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Abstract.

Ammonia (NH3) is a key precursor of PM> s, contributing to the formation of secondary
inorganic aerosols and playing a crucial role in haze events. However, current bottom-
up emission inventories in China often underestimate NH3 emissions, particularly with
significant uncertainties in urban areas. This study developed a “top-down” iterative
algorithm that integrates the IASI satellite observations with the WRF-Chem model to
optimize bottom-up NH3 emissions, and further quantified the impacts of source-
specific emission reductions on PM3 5 pollution. The result reveals that the updated NH3
emissions in Eastern China for 2016 amounted to 4.2 Tg yr'', 27.3% higher than prior
estimations. The optimized NH3 emissions peak in summer at 463.1 Gg month™!, with
agricultural sources accounting for 85%, while winter emissions drop to 217 Gg month
I when the contribution from non-agricultural sources (e.g., industry, vehicle)
significantly increases. The optimized NH3 emission significantly improved the
simulation of both total column and surface NH3 concentrations, with improvements in
magnitude (31%—42%) and variations (17%-55%). Sensitivity simulations show that a
30%-60% reduction in NH3 emission led to decreases of 1.5-8.8 ug-m= in city-level
PM: 5 concentrations and the potential effect of reducing non-agricultural emissions is
comparable with that from agricultural sources. Furthermore, the NHj3 reduction
positively impacts public health, resulting in a 6.5%-10.3% decrease in premature
deaths attributed to PM> s exposure. Our study evaluated NH3 emissions from various
sources in Eastern China, emphasizing the impact of reducing non-agricultural

ammonia emissions on air quality and public health benefits.

Keywords: NH3; emission, PM; s, satellite retrieval, WRF-Chem, top-down
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1 Introduction

In recent years, China has continued to face significant challenges associated with
PM; s pollution (Geng et al., 2024; Lei et al., 2022). This issue adversely affects
atmospheric environment via reducing visibility (Hu et al., 2021; Yang et al., 2022) and
deteriorating air quality (Lei et al., 2024; Song et al., 2025), impacts climate change by
altering radiation balance(Tang et al., 2025) and cloud formation (Gao et al., 2023; Yang
etal., 2021), and poses substantial threats to human health (Du et al., 2024; Feng et al.,
2016; Liu et al., 2025; Xiao et al., 2022; Zhu et al., 2025). Ammonia (NHz3), a key
precursor of PM; s, neutralizes sulfuric acid (H2SO4) and nitric acid (HNO3), leading to
the formation of secondary inorganic aerosols (SIA), which contributes 19.4%—55.0%
of the total PM» s (Huang et al., 2014; Liu et al., 2022b; Wang et al., 2016; Wei et al.,
2023; Zheng et al., 2015; Zhou et al., 2022). Reducing NH3 emissions is a highly
effective strategy for mitigation of PMa s pollution (Bessagnet et al., 2014; Xu et al.,
2022), particularly in light of the successful control of sulfur dioxide (SOz) and nitrogen
dioxide (NO>) in China over the past decade (Li et al., 2023b; Wang et al., 2017; Zhang
et al., 2019; Zheng et al., 2018).

The anthropogenic sources of NH3 include agriculture, industry, power generation,
transportation and residential activities. Numerous studies have estimated NH;
emissions using a bottom-up approach, reporting emissions in China ranging from 9.7
Tg yr'to 13.2 Tg yr!' (Chen et al., 2021; Huang et al., 2012; Kang et al., 2016; Li et
al., 2021; Ma, 2020). Among these sources, the agricultural (AGR) sector is identified
as the dominant contributor nationwide, accounting for 75.0%94.5% of total NHj3
emissions (Guo et al., 2020; Ma, 2020; Zhou et al., 2021). Additionally, some studies
have highlighted that in densely populated regions, NH3 from non-agricultural (non-
AGR) activities, such as industrial production/slip, vehicles, and waste disposal,
contributing up to 50% of regional emissions and should not be overlooked (Chang et
al., 2015, 2016; Chen et al., 2022; Feng et al., 2022; Pan et al., 2016, 2018b; Pu et al.,
2020; Song et al., 2021; Sun et al., 2017; Van Damme et al., 2018; Wu et al., 2020).

However, despite considerable progress, bottom-up estimates still exhibit considerable

3
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discrepancies and are often outdated, with a time lag of 1-2 years, mainly due to the
lack of accurate and timely statistical data.

The uncertainty in the emission estimation further contributes to significant
discrepancies, reflecting the range of results (1%—50%) reported in the literature, in
assessing the impacts of NH3 reduction on PM; 5 level (Guo et al., 2018, 2024; Li et al.,
2024; Liu et al., 2019, 2021, 2023; Pan et al., 2024; Zhang et al., 2022). Cheng et al
(2021) employed WRF-Chem simulations to demonstrate a 24.6% reduction in PMz s
from the removal of AGR NH3 emissions. Concurrently, Ti et al. (2022) determined that
a 74% decrease in AGR NH3 resulted in a 34.9% reduction in PM2 s in China.

To enhance the accuracy and reliability of bottom-up emission estimations, air
quality monitoring satellites are increasingly regarded as valuable tools from a top-
down perspective, offering advantages in both magnitude and timeliness (Chen et al.,
2025, 2021; Guo et al., 2020; Jin et al., 2023; Qi et al., 2017; Xia et al., 2025; Zhou et
al., 2021, 2017). Many studies have estimated optimized NH3 emissions in China to be
between 10.0 Tg yr!' and 18.9 Tg yr'! by coupling chemical transport models, mass
balance approaches, or machine learning techniques with various NH3 measurements
(satellite retrieval or ground monitoring). Some studies have also improved the
description of the spatial and monthly variations of NH3 emissions (Kong et al., 2019;
Liu et al., 2022a; Paulot et al., 2014; Zhang et al., 2018, 2017). However, most top-
down studies lack further investigation into the source-specific allocation of emissions
based on the optimal total emission assessment (Fu et al., 2015; Sun et al., 2017; Zhang
et al., 2024). Hence, a more comprehensive understanding of NH3 emissions from
diverse sources across varying seasons is needed to improve existing top-down
inventories and enhance the scientific accuracy of NH3 emission reduction assessments.

In this study, we used satellite and surface NH; measurements alongside the
regional chemical model WRF-Chem to constrain bottom-up and source-specific NH;
emission estimates over Eastern China, with the aim of more accurately assessing the
impacts of NH3 emission reductions from different sources on PMz s concentrations.
The paper is structured as follows: Section 2 describes the detailed methodology,

Section 3 presents the simulated NH3 with prior emission, Section 4 provides a top-
4
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down estimate of NH3; emissions, and Section 5 demonstrates the direct correlation
between NH3z emission reductions and PM»s concentration levels, as well as the
associated health benefits. Our work differs from previous studies in that we constrain
NH3 emissions by sector, season, and region, and further assess the potential mitigation

effects of NH; based on the optimized NHj3 inventory.

2 Methodology

2.1 Air Quality Model

In this study, the chemical transport model WRF-Chem v3.9.1 (Grell et al. 2005)
was utilized to constrain the NH3 emissions and to assess the impact of reduced NH3
emission on PMb» s concentrations. Spatially, two nested domains were configured with
horizontal resolutions of 54 x 54 km? and 18 x 18 km?. The outer domain covered entire
China and the inner domain focused on Eastern China, characterized by intensive
anthropogenic activities and elevated pollution levels (Pendergrass et al., 2025; Peng et
al., 2025), including the Beijing-Tianjin-Hebei (BTH) region, Henan, Shandong, and
the Yangtze River Delta (YRD) region (Figure 1). The initial and boundary conditions
of meteorological parameters were derived from FNL reanalysis datasets provided by
the National Centers for Environmental Prediction (NCEP) of the United States
(https://rda.ucar.edu/datasets/). The initial and boundary conditions of chemical species
were obtained from the global chemical transport model MOZART (Emmons et al.
2010). We conducted simulations for the entire year of 2016. The physical and chemical
parameterizations describing sub-grid processes, such as radiation, microphysics, and
gas-phase reaction schemes, are listed in Table S1.

We adopted the anthropogenic emissions from the Multi-resolution Emission
Inventory for China (MEIC, version 1.3) developed by Tsinghua University (Li et al.,
2017; Zheng et al., 2018). Furthermore, biogenic emissions were calculated online
using the Model of Emissions of Gases and Aerosols from Nature (MEGAN, version
2.0.4) (Guenther, 2006). Our numerical simulations also incorporated offline biomass

burning emissions of various air pollutants, based on the wildfire model Fire Inventory
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from NCAR (FINN, version 1.5) (Wiedinmyer et al., 2011).

2.2 Satellite retrievals and surface measurements

We obtained the total column density of NH3 from the passive satellite remote-
sensing product of the Infrared Atmospheric Sounding Interferometer (IASI) (version
3.0, https://iasi.aeris-data.fr/nh3/, last accessed on December 2020) as the observational
constraint. The IASI is a Fourier transform spectrometer on board the Metop series of
meteorological satellites, which circle the Earth in a polar Sun-synchronous orbit (Van
Damme et al., 2014). Consequently, the satellite-based IASI instrument can cover the
entire globe and provide measurements twice a day at 09:30 and 21:30 local solar time.
The IASI instrument detects infrared radiation in the spectral range from 645 to 2760
cm’! emitted by Earth’s surface and atmosphere with a 12 km circular footprint at nadir.

This radiation absorption range includes the NH3 signal near 950 cm .

The daily NH3 column concentrations are categorized into level-2 satellite data
and are developed based on the ANNI-NH; inversion algorithm without averaging
kernels, as presented by Van Damme et al. (2017). Specifically, their retrieval algorithm
derives hyperspectral radiation indexes (HRI) from the direct satellite spectrum
detection, which is then converted into final NH3 column concentrations using an
artificial neural network technique (Whitburn et al., 2016). For better data quality, the
present study removed NH3 column concentrations associated with cloud cover of more
than 10%. Furthermore, we preprocessed the IASI NH3 column concentration data
through averaging all daily values to obtain a monthly mean value. Spatially, we
mapped the original satellite product data to the grid cells of the WRF-Chem model for

further comparison with those simulated NH3 columns.

In addition, surface in-situ NH3 measurements reported by Pan et al. (2018a) were
collected for model evaluation. These ground-based measurements were summarized
into the seasonal mean concentrations of NH3 at 53 sites in China from September 2015
to August 2016.

Additionally, surface meteorological data, including air temperature, relative
6



160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

humidity and wind speed was obtained from China Meteorological Administration
website (https://data.cma.cn/) to assess the meteorological simulations over the study
region. Air pollutant concentrations associated with NH3 (such as PM2.5, NOz and SO»)
from public website of the Ministry of Ecology and Environment (MEE) of China
(https://air.cnemc.cn:18007/) were also derived for evaluation. Furthermore, speciated
inorganic aerosol data from a representative site in Beijing were collected to evaluate
the model’s capacity in characterizing the formation of secondary inorganic aerosols
(Tan et al., 2018). The complete information of the in-situ measurements used in this

study is available in Tables S2~S4.

3 NH; simulations with bottom-up emissions

We applied the bottom-up NH3 emissions from MEIC (Li et al., 2017; Zheng et
al., 2018) to drive the prior simulation. As shown in Figure 2, the prior NH3 emission
amounted to 3.3 Tg yr'! in Eastern China, among which 93.0% emission is from AGR
sources and the other 7.0% emission is from non-AGR sources. The largest emissions
are recorded in July at 366.8 Gg month "', while the smallest emissions are recorded in
January at 206.5 Gg month ! (Figure S1).

We compared the prior model results with IASI NH3 column concentration and
surface NH3 volume concentration observations. The detailed method for calculating
NHj3 total column concentrations and surface volume concentrations from WRF-Chem

is provided in Text S1.

To quantitatively describe model performance, we adopted three statistical metrics,
including root mean squared error (RMSE, 0 ~ +), index of agreement (I0A, 0 ~ 1)
and mean fractional bias (MFB, -2 ~ 2) (Huang et al., 2021). The IOA quantifies the
overall model skill, where a value of 1 indicates a perfect match and 0 denotes complete
disagreement. The MFB diagnoses systematic model bias, where positive values
indicate overestimation, negative values indicate underestimation, and 0 signifies no
average bias. The RMSE represents the average model error in the same units as the

variable under evaluation, with lower values indicating better performance. They were

7
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calculated following Eq. 1~3, where C represents the concentration of the target
pollutant (e.g., NH3 total column or surface concentrations), and subscripts s, 0 and N
represent simulations, observations, and the number of samples, respectively.

N —C2
RMSE = |F=ln=tol ()

ZIiV=1(Cs_C0)2
N (1Cs—Col+1Co—Col)?

MFB = %ZN (Co—Cm) (3)

i=1 ,Co+C
(%)

I10A=1-

)

As shown in Table S5, the annual average of NHj3 total column concentrations is
simulated to be 17.4x10'> molec cm™ for Eastern China, with a 61% underestimation
of MFB compared to the observations from IASI satellite retrievals (29.0x10'> molec
cm?). The IOA between observations versus simulations is 0.72. The seasonal
simulations of NHj3 concentrations also exhibit significant discrepancies with
observations, especially in spring. Specifically, the simulated NH3 total column
concentration in Eastern China is only 13.2x10'° molec cm? in spring, with
concentration in 67.5% of the study region being underestimated by more than 50%.
These discrepancies are evidently exhibited in Figure 3. Most simulated NH3 total
column concentrations are underestimated by more than 30% compared with the

observed values by satellite with the associated RMSE exceeding 10x10'°> molec cm™.

As illustrated in Figure 6, satellite-based observations reveal that the spatial high-
value areas of NH3 column are located at the junction of Henan, Shandong, and Hebei
provinces. In contrast, the prior modeling results show that NH3 column densities are
more concentrated in Henan. This indicates a clear discrepancy in the spatial
distribution of NH3z column densities between the prior simulations and the
observations.

Additionally, the comparison between the simulated and observed surface NH3
volume concentrations also indicates a notable underestimation (Figure S2). The mean
simulated surface NH3 volume concentration over the study region is 6.3 ug m, which
is only half of the observation value (12.7 ug m™), with an IOA of 0.57 and an MFB of
-61%, respectively (Table S5).
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4 Top-down estimates of NH3 emissions

4.1 Iterative algorithm for NH3 emission estimation

We utilized an iterative algorithm (Figure 4) to update the prior NH3 emissions
from different sources constrained by IASI observations. This process was carried out
in January, April, July, and October in 2016 to represent four seasons. The posterior
emission inventory derived for each representative month was then applied to all three
months within its corresponding season to generate the full 12-month posterior
inventory. This representative-month approach was adopted to allow for a robust
validation against the full 12-month period, with the remaining eight months serving as
an independent dataset, and to manage the substantial computational cost of the iterative
process. We compared the prior simulation results with satellite retrievals and discussed
the performance of prior emissions in detail in Section 3. Furthermore, we conducted a
series of sensitivity simulations to obtain prior simulated NH3 from disparate sources
and which were then fed into the iterative algorithm along with satellite data for
calculation. In each iterative calculation, the monthly average satellite-derived NHj3
column concentration served as the target, and multiple linear regression (MLR) was
applied to calculate the corresponding regression factors for AGR and non-AGR
emissions (Figure S3). This separation of sectors by MLR is effective because their
respective spatial distributions are distinct and largely uncorrelated (r = 0.35). Here, we
take the 7 iteration in k£ month, j region as an example to calculate the regression factors,
and the formula is as follows:

jk _ Jk

.]rk ]: ]:k ]‘k ],k
TAsatellite - SAtransport =a; * SAagriculturei_1 + .Bi * SAnon—agriculturei_1 (4)

where, TAguenite’© denotes the monthly average of total NH; column density

k Jk
> SAagriculture . and

retrieved from the IASI satellite data, and SAtranSportj' o

SAnon_agriculture{’_"l stand for the simulated total column concentration of NHj3

contributed by outside transport, AGR emissions, and non-AGR emissions, respectively.

We clarified this NH3 concentrations contributed by different pathways by conducting



245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

sensitivity experiments with the WRF-Chem model (Table 1).
In each experiment, we zeroed out AGR emissions, non-AGR emissions and

regional external emissions to obtain the corresponding NH3 column concentrations.

The SA:ﬂlgriculture{’_k1 , SAnon_agriculture{ '_kl , and SAtransportj'k are calculated by
subtracting Aplank from Aagr, Anon-agr, and Agansport, respectively. Here, symbols A
represent the total simulated NH3; column concentrations that result from each of the
sensitivity simulations listed in Table 1. Specifically, the modeling case Aplank refers to
a simulated NHj3 total column in which all anthropogenic emissions within the study
domain were zeroed out. The purpose of this simulation was to establish background

concentrations, which represents the influence of the chemical boundary conditions

provided to our model domain.

Furthermore, the MLR approach provided regression coefficients a’;'k and B’;’k,
which function as scaling factors, respectively correspond to AGR and non-AGR NH;3
emissions in month j from region ., within the i iteration. To ensure the statistical

robustness of the regression equation, we need to correct for this regression coefficient.

The biases between the model simulation and the satellite retrievals were calculated as
D’;'k. Specifically, it is the difference between the mean simulated column and the mean
satellite retrieval, divided by the mean satellite retrieval. We considered the residuals

of the MLR approach, the goodness of fit and D’;'k, and obtained the judgment

. ik . . . . .
coefficient K}“. The regression coefficients with excessive residuals, defined as cases

where the 95% confidence interval of the residual does not contain zero, are removed
to increase credibility. Concurrently, the goodness of fit of the regression is calculated
as the coefficient of determination (R-square, R?). To maintain algorithm stability,
regressions with an R? less than 0.3 are deemed invalid and excluded from the emission
update, as they exhibit insufficient explanatory power (indicating >70% unexplained
variance) and introduce destabilizing noise into the adjustments. We further use it to
make a trade-off for the regression coefficient. If a regression is valid, the adjustment

factors a and b are set to the new regression coefficients; if invalid, the factors are kept

10
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unchanged from the previous iteration. The updated emissions for the next iteration are
then calculated by multiplying the emissions from the previous step by these adjustment
factors. Finally, the entire process is iteratively repeated, a framework that captures the
overall non-linear atmospheric response by combining the dynamic simulation of non-
linear chemistry within each WRF-Chem step with the collective behavior of multiple
iterations. The iteration concludes when the mean bias between the simulated values
and observations is less than 30%, a criterion chosen to represent a significant
improvement over the large prior bias while falling within the range of widely accepted

model performance benchmarks.

4.2 posterior NH3 emission estimates

The top-down constrained results (posterior) indicate that the annual NH3; emission
in Eastern China has been updated to 4.2 Tg yr, representing a 27.3% increase
compared to the prior value (Figure 2). The posterior AGR emissions increased slightly,
from 3.0 Tg yr'! to 3.1 Tg yr’!, but the high-emission regions shift from Henan to
Shandong, Jiangsu and northern Anhui (Ren et al., 2023). The posterior non-AGR
emissions show a significant increase, from 0.2 Tg yr'! to 1.1 Tg yr’!, particularly in
urban regions along the Yangtze River, as well as in southern BTH, central Shandong
and northern Henan (Figure S4). Analysis of emission inventories (An et al., 2021;
Hoesly et al., 2018; Li et al., 2021, 2017; Ma, 2020; Wu et al., 2024) reveals that
residential activities and waste disposal are dominant sources of non-AGR NHj
emissions, particularly in densely populated regions (Figure S5). In multiple iterations,
the framework optimizes the relative mix of the two sources to better match the
observed spatial patterns. For instance, the spatial correlation between model and
observation in Henan increased from 0.47-0.58 (prior simulations) to 0.64-0.90
(posterior simulations).

In terms of seasonality, as shown in Figure 5, the posterior NH; emissions are
highest in summer, with a total of 463.1 Gg month™!, followed by spring (442.4 Gg

month™), largely due to fertilizer application (Li et al., 2021; Lu et al., 2025; Ren et al.,
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2025), and lowest in winter (217.4 Gg month™!). The seasonal variations in the posterior
emissions is the net result of complex adjustments in both the AGR and non-AGR
sectors. At the specific-source scale (Figure S6), AGR NH3 emissions show similar
seasonal patterns with the total NH3 emissions, higher in summer and spring. In contrast,
non-AGR NHj3 are highest in winter and fall because fossil fuel combustion-related
emissions are higher in cold season, while the lowest emissions occur in summer. In
addition, the ratio of AGR and non-AGR NH3 emissions significantly varies across
different regions. The contribution of non-AGR NH3 emissions range from 18.8% to
35.8%, which is higher than the proportion in the prior inventory (Figure 5a). This shift
can be attributed to the increased relative importance of fossil fuel combustion-related
emissions under high PM; 5 loadings, which in turn promote higher NH3 emissions from
these sources (Pan et al., 2018b). Meanwhile, AGR NH; emissions are relatively
inactive in winter due to unfavorable meteorological conditions. Similar high fractions
of non-AGR emissions have also been reported in other studies (Feng et al., 2022; He
etal., 2021).

Table 2 compares the results with related studies focused on NH3z emission
estimates. Overall, the estimated NH3 emission in this study is comparable to the
estimates of the other studies based on both “top-down” and “bottom-up” approaches.
In similar years and regions, the discrepancy between the estimates of this study and
other studies ranges from 1.0% to 19.6%. The slight discrepancy can be partially
explained by our estimate being a conservative lower bound, a consequence of the
residual gap remaining with satellite retrieval. Additionally, uncertainties from the
model's chemical mechanisms and the influence of nearby grid transport also contribute
to this gap, but the overall impact on the final estimate is limited. Furthermore, the
seasonal distribution of NH3 emissions in this study aligns with the findings of previous
studies (Kong et al., 2019; Liu et al., 2024; Zhang et al., 2018; Zhao et al., 2020).

In terms of sectors, other studies have indicated that the contribution of NHj3
emissions from AGR sources is more than 80%, using the bottom-up approach (Chen
et al., 2021; Huang et al., 2012; Kang et al., 2016; Li et al., 2021). The relatively small

proportion of non-AGR emissions is likely due to overlooked industrial (e.g., NH3 slip
12
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and indirect emissions) (Chen and Wang, 2025; Chen et al., 2022; Wei et al., 2022) and
residential sources (e.g., from waste) (Shao et al., 2020), combined with
unrepresentative transportation emission factors (Sun et al., 2017; Zhang et al., 2021).
This study, however, reveals a proportion of 74.4% for AGR emissions, thereby
emphasizing the contribution of non-AGR emissions. Concurrently, the eastern
developed industry is expected to exhibit an increase in the proportion of NH3 emissions
from non-AGR sources when compared to the national average. Our work attempts to
quantitatively disentangle the emissions from AGR and non-AGR sectors directly
within our top-down framework and facilitates a more comprehensive capture of
neglected non-AGR sources.

It is important to note that discrepancies in results between studies may be
attributable to methodological differences (e.g. the sensitivity of the top-down approach
to target data selection) and uncertainty in the underlying data. For instance, the NH3
emission estimated by Paulot et al. (2014) using the mass balance method based on
ammonium wet deposition fluxes is significantly lower than that in other studies, which
may be attributed to its fewer observation sites in China. These discrepancies
underscore the necessity to enhance the reliability of NH3 observations in forthcoming

studies, with the objective of enhancing the precision of the estimates.

4.3 Simulated NH3 with top-down emissions

Figure 6 compares the spatial distributions of NHj total column density from
satellite retrievals, prior simulations and posterior simulations. The annual mean
simulated NHj3 total column density improved from the prior result of 17.4x10' molec
cm™2 to a posterior value of 23.7x10'* molec cm2, with an increase of 35.9%, and is
closer to the observed value of 29.0x10" molec cm™2. IOA and MFB between the
posterior simulations versus measurements are 0.9 and -30.0%, respectively. Figure 3
also shows the improvement in model performance. More than 80% of the points fall
in the range where the simulation-to-observation ratio is between 0.7 and 1.3 and the
RMSE is less than 10x10'> molec cm™. A more consistent seasonal distribution can be

obtained in a posterior simulation, with associated temporal MFB of NH3 column
13
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density on the seasonal scale is reduced from -53% (prior) to -24% (posterior).
Simultaneously, the spatial distribution pattern of posterior simulation is more identical
to the characteristics revealed by satellite-based observations (Figure 6). The spatial
MFB is also decreased from -52% (prior) to -20% (posterior), with an increase in spatial
correlation coefficient from 0.79 to 0.92. The improvement is especially notable in the
BTH region, where the simulated NH3 column densities are doubled. In summary, the
posterior simulation improves the agreement between the simulated NH3 column
concentrations and satellite observations in both overall magnitude and spatial
distribution, although some deviations remain, particularly in the colder seasons. These
can likely be attributed to methodological limitations, such as the inherent tolerance of
our 30% iterative stopping criterion and potential inconsistencies from aggregating

monthly optimizations to a seasonal scale.

A similar improvement is also witnessed in the modeling of surface NH3
concentrations, which were evaluated against in-situ measurements from 13 sites
reported by Pan et al. (2018a) for the 2015-2016 period (Table S2). The posterior
simulation significantly improves the annual mean, increasing the surface concentration
from 6.3 pg m= (prior) to 9.4 ng m= (posterior), much closer to the observed average
of 12.7 ng m=3. As shown in the scatter plot in Figure S7, the posterior simulation
alleviates the underestimation at most sites, which is quantified by a 42% reduction in
the overall underestimation bias and a clear improvement in the IOA. On a seasonal
basis, the posterior emissions also alleviate the large underestimation of the prior
simulation across all seasons, though the degree of improvement varies (Table S6). The
prior simulation showed significant underestimation in all seasons, with the MFB
ranging from -0.37 in winter to -0.79 in spring. The posterior simulation demonstrates
a particularly evident improvement in spring, where the MFB reduced from -0.79 to -
0.24. While some underestimation remains in summer, the posterior results still show
improved performance metrics (e.g., lower RMSE and higher IOA) for all seasons,
confirming a better capture of the seasonal characteristics overall. The remaining

discrepancy between the posterior simulation and surface observations can be attributed
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to several factors, such as the spatial representativeness of the surface sites and the
accuracy of the secondary inorganic aerosol simulation.

Furthermore, improving the NH3 simulation results in the other simulated air
pollutants being closer to observed levels (Table 3). Specifically, we compare the annual
mean concentrations of PMz s, SO2, and NO> from the prior and posterior simulations
against surface observations averaged from 80 monitoring sites across 9 major cities
(Table S4). It was found that posterior NH3 emissions effectively bridge the gap
between simulated and observed PM»s. The average PM» s concentration increased
from 65.7 pg m to 67.3 pg m, which is closer to the observed value of 67.1 pg m™.
To further characterize the model's chemical performance beyond total PM» s, we also
evaluated the simulation of secondary inorganic aerosol (SIA) components against in-
situ measurements from a representative site in Beijing (Table S7). The evaluation
shows that the posterior NH3 emissions improved the simulation of ammonium and
nitrate, reducing the bias between simulated and observed concentrations. Although the
model underestimates sulfate, likely due to missing formation mechanisms (Cai et al.,
2024; Wang et al., 2021, 2020), the total SIA concentration is well reproduced with an
overall bias of only -11.0%. A similar improvement is also observed for SO», where the
posterior simulated concentration (6.8 ppbv) better matches the observed value (6.5
ppbv), reducing the model's previous overestimation by 27%. This improvement is
most significant in autumn. The successful capture of air pollutants highlights a
significant improvement in the NH3 emission inventory for Eastern China. The
evaluation of routine air pollutants in each city is detailed in Figures S8~S10. The
statistics of evaluation metrics for each city’s meteorological simulations can also be

found in Table S8.

5 PMazs and its health burden response to NH3 reduction

To investigate the response of PM2 s to various NH3 emission reduction scenarios,
we conducted sensitivity experiments as outlined in Table S9. We formulated emission
reduction scenarios of 30%—60% for January and July of 2016, considering the severe

particulate pollution in winter and the higher NH3 concentrations in summer. Emission
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reductions from both the AGR and non-AGR sectors were considered separately.

Figure 7 illustrates that reducing NH3 emissions by 30%—60% can decrease the
seasonal PMa s concentrations by 1.5-5.7 ug m~ (2.0%-7.2%) averaged for Eastern
China in winter, mainly due to the reduction in SIA. Specifically, nitrate, ammonium
and sulfate are reduced by 0.9-3.3 ug m>, 0.4-1.3 ug m? and 0.3-1.0 pg m>,
respectively. It is worth noting that the reduction in sulfate is smaller than that in nitrate
because NHj preferentially reacts with sulfuric acid during aerosol formation (Figure
S11). When ambient NH3 concentrations are limited, nitrate concentrations decrease
more significantly than sulfate concentrations. In summer, although aerosol pollution
is relatively lower, NH3 emissions and atmospheric reactivity are higher. Consequently,
reducing emissions by the same percent results in a decrease in PM» s concentration by
5.5-8.8 ug m=.

In terms of special sources, reducing non-AGR NH3 emissions is just as crucial as
reducing AGR NH3 emissions in mitigating PM2s. A 30% to 60% reduction in non-
AGR NHj3 emissions during winter can lead to a decrease in PM»5 by 0.9-1.5 ug m>,
which is comparable to the effect of reducing AGR NH3 emissions (0.9-2.0 pg m™). It
should be noted that the reduction in PMz 5 resulting from both AGR and non-AGR
NHj3 emissions is not proportional to the emission reduction across all sectors. This is
due to the non-linear relationship between NH3 emissions and PM3 5 concentrations.

This study utilized the integrated exposure—response (IER) model to estimate
premature mortality resulting from PM2 s exposure. Detailed methods and data can be
found in our previous work (Li et al., 2023a). In the base case, PM2 5 exposure exhibits
a significant impact on premature mortality, leading to 698.4 thousand deaths in the
study region. Specifically, premature deaths attributable to ischemic heart disease
(IHD), stroke, lung cancer (LC), and chronic obstructive pulmonary disease (COPD)
are 202.3, 347.9, 61.5, and 86.7 thousand, respectively. In other scenarios, the overall
premature mortality burden decreases by 45.6—72.0 thousand instances (6.5%—10.3%)
in Eastern China. Notably, the decline in premature deaths, especially those related to

stroke, plays a significant role in the overall reduction.
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6 Conclusions

An accurate NH3 emission inventory is essential for developing effective air
quality improvement policies. Numerous studies have demonstrated that the current
bottom-up NH3z emission inventories in China often underestimate the total NH3
emissions, with significant uncertainties in the estimation of emissions from various
sources. In this study, we used IASI satellite products and an iterative algorithm with
the WRF-Chem model to optimize the bottom-up NH3 emission inventory for Eastern
China and further assessed the impacts of NH3 emission reductions from different
sources on PM» s concentrations.

The posterior results indicate that the NH3 emission in Eastern China for 2016
amounted to 4.2 Tg. The highest emissions occurred in summer (463.1 Gg month™),
with AGR sources contributing 86.5% and non-AGR sources contributing 13.5%. In
contrast, emissions were lowest in winter (217.4 Gg month™), and the proportion of
emissions from non-AGR sources were higher than that from AGR sources. Spatially,
the region with the highest NH3 emissions was located at the intersection of Henan,
Hebei, and Shandong provinces. This is attributed to a combination of high emission
intensity from dense agricultural and industrial activities and topographical effects that
hinder the dispersal of pollutants. The optimization of the NH3 inventory further
improved the simulation underestimation of the NHj3 total column (MFB from -61% to
-30%) and surface concentration (MFB from -61% to -19%). It also indirectly improved
the simulation of other air pollutants, such as PM» s NO> and SO,.

Based on the posterior emission inventory, we conducted a series of sensitivity
simulations to investigate the response of PMas concentrations to NH3; emission
reductions. A 30%-60% reduction in NH3 emissions resulted in a 1.5-8.8 ug m?
decrease in PM2 s concentrations. In terms of sectoral contributions, reductions in AGR
emissions led to a decrease in PM, s ranging from 0.9 ug m™ to 7.4 ug m, while the
response to reductions in non-AGR NH;3 emissions ranged from 0.9 ug m to 5.3 ug m"
3. Furthermore, the reduction in NH3 emissions had a beneficial impact on public health,

with a 6.5%—10.3% decrease in premature deaths attributed to PM> s exposure.
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This study obtained a high-resolution NH3 emission inventory for Eastern China
and highlights the significant role of non-AGR NH3 emission reductions in further
decreasing PMas levels. The findings provide robust data support for air quality
research and offer scientific insights for exploring the potential air quality and public

health benefits of NH3 emission reduction.
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Table 1 List of sensitivity tests for optimized iterative algorithm.

Emission
o Non-AGR )
Case name AGR emission o outside the
emission '
domain

Atotal ‘/ "/ "/
Aagr ‘/ X X
Anon-agr x "/ X
Atransport x x ‘/

Ablank X X X




Table 2. NH3; emission estimates in recent studies

Region Sector Emission Period Method Reference
12.4 Tg yr'! 2016 Bottom-up Ma (2020)
Lietal.
12.1 Tg yr'! 2016 Bottom-up
(2021)
11.9~12.0 Chen et al.
2005~2015  Bottom-up
Tg yr'! (2021)
¥ Zhang et al.
11.7 Tg yr 2008 Top-down
(2018)
China / X Paulot et al.
84 Tg Nyr 2005-2008 Top-down
(2014)
Xu et al.
0.74 Tgmon' 2008 Apr  Top-down
(2013)
» Kong et al.
13.0 Tg yr 2016 Top-down
(2019)
| Zhang et al.
189 Tg yr 2015 Top-down
(2017)
Eastern Chen et al.
, Industry 274.5 Gg yr! 2016 Bottom-up
China (2022)
Guo et al.,
/ 966.1 Gg yr’! 2016 Bottom-up (
2020)
28.8 Ggmon' 2015 Jan
82.5Ggmon' 2015 Apr
) Tond Huang et al.
1029 G Op-down
- V8 2015 0u (2021)
mon
50.2 Ggmon! 2015 Oct
505.85 Gg yr
Agriculture . 8y
N 953G 2016 Top-down This study
on- . gyr
Agriculture !
Agriculture  848.8 Gg yr’! Yu et al.
YRD 2014 Bottom-up
Non- 137.2 Gg yr’! (2020)




Agriculture

77 Gg mon™! 2014 Jan
Agriculture Bottom-up
169 Ggmon 2014 Jul (2020)
108 Ggmon' 2014 Oct
2442 Gg
. 2015 Jan
mon”
88.0 Ggmon' 2015 Apr Huang et al.
/ Top-down
111.7 Gg (2021)
| 2015 Jul
mon”
51.0 Ggmon' 2015 Oct
Agriculture 1280.41 Gg
Non- 2016 Top-down this study
) 297.86 Gg
Agriculture
Wang et al.
1035Gg yr! 2013 Top-down
) (2018)
Bai et al.
982 Gg yr! 2016 Bottom-up
(2020)
Henan
) 647.73 Gg yr
Agriculture .
2016 Top-down this study
Non- 206.20 Gg yr
Agriculture !
Zhou et al.
/ 1210 Gg yr'! 2017 Bottom-up
(2021)
) 715.29 Gg yr
Shandong Agriculture X
2016 Top-down this study
Non- 296.98 Gg yr

Agriculture
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Table 3 Simulated and observed air pollutant concentrations

Prior simulation Posterior simulation Observation
PM, , (ng m™) 65.7 67.3 67.1
NO, (ppb) 22.3 22.1 23.0
SO, (ppb) 8.2 6.8 6.5
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Figure 1. Simulation domains of the WRF-Chem model used in this study (left).
Right panel illustrates the four research regions in Eastern China. Names and
locations are labeled with different colors in this panel.
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Figure 2. Prior and posterior NH3 emissions from agricultural and non-agricultural
sectors in the study region. The red numbers show the total emissions.
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Figure 3. Scatter plots of the prior and posterior NH3 total column data versus IASI
retrievals. Each point represents prior (or posterior) data for a specific season and a
specific region. Circles, triangles, rhombuses, and rectangles correspond to the BTH,
Henan, Shandong, and YRD regions, respectively. Orange and blue markers represent
a prior and a posterior data, respectively. The red box indicates the performance area,
with a model error within £30% and an RMSE below 10(x10'®> molec cm™).
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Figure 5. Posterior emission characteristics. (a) Contribution from regional emission
sectors. (b) Comparison of the posteriori and prior emissions (unit: Mg) in study
region.
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