops below the 18 dBZ Ka-band threshold and is therefore excluded.
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Figure 5. Two-dimensional histograms of the pairwise comparison HPRDF
k and HPRDP

k with qHPR for the different hydrometeor classes.

The CCP, BIAS and RMSE are in black, blue and red. The colors indicate the count of samples and the black solid line the 1:1 relationship.

13



Until 50 km range, enhanced ZDR and DFR and moderate Zm
Ku and ZH values result in corresponding increased HPRDF

k and265

HPRDP
k of moderate rain and low HPRDF

k and HPRDP
k of light rain (Fig. 7a, b and Fig. 8a, b). HPRDF

k of big drops appears

with low ratios in the convective region, whereas HPRDP
k of big drops does not show a clear signal. In a range between

10 km to 30 km the small-scale convective regions are not detected by the DPR resulting in no big drops HPRDF
k where small

proportions of HPRDP
k are still estimated (Fig. 7d and Fig. 8d). DP estimates effectively illustrate the transition from solid

hydrometeors such as dry snow via wet snow to liquid hydrometeors such as light rain, moderate rain and heavy rain. However,270

wet snow HPRDF
k do not match with DPRs bright-band detection where HPRDP

k of wet snow is restricted between Tb = 0◦C

and Tt = 4◦C (Fig. 7h and Fig. 8h). Heavy rain is apparent in DP measurements within the ML, which is not the case in the

DF measurements (Fig. 7c and Fig. 8c).

Both DF and DP measurements allocate the transition zone from ice to snow retrievals at approximately 8 km altitude,

which corresponds to the height of the DGL (Fig. 7g, i and Fig. 8g, i) identified by increased KDP values slightly above275

the −15◦C isotherm (Fig. 6f). In the measurements obtained at ranges up to 20 km a decrease in KDP and an increase in

ZH can be identified below the −15◦C isotherm (Fig. 6b, d and f) indicating aggregation processes (Trömel et al., 2019). This

is also supported by increasing DFR measurements in the same region (Fig. 6g). Increased snow HPRs above the −15◦C

isotherm may be connected to the underestimation of ice HPRs, as identified in Sect.4.2. The partial occurrence of HPRDP
k of

plates/dendrites in the DGL (Fig. 8j) is challenging to interpret due to the differential attenuation (Fig. 6d).280

As expected rimed hydrometeors like GP, RH and HA, are primarily observed in convective regime. Due to the discrepancy

between RT classifications based on GR and SR measurements (f in Fig. 7 and Fig. 8) high graupel HPRDF
k extend over a

larger region compared to HPRDP
k of graupel. Overall HPR of graupel in DP and DF are significantly overestimated (com-

pare Sect.4.2). A comparison of hail HPRs reveal a comparable vertical distribution up to an altitude of approximately 8 km.

Note that rain/hail and hail HPRDP
k (Fig. 8e and k) have to be considered combined for a direct comparison with rain/hail285

HPRDF
k (Fig. 6e). In regions with NBF, the detection of hail has to be considered with caution due the similarity of the DP

signals for NBF and hail. However, SR partially confirms hail HPR in these areas. Due to the overall overestimation (underes-

timation) of hail HPRs in DP (DF) space, according estimates should be treated with caution.

5 Conclusions

This paper describes the most recent improvements of a more sophisticated hydrometeor classification (HMC) scheme to derive290

also hydrometeor partitioning ratios (HPRs). Such an algorithm has been first introduced by Besic et al. (2018) and enhanced

in Trömel et al. (2023) (HMCP). HMCP is capable to derive HPRs from dual-polarization (DP) measurements (HMCDP
P ) of

ground-based radars (GR) for each resolved volume. Combining GR DP observations from NEXRAD’s WSR-88D S-band

radars with space-borne radar (SR) dual-frequency (DF) observations, more precisely from the Dual-Frequency Precipitation

Radar (DPR) onboard the Global Precipitation Measurement core satellite (GPM), allows to extend HMCP for DF-based295

HPR estimates from SR observations (HMCDF
P ). Matching SR and GR observations, superobbed volumes containing a large

number of GR pixels are generated and enable the estimation of quasi HPRs (qHPRs). These qHPRs represent the hydrometeor

14



Figure 6. a) PPI of ZH measured on 25 June 2018 at 05:11 UTC with KDDC and overpassed by GPM (orbit number 024557). Nadir along-

track vertical cut of DPR-observed Zm
Ku (c), Zm

Ka (e) and DFR (g). Pseudo RHIs of ZH (b), ZDR (d), KDP (f), ρHV (h) along DPR’s vertical

cut. In panel a the gray lines indicate DPRs outer swath, the gray dashed line DPRs NADIR scan, the red line the along-track vertical cut

and the blue line the location of the vertical cross section of the GR. In panels c, e and g the black line indicates the clutter free bottom,

the indigo line the freezing level height (DPR), and the STH for convective (magenta) and for stratiform (cyan) SR-based RT. The dashed

lines represent the bright band top and bottom. The bright band peak is illustrated as dash-dotted line. In panels b, d, f and h the black

lines indicate the Tt = 4°C and the indigo lines the Tb = 0°C isotherms. The T=−15°C is indicated in gray/magenta for the GR-based

stratiform/convective RT.
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Figure 7. Estimated HPRDF
k for different hydrometeor classes applying HMCP to SR observations shown in Fig. 6. The black line indicates

the clutter free bottom, the indigo line the freezing level height (DPR), and the STH for convective (magenta) and for stratiform (gray) SR-

based RT. The dashed lines represent the bright band top and bottom. The bright band peak is illustrated as dash-dotted line.

16



Figure 8. Estimated HPRDP
k for different hydrometeor classes with HMCP with GR observations shown in Fig. 6 The black lines indicate

the Tt = 4°C and the indigo lines the Tb = 0°C isotherms. The Tc =−15°C is indicated in gray/magenta for the GR-based stratiform/-

convective RT.
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mixtures in superobbed volumes and are calculated with the identified dominant hydrometeor classes applying the modified

standard HMC to the high-resolution GR measurements. The averaged DF and DP variables and qHPRs of the supperobbed

volumes are exploited for the training of HMCP and also for the ensuing evaluation of HPR estimates. Such estimates are300

either based on DP (HPRDP
k ) or DF (HPRDF

k ) observations and compared with the qHPRs derived from averaged DF and DP

variables, respectively. The derived p̃k, which form the basis for the HMCP, are in line with expected DP and DF observations

for different hydrometeor classes (e.g. Straka et al., 2000; Bechini and Chandrasekar, 2015; Trömel et al., 2019; Thompson

et al., 2014). A comparison between qHPRs and HPRs in DF (HPRDF
k ) and DP-space (HPRDP

k ) results in correlations higher

than 0.7 for various hydrometeor classes. Lowest correlations are obtained for big drops in both DP- and DF-space with 0.38305

and 0.15, respectively, followed by correlations for HPRDF
k of ice with 0.59, dendrites/plates and rain/hail both with 0.56.

HMCP overestimates graupel and underestimates snow HPRs in DF and DP space. Hail HPRs are overestimated in DP and

slightly underestimated in DF space. Overall, HPR estimates are more accurate in DP space than in DF space and perform

best for liquid hydrometeors, except for big drops. DP observation provide additional information e.g. on the shape, orientation

and homogeneity of the hydrometeors within the measurement volume compared to DF observations leads to more accurate310

derivations of HPR. Furthermore, HMCDP
P and HMCDF

P have been trained with DP data, also promoting a better performance

in DP space. A case study revealed a high degree of agreement between GR- and SR-based estimates as well as a plausible

vertical distribution of HPRs in the light of the DF and DP measurements.

Including additional information in the multidimensional observation vectors XDF
i and XDP

i could further improve the

accuracy of the HPR estimates. E.g., for XDF
i vertical gradients of Zm

Ku or DFR can be exploited. Battaglia et al. (2014),315

Mroz et al. (2018) and Le et al. (2016) demonstrated already their information content for the detection of hail and wet snow.

Observations from other satellite devices, e.g. brightness temperatures from GPMs passive microwave radiometer utilized for

hail (Mroz et al., 2017) or snow (Rysman et al., 2018, 2019) detection, could also be exploited to increase the information

content. With respect to GR observations, the depolarization ratio, which has been shown to be valuable for riming detection

(Blanke et al., 2024), might extend XDP
i .320

The retrievals introduced in this paper can be considered as valuable for different meteorological aspects. E.g., more accurate

hydrometeor classifications can refine the calibration of GR with SR observations (Cao et al., 2013; Pejcic et al., 2022) by

adapting the frequency transformation much more precisely to specific hydrometeor classes. Using HMCDF
P , the GPM DPRs

area-wide measurements now provide precise information on hydrometeor distributions in areas without GR measurements.

This allows e.g. to extend the evaluation of hydrometeor distributions in numerical weather prediction (NWP) models (Trömel325

et al., 2023) to the global scale. The assimilation of GR-based measurements and retrievals (Trömel et al., 2023; Reimann et al.,

2023), but also of SR-based reflectivity measurements (Ikuta et al., 2021; Kotsuki et al., 2023) and rainfall estimates Li et al.

(2020) in NWP has been shown to improve the accuracy of numerical precipitation prediction. Thus, the assimilation of DF-

and DP-based HPRs may further improve the representation of hydrometeors in NWP.
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Code and data availability. Codes for the data processing and intermediate data products can be made available upon request. HMCP is330

available at ωradlib.The GPM data can be downloaded following Iguchi and Meneghini (2021) and the quality-controlled ground radar data

can be requested by NASA’s GPM Ground Validation program (GPM-GV).

Appendix A: Processing of ground-based radar observations

Figure A1. Workflow for polarimetric radar data processing of the NEXRAD S-band weather radars (gray boxes). The black boxes represent

the different data sources used and the gray boxes outlined with solid or dashed lines represent processing operations based on a sweep or

volume data, respectively. Operations that have already been performed on the NEXRAD data are written in blue.

In the following the GR processing is explained in more detail (Fig. A1). Digital Elevation Model (DEM) data from the

Shuttle Radar Topography Mission (SRTM, Reuter et al. (2007)) is used to calculate any possible beam blocking fractions335

(BBF) following Bech et al. (2003). ZH is smoothed with a moving average of 5 range bins, while 11 range bins are used to

smooth ZDR and ρHV. A ρHV threshold of 0.8 is applied for the noise filtering. In the next step, the rain type classification

following Park et al. (2009) is applied to the entire volume to classify convective and stratiform radar bins, but with slight

modifications (i.e., the classification as convective based on ρHV only is omitted).
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For ZDR calibration, either the method using Quasi-Vertical-Profiles (Sanchez-Rivas and Rico-Ramirez, 2022) in the follow-340

ing referred to CalSR22
ZDR

or the ZH-ZDR consistency in light rain (Ryzhkov and Zrnic, 2019), referred as CalRZ19
ZDR

, is applied.

Since the data base is limited to volume scans for specific time steps only, CalSR22
ZDR

is not applied to Quasi-Vertical-Profiles

but to all available PPI scans to include a larger amount of data in the calibration routine. Slight modifications of CalSR22
ZDR

include the application of the median instead of the mean (Eq. 10; Sanchez-Rivas and Rico-Ramirez, 2022) for noise filtering

and recalculation of the intrinsic mean ZDR (0.178 dB) for the S-band data. A first guess ZDR-offset, using either CalSR22
ZDR

or345

CalRZ19
ZDR

if there are less then 1000 valid radar bins, is applied on the entire volume scan before the final recalculated ZDR-

offset is applied after correction for (differential) attenuation sweep-wise. Valid observations for the ZDR-offset calibration are

all radar bins with ρHV> 0.99, Tt>5°C and if applying CalSR22
ZDR

0 dBZ≤ ZH ≤20 dBZ otherwise 20 dBZ≤ ZH ≤30 dBZ for

CalRZ19
ZDR

.

The processing of differential Phase ϕDP includes radial smoothing with a window size of 9 radar bins for measurements350

ZH >40 dBZ (heavy rain) and a window size of 25 radar bins elsewhere (Park et al., 2009). Instead of determining KDP based

on the slope of a least squares fit, a low-noise Lanczos differentiator (Heistermann et al., 2013; Diekema and Koornwinder,

2012) is used to speed up the processing significantly. The two window sizes are also applied for the KDP derivation. Correction

for (differential) attenuation applies parameters α= 0.04dBdeg−1 and β = 0.004dBdeg−1 (Ryzhkov and Zrnic, 1995). The

attenuation correction is limited to the liquid phase (Tt > 4◦C) and the highest values of the path-integrated attenuation (PIA)355

and path-integrated differential attenuation (PIDA) reached in the liquid phase are applied to the remaining mixed phase and

solid radar observations.

ZH calibration (CalZH) is performed by comparing the GR with SR measurements (Pejcic et al., 2022; Crisologo and Heis-

termann, 2020; Warren et al., 2018; Louf and Protat, 2023; Protat et al., 2022). GR and SR measurements are matched to

the same geometry for each volume scan (more detailed description in Sect. 2.3), but measurements contaminated by the ML360

are excluded from the offset calculations (Pejcic et al., 2022). For this purpose, the ML top and bottom estimates determined

by the DPR are used. The conversion of reflectivity from Ku-band to S-band wavelengths is performed following Cao et al.

(2013). Further refinements of CalZH include the use of quality indices, determined from BBF and PIA, as weighting factors

for determining the ZH-offset (Crisologo and Heistermann, 2020).

Appendix B: The standard Hydrometeor Classification to identify the dominant hydrometeor class365

The membership functions (MSFs, Tab. B1) for the hydrometeor classes heavy rain, big drops , rain/hail, wet snow and graupel

are adapted from Park et al. (2009), whereas the rain class is subdivided into the light rain and moderate rain classes with

a ZH threshold of 28 dBZ (Tab. B1 light rain and moderate rain columns) following Straka et al. (2000). The big drops hy-

drometeor class originates from (Park et al., 2009) and represents rain with a skewed drop size distribution towards larger

raindrops, indicating the presence of raindrops with a diameter greater than 3 mm and a lack of smaller raindrops. Further-370

more, the ZDR MSF for crystals is extended to negative values and the ZH MSF for dry snow and crystals includes the snow

ice switch-over between 15 dBZ and 20 dBZ (Tab. B1 dry snow and crystals column) following Thompson et al. (2014).
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Plates/dendrites is added as a new class combining the MSFs of plates and dendrites from Thompson et al. (2014). For this

purpose, the MSFs of the two hydrometeor classes are superimposed and only the outer boundaries are considered (Tab. B1

plates/dendrites column). The ρHV-MSF for crystals are used also for plates/dendrites. For hail, the polarimetric MSF from375

Dolan et al. (2013) are applied. In general the trapezoidal MSFs of hail and plates/dendrites are tuned until they overlap as

good as possible with the membership beta functions used in Dolan et al. (2013) and Thompson et al. (2014).

The temperature MSFs are designed to allow solid phase hydrometeors crystals and dry snow only at temperatures below

0°C and liquid phase hydrometeors at temperatures above 0°C. Wet snow and plates/dendrites are restricted to temperature

regimes with their highest probability of occurrence (von Terzi et al., 2022; Lundquist et al., 2008; Heymsfield et al., 2021)380

and hydrometeors such as rain/hail, big drops, hail and graupel are allowed to exist in all regions (liquid, solid and mixed

phase). Big drops are restricted up to -32.5°C assuming the 6.5◦C/km lapse rate. This corresponds to findings of van Lier-

Walqui et al. (2016) reporting updrafts reaching around 5 km above the freezing level. Graupel MSF for temperature are set to

the temperature interval between -50 ◦C and 30 ◦C, which is consistent with the boundaries for high density and low density

graupel in Dolan et al. (2013).385

Appendix C: List of abbreviations
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Table B1. Values x1, x2, x3 and x4 of the used trapezoidal membership functions for ZH, ZDR, LKDP, ρHV and T. f1, f2, f3, g1 and g2 can

be found in Park et al. (2009) Eq.4 and Eq.5

light moderate heavy big rain graupel crystals dry wet plates hail

rain rain rain drops hail snow snow dendrites

x1(ZH ) in dBZ 5.0 23.0 40.0 20.0 45.0 25.0 0.0 15.0 25.0 -1.0 45.0

x2(ZH ) in dBZ 10.0 28.0 45.0 25.0 50.0 35.0 5.0 20.0 30.0 2.0 50.0

x3(ZH ) in dBZ 28.0 45.0 55.0 45.0 75.0 50.0 15.0 35.0 40.0 26.0 67.0

x4(ZH ) in dBZ 33.0 50.0 60.0 50.0 80.0 55.0 20.0 40.0 50.0 31.0 72.5

x1(ZDR) in dB f1-0.3 f1-0.3 f1-0.3 f2-0.3 -0.3 -0.3 -1.0 -0.3 0.5 1.3 -0.5

x2(ZDR) in dB f1 f1 f1 f2 0.0 0 -0.8 0.0 1.0 1.6 -0.25

x3(ZDR) in dB f2 f2 f2 f3 f1 f1 3.0 0.3 2.0 8.4 0.50

x4(ZDR) in dB f2+0.5 f2+0.5 f2+0.5 f3+1 f1+0.5 f1+0.5 3.3 0.6 3.0 9.2 0.75

x1(LKDP ) g1-1 g1-1 g1-1 g1-1 -10.0 -30.0 -5.0 -30.0 -30.0 -30.0 -30.0

x2(LKDP ) g1 g1 g1 g1 -4.0 -25.0 0.0 -25.0 -25.0 -13.0 -29.0

x3(LKDP ) g2 g2 g2 g2 g1 10.0 10.0 10.0 10.0 -3.0 4.8

x4(LKDP ) g2+1 g2+1 g2+1 g2+1 g1+1 20.0 15.0 20.0 20.0 2.15 7.0

x1(ρHV ) 0.95 0.95 0.92 0.92 0.85 0.90 0.95 0.95 0.88 0.94 0.80

x2(ρHV ) 0.97 0.97 0.95 0.95 0.90 0.97 0.98 0.98 0.92 0.97 0.91

x3(ρHV ) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.99 0.99

x4(ρHV ) 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 0.985 1.00 1.00

x1(T ) in ◦C 0.0 0.0 0.0 -32.5 -90.0 -50.0 -90.0 -90.0 -2.0 -20.0 -90.0

x2(T ) in ◦C 1.0 1.0 1.0 -19.5 -50.0 -40.0 -80.0 -80.0 0.0 -17.5 -50.0

x3(T ) in ◦C 50.0 50.0 50.0 50.0 50.0 5.0 -2.0 -2.0 4.0 -12.5 0.0

x4(T ) in ◦C 55.0 55.0 55 55.0 55.0 30.0 0.0 0.0 6.0 -10.0 5.0
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Table C1. Frequently used non-mathematical abbreviations separated in overall abbreviations (top) and abbreviations used for space-bor

(center) and ground based observations (bottom)

HMC – hydrometeor classifications ML – melting layer

VMM - volume matching method HMCP– HMC following Trömel et al. (2023)

HMCZ– HMC following Zrnić et al. (2001b) HPR – hydrometeor partitioning ratio

qHPR – quasi hydrometeor partitioning ratio DGL – dendritic growth layer

ML – melting layer RT – rain type

DEM - Digital Elevation Model SRTM - Shuttle Radar Topography Mission

SR – space-borne radar DF – dual-frequency

HMCDF
P – extended HMCPfor DF HPRDF

k – DF derived HPRs

GPM - Global Precipitation Measuring core satellite DPR - Dual-Frequency Precipitation Radar

TRMM - Tropical Rainfall Measuring Mission PR - Precipitation Radar

GMI - GPMs Microwave Imager STH – storm top height

KaPR – Ka-band precipitation radar KuPR – Ku-band precipitation radar

Zm
Ku– measured Ku-band reflectivity Zm

Ka– measured Ka-band reflectivity

DFR– dual-frequency ratio PTI - precipitation type index

GR – ground-based radar DP – dual-polarization

HMCDP
P – refined HMCPbased on DP HPRDP

k – DP derived HPRs

PIA - path-integrated attenuation PIDA - path-integrated differential attenuation

ZH – horizontal reflectivity ZDR – differential reflectivity

KDP – specific differential phase ρHV – cross correlation coefficient

BBF - beam blocking fractions LKDP – log-transformed KDP

Tc – temperature at the beam center Tt – temperature at top beam edge

Tb – temperature at bottom beam edge CalZH - ZH-calibration with SR

CalSR22
ZDR

- ZDR-calibration (Sanchez-Rivas and Rico-Ramirez,

2022)

CalRZ19
ZDR

- ZDR-calibration (Ryzhkov and Zrnic, 2019)
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