
Responses to reviewer #2 

Dear Editor and Reviewer #2: 

We greatly appreciate your consideration and the reviewer’s insightful and 

constructive comments on the manuscript “Optimizing Ammonia Emissions for PM2.5 

Mitigation: Environmental and Health Co-Benefits in Eastern China” (egusphere-2025-

1407). We have carefully revised the manuscript to address all the comments described 

below. Reviewer comments are shown in blue. Our responses are shown in black. The 

revised texts are shown in red. 

Major comments: 

1. Although the authors do not mention, it seems to me that the MLR-based approach 

assumes a linear relationship between NH3 emissions and column concentrations and 

attributes all discrepancies between satellite observed and simulated NH3 columns to 

local NH3 emissions. It is important for the authors to clarify these assumptions and 

discuss the associated uncertainties. Specifically, (1) How might the nonlinear response 

of NH3 concentrations to emissions affect the results? For example, do the summed 

contributions from individual sources (SAagriculture + SAnon-agriculture + SAtransport) 

approximate the simulated total NH3 column from the prior? (2) To what extent could 

transport of emissions from nearby grid cells influence the posterior results and cause 

spatial misattribution of emissions? (3) How might uncertainties in emissions of other 

pollutants (e.g., SO2, NOx) or in the model’s representation of inorganic aerosol 

formation, impact the posterior estimates of NH3 emissions? Could the large 

discrepancies between prior simulated and observed NH3 column concentrations due to 

these factors? Some quantitative discussion or sensitivity analysis on these points 

would help strengthen the credibility of the posterior estimates. 

Response:  

(1) We thank the reviewer for this insightful question. We acknowledge that the 

relationship between NH3 emissions and atmospheric concentrations is inherently non-

linear. Ambient SO₂ and NOx lead to rapid gas-to-particle partitioning, indicating that a 

significant portion of newly emitted NH3 is quickly converted to particulate ammonium. 

This "buffering effect" results in the non-linear response of the gaseous NH3 column to 

emission changes.  

In this study, the WRF-Chem-based iterative algorithm we employed, while 



utilizing multiple linear regression at each iteration step, is capable of capturing the 

nonlinear characteristics of NH3. Specifically, (1) the WRF-Chem model dynamically 

simulates the nonlinear chemical process governing the response of NH3 column to 

emission changes during each linear iteration step; and (2) the collective behavior of 

these multiple linear iterations enables the representation of the overall nonlinear 

characteristics. As shown in Figure R2.1, by plotting intermediate results from ten 

regression iterations of non-agricultural emission adjustments over the study region 

during autumn, we demonstrate non-constant emission adjustment factors and non-

proportional concentration responses, empirically confirming our algorithm’s capacity 

to resolve non-linear atmospheric feedbacks. 

Regarding the additivity of concentration responses raised by the reviewer, we 

acknowledge that the sum of NH3 columns from individual source simulations (i.e., 

SAagriculture + SAnon-agriculture + SAtransport) deviates from the total column simulated with 

combined prior emissions. This discrepancy (5.4%–15.7%) is a consequence of the 

non-linear chemical feedback within the atmospheric system. To ensure methodological 

consistency, we explicitly state that all evaluations and satellite-based comparisons 

exclusively use results from simulation with the unified posterior emission inventory, 

avoiding any summation of segmented source contributions.  

We have incorporated these clarifications into the manuscript to make our 

methodology and its approach to handling the system's non-linearities clearer for the 

reader.  

 

Figure R2.1. Scatter plot of NH3 total column concentration versus NH3 emission 

intensity for several steps of the iterative process. Arrows indicate the sequence of 

iterations. 



 

(2) Thank you for pointing this out. To quantitatively address your concern about 

the potential spatial misattribution of emissions due to transport, we conducted a 

sensitivity experiment to evaluate the transport impact of NH3 from upstream regions 

on the NH3 column concentrations in downstream regions. We focused our analysis on 

July, a month with high NH3 concentrations, and selected the Yangtze River Delta 

(YRD) region as the representative upwind source area. 

The sensitivity experiment includes two simulations using posterior emissions. 

One simulation runs with all emissions included, and the other runs in which the NH3 

emissions from the YRD region were zeroed out. By comparing these two simulations, 

we can quantify the contribution of YRD emissions to NH3 column concentrations in 

the downstream region through transport. 

As shown in Figure R2.2, the transport contribution in regions closely adjacent to 

the YRD border is approximately 15%. However, the average contribution from the 

YRD to the broader downwind area was found to be 3.8%, indicating that the limited 

influence of regional transport. To clarify this point, we have expanded the discussion 

of transport-related uncertainty in the manuscript. 

 

Figure R2.2. Transport contribution from the YRD region to NH3 column 

concentrations in downstream study areas in July. 

 

(3) Thank you for your comment. We show the comparison between the simulated 

SO2 and NO2 against surface observations from 80 sites across 9 cities in Table 3. The 

model presents a good performance in reproducing the concentration levels of these 



precursors both in prior and posterior simulations. To further discuss the model’s 

capacity in characterizing concentrations of secondary inorganic aerosols (SIA), we 

conducted comparisons using in-situ measurements at a representative site in Beijing 

(39°59′21″N, 116°18′25″E). 

The evaluation results are summarized in Table R2.1. It is revealed that the 

posterior NH3 emissions increase NH4
+ concentration from 4.71 µg m-3 to 4.95 µg m-3, 

which is closer to the observed average (5.69 µg m-3). The simulated mean NO3
- 

concentration with 9.59 µg/m³ also better matches the observed level (9.44 µg m-3).  

The WRF-Chem model performs moderately well in capturing the observed SO4
2- 

concentration (7.74 µg m-3) in both simulations (5.81-5.84 µg m-3). The model 

underestimation could be attributed to the missing formation mechanism of sulfate such 

as transition metal ions (TMI)-catalyzed and photosensitized oxidation of SO2 on 

aerosol surfaces (Cai et al., 2024; Wang et al., 2021, 2020). Although this 

underestimation of sulfate might lead to our posterior NH3 emission estimates being 

conservatively low, we find that the model still reproduces the total secondary inorganic 

aerosol (SIA) concentrations well, with an overall bias of only -11.0%. This good 

performance in simulating the total aerosol sink for ammonia suggests that the 

uncertainty propagated to the final emission estimates from these chemical pathways is 

slight. 

 

Table R2.1. Comparison between the prior and posterior simulated inorganic aerosol 

concentrations with in-situ measurements in Beijing. All value units are µg m-3. 

 Prior simulation 
Posterior 

simulation 
observation 

nitrate 8.82 9.59 9.44 

ammonium 4.71 4.95 5.69 

sulfate 5.81 5.84 7.74 

 

Regarding whether these factors (the emission for SO2 and NOx and the model's 

representation of inorganic aerosol formation) could be the primary cause of the large 

prior discrepancy, we conclude that while they introduce uncertainty, the systematic 

underestimation of NH3 emissions is the principal driver. The prior simulation 

systematically underestimated the mean NH3 column over Eastern China by 61%. 

Uncertainties in the emission inventories of other pollutants, such as SO2 or NOx, or 



biases in the chemical mechanisms, are insufficient to explain such a large and 

widespread systematic underestimation of NH3 itself.  

Furthermore, a key point of our study design is that the only variable adjusted 

between the prior and posterior simulations was the NH3 emission inventory. This 

single adjustment led to significant improvements across multiple metrics. The model 

performance improved for concentrations of NH3 and other relevant pollutants, such as 

SO2, NO2 and PM2.5, indicating that NH3 emissions were the core issue. In addition, 

previous studies have suggested that the bottom-up inventories frequently 

underestimated NH3 emissions (Chen et al., 2021; Ding et al., 2024; Kong et al., 2019; 

Zhang et al., 2017). Overall, we would like to thank for your scientific suggestion and 

we have comprehensively revised the relevant content in the manuscript to make our 

statement and discussion clearer. 

Revision in Section 2.2: 

Furthermore, speciated inorganic aerosol data from a representative site in 

Beijing were collected to evaluate the model’s capacity in characterizing the formation 

of secondary inorganic aerosols (Tan et al., 2018). 

Revision in Section 4.1: 

Finally, the entire process is iteratively repeated, a framework that captures the 

overall non-linear atmospheric response by combining the dynamic simulation of non-

linear chemistry within each WRF-Chem step with the collective behavior of multiple 

iterations. 

Revision in Section 4.2: 

Additionally, uncertainties from the model's chemical mechanisms and the 

influence of nearby grid transport also contribute to this gap, but the overall impact on 

the final estimate is limited. 

Revision in Section 4.3: 

To further characterize the model's chemical performance beyond total PM2.5, we 

also evaluated the simulation of secondary inorganic aerosol (SIA) components against 

in-situ measurements from a representative site in Beijing (Table S7). The evaluation 

shows that the posterior NH3 emissions improved the simulation of ammonium and 

nitrate, reducing the bias between simulated and observed concentrations. Although 

the model underestimates sulfate, likely due to missing formation mechanisms (Cai et 



al., 2024; Wang et al., 2021, 2020), the total SIA concentration is well reproduced with 

an overall bias of only -11.0%. 

Revision in Supplementary: 

Table S7. Comparison between the prior and posterior simulated inorganic aerosol 

concentrations with in-situ measurements in Beijing. All value units are µg m-3. 

 Prior simulation 
Posterior 

simulation 
observation 

nitrate 8.82 9.59 9.44 

ammonium 4.71 4.95 5.69 

sulfate 5.81 5.84 7.74 

 

 

2. It is not very clear to me how the current MLR framework can separate AGR and 

non-AGR NH3 emissions. Some clarification would be helpful, as noted in the minor 

comments below. Generally, in each grid cell j, I would expect the temporal variations 

in SAagriculture and SAnon-agriculture to be perfectly correlated and differ only in magnitude, 

thus they could not be separated in the regression. While WRF-Chem may simulate 

different day-to-day variations for SAagriculture and SAnon-agriculture, that reflects the effects 

of transport from surrounding grid cells, which contradicts the assumption that transport 

effects are negligible. Also, it would be useful to explain why the emission corrections 

primarily affect the non-AGR sector. Given that non-AGR emissions are relatively 

small in the prior, one would expect SAnon-agriculture to be much smaller than SAagriculture 

in Eqn (4). Is the regression coefficient b significantly larger than a, and if so, what is 

the reason for that? Specifically, in northern Henan, the posterior results show 

decreased AGR but increased non-AGR emissions compared to the prior, which seems 

hard to understand and needs further explanation. 

Response:  

We thank you for this insightful question regarding the separation of agricultural 

(AGR) and non-AGR sources within our MLR framework.  

The effective separation of these two sectors in our study is primarily based on 

their distinct and inconsistent spatial distributions. The use of multiple linear regression 

(MLR) for source apportionment is a well-established approach in atmospheric science 

(Qi et al., 2024; Shu and Lam, 2011; Trošić  Lesar and Filipć ić , 2023) and can identify 

different physical sources. The fundamental principle of using regression for source 



apportionment is that different sources can be statistically distinguished if they possess 

unique spatial "fingerprints".  

In our study, the high-concentration regions resulting from AGR and non-AGR 

emissions do not spatially align (Figure R2.3). The overall spatial correlation between 

the NH3 columns simulated from these two sources is low (r = 0.35) and is near zero in 

the high-concentration regions (r = 0.03). This significant dissimilarity provides a 

robust statistical basis for the MLR model to distinguish their relative contributions. 

The adjustment of these sources occurs through a multi-stage iterative process. 

Initially, the algorithm addresses the large, domain-wide underestimation by increasing 

emissions from both sectors. In subsequent iterations, a finer adjustment occurs where 

the framework optimizes the relative mix of the two sources to better match the 

observed spatial patterns. This directly relates to the emission corrections. If the spatial 

pattern of non-AGR emissions provides a better fit to the remaining model-observation 

discrepancy in certain areas, its corresponding emissions will be increased more 

significantly. This can result in a larger effective adjustment for the non-AGR sector, 

even if its initial contribution is smaller. 

The specific case of northern Henan, where AGR emissions decrease while non-

AGR emissions increase, exemplifies this refinement stage. In this region, the initial 

emission adjustments likely resulted in a spatial pattern that did not perfectly match the 

satellite observations. The algorithm then corrects this by reducing the AGR sector's 

contribution while simultaneously increasing the non-AGR sector's influence, as the 

latter's spatial pattern provided a better fit. The success of this adjustment is 

quantitatively demonstrated by the significant improvement in model performance for 

this region: the spatial correlation in Henan increased from 0.47–0.58 in the prior to 

0.64–0.90 in the posterior. This confirms the framework is effectively adjusting the 

relative structure of emissions to best match the observations. 

 

Figure R2.3. Spatial distribution of prior simulated NH3 column concentrations from 



agricultural and non-agricultural sources. 

Revision in Section 4.1: 

In each iterative calculation, the monthly average satellite-derived NH3 column 

concentration served as the target, and multiple linear regression (MLR) was applied 

to calculate the corresponding regression factors for AGR and non-AGR emissions 

(Figure S3). This separation of sectors by MLR is effective because their respective 

spatial distributions are distinct and largely uncorrelated (r = 0.35). 

Revision in Section 4.2: 

In multiple iterations, the framework optimizes the relative mix of the two sources 

to better match the observed spatial patterns. For instance, the spatial correlation 

between model and observation in Henan increased from 0.47–0.58 (prior simulations) 

to 0.64–0.90 (posterior simulations). 

 

3. The finding of substantially higher non-agricultural (non-AGR) NH3 emissions 

compared to prior estimates is certainly interesting and important. However, the 

discussion of the posterior results in Section 4 currently focuses mainly on reporting 

emission magnitudes and sectoral contributions, with limited interpretation of the 

underlying causes or contextualization within existing literature. I would encourage the 

authors to expand this discussion by addressing the following points: (1) What are the 

potential reasons for the apparent underestimation of non-AGR NH3 emissions in 

current bottom-up inventories? (2) What types of non-agricultural sources (e.g., 

industrial processes, transportation) are most likely responsible, based on current 

understanding? (3) How do your findings about non-AGR emissions compare with 

previous top-down estimates? The discussion in Lines 259–281 is helpful, but it could 

be further strengthened by emphasizing on observation-based or model-based studies 

that have investigated non-AGR NH3 sources. It would also be valuable to highlight 

how your results build upon or differ from those studies, and what novel insights your 

analysis contributes to this topic. 

Response: 

(1) We thank the reviewer for the constructive suggestion The principle of bottom-

up emission inventories is the product of activity level and emission factor. The 

accuracy of bottom-up inventories is highly dependent on the input data. However, 

incomplete activity levels, not representative emission factors, and the overlooked 



sources make it a challenge to reasonably estimate non-AGR NH3 emissions in China. 

Several overlooked factors contribute to the underestimation of industrial NH3 

emissions in bottom-up inventories: (1) A significant source is "ammonia slip" from the 

widespread use of denitrification technologies (like SCR and SNCR) to control NOx 

emissions. (2) a crucial and largely overlooked source is the 'indirect emission' of NH3, 

where ammonia is first adsorbed onto byproducts like fly ash and desulfurization slurry 

and is subsequently released during their handling and utilization (Chen et al., 2022; 

Cheng et al., 2020; Liu et al., 2020). (3) emission inventories have often omitted a range 

of downstream chemical industries that use ammonia as a feedstock (Wei et al., 2022). 

The inclusion of these factors results in an estimate of industrial NH3 emissions that is 

3–10 times higher than those in previous bottom-up inventories (Chen and Wang, 2025). 

Similarly, for residential sources, volatilization from landfills, wastewater 

treatment, and human excreta are important sources, especially in densely populated 

megacities. For example, some studies have identified human excreta as a stable and 

significant contributor to the urban NH3 budget, a sector frequently omitted in 

traditional inventories (Chang et al., 2015; Shao et al., 2020). 

For the transportation sector, many inventories rely on emission factors developed 

for European or U.S. vehicle fleets. These factors often fail to capture complex real-

world conditions in China, such as catalyst aging, vehicle maintenance status, and 

diverse driving patterns in congested traffic. This leads to an underestimation of the true 

NH3 emission rate, a finding confirmed by several field studies. (Chang et al., 2016; 

Sun et al., 2017; Zhang et al., 2021). 

Underestimation across these multiple sectors demonstrates the systematic 

underestimation of non-AGR NH3 emissions in current bottom-up inventories. We have 

rephrased the relevant texts in the manuscript for further discussion. 

 

(2) We thank the reviewer for this insightful comment. We are unable to further 

categorize the posterior non-AGR emissions into specific sub-sectors due to two 

primary methodological limitations: (1) Introducing additional sub-sectors as separate 

factors in the Multiple Linear Regression (MLR) model would cause the results for 

some of these factors to become statistically insignificant. (2) At the current resolution 

of our model (18 km) and the prior emission inventory (0.25°), the spatial distributions 

of many non-AGR sub-sectors are too similar, which prevents our current method from 



distinguishing between them. However, your comment offers us an excellent 

opportunity to discuss the current understanding of the relative importance of different 

non-agricultural sources based on existing literature.  

We have compiled source apportionment results from several emission inventories 

in Figure R2.4. The inventories covering China suggests that, on a national scale, 

industrial and residential sources are two major contributors to non-agricultural NH3 

emissions. When we extract data specifically for our study domain from established 

grided inventories like MEIC and CEDS, with residential and waste-related sources 

showing significant contributions. This is confirmed by high-resolution inventories for 

sub-regions such as YRD, where residential and waste sources are also identified as 

primary contributors. 

 

Figure R2.4. Comparison of the source apportionment of non-AGR NH3 emissions 

from different studies and for various regions. Each pie chart illustrates the relative 

contribution (%) of nine specific non-agricultural sources, with the area (study region, 

China, and the YRD) and data source for each chart indicated in its center. 

 

(3) We thank the reviewer for this suggestion. The majority of previous top-down 

studies on NH3 have focused on optimizing the total emission budget, without explicitly 

separating the contributions from different sectors (Xu et al., 2023). Some studies 

attempted to qualitatively estimate source-specific NH3 emissions. For instance, Kong 

et al. (2019) and Liu et al. (2022) used satellite-observed NH3 hotspots and linked them 



to specific industrial or agricultural point sources with external information (Kong et 

al., 2019; Liu et al., 2022). Other approaches have attempted a form of quantitative 

allocation by first using top-down methods to constrain the total emission, and then 

relying on the sectoral fractions from bottom-up inventories for further apportioning. 

A separate and distinct approach involves the use of stable isotope analysis. These 

studies have provided crucial quantitative insights, suggesting that the contribution of 

non-AGR sources to ambient NH3 concentrations can be remarkably high, potentially 

up to ~90% in specific urban environments (Pan et al., 2016; Wu et al., 2020). However, 

it is important to note that this valuable technique typically provides constraints on 

source contributions to ambient concentrations rather than directly on emission fluxes. 

Our work builds upon these previous findings by attempting to quantitatively 

disentangle the emissions from agricultural and non-agricultural sectors directly within 

our top-down framework. Instead of optimizing the total emissions and then allocating 

them post-hoc based on bottom-up information, our iterative MLR approach uses the 

distinct spatial signatures of the two sectors to derive separate adjustment factors for 

each. This provides a direct, observation-based constraint on the relative contributions 

of AGR and non-AGR emissions over a large region.  

This approach addresses a potential methodological gap in top-down research, 

which has traditionally faced challenges in achieving direct, quantitative source 

attribution at regional scales. While acknowledging the uncertainties and limitations 

inherent in our study, we suggest this methodology could offer a valuable pathway 

toward more effective utilization of satellite observations for investigating source-

specific emission trends. 

Revision in Section 4.2: 

Analysis of emission inventories (An et al., 2021; Hoesly et al., 2018; Li et al., 

2021, 2017; Ma, 2020; Wu et al., 2024) reveals that residential activities and waste 

disposal are dominant sources of non-AGR NH3 emissions, particularly in densely 

populated regions (Figure S5). 

The relatively small proportion of non-AGR emissions is likely due to overlooked 

industrial (e.g., NH3 slip and indirect emissions) (Chen and Wang, 2025; Chen et al., 

2022; Wei et al., 2022) and residential sources (e.g., from waste) (Shao et al., 2020), 

combined with unrepresentative transportation emission factors (Sun et al., 2017; 



Zhang et al., 2021). 

Our work attempts to quantitatively disentangle the emissions from AGR and non-

AGR sectors directly within our top-down framework and facilitates a more 

comprehensive capture of neglected non-AGR sources. 

Revision in Supplementary: 

 

Figure S5. Comparison of the source apportionment of non-AGR NH3 emissions from 

different studies and for various regions. Each pie chart illustrates the relative 

contribution (%) of nine specific non-agricultural sources, with the area (study region, 

China, and the YRD) and data source for each chart indicated in its center. 

 

 

  



 

Minor comments: 

1. Line 26/28 and elsewhere: please remove the “·” between Tg and yr-1. Also, replace 

Gg mon-1 with either Gg month-1 or Gg mo-1 to follow standard unit concentrations. 

Response: Thank you for your careful reminder. We have checked that all expressions 

of emission units follow the standard format throughout the manuscript. Please refer to 

our revised manuscript. 

 

2. Line 37-40. The summary statement is too general. It would be more informative to 

highlight the insights into non-agricultural ammonia emissions and their implications. 

Response: Thank you for your comment. We have rephrased the relevant texts of the 

abstract to highlight the importance of identifying non-agricultural NH3 emissions and 

their implications in reducing PM2.5 pollution and health burden. 

Revision in Section Abstract: 

Our study evaluated NH3 emissions from various sources in Eastern China, 

emphasizing the impact of reducing non-agricultural ammonia emissions on air quality 

and public health benefits. 

3. Line 127: Is biomass burning emission also treated online? Just checking, as this is 

not commonly the case. 

Response: Thank you for pointing this out. The biomass burning emissions were 

generated using the FINN v1.5, a model developed by NCAR. This model provided a 

useful utility for allocating the original wildfire emissions, which had a spatial 

resolution of 1km, to grid cells of the WRF-Chem model. Thus, we adopted an offline 

approach to prepare pollutant emissions from biomass burning. The description of this 

process in the previous manuscript contained inaccuracies. We have now revised the 

related section to reflect the correct methodology. 

Revision in Section 2.1: 

Furthermore, biogenic emissions were calculated online using the Model of 

Emissions of Gases and Aerosols from Nature (MEGAN, version 2.0.4) (Guenther, 

2006). Our numerical simulations also incorporated offline biomass burning emissions 

of various air pollutants, based on the wildfire model Fire Inventory from NCAR (FINN, 

version 1.5) (Wiedinmyer et al., 2011). 



 

4. Line 134: The “last accessed” date should reflect the actual date when the data were 

downloaded. 

Response: Thank you for your kind reminder. The original IASI satellite products were 

actually downloaded in December of 2020. As you suggested, we have modified the 

statement regarding this data access date. 

Revision in Section 2.2: 

We obtained the total column density of NH3 from the passive satellite remote-

sensing product of the Infrared Atmospheric Sounding Interferometer (IASI) (version 

3.0, https://iasi.aeris-data.fr/nh3/, last accessed on December 2020) as the 

observational constraint. 

5. In section 2.2, what’s the overpass time of IASI data? Do you use level-2 satellite 

data? 

Response: Thank you for this comment. IASI is a passive remote-sensing instrument 

that was first launched in 2006 on board the MetOp-A meteorological satellite, which 

circles the Earth in a polar Sun-synchronous orbit. It crosses the equator at mean local 

solar times of 9:30 and 21:30 (Van Damme et al., 2014), which are also the overpass 

times. In the present study, we used a processed satellite product at level 2 to access 

NH3 column concentrations. We have revised the related text in Section 2.2 to better 

clarify the introduction of IASI data. 

Revision in Section 2.2: 

The IASI is a Fourier transform spectrometer on board the Metop series of 

meteorological satellites, which circle the Earth in a polar Sun-synchronous orbit (Van 

Damme et al., 2014). Consequently, the satellite-based IASI instrument can cover the 

entire globe and provide measurements twice a day at 09:30 and 21:30 local solar time. 

The IASI instrument detects infrared radiation in the spectral range from 645 to 2760 

cm-1 emitted by Earth’s surface and atmosphere with a 12 km circular footprint at nadir. 

This radiation absorption range includes the NH3 signal near 950 cm−1. The collected 

daily NH3 column concentrations are categorized into level-2 satellite data and are 

developed based on the ANNI-NH3 inversion algorithm without averaging kernels, as 

presented by Van Damme et al. (2017). 

 



6. Line 140-141: The description is unclear. How is the neural network applied to 

improve the data quality, was it developed by the authors or sourced elsewhere? 

Response: Thank you for pointing this out. Van Damme et al. (2017) used the artificial 

neural network technique presented by Whitburn et al. (2016) to improve the quality of 

IASI satellite data. This work was carried out by other teams. Specifically, they trained 

separate neural networks for land and sea observations, resulting in a better training 

performance for both. To state this point clearer, we have rephrased the description of 

the IASI data product as follows. 

Revision in Section 2.2: 

The daily NH3 column concentrations are categorized into level-2 satellite data 

and are developed based on the ANNI-NH3-v2.1 inversion algorithm without averaging 

kernels, as presented by Van Damme et al. (2017). Specifically, their retrieval algorithm 

derives hyperspectral radiation indexes (HRI) from the direct satellite spectrum 

detection, which is then converted into final NH3 column concentrations using an 

artificial neural network technique (Whitburn et al., 2016). For better data quality, the 

present study removed NH3 column concentrations associated with cloud cover of more 

than 10%. Furthermore, we preprocessed the IASI NH3 column concentration data 

through averaging all daily values to obtain a monthly mean. Spatially, we mapped the 

original satellite product data to the grid cells of the WRF-Chem model for further 

comparison with those simulated NH3 columns. 

 

7. Line 125/156: Which version of MEIC is used? 

Response: Thank you for your comment. Our study used version 1.3 of the MEIC 

anthropogenic emission inventory. We have included the version number in the revised 

manuscript as you suggested. 

Revision in Section 2.1: 

We adopted the anthropogenic emissions from the Multi-resolution Emission 

Inventory for China (MEIC, version 1.3) developed by Tsinghua University (Li et al., 

2017; Zheng et al., 2018). 

8. Line 162-163 and Section 4.1: Please clarify how the model and observations are 

sampled for comparison. 

Response:  



Thanks for your conducive comment. We conducted a model evaluation of NH3 

concentrations, comparing observations and simulations based on prior emissions, from 

two perspectives.  

The first aspect is the total column concentration of NH3. We calculated the 

respective simulated NH3 column concentrations within 27 vertical layers. The overall 

NH3 column concentration can then be inferred by summing up all the partial column 

concentrations. The IASI satellite data has been pre-allocated to the grid cells of the 

WRF-Chem model. We then sampled the monthly average total column concentration 

of NH3 at the same grid cell, and carried out comparisons between IASI observations 

and WRF-Chem simulations.  

Another validating parameter is the surface NH3 measurement. In this 

circumstance, we only extracted the simulated NH3 volume concentrations in the first 

layer near the ground surface. NH3 measurements were collected from previous studies 

and are presented as annual averages (Table S2). Model simulations of NH3 volume 

concentrations were sampled at certain grid cells according to the longitudes and 

latitudes of 12 different measurement sites. The final comparison was made in terms of 

the annual mean NH3 volume concentration at these sites, between model simulation 

and in situ observations. To clarify this point, we have rephrased the relevant text in the 

revised manuscript. 

Revision in Section 3: 

We compared the prior model results with IASI NH3 column concentration and 

surface NH3 volume concentration observations. The detailed method for calculating 

NH3 total column concentrations and surface volume concentrations from WRF-Chem 

is provided in Text S1. 

Revision in Supplementary: 

For surface NH3 volume concentrations, we extracted the corresponding 

simulations at 12 sites summarized from previous in situ measurement studies and 

conducted a comparison between the model simulations and the measurements in terms 

of the annual mean NH3 volume concentrations. 

 

9. Line 179: The term “errors” is vague. Consider using clearer language such as 

“underestimated by 30%” or “biased low by 30%.” 



Response: Thank you for your comment. Following your suggestion, we have 

rephrased the relevant text in Section 3 to make this point clearer. 

Revision in Section 3: 

Most simulated NH3 total column concentrations are underestimated by more than 

30% compared with the observed values by satellite with the associated RMSE 

exceeding 10×1015 molec cm-2. 

10. Line 181-189: Figure 6 can be described with the text here. 

Response: Thank you for your suggestion. We indeed agree with you that Figure 6 

should be introduced here to better depict the spatial distribution pattern of the observed 

and the simulated NH3 column concentrations. We have revised the placement of 

figures as you suggested. 

Revision in Section 3: 

As illustrated in Figure 6, satellite-based observations reveal that the spatial high-

value areas of NH3 column are located at the junction of Henan, Shandong, and Hebei 

provinces. In contrast, the prior modeling results show that NH3 column densities are 

more concentrated in Henan. This indicates a clear discrepancy in the spatial 

distribution of NH3 column densities between the prior simulations and the 

observations. 

11. Section 3: Please be consistent in the use of statistical metrics. RMSE is used for 

IASI comparisons, while IOA and MFB are used for surface observations. A brief 

explanation of why different metrics are applied, and what each evaluates, would be 

helpful.  

Response: Thank you for pointing this out. In fact, we calculated all three evaluation 

metrics for comparisons between model versus measurements both in the total column 

concentration and surface volume concentration of NH3. However, not all metrics are 

presented in the original manuscript. As you suggested, we have revised the relevant 

text in Section 3 by discussing all evaluation metrics to better elucidate the model 

performance. 

Revision in Section 3: 

As shown in Table S5, the annual average of NH3 total column concentrations is 

simulated to be 17.4×1015 molec cm-2 for Eastern China, with a 61% underestimation 

of MFB compared to the observations from IASI satellite retrievals (29.0×1015 molec 



cm-2). The IOA between observations versus simulations is 0.72. The seasonal 

simulations of NH3 concentrations also exhibit significant discrepancies with 

observations, especially in spring. Specifically, the simulated NH3 total column 

concentration in Eastern China is only 13.2×1015 molec cm-2 in spring, with 

concentration in 67.5% of the study region being underestimated by more than 50%. 

These discrepancies are evidently exhibited in Figure 3. Most simulated NH3 total 

column concentrations are underestimated by more than 30% compared with the 

observed values by satellite with the associated RMSE exceeding 10×1015 molec cm-2. 

Additionally, the comparison between the simulated and observed surface NH3 

volume concentrations also indicates a notable underestimation (Figure S2). The mean 

simulated surface NH3 volume concentration over the study region is 6.3 μg m-3, which 

is only half of the observation value (12.7 μg m-3), with an IOA of 0.57 and an MFB of 

-61%, respectively (Table S5). 

Revision in Supplementary: 

Table S5. List of the evaluation metrics of NH3 concentrations. 

 
The total column concentration 

(1015 molc cm-2) 

Surface volume concentration 

(μg m-3) 

 Prior Posterior Prior Posterior 

Mean obs. 29.0 12.7 

Mean model. 17.4 23.7 6.3 9.4 

IOA 0.72 0.91 0.57 0.65 

MFB -0.61 -0.30 -0.61 -0.19 

RMSE 13.9 7.9 9.1 7.3 

 

12. Line 195: You mention deriving posterior emissions for four months—how are 

prior/posterior simulations compared with observations across the seasons? Are the 

same scale factors applied to all three months in each season? Please clarify. Given that 

WRF-Chem simulations are available for the full year, it would be more consistent to 

derive monthly emissions for all 12 months, which should follow the same procedure 

and would not require much additional effort. 

Response: 

Thank you for this question, which allows us to clarify the details and rationale of 

our experimental design. To clarify, our prior and posterior simulations were indeed 



conducted for the full 12 months of 2016. Seasonal comparisons with satellite 

observations were made using seasonal averages of both simulated and observed data. 

However, the emission adjustments were derived exclusively from four representative 

months (January, April, July, and October). For each season, we first calculated a 

posterior emission inventory for its representative month using the corresponding 

adjustment factors, then applied this result uniformly to all three months within that 

season. 

Our primary reason for adopting the representative-month approach was to enable 

a robust independent validation of our results, which is a common practice in 

computationally intensive modeling studies (Qu et al., 2017; Xia et al., 2025; Xu et al., 

2021). By constraining our emissions using only four months, the remaining eight 

months serve as an independent dataset against which we can evaluate the performance 

of our posterior inventory. The good performance of our posterior simulation (including 

'non-training' months) provides strong evidence that the adjustments are not over-fitted 

to specific monthly conditions and that the resulting posterior emission inventory is 

effective for the entire season. 

Second, the use of representative months is a reasonable approach for 

characterizing seasonal patterns. The representative months effectively capture the 

overall seasonal cycle, with the highest concentrations in summer and the lowest in 

winter. Furthermore, the NH3 column concentration of each representative month is in 

good agreement with its corresponding three-month seasonal average, with the relative 

difference ranging from only 1.9% to 17.3%. This small discrepancy confirms that our 

method reliably represents the seasonal average.  

Furthermore, conducting year-round simulations for emission adjustments would 

incur substantial computational costs, which is a critical practical constraint. Our study 

conducted more than 20 regression iterations to optimize emissions. Extending this 

process to 12 months would demand additional computational resources of ~14 model-

years, representing an extremely resource-intensive undertaking for regional chemical 

modeling.  

We have revised the methodology section to provide this comprehensive 

explanation. 

Revision in Section 4.1: 

The posterior emission inventory derived for each representative month was then 



applied to all three months within its corresponding season to generate the full 12-

month posterior inventory. This representative-month approach was adopted to allow 

for a robust validation against the full 12-month period, with the remaining eight 

months serving as an independent dataset, and to manage the substantial 

computational cost of the iterative process.  

13. Line 200: In Line 138, you mentioned that IASI data were regridded to the model 

resolution, but here you refer to single-pixel comparisons, which is somewhat 

confusing. Please clarify how the satellite data were matched to model outputs. 

Response: We greatly appreciate your careful comment. We agree that the term “single-

pixel” is not an appropriate statement. In the present study, we preprocessed the level-

2 IASI satellite data via mapping them to the grid cells of the WRF-Chem model for 

further comparison with those simulated NH3 columns. We have revised this confusing 

term to make the text clearer. Please refer to our revisions as follows. 

Revision in Section 4.1: 

In each iterative calculation, the monthly average satellite-derived NH3 column 

concentration served as the target, and multiple linear regression (MLR) was applied 

to calculate the corresponding regression factors for AGR and non-AGR emissions 

(Figure S3). 

14. Line 202: What does “regression factor” refer to? Is it the same as the emission 

scale factor? 

Response: Thank you for the question, which helps us to clarify our terminology. In 

our manuscript, the term "regression factor" refers to the coefficients (α and β) derived 

from the MLR analysis. These factors effectively function as scaling factors for the 

prior emissions. The purpose of this process is to adjust the magnitude of the emissions 

from each sector so that the resulting simulated NH3 column concentrations better 

match the satellite observations. We have revised the text to use this terminology more 

consistently and have clarified the definitions to improve clarity. 

Revision in Section 4.1: 

Furthermore, the MLR approach provided regression coefficients 𝛼𝑖
𝑗,𝑘

 and 𝛽𝑖
𝑗,𝑘, 

which function as scaling factors, respectively correspond to AGR and non-AGR NH3 

emissions in month j from region k, within the i iteration. 

15. Line 206: Is TAsatellite the monthly average or the daily average of NH3 



concentrations? 

Response: Thank you for pointing this out. The symbol TAsatellite shown here indicates 

the monthly average of NH3 column concentrations from IASI satellite products. To 

make this point clearer, we have revised the texts in Sections 2.2 and Section 4.1 as 

follows. 

Revision in Section 2.2: 

Furthermore, we preprocessed the IASI NH3 column concentration data through 

averaging all daily values to obtain a monthly mean value. 

Revision in Section 4.1: 

where, 𝑇𝐴𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒
𝑗,𝑘

  denotes the monthly average of total NH3 column density 

retrieved from the IASI satellite data, and 𝑆𝐴𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡
𝑗,𝑘 , 𝑆𝐴𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒𝑖−1

𝑗,𝑘   and 

𝑆𝐴𝑛𝑜𝑛−𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒𝑖−1
𝑗,𝑘   stand for the simulated total column concentration of NH3 

contributed by AGR emissions, non-AGR emissions, and outside transportation, 

respectively. 

16. Line 208: Should be “outside transportation, AGR emissions, non-AGR emissions, 

respectively”. 

Response: Thank you for the comment and the careful reminder. It is indeed that the 

order is reversed. We have revised this sentence in a correct order. 

Revision in Section 4.1: 

𝑆𝐴𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡
𝑗,𝑘, 𝑆𝐴𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒𝑖−1

𝑗,𝑘  and 𝑆𝐴𝑛𝑜𝑛−𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒𝑖−1
𝑗,𝑘  stand for the simulated 

total column concentration of NH3 contributed by outside transport, AGR emissions, 

and non-AGR emissions, respectively. 

17. Line 211: The term “control emissions” is unclear. Do you mean emissions were 

zeroed out? Also, please replace “cycle” with “experiment.” 

Response: Thank you for your suggestions. We acknowledge that the term “control 

emissions” here is of confusing. We would like to express the meaning of forcing the 

corresponding NH3 emissions to zero as you mentioned. Meanwhile, we also have 

replaced the “cycle” with “experiment”. Please refer to our revisions below. 

Revision in Section 4.1: 

In each experiment, we zeroed out AGR emissions, non-AGR emissions and 

regional external emissions to obtain the corresponding NH3 column concentrations. 



18. Line 214: What is Ablank used for? 

Response:  

Thank you for this question. The Ablank case refers to a simulated NH3 total column 

in which all anthropogenic emissions within the study domain were turned off. The 

purpose of this simulation was to establish a blank line concentration field, which 

represents the influence of the chemical boundary conditions provided to our model 

domain.  

As described in our methodology, the NH3 column concentration resulting from 

the Ablank run is then subtracted from the other sensitivity simulations (e.g., Aagr, Anon-

agr) to isolate the specific contribution of each in-domain emission sector. While the 

magnitude of this blank line concentration is very small compared to the contributions 

from emissions within the domain, it is an essential step to ensure accurate source 

attribution. We have clarified the role and definition of the Ablank simulation in the 

revised manuscript. 

Revision in Section 4.1: 

Specifically, the modeling case Ablank refers to a simulated NH3 total column in 

which all anthropogenic emissions within the study domain were zeroed out. The 

purpose of this simulation was to establish background concentrations, which 

represents the influence of the chemical boundary conditions provided to our model 

domain. 

19. Line 203/216: Earlier you use k for month and j for region, but later this is reversed. 

Please ensure consistency throughout. Also, using “grid cell j” is clearer than “region j” 

or “area j.” 

Response: We greatly appreciate your careful review. The typographical error has been 

corrected in the manuscript. Given that our calculations and analysis are region-based, 

we feel that 'region j' is a more descriptive term for our methodology. We have also 

revised the text to ensure this term is used consistently. 

Revision in Section 4.1: 

Furthermore, the MLR approach provided regression coefficients 𝛼𝑖
𝑗,𝑘

 and 𝛽𝑖
𝑗,𝑘, 

which function as scaling factors, respectively correspond to AGR and non-AGR NH3 

emissions in month j from region k, within the i iteration. 

20. Line 217: It is unclear why does the regression is derived mathematically imply it 



needs to be corrected? Please clarify the motivation for adjusting the regression 

coefficients. 

Response: 

We thank the reviewer for this question, which addresses an important detail of 

our methodology. 

While a standard MLR provides a mathematical best fit, this fit may not always be 

statistically robust, particularly when be influenced by outliers. Our motivation for the 

correction procedure is to ensure that only statistically significant and reliable 

regression results are used to update the emissions. This prevents introducing noise 

from unreliable fits into the iterative process, which could lead to unstable or non-

physical solutions. 

We implemented a quality control procedure based on the statistical significance 

of the prediction error. For each regression, we calculate the residual (the difference 

between the observed and predicted values). If the 95% confidence interval of this 

residual does not contain zero, the model's prediction error is considered statistically 

significant, and the regression result is flagged as unreliable. As illustrated in the figure 

provided in our response, outliers (in red) are identified using this method. 

We have revised the methodology section of the manuscript to explicitly state this 

motivation and to provide a clear description of our quality control procedure.

 



Figure R2.5：Distribution of residuals and their 95% confidence intervals. Each point 

represents the residual value for a given sample, and the error bars represent the 95% 

confidence interval of the residual. Green points represent valid fits, while red points 

are outliers rejected based on the criterion that their confidence interval does not contain 

zero. 

Revision in Section 4.1: 

To ensure the statistical robustness of the regression equation, we need to correct 

for this regression coefficient. 

The regression coefficients with excessive residuals, defined as cases where the 95% 

confidence interval of the residual does not contain zero, are removed to increase 

credibility. 

 

 

21. Line 218-231: The description of the correction process is not very clear. It is 

unclear what is meant by “goodness of fit,” how the “invalid” regression coefficients 

are defined, and what fraction of them are removed. The phrase “make a trade-off” in 

Line 225 is vague and would benefit from clarification. Additionally, it is not explained 

how the adjustment factors aₙ and bₙ are derived or what their physical meaning is. The 

choice of a 30% threshold in Line 229 also seems arbitrary—particularly in high-NH3 

regions, where it could allow larger discrepancies between observations and 

simulations, but the physical basis for this threshold is not clearly explained. 

Response: 

The reviewer's meticulous feedback on our methodology is greatly appreciated, as 

it allows us to provide important clarifications. We have revised the manuscript to 

address these points in detail. 

First, regarding the "goodness of fit" metric, we used the coefficient of 

determination (R-squared, R²). A regression result was deemed "invalid" if the R² was 

less than 0.3 or if the 95% confidence interval of its residual did not contain zero. This 

is our quality control criterion for identifying and rejecting statistically poor fits. On 

average, 6.3% to 9.4% of regression results were rejected per iteration. 

The phrase "make a trade-off" was used to describe our procedure for handling 

these invalid results. To clarify, if a regression result for a given grid cell is deemed 



valid, the new adjustment factors (a and b) are set to the newly calculated regression 

coefficients (α and β). If the result is invalid, the adjustment factors are kept unchanged 

from the previous iteration (ai = ai-1).  

This conservative approach ensures that emissions are only updated based on 

statistically robust fits, rather than deleting any data. The physical meaning of these 

adjustment factors, a and b, is that they represent the scaling multipliers applied to the 

prior emissions of the AGR and non-AGR sectors, respectively, to better match the 

satellite observations in each iteration. 

Our choice of the 30% threshold was based on two primary considerations: (1) 

Within the widely accepted 20%–50% error range for model performance benchmarks, 

(EPA, 2007; Huang et al., 2021, 2025; Zhao et al., 2017), we selected 30% as our 

criterion to account for the inherent uncertainties in both the WRF-Chem model and the 

IASI satellite data. (2) Compared to the prior bias of up to -61%, reducing this bias to 

within 30% represents a significant and meaningful improvement, which proves that 

our method has imposed an effective constraint on the emission inventory. 

 

Revision in Section 4.1: 

Concurrently, the goodness of fit of the regression is calculated as the coefficient 

of determination (R-square, R2). To maintain algorithm stability, regressions with an R2 

less than 0.3 are deemed invalid and excluded from the emission update, as they exhibit 

insufficient explanatory power (indicating >70% unexplained variance) and introduce 

destabilizing noise into the adjustments. We further use it to make a trade-off for the 

regression coefficient. If a regression is valid, the adjustment factors a and b are set to 

the new regression coefficients; if invalid, the factors are kept unchanged from the 

previous iteration. The updated emissions for the next iteration are then calculated by 

multiplying the emissions from the previous step by these adjustment factors. 

 The iteration concludes when the mean bias between the simulated values and 

observations is less than 30%, a criterion chosen to represent a significant improvement 

over the large prior bias while falling within the range of widely accepted model 

performance benchmarks. 
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