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Abstract. This paper introduces INSYDE-content, a novel, probabilistic, multi-variable synthetic model designed to estimate 

flood damage to household contents on a component-by-component basis. The model addresses a critical gap in current 

modeling tools, which often overlook the significance of household contents in overall damage assessments. Developed 10 

through an expert-based approach and grounded in the scientific and technical literature, INSYDE-content leverages desk-

based data to characterize model features, including uncertainty treatment arising from incomplete input data. A validation test 

on two historical flood events and a sensitivity analysis are performed to assess the model’s performance and explore the 

contribution of input variables to damage estimation, confirming its robustness and interpretability. For illustrative purposes, 

in this study INSYDE-content has been tailored to the specific hazard, vulnerability and exposure characteristics of Northern 15 

Italy; nonetheless, its adaptable structure supports broader applicability across diverse regional settings, provided suitable 

customization is applied. 

1 Introduction 

Floods rank among the most devastating disasters worldwide, with climate change projected to intensify both their frequency 

and severity through altered weather patterns (Brázdil et al., 2006; Hirabayashi et al., 2013; Tanoue et al., 2016; IPCC, 2023). 20 

In response to these growing threats, several flood management approaches have been formulated and implemented over the 

years to mitigate related losses, with a shift from focusing solely on flood hazard control to a more holistic flood risk 

management (Plate, 2002; Sayers et al., 2002; Gralepois et al., 2016; Disse et al., 2020).  

In this change, damage estimation has become central for supporting the definition of effective policies for flood risk mitigation 

in both rural and urban environments (Merz et al., 2010; Marín-García, 2023). Modeling tools developed for this purpose vary 25 

in complexity, ranging from basic univariable formulations to more advanced multi-variable approaches involving several 

damage explicative factors. A further classification distinguishes between empirical and synthetic models based on the adopted 

methodology for their development: empirical models use historical data to relate vulnerability and hazard variables to damage, 

while synthetic models are founded on expert judgment for the definition of “what-if” scenarios supporting damage assessment 

(Merz et al., 2010; Jongman et al., 2012; Dottori et al., 2016; Gerl et al., 2016; Martínez-Gomariz et al., 2021). Synthetic and 30 
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multi-variable models offer valuable advantages, with the synthetic approach allowing for greater spatial and temporal 

transferability and the multi-variable formulation improving damage estimation reliability (Merz et al., 2010; Schröter et al., 

2014; Wagenaar et al., 2018; Amadio et al., 2019; Scorzini et al., 2021; Paulik et al., 2023; Xing et al., 2023; Di Bacco et al., 

2024).  

Among the various exposed assets, damage modeling for the residential sector has been the most extensively investigated and 35 

developed, with numerous models available in the literature (Gerl et al., 2016). Nevertheless, most of these models are devised 

to assess building damage only, with household contents (i.e., those items within the house that are not permanently installed 

in it, such as the furniture and appliances) often overlooked or modeled through simplified approaches.  

One of the early attempts to address the inherent complexity of appraising flood damage to house contents – stemming from 

the multiple economic, social and structural factors involved – is represented by the “Catalog of Residential Depth-Damage 40 

Functions” by the US Army Corps of Engineers (Davis and Skaggs, 1992). Through the inventory and valuation of household 

contents in sample houses, the report estimated that content damage may account for up to 50% of total building damage, 

thereby emphasizing its critical role in overall damage figures in inundation scenarios. Only more recently, a few studies have 

explored a variety of methodological approaches to improve the modeling capabilities for this asset across various spatial 

scales.  45 

Zhai et al. (2005) analyzed flood damages for the 2000 Tokai flood in Japan, identifying inundation depth, duration and 

household income as key explicative variables of flood damage to both buildings and contents. Similar results were found by 

Wahab and Tiong (2016), who proposed a multivariate flood damage model for the residential sector in Jakarta, Indonesia. 

Romali and Yusop (2020) developed an empirical multiple regression flood damage model for Kuantan, Malaysia, 

incorporating residents’ occupation, household income and building type as explanatory variables. They found that content 50 

loss was positively correlated with inundation duration along with household income and inundation depth. Shrestha et al. 

(2021) used household surveys in Myanmar’s Bago region to create local flood damage functions based on building 

characteristics. Ahadzie et al. (2022) studied flood impacts on residential buildings in urban settlements across five flood-

prone regions in southern Ghana, with data showing significant damage to contents, such as furniture and clothing. 

Mosimann et al. (2018) developed and cross-validated two linear regression models based on insurance data to estimate 55 

building and content losses in Switzerland. Their findings revealed that contents accounted for 21% to 36% of total losses and 

even surpassed building losses in cases of low-severity damages. Endendijk et al. (2023) developed empirical, multivariate 

vulnerability models to assess flood damage to buildings and household contents in the Netherlands, incorporating the 

influence of flood mitigation measures on damage outcomes.  

Nofal et al. (2020) addressed the issue of data scarcity and the challenges of deterministic models by developing synthetic uni- 60 

and multi-variable, component-based, flood fragility functions. The method involved dividing the building into 65 components, 

with some of them representing household contents, such as chairs, desks, TVs, electric appliances, sofas, kitchen cabinets, 

beds and mattresses. Each component was assessed across five predefined damage states ranging from DS0 (insignificant 

damage) to DS4 (complete damage). The proposed approach was applied to a hypothetical single-family residential wood 
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building, with contents distributed in it based on practical considerations. However, these basic assumptions significantly limit 65 

the model’s real-world applicability, as they fail to account for the substantial variability in housing types and household 

contents.  

Carisi et al. (2018) highlighted the challenges of developing comprehensive flood damage models for buildings and contents 

in the Italian context. Using ex-post data for the 2014 Secchia flood in the Emilia-Romagna region, they created empirical uni- 

and multi-variable flood damage models for buildings. Damage to contents was instead assessed indirectly using a simple 70 

square root regression relationship to building damage. By overlooking the complex induction mechanisms leading to damage 

and the related key factors, such as content distribution within the building, this approach, although practical, significantly 

hinders the model’s ability to provide insights into content vulnerability in flood scenarios. 

Overall, the existing literature underscores the substantial complexity of modeling flood damage to contents, primarily due to 

the inherent variability of exposed items within the buildings and the difficulty in characterizing their susceptibility to flood. 75 

This variability tends to increase across regions, further complicating models’ spatial transferability. Nonetheless, current 

research in this field remains limited, highlighting the need for further development of suitable methodologies and tools. 

To address these gaps, this study presents INSYDE-content: a micro-scale, multi-variable synthetic model specifically 

developed to estimate flood damage for household contents. Building upon the traditional “what-if” approach and earlier 

expert-based efforts (e.g., Davis and Skaggs, 1992; Dottori et al., 2016), INSYDE-content combines probabilistic modeling 80 

with flexible input data requirements and explicit component-wise representation of damage mechanisms. This transparency 

and adaptability distinguish it from empirical models, which are often fitted to specific case studies, or from other synthetic 

models that operate as black boxes without allowing inspection or modification of internal assumptions. 

The paper is structured around a four-step process, as depicted in Figure 1. The methodology section focuses on model 

development, starting with a preliminary data collection and analysis which support the identification and characterization of 85 

household content items, along with the formulation of the corresponding damage mechanisms. The procedure is illustrated 

for the context of Northern Italy (Po River District, Figure S1 of the Supplement Material 1), but the overall framework is 

generalizable and can be adapted to different regions. The role of input variables in shaping estimated content losses is then 

investigated through a probabilistic sensitivity analysis, with model performance ultimately tested against observed data from 

two historical flood events in Northern Italy.  90 

2 Methodology 

2.1 Model development 

INSYDE-content adopts the general model framework proposed in the original INSYDE for buildings (Dottori et al., 2016), 

where damages are first modelled component-wise in physical terms and then converted into monetary values using the full 

replacement costs derived from reference price lists. 95 
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Figure 1: Overview of the workflow for the development and testing of INSYDE-content. 

The overall economic damage D to house contents in each building is calculated by summing the replacement costs Ci for 

each of the n content items within the building that is expected to be damaged: 100 

𝐷 = ∑ 𝐶𝑖 = ∑ 𝑛𝑜. 𝑑𝑎𝑚. 𝑖𝑡𝑒𝑚𝑠𝑖 ·  𝑢𝑛𝑖𝑡𝑝𝑟𝑖𝑐𝑒𝑖

𝑛
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where no.dam.itemsi represents the number of damaged items for each specific household content i and unitpricei the 

corresponding unit replacement prices. The value of no.dam.itemsi depends on flood event features (such as inundation depth 

and duration, flow velocity, and water quality, in terms of the presence of pollutants or sediments), as well as on the 

vulnerability and exposure of the affected objects: 105 

𝑛𝑜. 𝑑𝑎𝑚. 𝑖𝑡𝑒𝑚𝑠𝑖 = 𝑓(𝑒𝑣𝑒𝑛𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) 

INSYDE-content includes 11 standard items: beds, sofas, wardrobes, dining table setup (dining table and chairs), kitchen setup 

(lower and upper cabinets), TVs, washing machine, oven and microwave oven, dishwasher and refrigerator. Their selection 

was informed by an extensive review of real estate listings with photographic documentation, which provided a representative 

overview of typical household content arrangements. The goal was to identify a set of essential and commonly present items 110 

across different dwelling types, ensuring both relevance and generalizability of the model, thus supporting its applicability to 

a wide range of residential settings, while maintaining a manageable level of detail for damage estimation. 

Since information on the actual number and distribution of contents within buildings is typically not known at large spatial 

scales, in model development it is necessary to introduce a probabilistic method that estimates their presence based on more 

commonly available data, such as building features. This approach enables a more accurate assessment of exposed items 115 
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without needing for detailed, point-wise evaluations, which are often impractical due to the highly subjective nature of 

individual household content choices. To this aim, in the tailored version of INSYDE-content for Northern Italy (Po River 

District), empirical data derived from virtual surveys of buildings have been used to establish reliable estimates of content 

distribution as a function of certain building features. The virtual surveys involve analyzing real estate listings to extract key 

information from advertised posts, architectural drawings and photos detailing the buildings and their contents (Scorzini et al., 120 

2022). Given the potential inconsistency in data completeness and quality across real estate platforms, only listings with 

complete information about the building and its contents have to be considered. To qualify for selection, the advertisement has 

to include at least information on interior details, main geometrical attributes and architectural layout and profiles, as well as 

a sufficient number of photos taken from various angles to cover most of the areas within all rooms. The applied criteria in the 

analyzed case of the Po River resulted in only 60 houses being deemed suitable for analysis out of approximately 500 examined. 125 

Indeed, in many cases, only partial information could be obtained due to either a lack of data or privacy issues. Additionally, 

geometrical features did not always align with secondary data, such as building footprints available from other databases.  

The information collected during this process includes both the characteristics of the building (e.g., location, number of floors, 

building type, finishing level, inter-story height, footprint area, surface area, external perimeter, year of construction) and those 

of its contents (e.g., number and size of beds and sofas, number of furniture pieces, placement height of appliances). For 130 

detailed examples, please refer to the Supplementary Material 2 included in this study. 

For practical reasons, the raw data acquired from the survey need to be transformed into more standardized variables on a 

component-by-component basis. For instance, different types of beds (i.e., single and double) have been represented by a 

single standard variable called BEDLeq, where 1 BEDLeq equals 1 large double bed or 2 single beds. The same approach was 

applied to other items, such as sofas, wardrobes and dining table setup (for details, please refer to the Supplementary Material 135 

1). 

At this stage, it becomes possible to identify empirical relationships allowing for the assessment of the number of exposed 

contents per building by using regression functions that relate the standardized variables for each item to the characteristics of 

the building. A straightforward approach might involve correlating the number of specific items to the number of rooms 

designated for them (e.g., beds to the bedrooms). However, since the number of rooms per building is often an unknown 140 

information in flood risk assessments, it is essential to establish a relationship between the number of exposed items and more 

general independent variables to enhance the practical applicability of the model. The most straightforward approach is to 

relate item quantities to building size, expressed as either footprint area (FA) or surface area (SA). Footprint area refers to the 

total ground area occupied by the building, while surface area is the total horizontal built-up area across all floors. For single-

story buildings, FA and SA are the same. For multi-story buildings, if each floor is occupied by separate households, the SA 145 

for each unit corresponds to the individual floor area. In cases where a single household occupies multiple floors, SA becomes 

more representative of the total contents, as it comprises the total floor area of the entire building (SA = NF·FA, with NF 

indicating the number of floors).  
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For Northern Italy, a power regression function of SA was found effective in describing the number of exposed beds, sofas, 

wardrobes and dining table setup (Supplementary Material 1). For these elements, a stochastic component derived from a 150 

normal distribution with a mean of 1 and a standard deviation of 0.2 was applied to account for the inherent variability in the 

distribution of household contents. The other items were instead treated as constant functions based on practical judgment 

supported by empirical observations: for instance, it is expected that each housing unit may contain only one kitchen setup. 

The functions thus obtained can be then converted into step functions to more realistically represent the increments in the 

number of exposed objects with changes in SA. This means that for a specific range of SA, the standardized variable related 155 

to a certain content can assume only a physically sound constant value (e.g., the predicted BedLeq is expressed in increments 

of 0.5 BedLeq to capture the increase in the number of beds corresponding to a single bed unit). 

Once the number of exposed items (expi) is defined, it is possible to determine no.dam.itemsi through the identification of the 

primary driving factors for damage induction for each content type. To this aim, INSYDE-content adopts a probabilistic 

approach based on the use of fragility functions. The model assumes a binary damage state: an undamaged state (ds0) or a fully 160 

damaged state (ds1). For each content type, fragility functions express the probability of reaching a fully damaged state, based 

on the event intensity measure(s) (IM). To combine this probability with the actual occurrence of a damage state for the 

individual exposed elements, a random value Pi, accounting for the survival probability of each item, is sampled from a uniform 

distribution between 0 and 1 and compared to the damage probability derived from the fragility function for the corresponding 

content type. The random nature of the implemented process serves to capture the inherent uncertainty in the damage 165 

mechanisms, reflecting the intrinsic variability in content vulnerability to the same event intensity. Consequently, if P i falls 

below the damage probability calculated from the fragility function, it is considered fully damaged (ds1), otherwise, it remains 

undamaged (ds0). 

The formulation of the fragility functions is based on expert knowledge, practical experience, as well as available technical 

and scientific documentation. Assigning the thresholds for the event feature driving the damage mechanism is not trivial and 170 

the lack of relevant research in this field adds further complexity to it. However, given the practical considerations surrounding 

the damage process for contents, it is feasible to establish lower and upper bounds for the IM based on expert judgment. 

In the model, inundation depth and duration are identified as the primary drivers of damage to contents, while floodwater 

quality (i.e., the presence of sediments or pollutants) is considered a secondary stressor, whose influence is accounted for 

through a scaling factor that amplifies the damage probability. As an illustrative example, the case of beds is presented here, 175 

while information for the other components is provided in the Supplementary Material 1. Fragility curves for both inundation 

depth and duration are modeled using truncated normal distributions, bounded by thresholds that are physically meaningful. 

Specifically, the thresholds for depth range from a few centimeters above the floor level to the typical base height of a mattress, 

while even short durations of inundation (on the order of a few hours) may be sufficient to cause damage due to water 

absorption. The model evaluates the probability of damage for each primary factor independently and assigns the maximum 180 

of the two based on the assumption that the most unfavorable condition dominates the damage mechanism, independently of 
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the other. The presence of sediments in the floodwater is instead assumed to increase the probability estimated from the main 

primary factor by 10%, reflecting the higher likelihood of irreversible damage due to debris or fouling. 

Tables 1 and 2 describe the building and event features used in the model, including their range of values and the assumptions 

regarding the dependencies between the variables in case of missing information. Indeed, similar to the original INSYDE for 185 

buildings, the model can automatically assign default values when certain input data are not provided by the user. This is 

achieved by either leveraging the implemented relationships among the variables (e.g., for SA or hi) or by sampling from user-

defined distributions that reflect the characteristics of the region under analysis.  

Table 1: Building features in INSYDE-content for estimating exposed household items. 

Variable Description Range of values Default dependencies 

NF Number of floors [-] > 0  

FA Footprint area [m2] > 0  

SA Surface area [m2] > 0 SA=f(FA, NF) 

IH Inter-floor height [m] > 0  

GL Ground floor level [m] ≥ 0  

BT Building typology [-] 

1: Detached House 

2: Semi-Detached House 

3: Apartment 

 

FL Finishing level [-] 

0.8: Low 

1: Medium 

1.2: High 

 

GU Ground use [-] 
1: Residential use        

2: Other use (garage, storage, etc.) 
GU=f(BT) 

HU Number of housing units [-] ≥ 1 HU=f(FA,BT) 

 190 

Table 2: Event features in INSYDE-content. 

Variable Description Range of values Default dependencies 

he Inundation depth outside the building [m] ≥ 0  

hi Inundation depth inside  the building (for each floor) [m] [0:IH] hi=f(he,GL) 

d Inundation duration [hours] ≥ 0 d=f(he) 

s Indicator for the presence of sediments [-] 
0: No 

1:Yes 
 

q Indicator for the presence of pollutants [-] 
0: No 

1:Yes 
 

 

In the version presented in this study, the model incorporates the distributions proposed by Di Bacco et al. (2024), which are 

based on a combination of physically-informed approaches and empirical survey data for northern Italy (reported for 

completeness in Figures S2-S3 of the Supplementary Material 1).  195 

Additionally, for a more comprehensive analysis, this study also employed the non-region-specific synthetic distributions 

proposed by Di Bacco et al. (2024)  (Figures S4-S5 in Supplementary Material 1). By covering a wider range of values, these 
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distributions facilitate a deeper investigation into the model’s sensitivity to input variables beyond the specific context of 

northern Italy. The fragility functions (FF) and general assumptions for all components are detailed in the Supplementary 

Material 1, while Table 3 summarizes the variables that affect both the number of exposed elements (EXP) and the damage 200 

mechanisms in the model. As evident from the table, EXP is not only expressed as a function of the floor area, but also depends 

on building characteristics (e.g., typology, number of floors and ground floor use), as the internal distribution of contents is 

shaped by the structural and functional layout of the dwelling, which may vary considerably between apartment and single-

family buildings. For instance, in detached houses, bedrooms are typically located on upper floors, affecting the vertical 

distribution of certain elements such as beds and wardrobes. 205 

It is worth noting that flow velocity does not appear among the event features considered in INSYDE-content (Table 2), despite 

its potential relevance to content damage. The decision to exclude it as an input variable was guided by practical considerations. 

Firstly, the impact of flow velocity on content damage should ideally be assessed based on water velocity inside the building. 

However, this information is neither available in standard flood risk analyses nor are there reliable methods to estimate it 

indirectly from external flow velocities (Dewals et al., 2023; Zhu et al., 2023). Furthermore, the mechanism of flow intrusion 210 

into a building generally leads to a significant reduction in velocity, making its effect negligible when assessing content 

damage. Conversely, when the external flow velocity is extremely high and capable of washing away the entire building, flow 

velocity may become critical as it would lead to the complete destruction of both the structure and its contents. However, this 

extreme scenario has not been included in the current version of INSYDE-content due to its rarity in fluvial floods, particularly 

for masonry and reinforced concrete buildings. Additionally, the lack of well-established criteria defining the threshold for 215 

washing away (based on a combination of water depth and velocity) makes it challenging to quantify a situation where content 

damage would be complete. 

Table 3: Variables that affect the determination of exposed elements (EXP) and the damage mechanisms (i.e., fragility 

functions (FF)) in INSYDE-content. 

Damage component Variables affecting the component 

Beds, wardrobes, dining setup 
EXP: SA=f(FA,NF), BT, HU=f(FA,BT), NF, GU  

FF: hi=f(he, GL), d, s, q 

Sofas 
EXP: SA, BT, FL, HU, NF, GU  

FF: hi, d, s, q 

Kitchen setup 
EXP: HU, NF, GU  

FF: hi, d, s, q 

Washing machine, TV, oven, refrigerator 
EXP: HU, NF, GU  

FF: hi 

Dishwasher, microwave oven 
EXP: HU, FL, NF, GU  

FF: hi 

 220 
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2.2 Model evaluation 

2.2.1 Sensitivity analysis to the input variables 

A sensitivity analysis of INSYDE-content was conducted to evaluate how the selected explanatory variables influence damage 

estimation and to determine how the absence of certain input data contributes to uncertainty in these estimates. This analysis 

was performed using two synthetic portfolios, each consisting of 250,000 buildings exposed to hypothetical flooding scenarios, 225 

as described in Di Bacco et al. (2024). The first dataset represents more general, non-region-specific inundation and building 

characteristics (referred to as the “extended dataset”, hereinafter), while the second focuses on the specificities of northern 

Italy (Po River District, “Po dataset”, hereinafter). These synthetic portfolios were generated by Di Bacco et al. (2024) by 

integrating empirical distributions of both hazard and exposure variables, while preserving their mutual dependencies and 

accounting for internal variability (Figures S2-S5 in Supplementary Material 1). The Po dataset is based on a combination of 230 

official inventories and virtual survey data representative of the local building stock and flood dynamics, whereas the extended 

dataset spans a wider range of conditions to support more generalizable insights. This dual approach allowed us to derive a 

context-specific and a broader ranking of variable importance, and to investigate how regional characteristics may influence 

the relative weight of each feature within the model. 

The sensitivity analysis followed these steps: first, INSYDE-content was applied to calculate damages for both building 235 

portfolios, with all required model variables known. For each j-th building in the dataset, the estimated damage value in this 

step was taken as reference value, D0. Then, one input variable was sequentially removed and replaced, for each building in 

the datasets, with values sampled from the distributions given by Di Bacco et al. (2024). This process was repeated for each 

variable, with damage recalculated each time (Di). The absolute difference in damage compared to the reference value was 

recorded for each of the j buildings (| D0 – Di |j), facilitating the determination of the variance each feature contributes to the 240 

model’s outcome. 

2.2.2 Model validation 

The model was validated using loss data from two historical flood events that occurred in Northern Italy: the 2002 flood in 

Lodi and the 2010 flood in Caldogno. These events have been analyzed in previous studies regarding building damage (Amadio 

et al., 2019; Molinari et al., 2020), but never for household contents. In this study, only buildings without basements were 245 

considered, coherently with the model’s assumption that does not account for their presence. The validation dataset includes 

194 buildings for Lodi and 169 buildings for Caldogno, with total losses (adjusted to year 2023 values) amounting to about 

3.1 million euro for each case. 

The loss data were derived from the forms for damage quantification distributed by the authorities as part of the state’s loss 

compensation process, which were filled in by affected citizens. These forms provided actual restoration costs, certified by 250 

original receipts and invoices. The types of content damage eligible for compensation aligned with the 11 components 

identified in the model formulation. The unit prices for content items were taken from the decree issued by the delegated 
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commissioner responsible for damage compensation following the Caldogno flood. These prices were then applied to the Lodi 

case after being adjusted for inflation to the event date. 

In addition to loss data, the dataset contains information on external water depth at building’s location. As regards the other 255 

event features required by INSYDE-content, qualitative data from previous studies allowed to identify an approximate value 

for inundation duration equal to one day for both cases (Di Bacco et al., 2024). Accordingly, the sampling of d values was 

obtained from a truncated normal distribution centred at 24 hours and spanning between 16 and 48 hours (d* in Table 4). The 

information on the presence of fine-graded sediments allowed for assigning s=1 (yes) for both cases, while local data on 

pollutants was available only for Lodi. 260 

Concerning building features, the dataset includes footprint area (FA), number of floors (NF), building type (BT) and finishing 

level (FL). For the remaining missing variables (hi, SA, GL, GU, IH, HU) the model was applied by leveraging the established 

relationships among the variables (Tables 1 and 2) and the built-in sampling process from pre-defined distributions, as outlined 

in Di Bacco et al. (2024).  

To account for uncertainty arising from the sampling process of unknown inputs and from the implemented assumptions on 265 

exposure and damage mechanisms, content losses were calculated probabilistically for each building over 1,000 iterations, 

resulting in confidence intervals for the estimated values which were compared to reported losses.  

Table 4: Available input variables for INSYDE-content in Caldogno and Lodi case studies. 

Case study Variables included in the dataset 

Caldogno he, d*, s, FA, NF, BT, FL  

Lodi he, d*, s, q, FA, NF, BT, FL  

3 Results and discussion 

3.1 Examples of resulting damage functions 270 

Figure 2 illustrates an example of traditional damage functions resulting from the application of INSYDE-content, broken 

down by components and in terms of total damage. The functions correspond to a scenario involving both apartment and 

single-family, detached or semi-detached residential buildings with a surface area of 200 m2, distributed across two floors, 

with IH=3 m, GL=0 m and a high finishing level. In the total damage functions, the interquartile range is shown alongside the 

median damage to represent the variability induced by the probabilistic modeling of the damage mechanism. For each water 275 

depth, damage values were calculated over 1,000 iterations by randomly assigning q as either 0 or 1 and generating random 

samples of inundation durations based on water depth scenarios, with d assumed to be relatively short for shallow inundations 

and extending from 6 hours to 2 days for depths greater than 2 meters.  

The trends shown in Figure 2 effectively highlight the assumptions on the damage mechanisms implemented into the model 

for the various items, as described in the Supplementary Material 1. For instance, focusing on detached and semi-detached 280 
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buildings, damage to beds only occurs when inundation depth exceeds 3 meters, consistent with the assumption that bedrooms 

are located on the upper floors for this type of dwelling. Similarly, sofas, assumed to be in the downstairs living area, appear 

to be highly vulnerable to flood, necessitating a full replacement even under very shallow water depths. The pattern for 

wardrobes and their contents is more complex, as they include different types of furniture, ranging from small and decorative 

pieces in the living room to full-height wardrobes in bedrooms, each with varying thresholds for damage onset.  285 

 

Figure 2: Example of traditional damage functions resulting from the application of INSYDE-content for different 

building types: a) total content damage; b) damage to kitchen and damage setup as well as electric appliances; c) 

damage to beds, sofas and wardrobes to a detached/semi-detached building; d) as panel c), but for an apartment 

building. 290 
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This results in the stepped function shown in Figure 2, panel c), similar to the one for the kitchen setup, where the steps 

represent the damage occurring to lower and upper cabinets. Electrical components display a similar behavior across all items, 

with only different activation thresholds based on their varying vulnerability. For apartments, the overall damage is higher 

compared to single-family buildings with the same surface area, due to the presence of multiple housing units within the same 295 

space, each containing its own furniture and appliances. To ensure clarity of Figure 2, panel b) focuses exclusively on the 

damage functions for electrical components and kitchen setup in a single-family building, which are equivalent to those for a 

single housing unit in an apartment building. For the other components, distinct patterns emerge between the two building 

types, reflecting different assumptions regarding the distribution of contents across the floors. For example, in the case of 

apartments, a non-null damage to beds can be recognized even on the first floor, with a stepped increase in damage between 300 

floors, as observed for sofas. 

3.2 Sensitivity analysis to the input variables 

This section reports on the sensitivity of damage estimation to the variables considered in INSYDE-content and on the 

uncertainty arising from potential missing input data in model implementation. Figure 3 summarizes the findings by illustrating 

the difference in computed damage when the model is applied to the reference portfolios of 250,000 buildings and to their 305 

replicas obtained by replacing the values of one input variable at a time with a sampling from the predefined distributions 

implemented in the model.  

 

Figure 3: Variable importance in INSYDE-content. Results obtained with sampling from the two different datasets 

developed by Di Bacco et al. (2024): a) case for the extended synthetic dataset; b) case for the Po River District synthetic 310 

dataset. Variables are ordered according to the median value of the absolute damage difference. 
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The left and right panels of Figure 3 correspond, respectively, to the extended synthetic dataset, which encompasses a broader 

range of values for the input features, and the Po dataset, tailored to the characteristics of northern Italy. In Figure 3, features 315 

are ranked by the median value of | D0 – Di |j, where D0 represents the reference damage for the j-th building and Di the 

corresponding value calculated after removing and resampling the i-th variable from the predefined distributions developed 

by Di Bacco et al. (2024). 

Dependent variables, such as SA or hi, are not represented in the figure as their effects are inherently incorporated through the 

independent variables to which they are assumed to be functionally related. Similarly, the influence of sediments, represented 320 

by the binary variable s, is not reflected in the figure; this is because the distributions generated by Di Bacco et al. (2024) for 

representing the fraction of sediments on water volume always yield a non-null value in the analysis, which implies a constant 

s=1 (i.e., presence of sediment, of any gradation) in INSYDE-content. 

Overall, Figure 3 demonstrates a feature importance pattern that remains relatively consistent across the two tested datasets, 

with the most influential variables (he, BT, FA, and d) consistently appearing among the top five in both cases. As expected, 325 

higher values of | D0 – Di |j are observed in the extended dataset, where missing data sampling (especially for extensive and 

intensive variables) can span a broader range of variability than in the Po scenario (Di Bacco et al., 2024). 

Inundation depth (he) emerges as the primary contributor to uncertainty in damage estimation, with median absolute damage 

differences ranging from approximately 4,500 to 6,800 euro, confirming the well-known significance of such variable in direct 

flood damage assessment for various types of assets, including household contents (Merz et al., 2013; Schröter et al., 2014). 330 

Building type (BT) plays a crucial role in determining the exposed value of contents by shaping the distribution of items within 

the building (e.g., the assumption regarding bed placement in single- and multi-family buildings discussed earlier). This effect 

is evident in the median | D0 – Di |j shown in Figure 3, which range from approximately 3,000 to 3,500 euro, establishing BT 

as the second most influential feature in INSYDE-content, in contrast to its minimal impact on building damage mechanisms 

(Dottori et al., 2016; Di Bacco et al., 2024). The minor influence of ground use (GU) is partly masked by the effect of BT, as 335 

the model differentiates the use of the ground floor only in the case of apartment buildings, where it is more common for the 

ground floor to be allocated for non-residential purposes (e.g., garages, communal areas, etc.). 

Closely related to inundation depth is the role of ground level (GL), which influences the water depth inside the building and 

subsequently affects damage. In the extended dataset, GL ranks as the third most important feature, with median absolute 

damage differences of about 2,900 euro. On the other hand, in the Po dataset, the lower variability of GL makes its impact less 340 

significant, resulting in an estimated damage variation of about 1,500 euro, which is comparable to variations observed for 

other variables, such as FL, GU and q. 

Regarding the number of floors (NF), while the quantitative effects on damage calculations are similar in both datasets, with 

a median | D0 – Di |j of approximately 1,700 – 2,000 euro, greater variability is observed in the extended dataset (with an 

interquartile range of 5,400 euro, compared to 3,100 euro for the Po case), as a consequence of the higher probability of damage 345 

affecting upper floors, given the broader range of inundation depths represented in this dataset. 
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For the Po case, a relatively stronger influence is observed for the two variables affecting the number of exposed contents - 

either directly through footprint area (FA) or indirectly via finishing level (FL) (see Supplementary Material 1 for the 

corresponding functions) - with these variables occupying the third and fifth positions, respectively. The relatively limited 

impact of FL, as shown in Figure 3, can be attributed to the fact that the model considers its effect only for the estimation of 350 

the number of exposed contents, without accounting for potential increases in their unit price. This modeling choice was guided 

by practical considerations: first, for household contents, it is virtually impossible to establish a clear upper limit on the 

economic value of an item as its luxury level increases; second, this approach aligns with the application of the model in flood 

risk management contexts (e.g., under the European Floods Directive) or in government compensation schemes for flood 

damage, where standard average costs are used, regardless of the actual quality of the damaged items. 355 

3.3 Insights into content-to-building damage relationship 

This section expands on the model’s performance by analyzing the relationship between content and building damage, aligning 

with previous studies that aimed to establish connections between the two (Thieken et al., 2005; Carisi et al., 2018; Mosimann 

et al., 2018). To this end, building damage was calculated using the INSYDE 2.0 model (Di Bacco et al., 2024) and paired 

with content damage estimates for the two synthetic datasets used in the sensitivity analysis. Figure 4a illustrates the results, 360 

plotting estimated content damage against building damage for both datasets and comparing them with the equation proposed 

by Carisi et al. (2018), based on post-event observations for the 2014 Secchia flood in Emilia Romagna, Italy.  

 

Figure 4: a) Content to building damage calculated with INSYDE models on the two tested datasets and comparison 

with the root function of Carisi et al. (2018); b) Content to building damage ratio (CBR) expressed as a function of 365 

inundation depth with INSYDE models and Carisi et al. (2018). 
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INSYDE results reveal substantial variability in content damage for same levels of building damage, highlighting the complex, 

multi-variable nature of damage mechanisms that cannot be fully represented by simple univariate functions. Interestingly, the 

root function proposed by Carisi et al. (2018) aligns at a median level with INSYDE results, although in a region with lower 

sample density. Conversely, INSYDE allows discerning distinct patterns in the relationship between building and content 370 

damage, shaped by the combined effects of inundation duration thresholds and building characteristics (such as BT and FL) 

triggering specific damage mechanisms to certain components, as previously described for INSYDE 2.0 by Di Bacco et al. 

(2024).  

Furthermore, Figure 4b illustrates the content-to-building damage ratio (CBR) as a function of inundation depth, offering 

insights into the limitations of using a univariate approach based solely on building damage, especially in case of shallow 375 

inundation depths (< 0.5 m), where the higher vulnerability of contents can lead to CBR values exceeding 5. However, as 

inundation depth increases, overall damage becomes predominantly driven by building damage, leading to a reduction in the 

differences between the two approaches. 

Median CBR values for INSYDE across the two datasets range from 0.26 (calculated on inundation durations exceeding 48 

hours) to 0.36 and 0.42, respectively for the extended and Po River datasets at shorter durations. These findings are consistent 380 

with post-event observations in Switzerland and Germany (Thieken et al., 2005; Mosimann et al., 2018), which reported CBR 

values around 0.28-0.29, with higher values for lower-entity damages, as illustrated here in Figure 4b. Nonetheless, the results 

presented in Figure 4 highlight the importance of detailed knowledge regarding the vulnerability and exposure characteristics 

of potentially impacted assets to achieve accurate content damage estimations with minimized uncertainty. The probabilistic 

sampling approach implemented in INSYDE-content addresses the practical challenges of obtaining such detailed information 385 

in large-scale applications by effectively managing unknown missing data through calibrated distributions of the input features, 

while also explicitly accounting for uncertainties associated with predictions and thereby mitigating the false sense of certainty 

that, instead, often accompanies deterministic models. 

3.4 Model validation 

The validation outcomes are summarized in Table 5, which presents the statistics of total damage estimated by INSYDE-390 

content for the two considered historical case studies, based on 1,000 replicates for each building with missing input features, 

alongside observed damage values. Figure 5 complements these findings with a detailed visualization of the differences 

between individual building-level estimations and actual observations.  

Overall, Table 5 indicates a good alignment between the estimated and observed total damages. In Lodi, the sum of median 

predicted losses closely reflects the actual claim data, while in Caldogno the reported figure approaches the upper quartile of 395 

the estimate distribution. Despite this general convergence at the aggregated level, Figure 5 reveals notable scatter at the 

individual building scale, particularly for apartment buildings, where the absence of ground-level usage information (GU) 

introduces large variability in the estimates, as the model randomly samples residential or non-residential use over the 

iterations, affecting both the exposed contents and the resulting damage outcomes. In contrast, predictions for detached and 
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semi-detached houses show much lower variability, likely due to their more homogeneous features and to the relatively 400 

uniform, shallow inundation depths recorded in the two flood events (approximately 0.5 m in Caldogno and 0.8 m in Lodi, on 

average).  

This scatter is also evident in quantitative error metrics computed between the median predicted values per building and the 

individual observed losses: the mean absolute error ranges from 14,185 euro for Caldogno to 16,962 euro for Lodi, with 

corresponding mean biases of -8,239 euro and 1,233 euro. Nevertheless, while informative, these building-level analyses 405 

should be interpreted with caution for two main reasons. First, flood damage models are widely acknowledged in the literature 

to perform better at more aggregated spatial scales (e.g., municipality or regional scales), as this helps to compensate for 

building-specific variability and inconsistencies in the input data (e.g., Merz et al., 2008; Molinari et al., 2020; Pinelli et al., 

2020). Moreover, such issues are particularly critical for content-related damages, which are inherently more variable and less 

standardized than building elements, making them especially challenging to model. 410 

Table 5: Results of the probabilistic validation of INSYDE-content for the case studies of Caldogno and Lodi: statistics 

of total estimated damage versus reported damage. 

 Estimated damage [M€ 2023]  
Observed damage [M€ 2023] 

 1st quartile Median 3rd quartile 

Caldogno 1.10 1.76 3.50 3.15 

Lodi 1.75 3.30 6.87 3.06 

 

 

Figure 5. Results of the probabilistic validation of INSYDE-content: a) Caldogno event; b) Lodi event. Median 415 

computed damage (dot) and corresponding interquartile range (line) are plotted for each building against observed 

damage (expressed in 2023 euro). 
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Second, claim data themselves should not be treated as an unequivocal ground truth, as they are often affected by substantial 

uncertainties and potential biases (Molinari et al., 2020; Pinelli et al., 2020; Wing et al., 2020; Museru et al., 2024). 

Consequently, the concept of “validation” in flood damage modeling should be interpreted with caution and possibly 420 

reconsidered in light of these constraints (Molinari et al., 2020). In support of these considerations, Supplementary Figure S7 

shows the relationship between observed content losses and inundation depth at the building level. This figure clearly illustrates 

the large, non-physical variability in the claim data, with differences in losses of up to an order of magnitude even for buildings 

of the same type and size affected by nearly identical flood conditions. For instance, two identical single-family houses located 

side by side and subject to approximately 30 cm of inundation recorded claim amounts of about 600 and 16,000 euro, 425 

respectively. Such discrepancies cannot be explained by physical processes alone, but rather reflect non-physical variability 

inherent in claim reporting practices (including differences in household behavior, repair and replacement choices or attitudes 

toward compensation mechanisms) that cannot be reproduced by physically informed models such as INSYDE-content. 

Furthermore, in addition to confirming the model’s robustness in estimating aggregated losses, the analysis also highlights the 

value of explicitly representing uncertainty through prediction intervals when assessing model performance, thereby enhancing 430 

transparency and helping to avoid the misleading impression of accuracy often conveyed by deterministic approaches  

(Pappenberger and Beven, 2006; Merz et al., 2015). 

4 Conclusions 

Modeling flood damage to household contents poses significant challenges due to the inherent heterogeneity of such items, 

which contrasts to the more standardized geometry and features of buildings. This complexity is further exacerbated by the 435 

need to account for a wide range of factors influencing damage mechanisms (i.e., flood characteristics, the vulnerability of 

both buildings and their contents, as well as broader economic aspects), demanding a more comprehensive approach than 

traditional univariate damage assessments. 

This study aimed to address such complexities by introducing INSYDE-content, a probabilistic, multi-variable flood damage 

model, specifically designed for household contents. The model was developed through a structured, multi-phase process 440 

including: (i) an extensive data collection on household contents and flood characteristics; (i) the probabilistic estimation of 

the presence of household contents to reflect their variability and distribution across different building types; (iii) the 

development of fragility functions for individual items based on their driving factors; and (iv) a price analysis to obtain 

monetary damage estimations. Although the model presented in the paper has been tailored to the context of Northern Italy 

(Po river district), its components and basic input data can be adapted or adjusted to the specific characteristics of other regions, 445 

ensuring its generalizability.  

Sensitivity analysis and validation exercises provided insights into the model’s performance. One of the key findings emerging 

from this study is the critical importance of accounting for the multi-variable nature of flood damage to household contents, 

with the primary factors being inundation depth (and, to a lesser extent, inundation duration) and the variables that quantify 
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and distribute exposed items within buildings, such as those representing building size, type and use. The study also confirms 450 

that in cases of shallow inundation, content damage can exceed building damage, with content-to-building damage ratios 

largely exceeding 1, thus highlighting the often-overlooked vulnerability of household contents in flood scenarios. 

The probabilistic nature of INSYDE-content effectively addresses uncertainties arising from potential missing input data, 

offering a more robust alternative to traditional deterministic models. By employing sampling techniques of input features, the 

model can estimate damage even in the absence of certain data, providing information on estimation uncertainty while 455 

maintaining transparency. Furthermore, the validation results confirmed the reliability of INSYDE-content, with its aggregated 

damage estimates aligning with observed claim data from two flood events in Italy. From another perspective, the analysis 

performed in this study also highlighted the importance of incorporating input data uncertainty when validating and evaluating 

model performance. Presenting damage estimations with clearly defined uncertainty bounds not only enhance model 

transparency and reliability, but also helps preventing a false sense of certainty, which is typical of simpler deterministic 460 

models. On the other hand, comparing observed data within a plausible range of the estimates can also help to support a more 

realistic appreciation of the uncertainty affecting the same claim data. 

By modeling the complex interactions between flood characteristics, building features and household contents, while also 

addressing the challenges posed by data availability and uncertainty, INSYDE-content provides a robust and reliable tool for 

comprehensive flood risk assessment. Additionally, its modular architecture, offering a transparent representation of damage 465 

mechanisms at the component level, makes the model particularly suited not only for loss estimation, but also for the design 

and assessment of targeted mitigation or adaptation measures at the building scale.  

Future work should focus on expanding and customizing the input datasets for household contents across different geographical 

contexts, refining and validating component fragility functions for a wider range of flood scenarios, and exploring the role of 

additional socio-economic factors in shaping damage patterns. 470 

Code availability 

During the review process, the code of INSYDE-content is available at the following link: 

 https://drive.google.com/file/d/1T8XPF5UPALxJ0JGUYj2rodl7TStRP9Pz/view?usp=sharing  and it will be made available 

on Mendeley data upon final acceptance. 
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