
Responses to reviewer #1 

Dear Editor and Reviewer #1: 

We would like to express our sincere gratitude to the editor and the reviewer for 

their time and invaluable evaluation on our manuscript, “Optimizing Ammonia 

Emissions for PM2.5 Mitigation: Environmental and Health Co-Benefits in Eastern 

China” (egusphere-2025-1407). The insightful suggestions have enabled us to 

significantly improve the quality of our work. We have addressed all comments and 

have revised the manuscript accordingly. The reviewer comments are presented in blue, 

our point-by-point responses are in black, and the corresponding revisions in the 

manuscript are highlighted in red. 

Major comments: 

1. The authors attribute the ammonia emissions underestimate in the model almost 

entirely to non-agricultural emissions (Figure 2). However, temporally, the authors put 

the largest posterior increase in ammonia emissions in spring and summer (Figure 5) 

when I would expect agricultural emissions to be most important (fertilization time + 

favorable meteorology). At the same time, your sources are close or overlap in space 

(Figure 2), especially considering the smoothness of the modeled and observational 

total column NH3 (Figure 6). Moreover, because of co-linearity, I am not sure how well 

the MLR (Eqn 4) can separately fit the alpha and beta parameters and thus separate 

source sectors. For these reasons, I am skeptical of the source attribution in this study. 

I am more confident in total ammonia emissions magnitudes. 

Response: 

We thank the reviewer for this comment. We acknowledge the reviewer’s point 

that the regional changes in agricultural NH3 emissions between prior and posterior 

inventories are small. This phenomenon could be explained by the spatial heterogeneity 

of changes in agricultural emissions. For example, our posterior model results for spring 

show a decrease in agricultural emissions in Henan, while simultaneously proposing a 

substantial increase of 242.8 Gg in the Yangtze River Delta region. This regional 

redistribution could improve the model’s ability in better matching with observations.  

Therefore, the large rise in total emissions in spring is a combination of these 

regionally specific agricultural adjustments and a significant, spatially broad increase 

in the non-agricultural sector. It is also important to note that even with this large non-



AGR correction, agriculture remains the dominant source of emissions in spring in our 

posterior inventory (accounting for 84.1%), reflecting the overwhelming importance of 

fertilization activity in this season. 

The use of multiple linear regression (MLR) for source apportionment is a well-

established approach in atmospheric science (Qi et al., 2024; Shu and Lam, 2011; Trošić 

Lesar and Filipčić, 2023) and can identify different physical sources. The fundamental 

principle of using regression for source apportionment is that different sources can be 

statistically distinguished if they possess unique spatial "fingerprints".  

In our study, the high-concentration regions resulting from AGR and non-AGR 

emissions do not spatially align (Figure R1.1). The overall spatial correlation between 

the NH3 columns simulated from these two sources is low (r = 0.35) and is near zero in 

the high-concentration regions (r = 0.03). This significant dissimilarity provides a 

robust statistical basis for the MLR model to distinguish their relative contributions. 

 

Figure R1.1: Spatial distribution of prior simulated NH3 column concentrations from 

agricultural and non-agricultural sources. 

Revision in Section 4.1: 

In each iterative calculation, the monthly average satellite-derived NH3 column 

concentration served as the target, and multiple linear regression (MLR) was applied 

to calculate the corresponding regression factors for AGR and non-AGR emissions 

(Figure S3). This separation of sectors by MLR is effective because their respective 

spatial distributions are distinct and largely uncorrelated (r = 0.35). 

Revision in Section 4.2: 

In multiple iterations, the framework optimizes the relative mix of the two sources 

to better match the observed spatial patterns. For instance, the spatial correlation 

between model and observation in Henan increased from 0.47–0.58 (prior simulations) 



to 0.64–0.90 (posterior simulations). 

 

2. The MLR does not account for chemistry occurring between emission and 

observation. Could you comment on how this affects the results? 

Response:  

We thank the reviewer for this insightful question, which allows us to clarify the 

role of atmospheric chemistry within our inversion framework and discuss the 

associated uncertainties. 

First, we emphasize that our methodology inherently accounts for atmospheric 

chemistry. While the MLR component is a statistical tool, our approach is not a simple 

regression directly linking emissions to observed columns. Instead, the MLR operates 

within an iterative framework dynamically coupled with the full WRF-Chem model. 

Crucially: (1) The inputs to our regression (the SA variables) are the simulated NH3 

column concentrations generated by WRF-Chem. This means that within each iteration, 

WRF-Chem explicitly simulates all complex, non-linear chemical transformations 

(including gas-to-particle partitioning and aerosol formation) and transport processes 

occurring between emission and the resulting atmospheric concentration. (2) The MLR 

then acts solely as an efficient optimization tool, adjusting the emission inputs based on 

the outputs of this chemically comprehensive model. 

To directly discuss the model’s capacity in characterizing concentrations of 

secondary inorganic aerosols (SIA), we conducted comparisons using in-situ 

measurements at a representative site in Beijing (39°59′21″N, 116°18′25″E). 

The evaluation results are summarized in Table R1. It is revealed that the posterior 

NH3 emissions increase NH4
+ concentration from 4.71 µg m-3 to 4.95 µg m-3, which is 

closer to the observed average (5.69 µg m-3). The simulated mean NO3
- concentration 

with 9.59 µg/m³ also better matches the observed level (9.44 µg m-3).  

The WRF-Chem model performs moderately well in capturing the observed SO4
2- 

concentration (7.74 µg m-3) in both simulations (5.81-5.84 µg m-3). The model 

underestimation could be attributed to the missing formation mechanism of sulfate such 

as transition metal ions (TMI)-catalyzed and photosensitized oxidation of SO2 on 

aerosol surfaces (Cai et al., 2024; Wang et al., 2021, 2020). Although this 

underestimation of sulfate might lead to our posterior NH3 emission estimates being 



conservatively low, we find that the model still reproduces the total secondary inorganic 

aerosol (SIA) concentrations well, with an overall bias of only -11.0%. This good 

performance in simulating the total aerosol sink for ammonia suggests that the 

uncertainty propagated to the final emission estimates from these chemical pathways is 

limited. 

In summary, our framework inherently accounts for chemistry through its tight 

coupling with WRF-Chem. The evaluation against SIA observations confirms the 

chemical plausibility of our results for nitrate and ammonium, while highlighting 

specific uncertainties in sulfate chemistry. These uncertainties suggest our posterior 

NH3 emissions may represent a conservative estimate. We have incorporated this 

discussion into the revised manuscript. 

Table R1: Comparison of prior and posterior simulated surface concentrations with in-

situ observations for major secondary inorganic aerosol components (sulfate, nitrate, 

and ammonium) in Beijing. All values are in µg m-3. 

 Prior simulation 
Posterior 

simulation 
observation 

nitrate 8.82 9.59 9.44 

ammonium 4.71 4.95 5.69 

sulfate 5.81 5.84 7.74 

 

 

Revision in Section 2.2: 

Furthermore, speciated inorganic aerosol data from a representative site in 

Beijing were collected to evaluate the model’s capacity in characterizing the formation 

of secondary inorganic aerosols (Tan et al., 2018). 

Revision in Section 4.1: 

Finally, the entire process is iteratively repeated, a framework that captures the 

overall non-linear atmospheric response by combining the dynamic simulation of non-

linear chemistry within each WRF-Chem step with the collective behavior of multiple 

iterations. 

Revision in Section 4.2: 

Additionally, uncertainties from the model's chemical mechanisms and the 



influence of nearby grid transport also contribute to this gap, but the overall impact on 

the final estimate is limited. 

Revision in Section 4.3: 

To further characterize the model's chemical performance beyond total PM2.5, we 

also evaluated the simulation of secondary inorganic aerosol (SIA) components against 

in-situ measurements from a representative site in Beijing (Table S7). The evaluation 

shows that the posterior NH3 emissions improved the simulation of ammonium and 

nitrate, reducing the bias between simulated and observed concentrations. Although 

the model underestimates sulfate, likely due to missing formation mechanisms (Cai et 

al., 2024; Wang et al., 2021, 2020), the total SIA concentration is well reproduced with 

an overall bias of only -11.0%. 

Revision in Supplementary: 

Table S7. Comparison between the prior and posterior simulated inorganic aerosol 

concentrations with in-situ measurements in Beijing. All value units are µg m-3. 

 Prior simulation 
Posterior 

simulation 
observation 

nitrate 8.82 9.59 9.44 

ammonium 4.71 4.95 5.69 

sulfate 5.81 5.84 7.74 

 

  



 

Minor comments: 

1. Line 75: It is not clear to me what the 1%–50% figure represents here. Is this 

reduction in PM2.5 per unit NH3 emissions reduced? 

Response:  

We thank the reviewer for this question. The 1%–50% range in our text is intended 

to summarize the breadth of these varying findings reported in the studies we referenced. 

It represents the range of discrepancies or varying outcomes found across the cited 

literature when assessing the impact of NH3 emission reductions on PM2.5 levels. This 

variability arises from differences in study methodologies, including models, 

underlying emission inventories, regions, and seasons analyzed. To enhance clarity, we 

have revised the relevant sentence in the manuscript to explicitly state that this range 

reflects the spectrum of outcomes reported in the referenced studies. 

Revision in Section 1: 

The uncertainty in the emission estimation further contributes to significant 

discrepancies, reflecting the range of results (1%–50%) reported in the literature, in 

assessing the impacts of NH3 reduction on PM2.5 level (Guo et al., 2018, 2024; Li et al., 

2024; Liu et al., 2019, 2021, 2023; Pan et al., 2024; Zhang et al., 2022). 

2. Which version of the IASI NH3 data do you use? 

Response:  

We appreciate the reviewer's attention to this detail. We have clarified in the 

revised text that the IASI NH3 data used in this study is version 3.0. 

Revision in Section 2.2: 

We obtained the total column density of NH3 from the passive satellite remote-

sensing product of the Infrared Atmospheric Sounding Interferometer (IASI) (version 

3.0, https://iasi.aeris-data.fr/nh3/, last accessed on December 2020) as the 

observational constraint. 

3. Lines 165–166: What do the index of agreement and mean fractional bias mean, 

intuitively? 

Response:  

We appreciate the reviewer's suggestion to clarify these metrics. The manuscript 

now includes expanded intuitive explanations: 



(1) Index of Agreement (IOA) 

The IOA quantifies the overall simulation skill with values ranging from 0 to 1, 

where 1 indicates perfect match between simulated and observed data while 0 denotes 

complete disagreement. This metric evaluates both magnitude accuracy and spatial 

pattern consistency, making a higher IOA value indicative of better model performance. 

In our context, an increased IOA in posterior simulations versus prior runs confirms 

improved representation of NH3 columns. 

(2) Mean Fractional Bias (MFB) 

The MFB diagnoses systematic model bias with values centered at 0. A value of 0 

signifies no average bias, positive values indicate model overestimation, and negative 

values reflect underestimation. The absolute magnitude measures bias severity, where 

smaller absolute values correspond to reduced systematic error. 

In this study, we use IOA to evaluate global consistency between simulated and 

satellite-observed NH3 columns, while MFB specifically quantifies directional bias 

tendencies. These clarifications have been incorporated into the revised manuscript. 

Revision in Section 3: 

The IOA quantifies the overall model skill, where a value of 1 indicates a perfect 

match and 0 denotes complete disagreement. The MFB diagnoses systematic model 

bias, where positive values indicate overestimation, negative values indicate 

underestimation, and 0 signifies no average bias. 

 

4. Line 167: What does the C mean in these equations? I presume ammonia column 

concentrations? 

Response:  

We thank the reviewer for highlighting this ambiguity. In the equations, C is 

defined as the Concentration of the target pollutant, with its specific meaning 

determined by the evaluation context: (1) NH3 total column concentrations (satellite 

comparison); (2) Surface NH3 concentrations; (3) Other pollutants (e.g., surface PM2.5 

SO2, NO2) 

We have revised the manuscript to explicitly clarify this generalized notation and 

its context-dependent applications. 

Revision in Section 3: 



They were calculated following Eq. 1~3, where C represents the concentration of 

the target pollutant (e.g., NH3 total column or surface concentrations), and subscripts 

s, o and N represent simulations, observations, and the number of samples, respectively. 

 

5. How do you convert simulated NH3 to total column densities comparable to IASI 

(e.g. the SA in line 205)? 

Response:  

We thank the reviewer for requesting methodological clarification. The conversion 

of simulated NH3 to total column densities (SA variables) is now detailed in the 

Supporting Information.  

The WRF-Chem model outputs NH3 concentrations as a volume mixing ratio (in 

ppmv) for each model layer. To convert these layer-specific concentrations into a total 

vertical column density (VCD) comparable to IASI satellite retrievals, the subsequent 

process was followed. 

First, the thickness of each model layer (ΔZ) must be determined. As our WRF-

Chem setup uses a terrain-following hybrid sigma-pressure coordinate system, the 

geopotential height (Z) of each model level is calculated from the model's perturbation 

geopotential (PH) and base-state geopotential (PHB), divided by the acceleration due 

to gravity (g ≈ 9.8 m s⁻²):  

𝑍 =
𝑃𝐻 + 𝑃𝐻𝐵

𝑔
 

The thickness of an individual model layer, k, is then the difference in geopotential 

height between its upper and lower boundaries: ΔZk=Zk+1−Zk 

Moreover, the NH3 volume mixing ratio in each layer is converted to a number 

density (NNH3, in molecules cm⁻³), using the pressure and temperature of that specific 

model layer. Finally, the total NH3 vertical column density (VCD, in molecules cm⁻²) 

is calculated by integrating the vertical column density in each layer of the model. In 

our discrete model layers, this is achieved by summing the partial column of each layer, 

which is the product of the number density (NNH3,k) and the layer thickness (ΔZk). 

Revision in Section 3: 

The detailed method for calculating NH3 total column concentrations and surface 

volume concentrations from WRF-Chem is provided in Text S1.  



Revision in Supplementary: 

TEXT S1 

For comparison with IASI satellite retrievals, the total vertical column density 

(VCD) was calculated from the model's layer-specific output. The WRF-Chem model 

outputs NH3 concentrations as a volume mixing ratio (in ppmv) for each model layer. 

To convert these layer-specific concentrations into a VCD, the subsequent process was 

followed. 

First, the thickness of each model layer (ΔZ) must be determined. As our WRF-

Chem setup uses a terrain-following hybrid sigma-pressure coordinate system, the 

geopotential height (Z) of each model level is calculated from the model's perturbation 

geopotential (PH) and base-state geopotential (PHB), divided by the acceleration due 

to gravity (g ≈ 9.8 m s⁻²):  

𝑍 =
𝑃𝐻 + 𝑃𝐻𝐵

𝑔
 

The thickness of an individual model layer, k, is then the difference in geopotential 

height between its upper and lower boundaries: ΔZk=Zk+1−Zk 

Moreover, the NH3 volume mixing ratio in each layer is converted to a number 

density (NNH3, in molecules cm⁻³), using the pressure and temperature of that specific 

model layer. Finally, the total NH3 vertical column density (VCD, in molecules cm⁻²) is 

calculated by integrating the vertical column density in each layer of the model. In our 

discrete model layers, this is achieved by summing the partial column of each layer, 

which is the product of the number density (NNH3,k) and the layer thickness (ΔZk). 

 

6. Figure 3: What does the red box represent? 

Response:  

We appreciate this suggestion to enhance figure clarity. The red box highlights the 

range we consider to represent good model performance. Specifically, it delineates the 

area where the Root Mean Square Error (RMSE) is less than 10, and the ratio of 

simulated-to-observed NH3 column concentration is between 0.7 and 1.3 (±30% error 

margin). We have added this clarification to the figure caption in the revised manuscript. 

Revision in Section Figure 3: 

Figure 3. Scatter plots of the prior and posterior NH3 total column data versus 



IASI retrievals. Each point represents prior (or posterior) data for a specific season 

and a specific region. Circles, triangles, rhombuses, and rectangles correspond to the 

BTH, Henan, Shandong, and YRD regions, respectively. Orange and blue markers 

represent a prior and a posterior data, respectively. The red box indicates the 

performance area, with a model error within ±30% and an RMSE below 10(×1015 

molec cm-2). 

7. Line 214: What is A_blank? Also, what are these A variables more generally? They 

are not defined. 

Response:  

Thank you for this question, which allows us to clarify these important 

methodological details. To clarify, the A variables (e.g., Aagr, Anon-agr) represent the total 

simulated NH3 column concentrations that result from each of the sensitivity 

simulations listed in Table 2. 

Specifically, The Ablank case refers to a simulated NH3 total column in which all 

anthropogenic emissions within the study domain were turned off. The purpose of this 

simulation was to establish a blank line concentration field, which represents the 

influence of the chemical boundary conditions provided to our model domain.  

We have revised the manuscript to provide explicit definitions. 

Revision in Section 4.1: 

The 𝑆𝐴𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒𝑖−1
𝑗,𝑘  , 𝑆𝐴𝑛𝑜𝑛−𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒𝑖−1

𝑗,𝑘  , and 𝑆𝐴𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡
𝑗,𝑘  are calculated by 

subtracting Ablank from Aagr, Anon-agr, and Atransport, respectively. Here, symbols A 

represent the total simulated NH3 column concentrations that result from each of the 

sensitivity simulations listed in Table 1. Specifically, the modeling case Ablank refers to 

a simulated NH3 total column in which all anthropogenic emissions within the study 

domain were zeroed out. The purpose of this simulation was to establish background 

concentrations, which represents the influence of the chemical boundary conditions 

provided to our model domain. 

 

8. Equation 4: The SA variables are referring to simulated values, right? This is not 

clear. 

Response:  

We confirm that the SA variables in Equation 4 represent simulated NH3 column 



concentrations from specific source categories. We have revised the manuscript to 

explicitly state this definition and eliminate ambiguity. 

Revision in Section 4.1: 

where, 𝑇𝐴𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒
𝑗,𝑘  denotes the monthly average of total NH3 column density 

retrieved from the IASI satellite data, and 𝑆𝐴𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡
𝑗,𝑘 , 𝑆𝐴𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒𝑖−1

𝑗,𝑘   and 

𝑆𝐴𝑛𝑜𝑛−𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒𝑖−1
𝑗,𝑘   stand for the simulated total column concentration of NH3 

contributed by AGR emissions, non-AGR emissions, and outside transportation, 

respectively. 

9. Line 219: How is D_i^j,k calculated, in terms of the variables already given? 

Response:  

Thank you for this question regarding the specific details of our methodology. The 

variable 𝐷𝑖
𝑗,𝑘

 represents the relative bias between the total simulated NH3 column 

concentration and the satellite-retrieved observation for a given iteration, month, and 

region. It is calculated as the difference between the mean simulated column and the 

mean satellite retrieval column, normalized by the mean satellite retrieval column. 

Revision in Section 4.1: 

we need to correct for this regression coefficient. The biases between the model 

simulation and the satellite retrievals were calculated as 𝐷𝑖
𝑗,𝑘

. Specifically, it is the 

difference between the mean simulated column and the mean satellite retrieval, divided 

by the mean satellite retrieval. 

 

10. Line 221: What do you mean by “excessive residuals”? What is the judgement 

coefficient and how is it calculated? 

Response:  

We thank the reviewer for highlighting this key quality control aspect. We have 

revised the manuscript to provide these specific details. 

In our regression analysis, a residual is defined as the difference between the 

observed value (i.e., the satellite-derived NH3 column) and the value predicted by the 

MLR model. To objectively identify what we termed "excessive residuals," we utilize 

the 95% confidence interval of the residual for each individual fit. 

Our criterion is as follows: if the 95% confidence interval of a residual does not 



contain zero, such a case is flagged as having an "excessive residual." This means the 

linear model provides a poor fit for that specific data point, and the resulting regression 

coefficients are deemed unreliable. Consequently, these coefficients are rejected and 

not used for the emission update in that iteration. In the following Figure R1.2, we can 

see that red represents outliers and needs to be discarded. 

 

Figure R1.2：Distribution of residuals and their 95% confidence intervals. Each point 

represents the residual value for a given sample, and the error bars represent the 95% 

confidence interval of the residual. Green points represent valid fits, while red points 

are outliers rejected based on the criterion that their confidence interval does not contain 

zero. 

 

Revision in Section 4.1: 

The regression coefficients with excessive residuals, defined as cases where the 95% 

confidence interval of the residual does not contain zero, are removed to increase 

credibility. 

11. Line 222: What goodness of fit test/metric do you use? How did you pick this 0.3–

1 acceptability range? 

Response:  

We thank the reviewer for requesting methodological clarification. The "goodness 

of fit" metric we used is the coefficient of determination, commonly known as R-

squared (R2). The R2 value quantifies the proportion of the variance in the dependent 

variable that is predictable from the independent variables (the simulated NH3 columns 

from AGR and non-AGR sources). This metric ranges from 0 to 1, with higher values 



indicating superior model performance. 

The acceptability range of 0.3–1 was chosen as a practical criterion within our 

iterative framework. We established this criterion because regressions with R² < 0.3 

exhibit insufficient explanatory power (indicating >70% unexplained variance), which 

introduces destabilizing noise into emission adjustments. By excluding such 

statistically unreliable results from our inventory updates, we maintain algorithm 

stability while reducing required iteration cycles.  

We have now explicitly stated in the manuscript that the metric used is R-squared 

and have clarified the purpose of this threshold. 

Revision in Section 4.1: 

Concurrently, the goodness of fit of the regression is calculated as the coefficient 

of determination (R-square, R2). To maintain algorithm stability, regressions with an R2 

less than 0.3 are deemed invalid and excluded from the emission update, as they exhibit 

insufficient explanatory power (indicating >70% unexplained variance) and introduce 

destabilizing noise into the adjustments. 

 

12. How do you perform the iterations (lines 226-229)? I presume you increment 

agricultural and non-agricultural emissions for each grid cell by following the fitted 

alpha and beta parameters, but how exactly and by what magnitude? What do you do 

for the next increment in the case where you reject the MLR results? 

Response:  

We appreciate the opportunity to clarify our iterative optimization procedure. The 

revised manuscript now details this process in Section 4.1.  

The iteration is performed by sequentially updating the emission inventory and re-

running the WRF-Chem simulation to produce a new concentration field. The 

magnitude of the emission update in each step is determined by the final adjustment 

factors (a and b) derived from our corrected MLR analysis. These factors are used as 

direct scaling multipliers for the emissions. For instance, in the event of the analysis 

determining a final adjustment factor of 1.3 for the agricultural sector, the new 

agricultural emission will be set to 1.3 times the value of the previous iteration. 

Regarding the case where the MLR results for an iteration are rejected, the process 

is designed to be conservative. In such instances, the adjustment factors for that specific 



grid cell are considered invalid, and the emissions are kept unchanged from the previous 

iteration. The algorithm then proceeds using this unadjusted emission value as the input 

for the next step. We have added these specific details about the emission update 

procedure to the methodology section of our manuscript to improve its clarity. 

Revision in Section 4.1: 

If a regression is valid, the adjustment factors a and b are set to the new regression 

coefficients; if invalid, the factors are kept unchanged from the previous iteration. The 

updated emissions for the next iteration are then calculated by multiplying the 

emissions from the previous step by these adjustment factors. 

 

13. What does Figure 5 look like if you split the prior and posterior bar plots up into 

AGR and nonAGR emissions? I am curious about how the source attribution varies 

with season. 

Response:  

We thank the reviewer for this valuable suggestion to enhance seasonal attribution 

analysis. As suggested, we have generated a supplementary figure (Figure S6) 

decomposing prior and posterior emissions into agricultural (AGR) and non-

agricultural (non-AGR) sources by season. 

As the new figure illustrates, the source attribution varies significantly by season. 

Agricultural emissions are the dominant contributor during the spring and summer 

months, which is consistent with the timing of fertilizer application and higher 

temperatures that promote volatilization. In contrast, the relative contribution from non-

agricultural sources increases substantially in the winter. This winter increase is largely 

attributed to higher emissions from fossil fuel combustion and other industrial activities 

that are more pronounced during the cold season. 

Revision in Section 4.2: 

At the specific-source scale (Figure S6), AGR NH3 emissions show similar 

seasonal patterns with the total NH3 emissions, higher in summer and spring. In 

contrast, non-AGR NH3 are highest in winter and fall because fossil fuel combustion-

related emissions are higher in cold season, while the lowest emissions occur in summer. 

Revision in Supplementary: 



 

Figure S5: Seasonal comparison of prior and posterior NH3 emissions from AGR and 

non-AGR sources. 

 

14. Line 291: What are the units of the RMSE? Is this referring to surface observations 

or satellite columns? 

Response:  

Thank you for your detailed review. The units for the RMSE are consistent with 

the units of the quantities being compared. Therefore, the RMSE has units of molecules 

cm-2 when evaluating against satellite total columns, and units of μg m⁻³ when 

evaluating against surface concentration measurements. We have revised the 

manuscript to explicitly state the appropriate units in each instance to avoid ambiguity. 

Revision in Section 4.3: 

More than 80% of the points fall in the range where the simulation-to-observation 

ratio is between 0.7 and 1.3 and the RMSE is less than 10×1015 molec cm-2. 

  



Typographical comments: 

1. Line 52: Figure should read “55.0%” 

Response: Thank you. The text has been corrected as suggested. 

Revision in Section 1:  

Ammonia (NH3), a key precursor of PM2.5, neutralizes sulfuric acid (H2SO4) and 

nitric acid (HNO3), leading to the formation of secondary inorganic aerosols (SIA), 

which contributes 19.4%–55.0% of the total PM2.5 (Huang et al., 2014; Liu et al., 2022b; 

Wang et al., 2016; Wei et al., 2023; Zheng et al., 2015; Zhou et al., 2022). 

2. Throughout: the en dash (–) should be used for numerical ranges instead of the tilde 

(~). 

Response: We thank the reviewer for this helpful comment, and the manuscript has 

been revised accordingly. 

 

3. Lines 179–180: this sentence ends abruptly (what is the RMSE of 10 referring to; 

what are its units). 

Response: Thank you for the comment. The units for the Root Mean Square Error 

(RMSE) are the same as those for the NH3 column concentration (×10¹⁵ molec cm⁻²). 

We have revised the sentence in the manuscript to include the appropriate units. 

Revision in Section 3: 

Most simulated NH3 total column concentrations are underestimated by more than 

30% compared with the observed values by satellite with the associated RMSE 

exceeding 10×1015 molec cm-2. 

4. Line 226: I presume you mean alpha and beta as in Equation 4, not a and b here? 

Response:  

Thank you for this comment. In our methodology, α and β are the initial regression 

coefficients derived directly from the Multiple Linear Regression (MLR) in each 

iterative step. In contrast, 'a' and 'b' represent the final, corrected adjustment factors that 

are used to update the emission inventory. 

These final factors (a, b) are derived from the initial coefficients (α, β) after a 

correction process that accounts for the goodness of fit and regression residuals. We 

have updated the methodology section to explicitly define 'a' and 'b' and to better 

describe how these adjustment factors are obtained. This clarification should improve 



the reader's understanding of our method. 

Revision in Section 4.1: 

If a regression is valid, the adjustment factors a and b are set to the new regression 

coefficients; if invalid, the factors are kept unchanged from the previous iteration. 
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Responses to reviewer #2 

Dear Editor and Reviewer #2: 

We greatly appreciate your consideration and the reviewer’s insightful and 

constructive comments on the manuscript “Optimizing Ammonia Emissions for PM2.5 

Mitigation: Environmental and Health Co-Benefits in Eastern China” (egusphere-2025-

1407). We have carefully revised the manuscript to address all the comments described 

below. Reviewer comments are shown in blue. Our responses are shown in black. The 

revised texts are shown in red. 

Major comments: 

1. Although the authors do not mention, it seems to me that the MLR-based approach 

assumes a linear relationship between NH3 emissions and column concentrations and 

attributes all discrepancies between satellite observed and simulated NH3 columns to 

local NH3 emissions. It is important for the authors to clarify these assumptions and 

discuss the associated uncertainties. Specifically, (1) How might the nonlinear response 

of NH3 concentrations to emissions affect the results? For example, do the summed 

contributions from individual sources (SAagriculture + SAnon-agriculture + SAtransport) 

approximate the simulated total NH3 column from the prior? (2) To what extent could 

transport of emissions from nearby grid cells influence the posterior results and cause 

spatial misattribution of emissions? (3) How might uncertainties in emissions of other 

pollutants (e.g., SO2, NOx) or in the model’s representation of inorganic aerosol 

formation, impact the posterior estimates of NH3 emissions? Could the large 

discrepancies between prior simulated and observed NH3 column concentrations due to 

these factors? Some quantitative discussion or sensitivity analysis on these points 

would help strengthen the credibility of the posterior estimates. 

Response:  

(1) We thank the reviewer for this insightful question. We acknowledge that the 

relationship between NH3 emissions and atmospheric concentrations is inherently non-

linear. Ambient SO₂ and NOx lead to rapid gas-to-particle partitioning, indicating that a 

significant portion of newly emitted NH3 is quickly converted to particulate ammonium. 

This "buffering effect" results in the non-linear response of the gaseous NH3 column to 

emission changes.  

In this study, the WRF-Chem-based iterative algorithm we employed, while 



utilizing multiple linear regression at each iteration step, is capable of capturing the 

nonlinear characteristics of NH3. Specifically, (1) the WRF-Chem model dynamically 

simulates the nonlinear chemical process governing the response of NH3 column to 

emission changes during each linear iteration step; and (2) the collective behavior of 

these multiple linear iterations enables the representation of the overall nonlinear 

characteristics. As shown in Figure R2.1, by plotting intermediate results from ten 

regression iterations of non-agricultural emission adjustments over the study region 

during autumn, we demonstrate non-constant emission adjustment factors and non-

proportional concentration responses, empirically confirming our algorithm’s capacity 

to resolve non-linear atmospheric feedbacks. 

Regarding the additivity of concentration responses raised by the reviewer, we 

acknowledge that the sum of NH3 columns from individual source simulations (i.e., 

SAagriculture + SAnon-agriculture + SAtransport) deviates from the total column simulated with 

combined prior emissions. This discrepancy (5.4%–15.7%) is a consequence of the 

non-linear chemical feedback within the atmospheric system. To ensure methodological 

consistency, we explicitly state that all evaluations and satellite-based comparisons 

exclusively use results from simulation with the unified posterior emission inventory, 

avoiding any summation of segmented source contributions.  

We have incorporated these clarifications into the manuscript to make our 

methodology and its approach to handling the system's non-linearities clearer for the 

reader.  

 

Figure R2.1. Scatter plot of NH3 total column concentration versus NH3 emission 

intensity for several steps of the iterative process. Arrows indicate the sequence of 

iterations. 



 

(2) Thank you for pointing this out. To quantitatively address your concern about 

the potential spatial misattribution of emissions due to transport, we conducted a 

sensitivity experiment to evaluate the transport impact of NH3 from upstream regions 

on the NH3 column concentrations in downstream regions. We focused our analysis on 

July, a month with high NH3 concentrations, and selected the Yangtze River Delta 

(YRD) region as the representative upwind source area. 

The sensitivity experiment includes two simulations using posterior emissions. 

One simulation runs with all emissions included, and the other runs in which the NH3 

emissions from the YRD region were zeroed out. By comparing these two simulations, 

we can quantify the contribution of YRD emissions to NH3 column concentrations in 

the downstream region through transport. 

As shown in Figure R2.2, the transport contribution in regions closely adjacent to 

the YRD border is approximately 15%. However, the average contribution from the 

YRD to the broader downwind area was found to be 3.8%, indicating that the limited 

influence of regional transport. To clarify this point, we have expanded the discussion 

of transport-related uncertainty in the manuscript. 

 

Figure R2.2. Transport contribution from the YRD region to NH3 column 

concentrations in downstream study areas in July. 

 

(3) Thank you for your comment. We show the comparison between the simulated 

SO2 and NO2 against surface observations from 80 sites across 9 cities in Table 3. The 

model presents a good performance in reproducing the concentration levels of these 



precursors both in prior and posterior simulations. To further discuss the model’s 

capacity in characterizing concentrations of secondary inorganic aerosols (SIA), we 

conducted comparisons using in-situ measurements at a representative site in Beijing 

(39°59′21″N, 116°18′25″E). 

The evaluation results are summarized in Table R2.1. It is revealed that the 

posterior NH3 emissions increase NH4
+ concentration from 4.71 µg m-3 to 4.95 µg m-3, 

which is closer to the observed average (5.69 µg m-3). The simulated mean NO3
- 

concentration with 9.59 µg/m³ also better matches the observed level (9.44 µg m-3).  

The WRF-Chem model performs moderately well in capturing the observed SO4
2- 

concentration (7.74 µg m-3) in both simulations (5.81-5.84 µg m-3). The model 

underestimation could be attributed to the missing formation mechanism of sulfate such 

as transition metal ions (TMI)-catalyzed and photosensitized oxidation of SO2 on 

aerosol surfaces (Cai et al., 2024; Wang et al., 2021, 2020). Although this 

underestimation of sulfate might lead to our posterior NH3 emission estimates being 

conservatively low, we find that the model still reproduces the total secondary inorganic 

aerosol (SIA) concentrations well, with an overall bias of only -11.0%. This good 

performance in simulating the total aerosol sink for ammonia suggests that the 

uncertainty propagated to the final emission estimates from these chemical pathways is 

slight. 

 

Table R2.1. Comparison between the prior and posterior simulated inorganic aerosol 

concentrations with in-situ measurements in Beijing. All value units are µg m-3. 

 Prior simulation 
Posterior 

simulation 
observation 

nitrate 8.82 9.59 9.44 

ammonium 4.71 4.95 5.69 

sulfate 5.81 5.84 7.74 

 

Regarding whether these factors (the emission for SO2 and NOx and the model's 

representation of inorganic aerosol formation) could be the primary cause of the large 

prior discrepancy, we conclude that while they introduce uncertainty, the systematic 

underestimation of NH3 emissions is the principal driver. The prior simulation 

systematically underestimated the mean NH3 column over Eastern China by 61%. 

Uncertainties in the emission inventories of other pollutants, such as SO2 or NOx, or 



biases in the chemical mechanisms, are insufficient to explain such a large and 

widespread systematic underestimation of NH3 itself.  

Furthermore, a key point of our study design is that the only variable adjusted 

between the prior and posterior simulations was the NH3 emission inventory. This 

single adjustment led to significant improvements across multiple metrics. The model 

performance improved for concentrations of NH3 and other relevant pollutants, such as 

SO2, NO2 and PM2.5, indicating that NH3 emissions were the core issue. In addition, 

previous studies have suggested that the bottom-up inventories frequently 

underestimated NH3 emissions (Chen et al., 2021; Ding et al., 2024; Kong et al., 2019; 

Zhang et al., 2017). Overall, we would like to thank for your scientific suggestion and 

we have comprehensively revised the relevant content in the manuscript to make our 

statement and discussion clearer. 

Revision in Section 2.2: 

Furthermore, speciated inorganic aerosol data from a representative site in 

Beijing were collected to evaluate the model’s capacity in characterizing the formation 

of secondary inorganic aerosols (Tan et al., 2018). 

Revision in Section 4.1: 

Finally, the entire process is iteratively repeated, a framework that captures the 

overall non-linear atmospheric response by combining the dynamic simulation of non-

linear chemistry within each WRF-Chem step with the collective behavior of multiple 

iterations. 

Revision in Section 4.2: 

Additionally, uncertainties from the model's chemical mechanisms and the 

influence of nearby grid transport also contribute to this gap, but the overall impact on 

the final estimate is limited. 

Revision in Section 4.3: 

To further characterize the model's chemical performance beyond total PM2.5, we 

also evaluated the simulation of secondary inorganic aerosol (SIA) components against 

in-situ measurements from a representative site in Beijing (Table S7). The evaluation 

shows that the posterior NH3 emissions improved the simulation of ammonium and 

nitrate, reducing the bias between simulated and observed concentrations. Although 

the model underestimates sulfate, likely due to missing formation mechanisms (Cai et 



al., 2024; Wang et al., 2021, 2020), the total SIA concentration is well reproduced with 

an overall bias of only -11.0%. 

Revision in Supplementary: 

Table S7. Comparison between the prior and posterior simulated inorganic aerosol 

concentrations with in-situ measurements in Beijing. All value units are µg m-3. 

 Prior simulation 
Posterior 

simulation 
observation 

nitrate 8.82 9.59 9.44 

ammonium 4.71 4.95 5.69 

sulfate 5.81 5.84 7.74 

 

 

2. It is not very clear to me how the current MLR framework can separate AGR and 

non-AGR NH3 emissions. Some clarification would be helpful, as noted in the minor 

comments below. Generally, in each grid cell j, I would expect the temporal variations 

in SAagriculture and SAnon-agriculture to be perfectly correlated and differ only in magnitude, 

thus they could not be separated in the regression. While WRF-Chem may simulate 

different day-to-day variations for SAagriculture and SAnon-agriculture, that reflects the effects 

of transport from surrounding grid cells, which contradicts the assumption that transport 

effects are negligible. Also, it would be useful to explain why the emission corrections 

primarily affect the non-AGR sector. Given that non-AGR emissions are relatively 

small in the prior, one would expect SAnon-agriculture to be much smaller than SAagriculture 

in Eqn (4). Is the regression coefficient b significantly larger than a, and if so, what is 

the reason for that? Specifically, in northern Henan, the posterior results show 

decreased AGR but increased non-AGR emissions compared to the prior, which seems 

hard to understand and needs further explanation. 

Response:  

We thank you for this insightful question regarding the separation of agricultural 

(AGR) and non-AGR sources within our MLR framework.  

The effective separation of these two sectors in our study is primarily based on 

their distinct and inconsistent spatial distributions. The use of multiple linear regression 

(MLR) for source apportionment is a well-established approach in atmospheric science 

(Qi et al., 2024; Shu and Lam, 2011; Trošić  Lesar and Filipć ić , 2023) and can identify 

different physical sources. The fundamental principle of using regression for source 



apportionment is that different sources can be statistically distinguished if they possess 

unique spatial "fingerprints".  

In our study, the high-concentration regions resulting from AGR and non-AGR 

emissions do not spatially align (Figure R2.3). The overall spatial correlation between 

the NH3 columns simulated from these two sources is low (r = 0.35) and is near zero in 

the high-concentration regions (r = 0.03). This significant dissimilarity provides a 

robust statistical basis for the MLR model to distinguish their relative contributions. 

The adjustment of these sources occurs through a multi-stage iterative process. 

Initially, the algorithm addresses the large, domain-wide underestimation by increasing 

emissions from both sectors. In subsequent iterations, a finer adjustment occurs where 

the framework optimizes the relative mix of the two sources to better match the 

observed spatial patterns. This directly relates to the emission corrections. If the spatial 

pattern of non-AGR emissions provides a better fit to the remaining model-observation 

discrepancy in certain areas, its corresponding emissions will be increased more 

significantly. This can result in a larger effective adjustment for the non-AGR sector, 

even if its initial contribution is smaller. 

The specific case of northern Henan, where AGR emissions decrease while non-

AGR emissions increase, exemplifies this refinement stage. In this region, the initial 

emission adjustments likely resulted in a spatial pattern that did not perfectly match the 

satellite observations. The algorithm then corrects this by reducing the AGR sector's 

contribution while simultaneously increasing the non-AGR sector's influence, as the 

latter's spatial pattern provided a better fit. The success of this adjustment is 

quantitatively demonstrated by the significant improvement in model performance for 

this region: the spatial correlation in Henan increased from 0.47–0.58 in the prior to 

0.64–0.90 in the posterior. This confirms the framework is effectively adjusting the 

relative structure of emissions to best match the observations. 

 

Figure R2.3. Spatial distribution of prior simulated NH3 column concentrations from 



agricultural and non-agricultural sources. 

Revision in Section 4.1: 

In each iterative calculation, the monthly average satellite-derived NH3 column 

concentration served as the target, and multiple linear regression (MLR) was applied 

to calculate the corresponding regression factors for AGR and non-AGR emissions 

(Figure S3). This separation of sectors by MLR is effective because their respective 

spatial distributions are distinct and largely uncorrelated (r = 0.35). 

Revision in Section 4.2: 

In multiple iterations, the framework optimizes the relative mix of the two sources 

to better match the observed spatial patterns. For instance, the spatial correlation 

between model and observation in Henan increased from 0.47–0.58 (prior simulations) 

to 0.64–0.90 (posterior simulations). 

 

3. The finding of substantially higher non-agricultural (non-AGR) NH3 emissions 

compared to prior estimates is certainly interesting and important. However, the 

discussion of the posterior results in Section 4 currently focuses mainly on reporting 

emission magnitudes and sectoral contributions, with limited interpretation of the 

underlying causes or contextualization within existing literature. I would encourage the 

authors to expand this discussion by addressing the following points: (1) What are the 

potential reasons for the apparent underestimation of non-AGR NH3 emissions in 

current bottom-up inventories? (2) What types of non-agricultural sources (e.g., 

industrial processes, transportation) are most likely responsible, based on current 

understanding? (3) How do your findings about non-AGR emissions compare with 

previous top-down estimates? The discussion in Lines 259–281 is helpful, but it could 

be further strengthened by emphasizing on observation-based or model-based studies 

that have investigated non-AGR NH3 sources. It would also be valuable to highlight 

how your results build upon or differ from those studies, and what novel insights your 

analysis contributes to this topic. 

Response: 

(1) We thank the reviewer for the constructive suggestion The principle of bottom-

up emission inventories is the product of activity level and emission factor. The 

accuracy of bottom-up inventories is highly dependent on the input data. However, 

incomplete activity levels, not representative emission factors, and the overlooked 



sources make it a challenge to reasonably estimate non-AGR NH3 emissions in China. 

Several overlooked factors contribute to the underestimation of industrial NH3 

emissions in bottom-up inventories: (1) A significant source is "ammonia slip" from the 

widespread use of denitrification technologies (like SCR and SNCR) to control NOx 

emissions. (2) a crucial and largely overlooked source is the 'indirect emission' of NH3, 

where ammonia is first adsorbed onto byproducts like fly ash and desulfurization slurry 

and is subsequently released during their handling and utilization (Chen et al., 2022; 

Cheng et al., 2020; Liu et al., 2020). (3) emission inventories have often omitted a range 

of downstream chemical industries that use ammonia as a feedstock (Wei et al., 2022). 

The inclusion of these factors results in an estimate of industrial NH3 emissions that is 

3–10 times higher than those in previous bottom-up inventories (Chen and Wang, 2025). 

Similarly, for residential sources, volatilization from landfills, wastewater 

treatment, and human excreta are important sources, especially in densely populated 

megacities. For example, some studies have identified human excreta as a stable and 

significant contributor to the urban NH3 budget, a sector frequently omitted in 

traditional inventories (Chang et al., 2015; Shao et al., 2020). 

For the transportation sector, many inventories rely on emission factors developed 

for European or U.S. vehicle fleets. These factors often fail to capture complex real-

world conditions in China, such as catalyst aging, vehicle maintenance status, and 

diverse driving patterns in congested traffic. This leads to an underestimation of the true 

NH3 emission rate, a finding confirmed by several field studies. (Chang et al., 2016; 

Sun et al., 2017; Zhang et al., 2021). 

Underestimation across these multiple sectors demonstrates the systematic 

underestimation of non-AGR NH3 emissions in current bottom-up inventories. We have 

rephrased the relevant texts in the manuscript for further discussion. 

 

(2) We thank the reviewer for this insightful comment. We are unable to further 

categorize the posterior non-AGR emissions into specific sub-sectors due to two 

primary methodological limitations: (1) Introducing additional sub-sectors as separate 

factors in the Multiple Linear Regression (MLR) model would cause the results for 

some of these factors to become statistically insignificant. (2) At the current resolution 

of our model (18 km) and the prior emission inventory (0.25°), the spatial distributions 

of many non-AGR sub-sectors are too similar, which prevents our current method from 



distinguishing between them. However, your comment offers us an excellent 

opportunity to discuss the current understanding of the relative importance of different 

non-agricultural sources based on existing literature.  

We have compiled source apportionment results from several emission inventories 

in Figure R2.4. The inventories covering China suggests that, on a national scale, 

industrial and residential sources are two major contributors to non-agricultural NH3 

emissions. When we extract data specifically for our study domain from established 

grided inventories like MEIC and CEDS, with residential and waste-related sources 

showing significant contributions. This is confirmed by high-resolution inventories for 

sub-regions such as YRD, where residential and waste sources are also identified as 

primary contributors. 

 

Figure R2.4. Comparison of the source apportionment of non-AGR NH3 emissions 

from different studies and for various regions. Each pie chart illustrates the relative 

contribution (%) of nine specific non-agricultural sources, with the area (study region, 

China, and the YRD) and data source for each chart indicated in its center. 

 

(3) We thank the reviewer for this suggestion. The majority of previous top-down 

studies on NH3 have focused on optimizing the total emission budget, without explicitly 

separating the contributions from different sectors (Xu et al., 2023). Some studies 

attempted to qualitatively estimate source-specific NH3 emissions. For instance, Kong 

et al. (2019) and Liu et al. (2022) used satellite-observed NH3 hotspots and linked them 



to specific industrial or agricultural point sources with external information (Kong et 

al., 2019; Liu et al., 2022). Other approaches have attempted a form of quantitative 

allocation by first using top-down methods to constrain the total emission, and then 

relying on the sectoral fractions from bottom-up inventories for further apportioning. 

A separate and distinct approach involves the use of stable isotope analysis. These 

studies have provided crucial quantitative insights, suggesting that the contribution of 

non-AGR sources to ambient NH3 concentrations can be remarkably high, potentially 

up to ~90% in specific urban environments (Pan et al., 2016; Wu et al., 2020). However, 

it is important to note that this valuable technique typically provides constraints on 

source contributions to ambient concentrations rather than directly on emission fluxes. 

Our work builds upon these previous findings by attempting to quantitatively 

disentangle the emissions from agricultural and non-agricultural sectors directly within 

our top-down framework. Instead of optimizing the total emissions and then allocating 

them post-hoc based on bottom-up information, our iterative MLR approach uses the 

distinct spatial signatures of the two sectors to derive separate adjustment factors for 

each. This provides a direct, observation-based constraint on the relative contributions 

of AGR and non-AGR emissions over a large region.  

This approach addresses a potential methodological gap in top-down research, 

which has traditionally faced challenges in achieving direct, quantitative source 

attribution at regional scales. While acknowledging the uncertainties and limitations 

inherent in our study, we suggest this methodology could offer a valuable pathway 

toward more effective utilization of satellite observations for investigating source-

specific emission trends. 

Revision in Section 4.2: 

Analysis of emission inventories (An et al., 2021; Hoesly et al., 2018; Li et al., 

2021, 2017; Ma, 2020; Wu et al., 2024) reveals that residential activities and waste 

disposal are dominant sources of non-AGR NH3 emissions, particularly in densely 

populated regions (Figure S5). 

The relatively small proportion of non-AGR emissions is likely due to overlooked 

industrial (e.g., NH3 slip and indirect emissions) (Chen and Wang, 2025; Chen et al., 

2022; Wei et al., 2022) and residential sources (e.g., from waste) (Shao et al., 2020), 

combined with unrepresentative transportation emission factors (Sun et al., 2017; 



Zhang et al., 2021). 

Our work attempts to quantitatively disentangle the emissions from AGR and non-

AGR sectors directly within our top-down framework and facilitates a more 

comprehensive capture of neglected non-AGR sources. 

Revision in Supplementary: 

 

Figure S5. Comparison of the source apportionment of non-AGR NH3 emissions from 

different studies and for various regions. Each pie chart illustrates the relative 

contribution (%) of nine specific non-agricultural sources, with the area (study region, 

China, and the YRD) and data source for each chart indicated in its center. 

 

 

  



 

Minor comments: 

1. Line 26/28 and elsewhere: please remove the “·” between Tg and yr-1. Also, replace 

Gg mon-1 with either Gg month-1 or Gg mo-1 to follow standard unit concentrations. 

Response: Thank you for your careful reminder. We have checked that all expressions 

of emission units follow the standard format throughout the manuscript. Please refer to 

our revised manuscript. 

 

2. Line 37-40. The summary statement is too general. It would be more informative to 

highlight the insights into non-agricultural ammonia emissions and their implications. 

Response: Thank you for your comment. We have rephrased the relevant texts of the 

abstract to highlight the importance of identifying non-agricultural NH3 emissions and 

their implications in reducing PM2.5 pollution and health burden. 

Revision in Section Abstract: 

Our study evaluated NH3 emissions from various sources in Eastern China, 

emphasizing the impact of reducing non-agricultural ammonia emissions on air quality 

and public health benefits. 

3. Line 127: Is biomass burning emission also treated online? Just checking, as this is 

not commonly the case. 

Response: Thank you for pointing this out. The biomass burning emissions were 

generated using the FINN v1.5, a model developed by NCAR. This model provided a 

useful utility for allocating the original wildfire emissions, which had a spatial 

resolution of 1km, to grid cells of the WRF-Chem model. Thus, we adopted an offline 

approach to prepare pollutant emissions from biomass burning. The description of this 

process in the previous manuscript contained inaccuracies. We have now revised the 

related section to reflect the correct methodology. 

Revision in Section 2.1: 

Furthermore, biogenic emissions were calculated online using the Model of 

Emissions of Gases and Aerosols from Nature (MEGAN, version 2.0.4) (Guenther, 

2006). Our numerical simulations also incorporated offline biomass burning emissions 

of various air pollutants, based on the wildfire model Fire Inventory from NCAR (FINN, 

version 1.5) (Wiedinmyer et al., 2011). 



 

4. Line 134: The “last accessed” date should reflect the actual date when the data were 

downloaded. 

Response: Thank you for your kind reminder. The original IASI satellite products were 

actually downloaded in December of 2020. As you suggested, we have modified the 

statement regarding this data access date. 

Revision in Section 2.2: 

We obtained the total column density of NH3 from the passive satellite remote-

sensing product of the Infrared Atmospheric Sounding Interferometer (IASI) (version 

3.0, https://iasi.aeris-data.fr/nh3/, last accessed on December 2020) as the 

observational constraint. 

5. In section 2.2, what’s the overpass time of IASI data? Do you use level-2 satellite 

data? 

Response: Thank you for this comment. IASI is a passive remote-sensing instrument 

that was first launched in 2006 on board the MetOp-A meteorological satellite, which 

circles the Earth in a polar Sun-synchronous orbit. It crosses the equator at mean local 

solar times of 9:30 and 21:30 (Van Damme et al., 2014), which are also the overpass 

times. In the present study, we used a processed satellite product at level 2 to access 

NH3 column concentrations. We have revised the related text in Section 2.2 to better 

clarify the introduction of IASI data. 

Revision in Section 2.2: 

The IASI is a Fourier transform spectrometer on board the Metop series of 

meteorological satellites, which circle the Earth in a polar Sun-synchronous orbit (Van 

Damme et al., 2014). Consequently, the satellite-based IASI instrument can cover the 

entire globe and provide measurements twice a day at 09:30 and 21:30 local solar time. 

The IASI instrument detects infrared radiation in the spectral range from 645 to 2760 

cm-1 emitted by Earth’s surface and atmosphere with a 12 km circular footprint at nadir. 

This radiation absorption range includes the NH3 signal near 950 cm−1. The collected 

daily NH3 column concentrations are categorized into level-2 satellite data and are 

developed based on the ANNI-NH3 inversion algorithm without averaging kernels, as 

presented by Van Damme et al. (2017). 

 



6. Line 140-141: The description is unclear. How is the neural network applied to 

improve the data quality, was it developed by the authors or sourced elsewhere? 

Response: Thank you for pointing this out. Van Damme et al. (2017) used the artificial 

neural network technique presented by Whitburn et al. (2016) to improve the quality of 

IASI satellite data. This work was carried out by other teams. Specifically, they trained 

separate neural networks for land and sea observations, resulting in a better training 

performance for both. To state this point clearer, we have rephrased the description of 

the IASI data product as follows. 

Revision in Section 2.2: 

The daily NH3 column concentrations are categorized into level-2 satellite data 

and are developed based on the ANNI-NH3-v2.1 inversion algorithm without averaging 

kernels, as presented by Van Damme et al. (2017). Specifically, their retrieval algorithm 

derives hyperspectral radiation indexes (HRI) from the direct satellite spectrum 

detection, which is then converted into final NH3 column concentrations using an 

artificial neural network technique (Whitburn et al., 2016). For better data quality, the 

present study removed NH3 column concentrations associated with cloud cover of more 

than 10%. Furthermore, we preprocessed the IASI NH3 column concentration data 

through averaging all daily values to obtain a monthly mean. Spatially, we mapped the 

original satellite product data to the grid cells of the WRF-Chem model for further 

comparison with those simulated NH3 columns. 

 

7. Line 125/156: Which version of MEIC is used? 

Response: Thank you for your comment. Our study used version 1.3 of the MEIC 

anthropogenic emission inventory. We have included the version number in the revised 

manuscript as you suggested. 

Revision in Section 2.1: 

We adopted the anthropogenic emissions from the Multi-resolution Emission 

Inventory for China (MEIC, version 1.3) developed by Tsinghua University (Li et al., 

2017; Zheng et al., 2018). 

8. Line 162-163 and Section 4.1: Please clarify how the model and observations are 

sampled for comparison. 

Response:  



Thanks for your conducive comment. We conducted a model evaluation of NH3 

concentrations, comparing observations and simulations based on prior emissions, from 

two perspectives.  

The first aspect is the total column concentration of NH3. We calculated the 

respective simulated NH3 column concentrations within 27 vertical layers. The overall 

NH3 column concentration can then be inferred by summing up all the partial column 

concentrations. The IASI satellite data has been pre-allocated to the grid cells of the 

WRF-Chem model. We then sampled the monthly average total column concentration 

of NH3 at the same grid cell, and carried out comparisons between IASI observations 

and WRF-Chem simulations.  

Another validating parameter is the surface NH3 measurement. In this 

circumstance, we only extracted the simulated NH3 volume concentrations in the first 

layer near the ground surface. NH3 measurements were collected from previous studies 

and are presented as annual averages (Table S2). Model simulations of NH3 volume 

concentrations were sampled at certain grid cells according to the longitudes and 

latitudes of 12 different measurement sites. The final comparison was made in terms of 

the annual mean NH3 volume concentration at these sites, between model simulation 

and in situ observations. To clarify this point, we have rephrased the relevant text in the 

revised manuscript. 

Revision in Section 3: 

We compared the prior model results with IASI NH3 column concentration and 

surface NH3 volume concentration observations. The detailed method for calculating 

NH3 total column concentrations and surface volume concentrations from WRF-Chem 

is provided in Text S1. 

Revision in Supplementary: 

For surface NH3 volume concentrations, we extracted the corresponding 

simulations at 12 sites summarized from previous in situ measurement studies and 

conducted a comparison between the model simulations and the measurements in terms 

of the annual mean NH3 volume concentrations. 

 

9. Line 179: The term “errors” is vague. Consider using clearer language such as 

“underestimated by 30%” or “biased low by 30%.” 



Response: Thank you for your comment. Following your suggestion, we have 

rephrased the relevant text in Section 3 to make this point clearer. 

Revision in Section 3: 

Most simulated NH3 total column concentrations are underestimated by more than 

30% compared with the observed values by satellite with the associated RMSE 

exceeding 10×1015 molec cm-2. 

10. Line 181-189: Figure 6 can be described with the text here. 

Response: Thank you for your suggestion. We indeed agree with you that Figure 6 

should be introduced here to better depict the spatial distribution pattern of the observed 

and the simulated NH3 column concentrations. We have revised the placement of 

figures as you suggested. 

Revision in Section 3: 

As illustrated in Figure 6, satellite-based observations reveal that the spatial high-

value areas of NH3 column are located at the junction of Henan, Shandong, and Hebei 

provinces. In contrast, the prior modeling results show that NH3 column densities are 

more concentrated in Henan. This indicates a clear discrepancy in the spatial 

distribution of NH3 column densities between the prior simulations and the 

observations. 

11. Section 3: Please be consistent in the use of statistical metrics. RMSE is used for 

IASI comparisons, while IOA and MFB are used for surface observations. A brief 

explanation of why different metrics are applied, and what each evaluates, would be 

helpful.  

Response: Thank you for pointing this out. In fact, we calculated all three evaluation 

metrics for comparisons between model versus measurements both in the total column 

concentration and surface volume concentration of NH3. However, not all metrics are 

presented in the original manuscript. As you suggested, we have revised the relevant 

text in Section 3 by discussing all evaluation metrics to better elucidate the model 

performance. 

Revision in Section 3: 

As shown in Table S5, the annual average of NH3 total column concentrations is 

simulated to be 17.4×1015 molec cm-2 for Eastern China, with a 61% underestimation 

of MFB compared to the observations from IASI satellite retrievals (29.0×1015 molec 



cm-2). The IOA between observations versus simulations is 0.72. The seasonal 

simulations of NH3 concentrations also exhibit significant discrepancies with 

observations, especially in spring. Specifically, the simulated NH3 total column 

concentration in Eastern China is only 13.2×1015 molec cm-2 in spring, with 

concentration in 67.5% of the study region being underestimated by more than 50%. 

These discrepancies are evidently exhibited in Figure 3. Most simulated NH3 total 

column concentrations are underestimated by more than 30% compared with the 

observed values by satellite with the associated RMSE exceeding 10×1015 molec cm-2. 

Additionally, the comparison between the simulated and observed surface NH3 

volume concentrations also indicates a notable underestimation (Figure S2). The mean 

simulated surface NH3 volume concentration over the study region is 6.3 μg m-3, which 

is only half of the observation value (12.7 μg m-3), with an IOA of 0.57 and an MFB of 

-61%, respectively (Table S5). 

Revision in Supplementary: 

Table S5. List of the evaluation metrics of NH3 concentrations. 

 
The total column concentration 

(1015 molc cm-2) 

Surface volume concentration 

(μg m-3) 

 Prior Posterior Prior Posterior 

Mean obs. 29.0 12.7 

Mean model. 17.4 23.7 6.3 9.4 

IOA 0.72 0.91 0.57 0.65 

MFB -0.61 -0.30 -0.61 -0.19 

RMSE 13.9 7.9 9.1 7.3 

 

12. Line 195: You mention deriving posterior emissions for four months—how are 

prior/posterior simulations compared with observations across the seasons? Are the 

same scale factors applied to all three months in each season? Please clarify. Given that 

WRF-Chem simulations are available for the full year, it would be more consistent to 

derive monthly emissions for all 12 months, which should follow the same procedure 

and would not require much additional effort. 

Response: 

Thank you for this question, which allows us to clarify the details and rationale of 

our experimental design. To clarify, our prior and posterior simulations were indeed 



conducted for the full 12 months of 2016. Seasonal comparisons with satellite 

observations were made using seasonal averages of both simulated and observed data. 

However, the emission adjustments were derived exclusively from four representative 

months (January, April, July, and October). For each season, we first calculated a 

posterior emission inventory for its representative month using the corresponding 

adjustment factors, then applied this result uniformly to all three months within that 

season. 

Our primary reason for adopting the representative-month approach was to enable 

a robust independent validation of our results, which is a common practice in 

computationally intensive modeling studies (Qu et al., 2017; Xia et al., 2025; Xu et al., 

2021). By constraining our emissions using only four months, the remaining eight 

months serve as an independent dataset against which we can evaluate the performance 

of our posterior inventory. The good performance of our posterior simulation (including 

'non-training' months) provides strong evidence that the adjustments are not over-fitted 

to specific monthly conditions and that the resulting posterior emission inventory is 

effective for the entire season. 

Second, the use of representative months is a reasonable approach for 

characterizing seasonal patterns. The representative months effectively capture the 

overall seasonal cycle, with the highest concentrations in summer and the lowest in 

winter. Furthermore, the NH3 column concentration of each representative month is in 

good agreement with its corresponding three-month seasonal average, with the relative 

difference ranging from only 1.9% to 17.3%. This small discrepancy confirms that our 

method reliably represents the seasonal average.  

Furthermore, conducting year-round simulations for emission adjustments would 

incur substantial computational costs, which is a critical practical constraint. Our study 

conducted more than 20 regression iterations to optimize emissions. Extending this 

process to 12 months would demand additional computational resources of ~14 model-

years, representing an extremely resource-intensive undertaking for regional chemical 

modeling.  

We have revised the methodology section to provide this comprehensive 

explanation. 

Revision in Section 4.1: 

The posterior emission inventory derived for each representative month was then 



applied to all three months within its corresponding season to generate the full 12-

month posterior inventory. This representative-month approach was adopted to allow 

for a robust validation against the full 12-month period, with the remaining eight 

months serving as an independent dataset, and to manage the substantial 

computational cost of the iterative process.  

13. Line 200: In Line 138, you mentioned that IASI data were regridded to the model 

resolution, but here you refer to single-pixel comparisons, which is somewhat 

confusing. Please clarify how the satellite data were matched to model outputs. 

Response: We greatly appreciate your careful comment. We agree that the term “single-

pixel” is not an appropriate statement. In the present study, we preprocessed the level-

2 IASI satellite data via mapping them to the grid cells of the WRF-Chem model for 

further comparison with those simulated NH3 columns. We have revised this confusing 

term to make the text clearer. Please refer to our revisions as follows. 

Revision in Section 4.1: 

In each iterative calculation, the monthly average satellite-derived NH3 column 

concentration served as the target, and multiple linear regression (MLR) was applied 

to calculate the corresponding regression factors for AGR and non-AGR emissions 

(Figure S3). 

14. Line 202: What does “regression factor” refer to? Is it the same as the emission 

scale factor? 

Response: Thank you for the question, which helps us to clarify our terminology. In 

our manuscript, the term "regression factor" refers to the coefficients (α and β) derived 

from the MLR analysis. These factors effectively function as scaling factors for the 

prior emissions. The purpose of this process is to adjust the magnitude of the emissions 

from each sector so that the resulting simulated NH3 column concentrations better 

match the satellite observations. We have revised the text to use this terminology more 

consistently and have clarified the definitions to improve clarity. 

Revision in Section 4.1: 

Furthermore, the MLR approach provided regression coefficients 𝛼𝑖
𝑗,𝑘

 and 𝛽𝑖
𝑗,𝑘, 

which function as scaling factors, respectively correspond to AGR and non-AGR NH3 

emissions in month j from region k, within the i iteration. 

15. Line 206: Is TAsatellite the monthly average or the daily average of NH3 



concentrations? 

Response: Thank you for pointing this out. The symbol TAsatellite shown here indicates 

the monthly average of NH3 column concentrations from IASI satellite products. To 

make this point clearer, we have revised the texts in Sections 2.2 and Section 4.1 as 

follows. 

Revision in Section 2.2: 

Furthermore, we preprocessed the IASI NH3 column concentration data through 

averaging all daily values to obtain a monthly mean value. 

Revision in Section 4.1: 

where, 𝑇𝐴𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒
𝑗,𝑘

  denotes the monthly average of total NH3 column density 

retrieved from the IASI satellite data, and 𝑆𝐴𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡
𝑗,𝑘 , 𝑆𝐴𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒𝑖−1

𝑗,𝑘   and 

𝑆𝐴𝑛𝑜𝑛−𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒𝑖−1
𝑗,𝑘   stand for the simulated total column concentration of NH3 

contributed by AGR emissions, non-AGR emissions, and outside transportation, 

respectively. 

16. Line 208: Should be “outside transportation, AGR emissions, non-AGR emissions, 

respectively”. 

Response: Thank you for the comment and the careful reminder. It is indeed that the 

order is reversed. We have revised this sentence in a correct order. 

Revision in Section 4.1: 

𝑆𝐴𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡
𝑗,𝑘, 𝑆𝐴𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒𝑖−1

𝑗,𝑘  and 𝑆𝐴𝑛𝑜𝑛−𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒𝑖−1
𝑗,𝑘  stand for the simulated 

total column concentration of NH3 contributed by outside transport, AGR emissions, 

and non-AGR emissions, respectively. 

17. Line 211: The term “control emissions” is unclear. Do you mean emissions were 

zeroed out? Also, please replace “cycle” with “experiment.” 

Response: Thank you for your suggestions. We acknowledge that the term “control 

emissions” here is of confusing. We would like to express the meaning of forcing the 

corresponding NH3 emissions to zero as you mentioned. Meanwhile, we also have 

replaced the “cycle” with “experiment”. Please refer to our revisions below. 

Revision in Section 4.1: 

In each experiment, we zeroed out AGR emissions, non-AGR emissions and 

regional external emissions to obtain the corresponding NH3 column concentrations. 



18. Line 214: What is Ablank used for? 

Response:  

Thank you for this question. The Ablank case refers to a simulated NH3 total column 

in which all anthropogenic emissions within the study domain were turned off. The 

purpose of this simulation was to establish a blank line concentration field, which 

represents the influence of the chemical boundary conditions provided to our model 

domain.  

As described in our methodology, the NH3 column concentration resulting from 

the Ablank run is then subtracted from the other sensitivity simulations (e.g., Aagr, Anon-

agr) to isolate the specific contribution of each in-domain emission sector. While the 

magnitude of this blank line concentration is very small compared to the contributions 

from emissions within the domain, it is an essential step to ensure accurate source 

attribution. We have clarified the role and definition of the Ablank simulation in the 

revised manuscript. 

Revision in Section 4.1: 

Specifically, the modeling case Ablank refers to a simulated NH3 total column in 

which all anthropogenic emissions within the study domain were zeroed out. The 

purpose of this simulation was to establish background concentrations, which 

represents the influence of the chemical boundary conditions provided to our model 

domain. 

19. Line 203/216: Earlier you use k for month and j for region, but later this is reversed. 

Please ensure consistency throughout. Also, using “grid cell j” is clearer than “region j” 

or “area j.” 

Response: We greatly appreciate your careful review. The typographical error has been 

corrected in the manuscript. Given that our calculations and analysis are region-based, 

we feel that 'region j' is a more descriptive term for our methodology. We have also 

revised the text to ensure this term is used consistently. 

Revision in Section 4.1: 

Furthermore, the MLR approach provided regression coefficients 𝛼𝑖
𝑗,𝑘

 and 𝛽𝑖
𝑗,𝑘, 

which function as scaling factors, respectively correspond to AGR and non-AGR NH3 

emissions in month j from region k, within the i iteration. 

20. Line 217: It is unclear why does the regression is derived mathematically imply it 



needs to be corrected? Please clarify the motivation for adjusting the regression 

coefficients. 

Response: 

We thank the reviewer for this question, which addresses an important detail of 

our methodology. 

While a standard MLR provides a mathematical best fit, this fit may not always be 

statistically robust, particularly when be influenced by outliers. Our motivation for the 

correction procedure is to ensure that only statistically significant and reliable 

regression results are used to update the emissions. This prevents introducing noise 

from unreliable fits into the iterative process, which could lead to unstable or non-

physical solutions. 

We implemented a quality control procedure based on the statistical significance 

of the prediction error. For each regression, we calculate the residual (the difference 

between the observed and predicted values). If the 95% confidence interval of this 

residual does not contain zero, the model's prediction error is considered statistically 

significant, and the regression result is flagged as unreliable. As illustrated in the figure 

provided in our response, outliers (in red) are identified using this method. 

We have revised the methodology section of the manuscript to explicitly state this 

motivation and to provide a clear description of our quality control procedure.

 



Figure R2.5：Distribution of residuals and their 95% confidence intervals. Each point 

represents the residual value for a given sample, and the error bars represent the 95% 

confidence interval of the residual. Green points represent valid fits, while red points 

are outliers rejected based on the criterion that their confidence interval does not contain 

zero. 

Revision in Section 4.1: 

To ensure the statistical robustness of the regression equation, we need to correct 

for this regression coefficient. 

The regression coefficients with excessive residuals, defined as cases where the 95% 

confidence interval of the residual does not contain zero, are removed to increase 

credibility. 

 

 

21. Line 218-231: The description of the correction process is not very clear. It is 

unclear what is meant by “goodness of fit,” how the “invalid” regression coefficients 

are defined, and what fraction of them are removed. The phrase “make a trade-off” in 

Line 225 is vague and would benefit from clarification. Additionally, it is not explained 

how the adjustment factors aₙ and bₙ are derived or what their physical meaning is. The 

choice of a 30% threshold in Line 229 also seems arbitrary—particularly in high-NH3 

regions, where it could allow larger discrepancies between observations and 

simulations, but the physical basis for this threshold is not clearly explained. 

Response: 

The reviewer's meticulous feedback on our methodology is greatly appreciated, as 

it allows us to provide important clarifications. We have revised the manuscript to 

address these points in detail. 

First, regarding the "goodness of fit" metric, we used the coefficient of 

determination (R-squared, R²). A regression result was deemed "invalid" if the R² was 

less than 0.3 or if the 95% confidence interval of its residual did not contain zero. This 

is our quality control criterion for identifying and rejecting statistically poor fits. On 

average, 6.3% to 9.4% of regression results were rejected per iteration. 

The phrase "make a trade-off" was used to describe our procedure for handling 

these invalid results. To clarify, if a regression result for a given grid cell is deemed 



valid, the new adjustment factors (a and b) are set to the newly calculated regression 

coefficients (α and β). If the result is invalid, the adjustment factors are kept unchanged 

from the previous iteration (ai = ai-1).  

This conservative approach ensures that emissions are only updated based on 

statistically robust fits, rather than deleting any data. The physical meaning of these 

adjustment factors, a and b, is that they represent the scaling multipliers applied to the 

prior emissions of the AGR and non-AGR sectors, respectively, to better match the 

satellite observations in each iteration. 

Our choice of the 30% threshold was based on two primary considerations: (1) 

Within the widely accepted 20%–50% error range for model performance benchmarks, 

(EPA, 2007; Huang et al., 2021, 2025; Zhao et al., 2017), we selected 30% as our 

criterion to account for the inherent uncertainties in both the WRF-Chem model and the 

IASI satellite data. (2) Compared to the prior bias of up to -61%, reducing this bias to 

within 30% represents a significant and meaningful improvement, which proves that 

our method has imposed an effective constraint on the emission inventory. 

 

Revision in Section 4.1: 

Concurrently, the goodness of fit of the regression is calculated as the coefficient 

of determination (R-square, R2). To maintain algorithm stability, regressions with an R2 

less than 0.3 are deemed invalid and excluded from the emission update, as they exhibit 

insufficient explanatory power (indicating >70% unexplained variance) and introduce 

destabilizing noise into the adjustments. We further use it to make a trade-off for the 

regression coefficient. If a regression is valid, the adjustment factors a and b are set to 

the new regression coefficients; if invalid, the factors are kept unchanged from the 

previous iteration. The updated emissions for the next iteration are then calculated by 

multiplying the emissions from the previous step by these adjustment factors. 

 The iteration concludes when the mean bias between the simulated values and 

observations is less than 30%, a criterion chosen to represent a significant improvement 

over the large prior bias while falling within the range of widely accepted model 

performance benchmarks. 
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Responses to reviewer #3 

Dear Editor and Reviewer #3: 

We would like to thank the Editor and the reviewers for their time and valuable 

suggestions on our manuscript, “Optimizing Ammonia Emissions for PM2.5 Mitigation: 

Environmental and Health Co-Benefits in Eastern China” (egusphere-2025-1407). We 

have carefully addressed all the points raised, and our point-to-point responses are 

detailed below. Reviewer comments are shown in blue. Our responses are shown in 

black. The revised texts are shown in red. 

Major Comments 

1. Limited Optimization Period: 

The top-down optimization was performed only for four months (each season). Please 

justify why the analysis was limited to these periods and discuss whether this may affect 

annual emission estimates or bias seasonal interpretations. 

Response:  

Thank you for your valuable comment. Our primary reason for adopting the 

representative-month approach was to enable a robust independent validation of our 

results, which is a common practice in computationally intensive modeling studies (Qu 

et al., 2017; Xia et al., 2025; Xu et al., 2021). By constraining our emissions using only 

four months, the remaining eight months serve as an independent dataset against which 

we can evaluate the performance of our posterior inventory. The good performance of 

our posterior simulation (including 'non-training' months) provides strong evidence that 

the adjustments are not over-fitted to specific monthly conditions and that the resulting 

posterior emission inventory is effective for the entire season. 

Second, the use of representative months is a reasonable approach for 

characterizing seasonal patterns. The representative months effectively capture the 

overall seasonal cycle, with the highest concentrations in summer and the lowest in 

winter. Furthermore, the NH3 column concentration of each representative month is in 

good agreement with its corresponding three-month seasonal average, with the relative 

difference ranging from only 1.9% to 17.3%. This small discrepancy confirms that our 

method reliably represents the seasonal average.  

Furthermore, conducting year-round simulations for emission adjustments would 

incur substantial computational costs, which is a critical practical constraint. Our study 



conducted more than 20 regression iterations to optimize emissions. Extending this 

process to 12 months would demand additional computational resources of ~14 model-

years, representing an extremely resource-intensive undertaking for regional chemical 

modeling. 

We have revised the methodology section to provide this comprehensive 

explanation. 

Revision in Section 4.1: 

The posterior emission inventory derived for each representative month was then 

applied to all three months within its corresponding season to generate the full 12-

month posterior inventory. This representative-month approach was adopted to allow 

for a robust validation against the full 12-month period, with the remaining eight 

months serving as an independent dataset, and to manage the substantial 

computational cost of the iterative process. 

2. Validation with Surface Data: 

While Figure S2 attempts to demonstrate agreement between model and surface 

observations, a time series or seasonal comparison between observations at these sites 

and both prior and posterior simulations would provide more clarity. Consider including 

monthly or seasonal cycle plots at selected sites to demonstrate how well the posterior 

simulation captures temporal variability. Scatter plots comparing prior vs. observed and 

posterior vs. observed NH3 concentrations (similar to Figures S4–S6) should be more 

clearly explained in the main text.  

Response:  

We thank the reviewer for this constructive feedback. In response to your 

suggestions, we have significantly expanded the validation section of our manuscript 

with more detailed seasonal comparisons. 

The validation utilizes in situ surface NH3 measurements from 13 sites within our 

study domain (detailed in Table S2), as reported by Pan et al. (2018) for the period from 

autumn 2015 to summer 2016. For a direct comparison, simulated surface 

concentrations were extracted from the corresponding model grids and aggregated to 

seasonal means. 

Our analysis confirms a marked improvement with the posterior emissions. The 

annual mean surface NH3 concentration from the posterior simulation (9.4 μg m-3) is 



substantially closer to the observed value (12.7 μg m-3) than the prior (6.3 μg m-3). As 

shown in Figure R3.1, this is quantified by a 42% reduction in the model's 

underestimation (MFB reduced by 0.42) and a higher Index of Agreement (IOA), 

indicating better spatial consistency. 

As requested, we have enhanced the seasonal analysis, with detailed results now 

presented in Table R3.1. The prior simulation underestimated observed surface NH3 by 

37%–79% across seasons. The posterior simulation, while still showing some 

underestimation, significantly alleviates this bias and demonstrates better performance 

metrics (lower RMSE and higher IOA), thereby better capturing the seasonal 

characteristics. 

We have also expanded the discussion on potential sources for the remaining 

discrepancy. This gap may be attributed to several factors: (1) our optimization was 

constrained by satellite total column densities, which may not perfectly translate to 

surface-level improvements; (2) a partial temporal mismatch exists between our 2016 

simulation and the 2015–2016 observation period; and (3) extreme local conditions at 

certain sites, such as the exceptionally high summer concentrations at the Yucheng site, 

are inherently challenging for a regional model to capture. 

 

Table R3.1 Seasonal comparison of simulated and observed surface NH3 concentrations 

(µg m-3) and associated statistical metrics. 

 MAM JJA SON DJF 

Prior surface NH3 concentration 

(μg m-3) 
5.05 7.58 6.68 6.06 

Observed surface NH3 

concentration (μg m-3) 
11.48 17.53 12.48 9.26 

IOA 0.49 0.54 0.66 0.67 

MFB -0.79 -0.74 -0.54 -0.37 

RMSE (μg m-3) 8.29 13.06 7.64 5.76 

 MAM JJA SON DJF 



Posterior surface NH3 

concentration (μg m-3) 
8.86 10.10 9.13 9.44 

Observed surface NH3 

concentration (μg m-3) 
11.48 17.53 12.48 9.26 

IOA 0.56 0.61 0.7 0.72 

MFB -0.24 -0.47 -0.19 0.12 

RMSE (μg m-3) 5.86 10.63 6.13 5.08 

 

Figure R3.1 Scatter plot comparison of prior (orange) and posterior (blue) simulated 

seasonal mean surface NH3 concentrations against in situ observations. The solid black 

line indicates the 1:1 ratio. 

 

Revision in Section 4.3: 

A similar improvement is also witnessed in the modeling of surface NH3 

concentrations, which were evaluated against in-situ measurements from 13 sites 

reported by Pan et al. (2018a) for the 2015–2016 period (Table S2). The posterior 

simulation significantly improves the annual mean, increasing the surface 

concentration from 6.3 µg m⁻³ (prior) to 9.4 µg m⁻³ (posterior), much closer to the 

observed average of 12.7 µg m⁻³. As shown in the scatter plot in Figure S7, the posterior 

simulation alleviates the underestimation at most sites, which is quantified by a 42% 

reduction in the overall underestimation bias and a clear improvement in the IOA. On 



a seasonal basis, the posterior emissions also alleviate the large underestimation of the 

prior simulation across all seasons, though the degree of improvement varies (Table 

S6). The prior simulation showed significant underestimation in all seasons, with the 

MFB ranging from -0.37 in winter to -0.79 in spring. The posterior simulation 

demonstrates a particularly evident improvement in spring, where the MFB reduced 

from -0.79 to -0.24. While some underestimation remains in summer, the posterior 

results still show improved performance metrics (e.g., lower RMSE and higher IOA) 

for all seasons, confirming a better capture of the seasonal characteristics overall. The 

remaining discrepancy between the posterior simulation and surface observations can 

be attributed to several factors, such as the spatial representativeness of the surface 

sites and the accuracy of the secondary inorganic aerosol simulation.  

Revision in Supplementary: 

Table S6 Seasonal comparison of simulated and observed surface NH3 concentrations 

(µg m-3) and associated statistical metrics. 

 MAM JJA SON DJF 

Prior surface NH3 concentration 

(μg m-3) 
5.05 7.58 6.68 6.06 

Observed surface NH3 

concentration (μg m-3) 
11.48 17.53 12.48 9.26 

IOA 0.49 0.54 0.66 0.67 

MFB -0.79 -0.74 -0.54 -0.37 

RMSE (μg m-3) 8.29 13.06 7.64 5.76 

 MAM JJA SON DJF 

Posterior surface NH3 

concentration (μg m-3) 
8.86 10.10 9.13 9.44 

Observed surface NH3 

concentration (μg m-3) 
11.48 17.53 12.48 9.26 

IOA 0.56 0.61 0.7 0.72 



MFB -0.24 -0.47 -0.19 0.12 

RMSE (μg m-3) 5.86 10.63 6.13 5.08 

 

Figure S7 Scatter plot comparison of prior (orange) and posterior (blue) simulated 

seasonal mean surface NH3 concentrations against in situ observations. The solid black 

line indicates the 1:1 ratio. 

 

3. Clarification on Posterior Emission Totals: 

Page 13, L343: Clarify whether the 4.2 Tg emission is derived from the posterior 

estimate. Given the remaining model–observation gap, this number should be framed 

as a lower-bound estimate. Please discuss the implications. 

Response:  

Thank you for this insightful suggestion. We have revised the manuscript to 

provide the requested clarification and context. 

We confirm that the 4.2 Tg value represents the total annual NH3 emission derived 

from our posterior estimate. Following your suggestion, we agree that this value should 

be framed as a conservative, lower-bound estimate due to the remaining gap between 

our model results and observations. 

Our analysis shows that while the posterior emissions significantly improve the 

simulation, the resulting annual mean NH3 total column density (23.7 × 10¹⁵ molec cm⁻²) 

still lower than the satellite-retrieved value (29.0 × 10¹⁵ molec cm⁻²). The implication 

of this discrepancy is that the true NH3 emissions in this region may be even higher 

than our estimate. Fully closing this model-observation gap would likely require further 



upward adjustments to the emission inventory. We have added a discussion to the 

manuscript to reflect this important context. 

Revision in Section 6:  

The posterior results indicate that the NH3 emission in Eastern China for 2016 

amounted to 4.2 Tg. 

Revision in Section 4.2: 

In similar years and regions, the discrepancy between the estimates of this study 

and other studies ranges from 1.0% to 19.6%. The slight discrepancy can be partially 

explained by our estimate being a conservative lower bound, a consequence of the 

residual gap remaining with satellite retrieval. 

4. Sectoral Emission Trends and Inconsistencies: 

Page 8, L216–218 and L223: There seems to be a discrepancy between the statements 

about non-AGR and AGR emission changes. Figure 5b suggests a spring increase, 

typically associated with agricultural activity, yet the larger change is attributed to non-

AGR sources. Please clarify the partitioning of the emission increase. 

Response:  

We thank the reviewer for this important question. The partitioning of emission 

changes during spring is indeed complex, and we have expanded the discussion in the 

manuscript to provide a clearer explanation. 

The significant increase in total spring emissions is the net result of adjustments 

in both agricultural (AGR) and non-agricultural (non-AGR) sectors. Our posterior 

analysis reveals substantial but spatially heterogeneous changes within the agricultural 

sector. For example, while AGR emissions in the Henan region were reduced to correct 

a prior overestimation, emissions in the Yangtze River Delta (YRD) concurrently 

increased by 242.8 Gg. Despite these regional adjustments, agriculture remains the 

dominant source in spring, accounting for 84.1% of total posterior emissions. 

However, to bridge the large gap between prior simulations and satellite 

observations, a significant upward adjustment in total emissions was necessary. While 

annual AGR emissions were adjusted upwards, non-agricultural sources required an 

even more greater revision, driven by the spatial patterns of NH3 concentrations. Given 

the high NH3 level observed during spring, a large portion of the seasonal emission 

increase was attributed to the non-AGR sector to better match the observations. 



Key non-AGR sources contributing to this increase include industrial processes 

(e.g., "ammonia slip" from emission controls), vehicle emissions (a byproduct of three-

way catalysts), and waste management (volatilization from landfills and wastewater 

treatment). Rising spring temperatures can enhance the volatilization rates from several 

of these sources, leading to considerable emissions. We have incorporated this detailed 

explanation into the revised manuscript. 

Revision in Section 4.2: 

The seasonal variations in the posterior emissions is the net result of complex 

adjustments in both the AGR and non-AGR sectors. 

5. Loss of High Emission Feature in SON/DJF (Figure 6):  

The high-emission feature at the intersection of Henan, Hebei, and Shandong 

disappears in SON and DJF seasons. Please explain whether this is due to real seasonal 

changes or limitations in the model/data. 

Response:  

Thank you for your careful observation. We have revised the manuscript to address 

this important point. 

First, we would like to clarify that the high-concentration feature at the intersection 

of Henan, Hebei, and Shandong does persist through autumn and winter in both the 

satellite retrievals and our posterior simulation. The concentration in this region 

remains significantly higher than in surrounding areas during these seasons. To better 

visualize this, we have revised Figure 6 with an adjusted color scale, which now clearly 

shows the high-value center in the posterior simulation, consistent with the satellite 

observations. 

However, we acknowledge that a gap between our posterior simulation and the 

satellite data still exists in the colder seasons. This residual bias is likely due to 

methodological limitations. One potential factor is our iterative stopping criterion, 

which concludes the optimization when the mean error is reduced to 30%. This inherent 

tolerance allows for a certain level of discrepancy to remain. Another factor is that our 

optimization was performed monthly, which may introduce inconsistencies when 

results are aggregated and evaluated on a seasonal scale. 

Despite these limitations, the posterior result represents a significant improvement 

over the prior simulation. We have added an expanded discussion on these 



methodological uncertainties to the text to provide a more transparent and robust 

analysis. 

Revision in Section 4.3: 

In summary, the posterior simulation improves the agreement between the 

simulated NH3 column concentrations and satellite observations in both overall 

magnitude and spatial distribution, although some deviations remain, particularly in 

the colder seasons. These can likely be attributed to methodological limitations, such 

as the inherent tolerance of our 30% iterative stopping criterion and potential 

inconsistencies from aggregating monthly optimizations to a seasonal scale. 

6. Surface Bias Reduction (Page 10, L277–278): 

Clarify which observational data were used (in situ surface measurements vs. satellite), 

whether the bias reduction is spatially averaged, and if supporting plots are available. 

A comparison showing seasonal variation would strengthen this claim. 

Response:  

Thank you for this constructive suggestion. We have revised the manuscript to 

provide the requested clarifications. 

The validation was performed using in situ surface NH3 measurements from a 

network of 13 sites within our study domain, as reported by Pan et al.(2018). This 

dataset provides seasonal mean concentrations from autumn 2015 to summer 2016. Site 

details are available in Table S2. 

The reduction in bias is observed on both a spatially averaged and a site-by-site 

basis. The supporting analysis is presented in Figure R3.1, which includes scatter plots 

comparing both prior and posterior simulations against the observations. These plots 

clearly demonstrate that the posterior simulation alleviates the underestimation at most 

sites. 

Following your suggestion, we have also strengthened the seasonal comparison. 

The revised manuscript and its supplement (Table S6) now explicitly compare 

simulated and observed seasonal NH3 concentrations. The results confirm that our 

posterior inventory leads to a more consistent performance and reduced bias across all 

four seasons, as quantified by improved MFB and IOA metrics. 

Revision in Section 4.3: 

A similar improvement is also witnessed in the modeling of surface NH3 



concentrations, which were evaluated against in-situ measurements from 13 sites 

reported by Pan et al. (2018a) for the 2015–2016 period (Table S2). The posterior 

simulation significantly improves the annual mean, increasing the surface 

concentration from 6.3 µg m⁻³ (prior) to 9.4 µg m⁻³ (posterior), much closer to the 

observed average of 12.7 µg m⁻³. As shown in the scatter plot in Figure S7, the posterior 

simulation alleviates the underestimation at most sites, which is quantified by a 42% 

reduction in the overall underestimation bias and a clear improvement in the IOA. On 

a seasonal basis, the posterior emissions also alleviate the large underestimation of the 

prior simulation across all seasons, though the degree of improvement varies (Table 

S6). The prior simulation showed significant underestimation in all seasons, with the 

MFB ranging from -0.37 in winter to -0.79 in spring. The posterior simulation 

demonstrates a particularly evident improvement in spring, where the MFB reduced 

from -0.79 to -0.24. While some underestimation remains in summer, the posterior 

results still show improved performance metrics (e.g., lower RMSE and higher IOA) 

for all seasons, confirming a better capture of the seasonal characteristics overall. The 

remaining discrepancy between the posterior simulation and surface observations can 

be attributed to several factors, such as the spatial representativeness of the surface 

sites and the accuracy of the secondary inorganic aerosol simulation.  

 

7. Table 3 Description (Page 11, L288–297): 

Provide more detail on the meaning of the single values listed in Table 3. What metrics 

are these? How do they compare across seasons and sectors? 

Response:  

We thank the reviewer for this helpful suggestion. We have revised the manuscript 

to provide a more detailed description of Table 3. 

The values in Table 3 represent the annual mean concentrations of PM2.5, SO2, and 

NO2 derived from the prior simulation, the posterior simulation, and surface 

observations. The observational data were averaged from 80 monitoring sites across 9 

major cities (details in Table S4). The comparison was performed by matching the 

observed data from each site with the simulated concentration from its corresponding 



model grid cell. 

Regarding the comparison, both simulations capture the pollutant concentrations 

reasonably well, with the posterior results showing a clear improvement. This is 

particularly evident for SO2, where the posterior simulated concentration is much closer 

to the observed value, reducing the model's previous overestimation by 27%. This 

improvement is most significant in autumn, as the increased availability of NH3 in our 

posterior simulation drives more gaseous SO2 into the particle phase. This more detailed 

description has been added to the main text. 

Revision in Section 4.3: 

Furthermore, improving the NH3 simulation results in the other simulated air 

pollutants being closer to observed levels (Table 3). Specifically, we compare the 

annual mean concentrations of PM2.5, SO2, and NO2 from the prior and posterior 

simulations against surface observations averaged from 80 monitoring sites across 9 

major cities (Table S4). 

A similar improvement is also observed for SO2, where the posterior simulated 

concentration (6.8 ppbv) better matches the observed value (6.5 ppbv), reducing the 

model's previous overestimation by 27%. This improvement is most significant in 

autumn. The successful capture of air pollutants highlights a significant improvement 

in the NH3 emission inventory for Eastern China. 

8. Public Health and PM2.5 Impact: 

Page 11, L306: Quantify the reduction in PM2.5 (1.5–5.7 µg/m³) as a percentage of 

baseline concentrations to help contextualize the health impact. 

Response:  

Thank you for this detailed suggestion. We agree that providing percentages helps 

to contextualize the impact of NH3 emission reductions. We have revised the relevant 

section of the manuscript to incorporate these values. 

Revision in Section 5:  

Figure 7 illustrates that reducing NH3 emissions by 30%–60% can decrease the 

seasonal PM2.5 concentrations by 1.5–5.7 μg m-3 (2.0%–7.2%) averaged for Eastern 

China in winter, mainly due to the reduction in SIA. 

  



Minor Comments 

• Page 4, L97: Surface data usage should be mentioned in the abstract for completeness. 

Response: Thank you for the suggestion. We have revised the abstract accordingly. 

Revision in Abstract:  

The optimized NH3 emission significantly improved the simulation of both total 

column and surface NH3 concentrations, with improvements in magnitude (31%–42%) 

and variations (17%–55%). 

• Page 7, L164: Briefly explain the extreme values of IOA and MFB to aid reader 

interpretation.  

Response: We appreciate this helpful comment and have expanded the text to briefly 

explain the interpretation of these metrics for the reader. 

Revision in Section 3:  

The IOA quantifies the overall model skill, where a value of 1 indicates a perfect 

match and 0 denotes complete disagreement. The MFB diagnoses systematic model 

bias, where positive values indicate overestimation, negative values indicate 

underestimation, and 0 signifies no average bias. 

• Page 7, L180–184: Confirm whether these lines are referencing Figure 6.  

Response: Thank you for pointing this out. We have revised the text to add the explicit 

reference to Figure 6. 

Revision in Section 3:  

As illustrated in Figure 6, satellite-based observations reveal that the spatial high-

value areas of NH3 column are located at the junction of Henan, Shandong, and Hebei 

provinces. In contrast, the prior modeling results show that NH3 column densities are 

more concentrated in Henan. This indicates a clear discrepancy in the spatial 

distribution of NH3 column densities between the prior simulations and the 

observations. 

• Page 8, L201: Remove extra period after “Table 2.”  

Response: Thank you for pointing this out. The text has been corrected. 

 

• Page 9, L239: Correct grammar: "based on both top-down and bottom-up 

approaches."  



Response: Thank you for the suggestion. The text has been revised as recommended. 

Revision in Section 4.2:  

Overall, the estimated NH3 emission in this study is comparable to the estimates 

of the other studies based on both “top-down” and “bottom-up” approaches. 

• Page 10, L265: Suggest adding the prior result value alongside the percentage 

difference for clarity.  

Response: Thank you for this helpful suggestion. We agree that adding the prior result 

value improves clarity and have revised the sentence accordingly. 

Revision in Section 4.3:  

The annual mean simulated NH3 total column density improved from the prior 

result of 17.4×10¹⁵ molec cm⁻² to a posterior value of 23.7×10¹⁵ molec cm⁻², with an 

increase of 35.9%, and is closer to the observed value of 29.0×10¹⁵ molec cm⁻². 

 

• Page 11, L281: Reword the statement to reflect partial improvement in posterior vs. 

surface observations.  

Response: Accepted. The relevant section of the manuscript has been updated to 

provide further clarification. 

Revision in Section 4.3: 

On a seasonal basis, the posterior emissions also alleviate the large 

underestimation of the prior simulation across all seasons, though the degree of 

improvement varies (Table S6). The prior simulation showed significant 

underestimation in all seasons, with the MFB ranging from -0.37 in winter to -0.79 in 

spring. The posterior simulation demonstrates a particularly evident improvement in 

spring, where the MFB reduced from -0.79 to -0.24. While some underestimation 

remains in summer, the posterior results still show improved performance metrics (e.g., 

lower RMSE and higher IOA) for all seasons, confirming a better capture of the 

seasonal characteristics overall. 

• Page 13, L342: Add missing period.  

Response: Thank you for noting this. The correction has been made. 

Revision in Section 6:  

In this study, we used IASI satellite products and an iterative algorithm with the 

WRF-Chem model to optimize the bottom-up NH3 emission inventory for Eastern China 



and further assessed the impacts of NH3 emission reductions from different sources on 

PM2.5 concentrations. 

• Page 13, L348: Consider providing a geophysical or socioeconomic explanation (e.g., 

dense agriculture and livestock) for high emissions at the provincial intersection.  

Response:  

Thank you for this valuable suggestion. We have expanded the discussion in the 

manuscript to provide a geophysical and socioeconomic explanation for this high-

emission hotspot, as requested. 

The high NH3 emissions at the intersection of these provinces are driven by two 

primary factors. First, this region is part of the North China Plain, characterized by 

intensive agriculture (both crop production and animal husbandry) and significant 

industrial activity, leading to exceptionally high emission intensity. 

Second, topography plays a crucial role. The region is bordered by the Taihang 

and Yanshan Mountains, forming a semi-enclosed plain. This topography can obstruct 

the dispersal of air pollutants under certain meteorological conditions, leading to their 

accumulation in the piedmont area and the formation of a persistent high-concentration 

center. 

Revision in Section 6:  

Spatially, the region with the highest NH3 emissions was located at the intersection 

of Henan, Hebei, and Shandong provinces. This is attributed to a combination of high 

emission intensity from dense agricultural and industrial activities and topographical 

effects that hinder the dispersal of pollutants. 

  



Suggestions for Figures  

• Figure 2: Add a row showing differences (posterior – prior) for better visualization 

of emission changes by sector.  

Response: Thank you for this helpful suggestion. We have added a figure in the 

Supplementary to express the spatial difference in emissions by sector before and after 

optimization. Our iterative algorithm optimizes emissions on a regional basis to best 

match the satellite's observed spatial patterns, rather than applying a uniform scaling 

factor across the domain. This methodological approach results in heterogeneous 

adjustments, leading to the significant spatial differences observed between provinces, 

with increases in some areas and decreases in others to achieve an optimal overall fit. 

Revision in Supplementary: 

 

Figure S4. Spatial distribution of the difference in NH3 emissions (Posterior − Prior) 

for AGR and non-AGR sources. 

 

• Figure 3: Clarify what the red box highlights; also discuss large underestimates in 

Shandong and BTH.  

Response:  

Thank you for these suggestions. We have revised the manuscript to improve the 

clarity of Figure 3 and to expand the discussion. 

First, we have clarified the meaning of the red box in the figure caption. The box 

highlights the range we consider to represent good model performance, specifically 

where the RMSE is less than 10 (×10¹⁵ molec cm⁻²) and the simulated-to-observed ratio 

is between 0.7 and 1.3 (i.e., within a ±30% margin). 

Second, regarding the underestimation in certain regions, our analysis confirms 

that this residual bias is most pronounced during the autumn season. We have added a 

discussion attributing this remaining discrepancy to the inherent limitations of our 



inversion methodology. Potential factors include our iterative stopping criterion (a 30% 

error tolerance) and inconsistencies arising from aggregating monthly optimizations to 

a seasonal scale. This discussion provides a more transparent assessment of our results. 

Revision in Figure 3: 

Figure 3. Scatter plots of the prior and posterior NH3 total column data versus 

IASI retrievals. Each point represents prior (or posterior) data for a specific season 

and a specific region. Circles, triangles, rhombuses, and rectangles correspond to the 

BTH, Henan, Shandong, and YRD regions, respectively. Orange and blue markers 

represent a prior and a posterior data, respectively. The red box indicates the 

performance area, with a model error within ±30% and an RMSE below 10(×1015 

molec cm-2). 

Revision in Section 4.3: 

In summary, the posterior simulation improves the agreement between the 

simulated NH3 column concentrations and satellite observations in both overall 

magnitude and spatial distribution, although some deviations remain, particularly in 

the colder seasons. These can likely be attributed to methodological limitations, such 

as the inherent tolerance of our 30% iterative stopping criterion and potential 

inconsistencies from aggregating monthly optimizations to a seasonal scale. 

• Figure 6: Add units to the color bar for clarity. 

Response: Thank you for the suggestion. The units have been added to the color bar in 

Figure 6. 

 

• Figure S2: Increase font size on color bar units. 

Response: Thank you for the comment. We have increased the font size on the color 

bar units in Figure S2 as requested. 

 

References  

• Please ensure that all relevant IASI-based ammonia studies are cited appropriately to 

position your work in the broader context of satellite-based NH3 retrievals and 

applications.  

Response: We appreciate this guidance. To better position our study within the broader 

context of the field, we have incorporated citations to several additional relevant IASI-



based NH3 studies in the revised manuscript. 
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