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Abstract. 18 

Ammonia (NH3) is a key precursor of PM2.5, contributing to the formation of secondary 19 

inorganic aerosols and playing a crucial role in haze events. However, current bottom-20 

up emission inventories in China often underestimate NH3 emissions, particularly with 21 

significant uncertainties in urban areas. This study developed a “top-down” iterative 22 

algorithm that integrates the IASI satellite observations with the WRF-Chem model to 23 

optimize bottom-up NH3 emissions, and further quantified the impacts of source-24 

specific emission reductions on PM2.5 pollution. The result reveals that the updated NH3 25 

emissions in Eastern China for 2016 amounted to 4.2 Tg yr-1, 27.3% higher than prior 26 

estimations. The optimized NH3 emissions peak in summer at 463.1 Gg month-1, with 27 

agricultural sources accounting for 85%, while winter emissions drop to 217 Gg month 28 

-1 when the contribution from non-agricultural sources (e.g., industry, vehicle) 29 

significantly increases. The optimized NH3 emission significantly improved the 30 

simulation of both total column and surface NH3 concentrations, with improvements in 31 

magnitude (31%–42%) and variations (17%–55%). Sensitivity simulations show that a 32 

30%–60% reduction in NH3 emission led to decreases of 1.5–8.8 μg·m-3 in city-level 33 

PM2.5 concentrations and the potential effect of reducing non-agricultural emissions is 34 

comparable with that from agricultural sources. Furthermore, the NH3 reduction 35 

positively impacts public health, resulting in a 6.5%–10.3% decrease in premature 36 

deaths attributed to PM2.5 exposure. Our study evaluated NH3 emissions from various 37 

sources in Eastern China, emphasizing the impact of reducing non-agricultural 38 

ammonia emissions on air quality and public health benefits. 39 

 40 
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1 Introduction 43 

In recent years, China has continued to face significant challenges associated with 44 

PM2.5 pollution (Geng et al., 2024; Lei et al., 2022). This issue adversely affects 45 

atmospheric environment via reducing visibility (Hu et al., 2021; Yang et al., 2022) and 46 

deteriorating air quality (Lei et al., 2024; Song et al., 2025), impacts climate change by 47 

altering radiation balance(Tang et al., 2025) and cloud formation (Gao et al., 2023; Yang 48 

et al., 2021), and poses substantial threats to human health (Du et al., 2024; Feng et al., 49 

2016; Liu et al., 2025; Xiao et al., 2022; Zhu et al., 2025). Ammonia (NH3), a key 50 

precursor of PM2.5, neutralizes sulfuric acid (H2SO4) and nitric acid (HNO3), leading to 51 

the formation of secondary inorganic aerosols (SIA), which contributes 19.4%–55.0% 52 

of the total PM2.5 (Huang et al., 2014; Liu et al., 2022b; Wang et al., 2016; Wei et al., 53 

2023; Zheng et al., 2015; Zhou et al., 2022). Reducing NH3 emissions is a highly 54 

effective strategy for mitigation of PM2.5 pollution (Bessagnet et al., 2014; Xu et al., 55 

2022), particularly in light of the successful control of sulfur dioxide (SO2) and nitrogen 56 

dioxide (NO2) in China over the past decade (Li et al., 2023b; Wang et al., 2017; Zhang 57 

et al., 2019; Zheng et al., 2018). 58 

The anthropogenic sources of NH3 include agriculture, industry, power generation, 59 

transportation and residential activities. Numerous studies have estimated NH3 60 

emissions using a bottom-up approach, reporting emissions in China ranging from 9.7 61 

Tg yr-1 to 13.2 Tg yr-1 (Chen et al., 2021; Huang et al., 2012; Kang et al., 2016; Li et 62 

al., 2021; Ma, 2020). Among these sources, the agricultural (AGR) sector is identified 63 

as the dominant contributor nationwide, accounting for 75.0%–94.5% of total NH3 64 

emissions (Guo et al., 2020; Ma, 2020; Zhou et al., 2021). Additionally, some studies 65 

have highlighted that in densely populated regions, NH3 from non-agricultural (non-66 

AGR) activities, such as industrial production/slip, vehicles, and waste disposal, 67 

contributing up to 50% of regional emissions and should not be overlooked (Chang et 68 

al., 2015, 2016; Chen et al., 2022; Feng et al., 2022; Pan et al., 2016, 2018b; Pu et al., 69 

2020; Song et al., 2021; Sun et al., 2017; Van Damme et al., 2018; Wu et al., 2020). 70 

However, despite considerable progress, bottom-up estimates still exhibit considerable 71 
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discrepancies and are often outdated, with a time lag of 1–2 years, mainly due to the 72 

lack of accurate and timely statistical data.  73 

The uncertainty in the emission estimation further contributes to significant 74 

discrepancies, reflecting the range of results (1%–50%) reported in the literature, in 75 

assessing the impacts of NH3 reduction on PM2.5 level (Guo et al., 2018, 2024; Li et al., 76 

2024; Liu et al., 2019, 2021, 2023; Pan et al., 2024; Zhang et al., 2022). Cheng et al 77 

(2021) employed WRF-Chem simulations to demonstrate a 24.6% reduction in PM2.5 78 

from the removal of AGR NH3 emissions. Concurrently, Ti et al. (2022) determined that 79 

a 74% decrease in AGR NH3 resulted in a 34.9% reduction in PM2.5 in China. 80 

To enhance the accuracy and reliability of bottom-up emission estimations, air 81 

quality monitoring satellites are increasingly regarded as valuable tools from a top-82 

down perspective, offering advantages in both magnitude and timeliness (Chen et al., 83 

2025, 2021; Guo et al., 2020; Jin et al., 2023; Qi et al., 2017; Xia et al., 2025; Zhou et 84 

al., 2021, 2017). Many studies have estimated optimized NH3 emissions in China to be 85 

between 10.0 Tg yr-1 and 18.9 Tg yr-1 by coupling chemical transport models, mass 86 

balance approaches, or machine learning techniques with various NH3 measurements 87 

(satellite retrieval or ground monitoring). Some studies have also improved the 88 

description of the spatial and monthly variations of NH3 emissions (Kong et al., 2019; 89 

Liu et al., 2022a; Paulot et al., 2014; Zhang et al., 2018, 2017). However, most top-90 

down studies lack further investigation into the source-specific allocation of emissions 91 

based on the optimal total emission assessment (Fu et al., 2015; Sun et al., 2017; Zhang 92 

et al., 2024). Hence, a more comprehensive understanding of NH3 emissions from 93 

diverse sources across varying seasons is needed to improve existing top-down 94 

inventories and enhance the scientific accuracy of NH3 emission reduction assessments. 95 

In this study, we used satellite and surface NH3 measurements alongside the 96 

regional chemical model WRF-Chem to constrain bottom-up and source-specific NH3 97 

emission estimates over Eastern China, with the aim of more accurately assessing the 98 

impacts of NH3 emission reductions from different sources on PM2.5 concentrations. 99 

The paper is structured as follows: Section 2 describes the detailed methodology, 100 

Section 3 presents the simulated NH3 with prior emission, Section 4 provides a top-101 
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down estimate of NH3 emissions, and Section 5 demonstrates the direct correlation 102 

between NH3 emission reductions and PM2.5 concentration levels, as well as the 103 

associated health benefits. Our work differs from previous studies in that we constrain 104 

NH3 emissions by sector, season, and region, and further assess the potential mitigation 105 

effects of NH3 based on the optimized NH3 inventory. 106 

 107 

2 Methodology 108 

2.1 Air Quality Model 109 

In this study, the chemical transport model WRF-Chem v3.9.1 (Grell et al. 2005) 110 

was utilized to constrain the NH3 emissions and to assess the impact of reduced NH3 111 

emission on PM2.5 concentrations. Spatially, two nested domains were configured with 112 

horizontal resolutions of 54 × 54 km2 and 18 × 18 km2. The outer domain covered entire 113 

China and the inner domain focused on Eastern China, characterized by intensive 114 

anthropogenic activities and elevated pollution levels (Pendergrass et al., 2025; Peng et 115 

al., 2025), including the Beijing-Tianjin-Hebei (BTH) region, Henan, Shandong, and 116 

the Yangtze River Delta (YRD) region (Figure 1). The initial and boundary conditions 117 

of meteorological parameters were derived from FNL reanalysis datasets provided by 118 

the National Centers for Environmental Prediction (NCEP) of the United States 119 

(https://rda.ucar.edu/datasets/). The initial and boundary conditions of chemical species 120 

were obtained from the global chemical transport model MOZART (Emmons et al. 121 

2010). We conducted simulations for the entire year of 2016. The physical and chemical 122 

parameterizations describing sub-grid processes, such as radiation, microphysics, and 123 

gas-phase reaction schemes, are listed in Table S1.  124 

We adopted the anthropogenic emissions from the Multi-resolution Emission 125 

Inventory for China (MEIC, version 1.3) developed by Tsinghua University (Li et al., 126 

2017; Zheng et al., 2018). Furthermore, biogenic emissions were calculated online 127 

using the Model of Emissions of Gases and Aerosols from Nature (MEGAN, version 128 

2.0.4) (Guenther, 2006). Our numerical simulations also incorporated offline biomass 129 

burning emissions of various air pollutants, based on the wildfire model Fire Inventory 130 
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from NCAR (FINN, version 1.5) (Wiedinmyer et al., 2011).  131 

 132 

2.2 Satellite retrievals and surface measurements 133 

We obtained the total column density of NH3 from the passive satellite remote-134 

sensing product of the Infrared Atmospheric Sounding Interferometer (IASI) (version 135 

3.0, https://iasi.aeris-data.fr/nh3/, last accessed on December 2020) as the observational 136 

constraint. The IASI is a Fourier transform spectrometer on board the Metop series of 137 

meteorological satellites, which circle the Earth in a polar Sun-synchronous orbit (Van 138 

Damme et al., 2014). Consequently, the satellite-based IASI instrument can cover the 139 

entire globe and provide measurements twice a day at 09:30 and 21:30 local solar time. 140 

The IASI instrument detects infrared radiation in the spectral range from 645 to 2760 141 

cm-1 emitted by Earth’s surface and atmosphere with a 12 km circular footprint at nadir. 142 

This radiation absorption range includes the NH3 signal near 950 cm−1.  143 

The daily NH3 column concentrations are categorized into level-2 satellite data 144 

and are developed based on the ANNI-NH3 inversion algorithm without averaging 145 

kernels, as presented by Van Damme et al. (2017). Specifically, their retrieval algorithm 146 

derives hyperspectral radiation indexes (HRI) from the direct satellite spectrum 147 

detection, which is then converted into final NH3 column concentrations using an 148 

artificial neural network technique (Whitburn et al., 2016). For better data quality, the 149 

present study removed NH3 column concentrations associated with cloud cover of more 150 

than 10%. Furthermore, we preprocessed the IASI NH3 column concentration data 151 

through averaging all daily values to obtain a monthly mean value. Spatially, we 152 

mapped the original satellite product data to the grid cells of the WRF-Chem model for 153 

further comparison with those simulated NH3 columns. 154 

In addition, surface in-situ NH3 measurements reported by Pan et al. (2018a) were 155 

collected for model evaluation. These ground-based measurements were summarized 156 

into the seasonal mean concentrations of NH3 at 53 sites in China from September 2015 157 

to August 2016.  158 

Additionally, surface meteorological data, including air temperature, relative 159 
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humidity and wind speed was obtained from China Meteorological Administration 160 

website (https://data.cma.cn/) to assess the meteorological simulations over the study 161 

region. Air pollutant concentrations associated with NH3 (such as PM2.5, NO2 and SO2) 162 

from public website of the Ministry of Ecology and Environment (MEE) of China 163 

(https://air.cnemc.cn:18007/) were also derived for evaluation. Furthermore, speciated 164 

inorganic aerosol data from a representative site in Beijing were collected to evaluate 165 

the model’s capacity in characterizing the formation of secondary inorganic aerosols 166 

(Tan et al., 2018). The complete information of the in-situ measurements used in this 167 

study is available in Tables S2~S4. 168 

 169 

3 NH3 simulations with bottom-up emissions 170 

We applied the bottom-up NH3 emissions from MEIC (Li et al., 2017; Zheng et 171 

al., 2018) to drive the prior simulation. As shown in Figure 2, the prior NH3 emission 172 

amounted to 3.3 Tg yr-1 in Eastern China, among which 93.0% emission is from AGR 173 

sources and the other 7.0% emission is from non-AGR sources. The largest emissions 174 

are recorded in July at 366.8 Gg month -1, while the smallest emissions are recorded in 175 

January at 206.5 Gg month -1 (Figure S1). 176 

We compared the prior model results with IASI NH3 column concentration and 177 

surface NH3 volume concentration observations. The detailed method for calculating 178 

NH3 total column concentrations and surface volume concentrations from WRF-Chem 179 

is provided in Text S1.  180 

To quantitatively describe model performance, we adopted three statistical metrics, 181 

including root mean squared error (RMSE, 0 ~ +∞), index of agreement (IOA, 0 ~ 1) 182 

and mean fractional bias (MFB, -2 ~ 2) (Huang et al., 2021). The IOA quantifies the 183 

overall model skill, where a value of 1 indicates a perfect match and 0 denotes complete 184 

disagreement. The MFB diagnoses systematic model bias, where positive values 185 

indicate overestimation, negative values indicate underestimation, and 0 signifies no 186 

average bias. The RMSE represents the average model error in the same units as the 187 

variable under evaluation, with lower values indicating better performance. They were 188 
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calculated following Eq. 1~3, where C represents the concentration of the target 189 

pollutant (e.g., NH3 total column or surface concentrations), and subscripts s, o and N 190 

represent simulations, observations, and the number of samples, respectively. 191 

𝑅𝑀𝑆𝐸 = √
∑ (𝐶𝑚−𝐶𝑜)

2𝑁
𝑖=1

𝑁
 (1) 192 

𝐼𝑂𝐴 = 1 −
∑ (𝐶𝑠−𝐶𝑜)

2𝑁
𝑖=1

∑ (|𝐶𝑠−𝐶𝑜̅̅̅̅ |+|𝐶𝑜−𝐶𝑜̅̅̅̅ |)
2𝑁

𝑖=1

  (2) 193 

𝑀𝐹𝐵 =
1

𝑁
∑

(𝐶𝑜−𝐶𝑚)

(
𝐶𝑜+𝐶𝑚

2
)

𝑁
𝑖=1    (3) 194 

As shown in Table S5, the annual average of NH3 total column concentrations is 195 

simulated to be 17.4×1015 molec cm-2 for Eastern China, with a 61% underestimation 196 

of MFB compared to the observations from IASI satellite retrievals (29.0×1015 molec 197 

cm-2). The IOA between observations versus simulations is 0.72. The seasonal 198 

simulations of NH3 concentrations also exhibit significant discrepancies with 199 

observations, especially in spring. Specifically, the simulated NH3 total column 200 

concentration in Eastern China is only 13.2×1015 molec cm-2 in spring, with 201 

concentration in 67.5% of the study region being underestimated by more than 50%. 202 

These discrepancies are evidently exhibited in Figure 3. Most simulated NH3 total 203 

column concentrations are underestimated by more than 30% compared with the 204 

observed values by satellite with the associated RMSE exceeding 10×1015 molec cm-2. 205 

As illustrated in Figure 6, satellite-based observations reveal that the spatial high-206 

value areas of NH3 column are located at the junction of Henan, Shandong, and Hebei 207 

provinces. In contrast, the prior modeling results show that NH3 column densities are 208 

more concentrated in Henan. This indicates a clear discrepancy in the spatial 209 

distribution of NH3 column densities between the prior simulations and the 210 

observations.  211 

Additionally, the comparison between the simulated and observed surface NH3 212 

volume concentrations also indicates a notable underestimation (Figure S2). The mean 213 

simulated surface NH3 volume concentration over the study region is 6.3 μg m-3, which 214 

is only half of the observation value (12.7 μg m-3), with an IOA of 0.57 and an MFB of 215 

-61%, respectively (Table S5). 216 
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 217 

4 Top-down estimates of NH3 emissions 218 

4.1 Iterative algorithm for NH3 emission estimation 219 

We utilized an iterative algorithm (Figure 4) to update the prior NH3 emissions 220 

from different sources constrained by IASI observations. This process was carried out 221 

in January, April, July, and October in 2016 to represent four seasons. The posterior 222 

emission inventory derived for each representative month was then applied to all three 223 

months within its corresponding season to generate the full 12-month posterior 224 

inventory. This representative-month approach was adopted to allow for a robust 225 

validation against the full 12-month period, with the remaining eight months serving as 226 

an independent dataset, and to manage the substantial computational cost of the iterative 227 

process. We compared the prior simulation results with satellite retrievals and discussed 228 

the performance of prior emissions in detail in Section 3. Furthermore, we conducted a 229 

series of sensitivity simulations to obtain prior simulated NH3 from disparate sources 230 

and which were then fed into the iterative algorithm along with satellite data for 231 

calculation. In each iterative calculation, the monthly average satellite-derived NH3 232 

column concentration served as the target, and multiple linear regression (MLR) was 233 

applied to calculate the corresponding regression factors for AGR and non-AGR 234 

emissions (Figure S3). This separation of sectors by MLR is effective because their 235 

respective spatial distributions are distinct and largely uncorrelated (r = 0.35). Here, we 236 

take the i iteration in k month, j region as an example to calculate the regression factors, 237 

and the formula is as follows:  238 

TAsatellite
𝑗,𝑘 − SAtransport

𝑗,𝑘 = 𝛼𝑖
𝑗,𝑘

∗ SAagriculture𝑖−1
𝑗,𝑘 + 𝛽𝑖

𝑗,𝑘
∗ SAnon−agriculture𝑖−1

𝑗,𝑘   (4) 239 

where, TAsatellite
𝑗,𝑘

  denotes the monthly average of total NH3 column density 240 

retrieved from the IASI satellite data, and SAtransport
𝑗,𝑘 , SAagriculture𝑖−1

𝑗,𝑘   and 241 

SAnon−agriculture𝑖−1
𝑗,𝑘   stand for the simulated total column concentration of NH3 242 

contributed by outside transport, AGR emissions, and non-AGR emissions, respectively. 243 

We clarified this NH3 concentrations contributed by different pathways by conducting 244 
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sensitivity experiments with the WRF-Chem model (Table 1).  245 

In each experiment, we zeroed out AGR emissions, non-AGR emissions and 246 

regional external emissions to obtain the corresponding NH3 column concentrations. 247 

The SAagriculture𝑖−1
𝑗,𝑘  , SAnon−agriculture𝑖−1

𝑗,𝑘  , and SAtransport
𝑗,𝑘  are calculated by 248 

subtracting Ablank from Aagr, Anon-agr, and Atransport, respectively. Here, symbols A 249 

represent the total simulated NH3 column concentrations that result from each of the 250 

sensitivity simulations listed in Table 1. Specifically, the modeling case Ablank refers to 251 

a simulated NH3 total column in which all anthropogenic emissions within the study 252 

domain were zeroed out. The purpose of this simulation was to establish background 253 

concentrations, which represents the influence of the chemical boundary conditions 254 

provided to our model domain.  255 

Furthermore, the MLR approach provided regression coefficients αi
j,k

  and βi
j,k

 , 256 

which function as scaling factors, respectively correspond to AGR and non-AGR NH3 257 

emissions in month j from region k, within the i iteration. To ensure the statistical 258 

robustness of the regression equation, we need to correct for this regression coefficient. 259 

The biases between the model simulation and the satellite retrievals were calculated as 260 

Di
j,k

. Specifically, it is the difference between the mean simulated column and the mean 261 

satellite retrieval, divided by the mean satellite retrieval. We considered the residuals 262 

of the MLR approach, the goodness of fit and Di
j,k

 , and obtained the judgment 263 

coefficient Ki
j,k

. The regression coefficients with excessive residuals, defined as cases 264 

where the 95% confidence interval of the residual does not contain zero, are removed 265 

to increase credibility. Concurrently, the goodness of fit of the regression is calculated 266 

as the coefficient of determination (R-square, R2). To maintain algorithm stability, 267 

regressions with an R2 less than 0.3 are deemed invalid and excluded from the emission 268 

update, as they exhibit insufficient explanatory power (indicating >70% unexplained 269 

variance) and introduce destabilizing noise into the adjustments. We further use it to 270 

make a trade-off for the regression coefficient. If a regression is valid, the adjustment 271 

factors a and b are set to the new regression coefficients; if invalid, the factors are kept 272 
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unchanged from the previous iteration. The updated emissions for the next iteration are 273 

then calculated by multiplying the emissions from the previous step by these adjustment 274 

factors. Finally, the entire process is iteratively repeated, a framework that captures the 275 

overall non-linear atmospheric response by combining the dynamic simulation of non-276 

linear chemistry within each WRF-Chem step with the collective behavior of multiple 277 

iterations. The iteration concludes when the mean bias between the simulated values 278 

and observations is less than 30%, a criterion chosen to represent a significant 279 

improvement over the large prior bias while falling within the range of widely accepted 280 

model performance benchmarks. 281 

 282 

4.2 posterior NH3 emission estimates 283 

The top-down constrained results (posterior) indicate that the annual NH3 emission 284 

in Eastern China has been updated to 4.2 Tg yr-1, representing a 27.3% increase 285 

compared to the prior value (Figure 2). The posterior AGR emissions increased slightly, 286 

from 3.0 Tg yr-1 to 3.1 Tg yr-1, but the high-emission regions shift from Henan to 287 

Shandong, Jiangsu and northern Anhui (Ren et al., 2023). The posterior non-AGR 288 

emissions show a significant increase, from 0.2 Tg yr-1 to 1.1 Tg yr-1, particularly in 289 

urban regions along the Yangtze River, as well as in southern BTH, central Shandong 290 

and northern Henan (Figure S4). Analysis of emission inventories (An et al., 2021; 291 

Hoesly et al., 2018; Li et al., 2021, 2017; Ma, 2020; Wu et al., 2024) reveals that 292 

residential activities and waste disposal are dominant sources of non-AGR NH3 293 

emissions, particularly in densely populated regions (Figure S5). In multiple iterations, 294 

the framework optimizes the relative mix of the two sources to better match the 295 

observed spatial patterns. For instance, the spatial correlation between model and 296 

observation in Henan increased from 0.47–0.58 (prior simulations) to 0.64–0.90 297 

(posterior simulations). 298 

In terms of seasonality, as shown in Figure 5, the posterior NH3 emissions are 299 

highest in summer, with a total of 463.1 Gg month-1, followed by spring (442.4 Gg 300 

month-1), largely due to fertilizer application (Li et al., 2021; Lu et al., 2025; Ren et al., 301 
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2025), and lowest in winter (217.4 Gg month-1). The seasonal variations in the posterior 302 

emissions is the net result of complex adjustments in both the AGR and non-AGR 303 

sectors. At the specific-source scale (Figure S6), AGR NH3 emissions show similar 304 

seasonal patterns with the total NH3 emissions, higher in summer and spring. In contrast, 305 

non-AGR NH3 are highest in winter and fall because fossil fuel combustion-related 306 

emissions are higher in cold season, while the lowest emissions occur in summer. In 307 

addition, the ratio of AGR and non-AGR NH3 emissions significantly varies across 308 

different regions. The contribution of non-AGR NH3 emissions range from 18.8% to 309 

35.8%, which is higher than the proportion in the prior inventory (Figure 5a). This shift 310 

can be attributed to the increased relative importance of fossil fuel combustion-related 311 

emissions under high PM2.5 loadings, which in turn promote higher NH3 emissions from 312 

these sources (Pan et al., 2018b). Meanwhile, AGR NH3 emissions are relatively 313 

inactive in winter due to unfavorable meteorological conditions. Similar high fractions 314 

of non-AGR emissions have also been reported in other studies (Feng et al., 2022; He 315 

et al., 2021). 316 

Table 2 compares the results with related studies focused on NH3 emission 317 

estimates. Overall, the estimated NH3 emission in this study is comparable to the 318 

estimates of the other studies based on both “top-down” and “bottom-up” approaches. 319 

In similar years and regions, the discrepancy between the estimates of this study and 320 

other studies ranges from 1.0% to 19.6%. The slight discrepancy can be partially 321 

explained by our estimate being a conservative lower bound, a consequence of the 322 

residual gap remaining with satellite retrieval. Additionally, uncertainties from the 323 

model's chemical mechanisms and the influence of nearby grid transport also contribute 324 

to this gap, but the overall impact on the final estimate is limited. Furthermore, the 325 

seasonal distribution of NH3 emissions in this study aligns with the findings of previous 326 

studies (Kong et al., 2019; Liu et al., 2024; Zhang et al., 2018; Zhao et al., 2020). 327 

In terms of sectors, other studies have indicated that the contribution of NH3 328 

emissions from AGR sources is more than 80%, using the bottom-up approach (Chen 329 

et al., 2021; Huang et al., 2012; Kang et al., 2016; Li et al., 2021). The relatively small 330 

proportion of non-AGR emissions is likely due to overlooked industrial (e.g., NH3 slip 331 
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and indirect emissions) (Chen and Wang, 2025; Chen et al., 2022; Wei et al., 2022) and 332 

residential sources (e.g., from waste) (Shao et al., 2020), combined with 333 

unrepresentative transportation emission factors (Sun et al., 2017; Zhang et al., 2021). 334 

This study, however, reveals a proportion of 74.4% for AGR emissions, thereby 335 

emphasizing the contribution of non-AGR emissions. Concurrently, the eastern 336 

developed industry is expected to exhibit an increase in the proportion of NH3 emissions 337 

from non-AGR sources when compared to the national average. Our work attempts to 338 

quantitatively disentangle the emissions from AGR and non-AGR sectors directly 339 

within our top-down framework and facilitates a more comprehensive capture of 340 

neglected non-AGR sources.  341 

It is important to note that discrepancies in results between studies may be 342 

attributable to methodological differences (e.g. the sensitivity of the top-down approach 343 

to target data selection) and uncertainty in the underlying data. For instance, the NH3 344 

emission estimated by Paulot et al. (2014) using the mass balance method based on 345 

ammonium wet deposition fluxes is significantly lower than that in other studies, which 346 

may be attributed to its fewer observation sites in China. These discrepancies 347 

underscore the necessity to enhance the reliability of NH3 observations in forthcoming 348 

studies, with the objective of enhancing the precision of the estimates.  349 

 350 

4.3 Simulated NH3 with top-down emissions 351 

Figure 6 compares the spatial distributions of NH3 total column density from 352 

satellite retrievals, prior simulations and posterior simulations. The annual mean 353 

simulated NH3 total column density improved from the prior result of 17.4×10¹⁵ molec 354 

cm⁻² to a posterior value of 23.7×10¹⁵ molec cm⁻², with an increase of 35.9%, and is 355 

closer to the observed value of 29.0×10¹⁵ molec cm⁻². IOA and MFB between the 356 

posterior simulations versus measurements are 0.9 and -30.0%, respectively. Figure 3 357 

also shows the improvement in model performance. More than 80% of the points fall 358 

in the range where the simulation-to-observation ratio is between 0.7 and 1.3 and the 359 

RMSE is less than 10×1015 molec cm-2. A more consistent seasonal distribution can be 360 

obtained in a posterior simulation, with associated temporal MFB of NH3 column 361 
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density on the seasonal scale is reduced from -53% (prior) to -24% (posterior). 362 

Simultaneously, the spatial distribution pattern of posterior simulation is more identical 363 

to the characteristics revealed by satellite-based observations (Figure 6). The spatial 364 

MFB is also decreased from -52% (prior) to -20% (posterior), with an increase in spatial 365 

correlation coefficient from 0.79 to 0.92. The improvement is especially notable in the 366 

BTH region, where the simulated NH3 column densities are doubled. In summary, the 367 

posterior simulation improves the agreement between the simulated NH3 column 368 

concentrations and satellite observations in both overall magnitude and spatial 369 

distribution, although some deviations remain, particularly in the colder seasons. These 370 

can likely be attributed to methodological limitations, such as the inherent tolerance of 371 

our 30% iterative stopping criterion and potential inconsistencies from aggregating 372 

monthly optimizations to a seasonal scale. 373 

A similar improvement is also witnessed in the modeling of surface NH3 374 

concentrations, which were evaluated against in-situ measurements from 13 sites 375 

reported by Pan et al. (2018a) for the 2015–2016 period (Table S2). The posterior 376 

simulation significantly improves the annual mean, increasing the surface concentration 377 

from 6.3 µg m⁻³ (prior) to 9.4 µg m⁻³ (posterior), much closer to the observed average 378 

of 12.7 µg m⁻³. As shown in the scatter plot in Figure S7, the posterior simulation 379 

alleviates the underestimation at most sites, which is quantified by a 42% reduction in 380 

the overall underestimation bias and a clear improvement in the IOA. On a seasonal 381 

basis, the posterior emissions also alleviate the large underestimation of the prior 382 

simulation across all seasons, though the degree of improvement varies (Table S6). The 383 

prior simulation showed significant underestimation in all seasons, with the MFB 384 

ranging from -0.37 in winter to -0.79 in spring. The posterior simulation demonstrates 385 

a particularly evident improvement in spring, where the MFB reduced from -0.79 to -386 

0.24. While some underestimation remains in summer, the posterior results still show 387 

improved performance metrics (e.g., lower RMSE and higher IOA) for all seasons, 388 

confirming a better capture of the seasonal characteristics overall. The remaining 389 

discrepancy between the posterior simulation and surface observations can be attributed 390 
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to several factors, such as the spatial representativeness of the surface sites and the 391 

accuracy of the secondary inorganic aerosol simulation.  392 

Furthermore, improving the NH3 simulation results in the other simulated air 393 

pollutants being closer to observed levels (Table 3). Specifically, we compare the annual 394 

mean concentrations of PM2.5, SO2, and NO2 from the prior and posterior simulations 395 

against surface observations averaged from 80 monitoring sites across 9 major cities 396 

(Table S4). It was found that posterior NH3 emissions effectively bridge the gap 397 

between simulated and observed PM2.5. The average PM2.5 concentration increased 398 

from 65.7 μg m-3 to 67.3 μg m-3, which is closer to the observed value of 67.1 μg m-3. 399 

To further characterize the model's chemical performance beyond total PM2.5, we also 400 

evaluated the simulation of secondary inorganic aerosol (SIA) components against in-401 

situ measurements from a representative site in Beijing (Table S7). The evaluation 402 

shows that the posterior NH3 emissions improved the simulation of ammonium and 403 

nitrate, reducing the bias between simulated and observed concentrations. Although the 404 

model underestimates sulfate, likely due to missing formation mechanisms (Cai et al., 405 

2024; Wang et al., 2021, 2020), the total SIA concentration is well reproduced with an 406 

overall bias of only -11.0%. A similar improvement is also observed for SO2, where the 407 

posterior simulated concentration (6.8 ppbv) better matches the observed value (6.5 408 

ppbv), reducing the model's previous overestimation by 27%. This improvement is 409 

most significant in autumn. The successful capture of air pollutants highlights a 410 

significant improvement in the NH3 emission inventory for Eastern China. The 411 

evaluation of routine air pollutants in each city is detailed in Figures S8~S10. The 412 

statistics of evaluation metrics for each city’s meteorological simulations can also be 413 

found in Table S8. 414 

 415 

5 PM2.5 and its health burden response to NH3 reduction 416 

To investigate the response of PM2.5 to various NH3 emission reduction scenarios, 417 

we conducted sensitivity experiments as outlined in Table S9. We formulated emission 418 

reduction scenarios of 30%–60% for January and July of 2016, considering the severe 419 

particulate pollution in winter and the higher NH3 concentrations in summer. Emission 420 
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reductions from both the AGR and non-AGR sectors were considered separately.  421 

Figure 7 illustrates that reducing NH3 emissions by 30%–60% can decrease the 422 

seasonal PM2.5 concentrations by 1.5–5.7 μg m-3 (2.0%–7.2%) averaged for Eastern 423 

China in winter, mainly due to the reduction in SIA. Specifically, nitrate, ammonium 424 

and sulfate are reduced by 0.9–3.3 μg m-3, 0.4–1.3 μg m-3 and 0.3–1.0 μg m-3, 425 

respectively. It is worth noting that the reduction in sulfate is smaller than that in nitrate 426 

because NH3 preferentially reacts with sulfuric acid during aerosol formation (Figure 427 

S11). When ambient NH3 concentrations are limited, nitrate concentrations decrease 428 

more significantly than sulfate concentrations. In summer, although aerosol pollution 429 

is relatively lower, NH3 emissions and atmospheric reactivity are higher. Consequently, 430 

reducing emissions by the same percent results in a decrease in PM2.5 concentration by 431 

5.5–8.8 μg m-3. 432 

In terms of special sources, reducing non-AGR NH3 emissions is just as crucial as 433 

reducing AGR NH3 emissions in mitigating PM2.5. A 30% to 60% reduction in non-434 

AGR NH3 emissions during winter can lead to a decrease in PM2.5 by 0.9–1.5 μg m-3, 435 

which is comparable to the effect of reducing AGR NH3 emissions (0.9–2.0 μg m-3). It 436 

should be noted that the reduction in PM2.5 resulting from both AGR and non-AGR 437 

NH3 emissions is not proportional to the emission reduction across all sectors. This is 438 

due to the non-linear relationship between NH3 emissions and PM2.5 concentrations.  439 

This study utilized the integrated exposure–response (IER) model to estimate 440 

premature mortality resulting from PM2.5 exposure. Detailed methods and data can be 441 

found in our previous work (Li et al., 2023a). In the base case, PM2.5 exposure exhibits 442 

a significant impact on premature mortality, leading to 698.4 thousand deaths in the 443 

study region. Specifically, premature deaths attributable to ischemic heart disease 444 

(IHD), stroke, lung cancer (LC), and chronic obstructive pulmonary disease (COPD) 445 

are 202.3, 347.9, 61.5, and 86.7 thousand, respectively. In other scenarios, the overall 446 

premature mortality burden decreases by 45.6–72.0 thousand instances (6.5%–10.3%) 447 

in Eastern China. Notably, the decline in premature deaths, especially those related to 448 

stroke, plays a significant role in the overall reduction. 449 

 450 
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6 Conclusions 451 

An accurate NH3 emission inventory is essential for developing effective air 452 

quality improvement policies. Numerous studies have demonstrated that the current 453 

bottom-up NH3 emission inventories in China often underestimate the total NH3 454 

emissions, with significant uncertainties in the estimation of emissions from various 455 

sources. In this study, we used IASI satellite products and an iterative algorithm with 456 

the WRF-Chem model to optimize the bottom-up NH3 emission inventory for Eastern 457 

China and further assessed the impacts of NH3 emission reductions from different 458 

sources on PM2.5 concentrations.  459 

The posterior results indicate that the NH3 emission in Eastern China for 2016 460 

amounted to 4.2 Tg. The highest emissions occurred in summer (463.1 Gg month-1), 461 

with AGR sources contributing 86.5% and non-AGR sources contributing 13.5%. In 462 

contrast, emissions were lowest in winter (217.4 Gg month-1), and the proportion of 463 

emissions from non-AGR sources were higher than that from AGR sources. Spatially, 464 

the region with the highest NH3 emissions was located at the intersection of Henan, 465 

Hebei, and Shandong provinces. This is attributed to a combination of high emission 466 

intensity from dense agricultural and industrial activities and topographical effects that 467 

hinder the dispersal of pollutants. The optimization of the NH3 inventory further 468 

improved the simulation underestimation of the NH3 total column (MFB from -61% to 469 

-30%) and surface concentration (MFB from -61% to -19%). It also indirectly improved 470 

the simulation of other air pollutants, such as PM2.5, NO2 and SO2. 471 

Based on the posterior emission inventory, we conducted a series of sensitivity 472 

simulations to investigate the response of PM2.5 concentrations to NH3 emission 473 

reductions. A 30%–60% reduction in NH3 emissions resulted in a 1.5–8.8 μg m-3 474 

decrease in PM2.5 concentrations. In terms of sectoral contributions, reductions in AGR 475 

emissions led to a decrease in PM2.5 ranging from 0.9 μg m-3 to 7.4 μg m-3, while the 476 

response to reductions in non-AGR NH3 emissions ranged from 0.9 μg m-3 to 5.3 μg m-477 

3. Furthermore, the reduction in NH3 emissions had a beneficial impact on public health, 478 

with a 6.5%–10.3% decrease in premature deaths attributed to PM2.5 exposure. 479 
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This study obtained a high-resolution NH3 emission inventory for Eastern China 480 

and highlights the significant role of non-AGR NH3 emission reductions in further 481 

decreasing PM2.5 levels. The findings provide robust data support for air quality 482 

research and offer scientific insights for exploring the potential air quality and public 483 

health benefits of NH3 emission reduction. 484 
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Table 1 List of sensitivity tests for optimized iterative algorithm. 

Case name AGR emission 
Non-AGR 

emission 

Emission 

outside the 

domain 

Atotal √ √ √ 

Aagr √ × × 

Anon-agr × √ × 

Atransport × × √ 

Ablank × × × 

 

  



 

 

Table 2. NH3 emission estimates in recent studies 

Region Sector Emission Period Method Reference 

China / 

12.4 Tg yr-1 2016 Bottom-up Ma (2020) 

12.1 Tg yr-1 2016 Bottom-up 
Li et al. 

(2021) 

11.9~12.0 

 Tg yr-1 
2005~2015 Bottom-up 

Chen et al. 

(2021) 

11.7 Tg yr-1 2008 Top-down 
Zhang et al. 

(2018) 

8.4 Tg N yr-1 2005-2008 Top-down 
Paulot et al. 

(2014) 

0.74 Tg mon-1 2008 Apr Top-down 
Xu et al. 

(2013) 

13.0 Tg yr-1 2016 Top-down 
Kong et al. 

(2019) 

18.9 Tg yr-1 2015 Top-down 
Zhang et al. 

(2017) 

Eastern 

China 
Industry 274.5 Gg yr-1 2016 Bottom-up 

Chen et al. 

(2022) 

BTH 

/ 966.1 Gg yr-1 2016 Bottom-up 
(Guo et al., 

2020) 

/ 

28.8 Gg mon-1 2015 Jan 

Top-down 
Huang et al. 

(2021) 

82.5 Gg mon-1 2015 Apr 

102.9 Gg 

mon-1 
2015 Jul 

50.2 Gg mon-1 2015 Oct 

Agriculture 
505.85 Gg yr-

1 
2016 Top-down This study 

Non-

Agriculture 

282.53 Gg yr-

1 

YRD 
Agriculture 848.8 Gg yr-1 

2014 Bottom-up 
Yu et al. 

(2020) Non- 137.2 Gg yr-1 



 

 

Agriculture 

Agriculture 

77 Gg mon-1 2014 Jan 

Bottom-up 
Zhao et al. 

(2020) 

133 Gg mon-1 2014 Apr 

169 Gg mon-1 2014 Jul 

108 Gg mon-1 2014 Oct 

/ 

24.42 Gg 

mon-1 
2015 Jan 

Top-down 
Huang et al. 

(2021) 

88.0 Gg mon-1 2015 Apr 

111.7 Gg 

mon-1 
2015 Jul 

51.0 Gg mon-1 2015 Oct 

Agriculture 1280.41 Gg 

2016 Top-down this study Non-

Agriculture 
297.86 Gg 

Henan 

/ 

1035Gg yr-1 2013  Top-down 
Wang et al. 

(2018) 

982 Gg yr-1 2016  Bottom-up 
Bai et al. 

(2020) 

Agriculture 
647.73 Gg yr-

1 
2016 Top-down this study 

Non-

Agriculture 

206.20 Gg yr-

1 

Shandong 

/ 1210 Gg yr-1 2017  Bottom-up 
Zhou et al. 

(2021) 

Agriculture 
715.29 Gg yr-

1 
2016 Top-down this study 

Non-

Agriculture 

296.98 Gg yr-

1 

 

  



 

 

Table 3 Simulated and observed air pollutant concentrations 

 Prior simulation Posterior simulation Observation 

PM2.5 (μg m-3) 65.7  67.3  67.1 

NO2 (ppb) 22.3   22.1  23.0  

SO2 (ppb) 8.2 6.8  6.5 

 

 

 



 

 

Figure 1. Simulation domains of the WRF-Chem model used in this study (left). 

Right panel illustrates the four research regions in Eastern China. Names and 

locations are labeled with different colors in this panel.  



 

 

Figure 2. Prior and posterior NH3 emissions from agricultural and non-agricultural 

sectors in the study region. The red numbers show the total emissions. 



 

Figure 3. Scatter plots of the prior and posterior NH3 total column data versus IASI 

retrievals. Each point represents prior (or posterior) data for a specific season and a 

specific region. Circles, triangles, rhombuses, and rectangles correspond to the BTH, 

Henan, Shandong, and YRD regions, respectively. Orange and blue markers represent 

a prior and a posterior data, respectively. The red box indicates the performance area, 

with a model error within ±30% and an RMSE below 10(×1015 molec cm-2). 

  



 

 
 

Figure 4. Visualization of the workflow in this study.  

 



 

 

Figure 5. Posterior emission characteristics. (a) Contribution from regional emission 

sectors. (b) Comparison of the posteriori and prior emissions (unit: Mg) in study 

region.  

 



 

Figure 6. Distributions of NH3 total column from prior simulation, posterior simulation 

and satellite retrieval in different seasons.



 

Figure 7. Response of NH3 emission reduction in 30-60% in (a)-(b) concentration of PM2.5 and (c) premature 

death caused by different diseases. The IHD, Stroke, LC and COPD represent the premature death caused by 

ischemic heart disease, stroke, lung cancer, chronic obstructive pulmonary disease.  
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