
Responses to reviewer #1 

Dear Editor and Reviewer #1: 

We would like to express our sincere gratitude to the editor and the reviewer for 

their time and invaluable evaluation on our manuscript, “Optimizing Ammonia 

Emissions for PM2.5 Mitigation: Environmental and Health Co-Benefits in Eastern 

China” (egusphere-2025-1407). The insightful suggestions have enabled us to 

significantly improve the quality of our work. We have addressed all comments and 

have revised the manuscript accordingly. The reviewer comments are presented in blue, 

our point-by-point responses are in black, and the corresponding revisions in the 

manuscript are highlighted in red. 

Major comments: 

1. The authors attribute the ammonia emissions underestimate in the model almost 

entirely to non-agricultural emissions (Figure 2). However, temporally, the authors put 

the largest posterior increase in ammonia emissions in spring and summer (Figure 5) 

when I would expect agricultural emissions to be most important (fertilization time + 

favorable meteorology). At the same time, your sources are close or overlap in space 

(Figure 2), especially considering the smoothness of the modeled and observational 

total column NH3 (Figure 6). Moreover, because of co-linearity, I am not sure how well 

the MLR (Eqn 4) can separately fit the alpha and beta parameters and thus separate 

source sectors. For these reasons, I am skeptical of the source attribution in this study. 

I am more confident in total ammonia emissions magnitudes. 

Response: 

We thank the reviewer for this comment. We acknowledge the reviewer’s point 

that the regional changes in agricultural NH3 emissions between prior and posterior 

inventories are small. This phenomenon could be explained by the spatial heterogeneity 

of changes in agricultural emissions. For example, our posterior model results for spring 

show a decrease in agricultural emissions in Henan, while simultaneously proposing a 

substantial increase of 242.8 Gg in the Yangtze River Delta region. This regional 

redistribution could improve the model’s ability in better matching with observations.  

Therefore, the large rise in total emissions in spring is a combination of these 

regionally specific agricultural adjustments and a significant, spatially broad increase 

in the non-agricultural sector. It is also important to note that even with this large non-



AGR correction, agriculture remains the dominant source of emissions in spring in our 

posterior inventory (accounting for 84.1%), reflecting the overwhelming importance of 

fertilization activity in this season. 

The use of multiple linear regression (MLR) for source apportionment is a well-

established approach in atmospheric science (Qi et al., 2024; Shu and Lam, 2011; Trošić 

Lesar and Filipčić, 2023) and can identify different physical sources. The fundamental 

principle of using regression for source apportionment is that different sources can be 

statistically distinguished if they possess unique spatial "fingerprints".  

In our study, the high-concentration regions resulting from AGR and non-AGR 

emissions do not spatially align (Figure R1.1). The overall spatial correlation between 

the NH3 columns simulated from these two sources is low (r = 0.35) and is near zero in 

the high-concentration regions (r = 0.03). This significant dissimilarity provides a 

robust statistical basis for the MLR model to distinguish their relative contributions. 

 

Figure R1.1: Spatial distribution of prior simulated NH3 column concentrations from 

agricultural and non-agricultural sources. 

Revision in Section 4.1: 

In each iterative calculation, the monthly average satellite-derived NH3 column 

concentration served as the target, and multiple linear regression (MLR) was applied 

to calculate the corresponding regression factors for AGR and non-AGR emissions 

(Figure S3). This separation of sectors by MLR is effective because their respective 

spatial distributions are distinct and largely uncorrelated (r = 0.35). 

Revision in Section 4.2: 

In multiple iterations, the framework optimizes the relative mix of the two sources 

to better match the observed spatial patterns. For instance, the spatial correlation 

between model and observation in Henan increased from 0.47–0.58 (prior simulations) 



to 0.64–0.90 (posterior simulations). 

 

2. The MLR does not account for chemistry occurring between emission and 

observation. Could you comment on how this affects the results? 

Response:  

We thank the reviewer for this insightful question, which allows us to clarify the 

role of atmospheric chemistry within our inversion framework and discuss the 

associated uncertainties. 

First, we emphasize that our methodology inherently accounts for atmospheric 

chemistry. While the MLR component is a statistical tool, our approach is not a simple 

regression directly linking emissions to observed columns. Instead, the MLR operates 

within an iterative framework dynamically coupled with the full WRF-Chem model. 

Crucially: (1) The inputs to our regression (the SA variables) are the simulated NH3 

column concentrations generated by WRF-Chem. This means that within each iteration, 

WRF-Chem explicitly simulates all complex, non-linear chemical transformations 

(including gas-to-particle partitioning and aerosol formation) and transport processes 

occurring between emission and the resulting atmospheric concentration. (2) The MLR 

then acts solely as an efficient optimization tool, adjusting the emission inputs based on 

the outputs of this chemically comprehensive model. 

To directly discuss the model’s capacity in characterizing concentrations of 

secondary inorganic aerosols (SIA), we conducted comparisons using in-situ 

measurements at a representative site in Beijing (39°59′21″N, 116°18′25″E). 

The evaluation results are summarized in Table R1. It is revealed that the posterior 

NH3 emissions increase NH4
+ concentration from 4.71 µg m-3 to 4.95 µg m-3, which is 

closer to the observed average (5.69 µg m-3). The simulated mean NO3
- concentration 

with 9.59 µg/m³ also better matches the observed level (9.44 µg m-3).  

The WRF-Chem model performs moderately well in capturing the observed SO4
2- 

concentration (7.74 µg m-3) in both simulations (5.81-5.84 µg m-3). The model 

underestimation could be attributed to the missing formation mechanism of sulfate such 

as transition metal ions (TMI)-catalyzed and photosensitized oxidation of SO2 on 

aerosol surfaces (Cai et al., 2024; Wang et al., 2021, 2020). Although this 

underestimation of sulfate might lead to our posterior NH3 emission estimates being 



conservatively low, we find that the model still reproduces the total secondary inorganic 

aerosol (SIA) concentrations well, with an overall bias of only -11.0%. This good 

performance in simulating the total aerosol sink for ammonia suggests that the 

uncertainty propagated to the final emission estimates from these chemical pathways is 

limited. 

In summary, our framework inherently accounts for chemistry through its tight 

coupling with WRF-Chem. The evaluation against SIA observations confirms the 

chemical plausibility of our results for nitrate and ammonium, while highlighting 

specific uncertainties in sulfate chemistry. These uncertainties suggest our posterior 

NH3 emissions may represent a conservative estimate. We have incorporated this 

discussion into the revised manuscript. 

Table R1: Comparison of prior and posterior simulated surface concentrations with in-

situ observations for major secondary inorganic aerosol components (sulfate, nitrate, 

and ammonium) in Beijing. All values are in µg m-3. 

 Prior simulation 
Posterior 

simulation 
observation 

nitrate 8.82 9.59 9.44 

ammonium 4.71 4.95 5.69 

sulfate 5.81 5.84 7.74 

 

 

Revision in Section 2.2: 

Furthermore, speciated inorganic aerosol data from a representative site in 

Beijing were collected to evaluate the model’s capacity in characterizing the formation 

of secondary inorganic aerosols (Tan et al., 2018). 

Revision in Section 4.1: 

Finally, the entire process is iteratively repeated, a framework that captures the 

overall non-linear atmospheric response by combining the dynamic simulation of non-

linear chemistry within each WRF-Chem step with the collective behavior of multiple 

iterations. 

Revision in Section 4.2: 

Additionally, uncertainties from the model's chemical mechanisms and the 



influence of nearby grid transport also contribute to this gap, but the overall impact on 

the final estimate is limited. 

Revision in Section 4.3: 

To further characterize the model's chemical performance beyond total PM2.5, we 

also evaluated the simulation of secondary inorganic aerosol (SIA) components against 

in-situ measurements from a representative site in Beijing (Table S7). The evaluation 

shows that the posterior NH3 emissions improved the simulation of ammonium and 

nitrate, reducing the bias between simulated and observed concentrations. Although 

the model underestimates sulfate, likely due to missing formation mechanisms (Cai et 

al., 2024; Wang et al., 2021, 2020), the total SIA concentration is well reproduced with 

an overall bias of only -11.0%. 

Revision in Supplementary: 

Table S7. Comparison between the prior and posterior simulated inorganic aerosol 

concentrations with in-situ measurements in Beijing. All value units are µg m-3. 

 Prior simulation 
Posterior 

simulation 
observation 

nitrate 8.82 9.59 9.44 

ammonium 4.71 4.95 5.69 

sulfate 5.81 5.84 7.74 

 

  



 

Minor comments: 

1. Line 75: It is not clear to me what the 1%–50% figure represents here. Is this 

reduction in PM2.5 per unit NH3 emissions reduced? 

Response:  

We thank the reviewer for this question. The 1%–50% range in our text is intended 

to summarize the breadth of these varying findings reported in the studies we referenced. 

It represents the range of discrepancies or varying outcomes found across the cited 

literature when assessing the impact of NH3 emission reductions on PM2.5 levels. This 

variability arises from differences in study methodologies, including models, 

underlying emission inventories, regions, and seasons analyzed. To enhance clarity, we 

have revised the relevant sentence in the manuscript to explicitly state that this range 

reflects the spectrum of outcomes reported in the referenced studies. 

Revision in Section 1: 

The uncertainty in the emission estimation further contributes to significant 

discrepancies, reflecting the range of results (1%–50%) reported in the literature, in 

assessing the impacts of NH3 reduction on PM2.5 level (Guo et al., 2018, 2024; Li et al., 

2024; Liu et al., 2019, 2021, 2023; Pan et al., 2024; Zhang et al., 2022). 

2. Which version of the IASI NH3 data do you use? 

Response:  

We appreciate the reviewer's attention to this detail. We have clarified in the 

revised text that the IASI NH3 data used in this study is version 3.0. 

Revision in Section 2.2: 

We obtained the total column density of NH3 from the passive satellite remote-

sensing product of the Infrared Atmospheric Sounding Interferometer (IASI) (version 

3.0, https://iasi.aeris-data.fr/nh3/, last accessed on December 2020) as the 

observational constraint. 

3. Lines 165–166: What do the index of agreement and mean fractional bias mean, 

intuitively? 

Response:  

We appreciate the reviewer's suggestion to clarify these metrics. The manuscript 

now includes expanded intuitive explanations: 



(1) Index of Agreement (IOA) 

The IOA quantifies the overall simulation skill with values ranging from 0 to 1, 

where 1 indicates perfect match between simulated and observed data while 0 denotes 

complete disagreement. This metric evaluates both magnitude accuracy and spatial 

pattern consistency, making a higher IOA value indicative of better model performance. 

In our context, an increased IOA in posterior simulations versus prior runs confirms 

improved representation of NH3 columns. 

(2) Mean Fractional Bias (MFB) 

The MFB diagnoses systematic model bias with values centered at 0. A value of 0 

signifies no average bias, positive values indicate model overestimation, and negative 

values reflect underestimation. The absolute magnitude measures bias severity, where 

smaller absolute values correspond to reduced systematic error. 

In this study, we use IOA to evaluate global consistency between simulated and 

satellite-observed NH3 columns, while MFB specifically quantifies directional bias 

tendencies. These clarifications have been incorporated into the revised manuscript. 

Revision in Section 3: 

The IOA quantifies the overall model skill, where a value of 1 indicates a perfect 

match and 0 denotes complete disagreement. The MFB diagnoses systematic model 

bias, where positive values indicate overestimation, negative values indicate 

underestimation, and 0 signifies no average bias. 

 

4. Line 167: What does the C mean in these equations? I presume ammonia column 

concentrations? 

Response:  

We thank the reviewer for highlighting this ambiguity. In the equations, C is 

defined as the Concentration of the target pollutant, with its specific meaning 

determined by the evaluation context: (1) NH3 total column concentrations (satellite 

comparison); (2) Surface NH3 concentrations; (3) Other pollutants (e.g., surface PM2.5 

SO2, NO2) 

We have revised the manuscript to explicitly clarify this generalized notation and 

its context-dependent applications. 

Revision in Section 3: 



They were calculated following Eq. 1~3, where C represents the concentration of 

the target pollutant (e.g., NH3 total column or surface concentrations), and subscripts 

s, o and N represent simulations, observations, and the number of samples, respectively. 

 

5. How do you convert simulated NH3 to total column densities comparable to IASI 

(e.g. the SA in line 205)? 

Response:  

We thank the reviewer for requesting methodological clarification. The conversion 

of simulated NH3 to total column densities (SA variables) is now detailed in the 

Supporting Information.  

The WRF-Chem model outputs NH3 concentrations as a volume mixing ratio (in 

ppmv) for each model layer. To convert these layer-specific concentrations into a total 

vertical column density (VCD) comparable to IASI satellite retrievals, the subsequent 

process was followed. 

First, the thickness of each model layer (ΔZ) must be determined. As our WRF-

Chem setup uses a terrain-following hybrid sigma-pressure coordinate system, the 

geopotential height (Z) of each model level is calculated from the model's perturbation 

geopotential (PH) and base-state geopotential (PHB), divided by the acceleration due 

to gravity (g ≈ 9.8 m s⁻²):  

𝑍 =
𝑃𝐻 + 𝑃𝐻𝐵

𝑔
 

The thickness of an individual model layer, k, is then the difference in geopotential 

height between its upper and lower boundaries: ΔZk=Zk+1−Zk 

Moreover, the NH3 volume mixing ratio in each layer is converted to a number 

density (NNH3, in molecules cm⁻³), using the pressure and temperature of that specific 

model layer. Finally, the total NH3 vertical column density (VCD, in molecules cm⁻²) 

is calculated by integrating the vertical column density in each layer of the model. In 

our discrete model layers, this is achieved by summing the partial column of each layer, 

which is the product of the number density (NNH3,k) and the layer thickness (ΔZk). 

Revision in Section 3: 

The detailed method for calculating NH3 total column concentrations and surface 

volume concentrations from WRF-Chem is provided in Text S1.  



Revision in Supplementary: 

TEXT S1 

For comparison with IASI satellite retrievals, the total vertical column density 

(VCD) was calculated from the model's layer-specific output. The WRF-Chem model 

outputs NH3 concentrations as a volume mixing ratio (in ppmv) for each model layer. 

To convert these layer-specific concentrations into a VCD, the subsequent process was 

followed. 

First, the thickness of each model layer (ΔZ) must be determined. As our WRF-

Chem setup uses a terrain-following hybrid sigma-pressure coordinate system, the 

geopotential height (Z) of each model level is calculated from the model's perturbation 

geopotential (PH) and base-state geopotential (PHB), divided by the acceleration due 

to gravity (g ≈ 9.8 m s⁻²):  

𝑍 =
𝑃𝐻 + 𝑃𝐻𝐵

𝑔
 

The thickness of an individual model layer, k, is then the difference in geopotential 

height between its upper and lower boundaries: ΔZk=Zk+1−Zk 

Moreover, the NH3 volume mixing ratio in each layer is converted to a number 

density (NNH3, in molecules cm⁻³), using the pressure and temperature of that specific 

model layer. Finally, the total NH3 vertical column density (VCD, in molecules cm⁻²) is 

calculated by integrating the vertical column density in each layer of the model. In our 

discrete model layers, this is achieved by summing the partial column of each layer, 

which is the product of the number density (NNH3,k) and the layer thickness (ΔZk). 

 

6. Figure 3: What does the red box represent? 

Response:  

We appreciate this suggestion to enhance figure clarity. The red box highlights the 

range we consider to represent good model performance. Specifically, it delineates the 

area where the Root Mean Square Error (RMSE) is less than 10, and the ratio of 

simulated-to-observed NH3 column concentration is between 0.7 and 1.3 (±30% error 

margin). We have added this clarification to the figure caption in the revised manuscript. 

Revision in Section Figure 3: 

Figure 3. Scatter plots of the prior and posterior NH3 total column data versus 



IASI retrievals. Each point represents prior (or posterior) data for a specific season 

and a specific region. Circles, triangles, rhombuses, and rectangles correspond to the 

BTH, Henan, Shandong, and YRD regions, respectively. Orange and blue markers 

represent a prior and a posterior data, respectively. The red box indicates the 

performance area, with a model error within ±30% and an RMSE below 10(×1015 

molec cm-2). 

7. Line 214: What is A_blank? Also, what are these A variables more generally? They 

are not defined. 

Response:  

Thank you for this question, which allows us to clarify these important 

methodological details. To clarify, the A variables (e.g., Aagr, Anon-agr) represent the total 

simulated NH3 column concentrations that result from each of the sensitivity 

simulations listed in Table 2. 

Specifically, The Ablank case refers to a simulated NH3 total column in which all 

anthropogenic emissions within the study domain were turned off. The purpose of this 

simulation was to establish a blank line concentration field, which represents the 

influence of the chemical boundary conditions provided to our model domain.  

We have revised the manuscript to provide explicit definitions. 

Revision in Section 4.1: 

The 𝑆𝐴𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒𝑖−1
𝑗,𝑘  , 𝑆𝐴𝑛𝑜𝑛−𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒𝑖−1

𝑗,𝑘  , and 𝑆𝐴𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡
𝑗,𝑘  are calculated by 

subtracting Ablank from Aagr, Anon-agr, and Atransport, respectively. Here, symbols A 

represent the total simulated NH3 column concentrations that result from each of the 

sensitivity simulations listed in Table 1. Specifically, the modeling case Ablank refers to 

a simulated NH3 total column in which all anthropogenic emissions within the study 

domain were zeroed out. The purpose of this simulation was to establish background 

concentrations, which represents the influence of the chemical boundary conditions 

provided to our model domain. 

 

8. Equation 4: The SA variables are referring to simulated values, right? This is not 

clear. 

Response:  

We confirm that the SA variables in Equation 4 represent simulated NH3 column 



concentrations from specific source categories. We have revised the manuscript to 

explicitly state this definition and eliminate ambiguity. 

Revision in Section 4.1: 

where, 𝑇𝐴𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒
𝑗,𝑘  denotes the monthly average of total NH3 column density 

retrieved from the IASI satellite data, and 𝑆𝐴𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡
𝑗,𝑘 , 𝑆𝐴𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒𝑖−1

𝑗,𝑘   and 

𝑆𝐴𝑛𝑜𝑛−𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒𝑖−1
𝑗,𝑘   stand for the simulated total column concentration of NH3 

contributed by AGR emissions, non-AGR emissions, and outside transportation, 

respectively. 

9. Line 219: How is D_i^j,k calculated, in terms of the variables already given? 

Response:  

Thank you for this question regarding the specific details of our methodology. The 

variable 𝐷𝑖
𝑗,𝑘

 represents the relative bias between the total simulated NH3 column 

concentration and the satellite-retrieved observation for a given iteration, month, and 

region. It is calculated as the difference between the mean simulated column and the 

mean satellite retrieval column, normalized by the mean satellite retrieval column. 

Revision in Section 4.1: 

we need to correct for this regression coefficient. The biases between the model 

simulation and the satellite retrievals were calculated as 𝐷𝑖
𝑗,𝑘

. Specifically, it is the 

difference between the mean simulated column and the mean satellite retrieval, divided 

by the mean satellite retrieval. 

 

10. Line 221: What do you mean by “excessive residuals”? What is the judgement 

coefficient and how is it calculated? 

Response:  

We thank the reviewer for highlighting this key quality control aspect. We have 

revised the manuscript to provide these specific details. 

In our regression analysis, a residual is defined as the difference between the 

observed value (i.e., the satellite-derived NH3 column) and the value predicted by the 

MLR model. To objectively identify what we termed "excessive residuals," we utilize 

the 95% confidence interval of the residual for each individual fit. 

Our criterion is as follows: if the 95% confidence interval of a residual does not 



contain zero, such a case is flagged as having an "excessive residual." This means the 

linear model provides a poor fit for that specific data point, and the resulting regression 

coefficients are deemed unreliable. Consequently, these coefficients are rejected and 

not used for the emission update in that iteration. In the following Figure R1.2, we can 

see that red represents outliers and needs to be discarded. 

 

Figure R1.2：Distribution of residuals and their 95% confidence intervals. Each point 

represents the residual value for a given sample, and the error bars represent the 95% 

confidence interval of the residual. Green points represent valid fits, while red points 

are outliers rejected based on the criterion that their confidence interval does not contain 

zero. 

 

Revision in Section 4.1: 

The regression coefficients with excessive residuals, defined as cases where the 95% 

confidence interval of the residual does not contain zero, are removed to increase 

credibility. 

11. Line 222: What goodness of fit test/metric do you use? How did you pick this 0.3–

1 acceptability range? 

Response:  

We thank the reviewer for requesting methodological clarification. The "goodness 

of fit" metric we used is the coefficient of determination, commonly known as R-

squared (R2). The R2 value quantifies the proportion of the variance in the dependent 

variable that is predictable from the independent variables (the simulated NH3 columns 

from AGR and non-AGR sources). This metric ranges from 0 to 1, with higher values 



indicating superior model performance. 

The acceptability range of 0.3–1 was chosen as a practical criterion within our 

iterative framework. We established this criterion because regressions with R² < 0.3 

exhibit insufficient explanatory power (indicating >70% unexplained variance), which 

introduces destabilizing noise into emission adjustments. By excluding such 

statistically unreliable results from our inventory updates, we maintain algorithm 

stability while reducing required iteration cycles.  

We have now explicitly stated in the manuscript that the metric used is R-squared 

and have clarified the purpose of this threshold. 

Revision in Section 4.1: 

Concurrently, the goodness of fit of the regression is calculated as the coefficient 

of determination (R-square, R2). To maintain algorithm stability, regressions with an R2 

less than 0.3 are deemed invalid and excluded from the emission update, as they exhibit 

insufficient explanatory power (indicating >70% unexplained variance) and introduce 

destabilizing noise into the adjustments. 

 

12. How do you perform the iterations (lines 226-229)? I presume you increment 

agricultural and non-agricultural emissions for each grid cell by following the fitted 

alpha and beta parameters, but how exactly and by what magnitude? What do you do 

for the next increment in the case where you reject the MLR results? 

Response:  

We appreciate the opportunity to clarify our iterative optimization procedure. The 

revised manuscript now details this process in Section 4.1.  

The iteration is performed by sequentially updating the emission inventory and re-

running the WRF-Chem simulation to produce a new concentration field. The 

magnitude of the emission update in each step is determined by the final adjustment 

factors (a and b) derived from our corrected MLR analysis. These factors are used as 

direct scaling multipliers for the emissions. For instance, in the event of the analysis 

determining a final adjustment factor of 1.3 for the agricultural sector, the new 

agricultural emission will be set to 1.3 times the value of the previous iteration. 

Regarding the case where the MLR results for an iteration are rejected, the process 

is designed to be conservative. In such instances, the adjustment factors for that specific 



grid cell are considered invalid, and the emissions are kept unchanged from the previous 

iteration. The algorithm then proceeds using this unadjusted emission value as the input 

for the next step. We have added these specific details about the emission update 

procedure to the methodology section of our manuscript to improve its clarity. 

Revision in Section 4.1: 

If a regression is valid, the adjustment factors a and b are set to the new regression 

coefficients; if invalid, the factors are kept unchanged from the previous iteration. The 

updated emissions for the next iteration are then calculated by multiplying the 

emissions from the previous step by these adjustment factors. 

 

13. What does Figure 5 look like if you split the prior and posterior bar plots up into 

AGR and nonAGR emissions? I am curious about how the source attribution varies 

with season. 

Response:  

We thank the reviewer for this valuable suggestion to enhance seasonal attribution 

analysis. As suggested, we have generated a supplementary figure (Figure S6) 

decomposing prior and posterior emissions into agricultural (AGR) and non-

agricultural (non-AGR) sources by season. 

As the new figure illustrates, the source attribution varies significantly by season. 

Agricultural emissions are the dominant contributor during the spring and summer 

months, which is consistent with the timing of fertilizer application and higher 

temperatures that promote volatilization. In contrast, the relative contribution from non-

agricultural sources increases substantially in the winter. This winter increase is largely 

attributed to higher emissions from fossil fuel combustion and other industrial activities 

that are more pronounced during the cold season. 

Revision in Section 4.2: 

At the specific-source scale (Figure S6), AGR NH3 emissions show similar 

seasonal patterns with the total NH3 emissions, higher in summer and spring. In 

contrast, non-AGR NH3 are highest in winter and fall because fossil fuel combustion-

related emissions are higher in cold season, while the lowest emissions occur in summer. 

Revision in Supplementary: 



 

Figure S5: Seasonal comparison of prior and posterior NH3 emissions from AGR and 

non-AGR sources. 

 

14. Line 291: What are the units of the RMSE? Is this referring to surface observations 

or satellite columns? 

Response:  

Thank you for your detailed review. The units for the RMSE are consistent with 

the units of the quantities being compared. Therefore, the RMSE has units of molecules 

cm-2 when evaluating against satellite total columns, and units of μg m⁻³ when 

evaluating against surface concentration measurements. We have revised the 

manuscript to explicitly state the appropriate units in each instance to avoid ambiguity. 

Revision in Section 4.3: 

More than 80% of the points fall in the range where the simulation-to-observation 

ratio is between 0.7 and 1.3 and the RMSE is less than 10×1015 molec cm-2. 

  



Typographical comments: 

1. Line 52: Figure should read “55.0%” 

Response: Thank you. The text has been corrected as suggested. 

Revision in Section 1:  

Ammonia (NH3), a key precursor of PM2.5, neutralizes sulfuric acid (H2SO4) and 

nitric acid (HNO3), leading to the formation of secondary inorganic aerosols (SIA), 

which contributes 19.4%–55.0% of the total PM2.5 (Huang et al., 2014; Liu et al., 2022b; 

Wang et al., 2016; Wei et al., 2023; Zheng et al., 2015; Zhou et al., 2022). 

2. Throughout: the en dash (–) should be used for numerical ranges instead of the tilde 

(~). 

Response: We thank the reviewer for this helpful comment, and the manuscript has 

been revised accordingly. 

 

3. Lines 179–180: this sentence ends abruptly (what is the RMSE of 10 referring to; 

what are its units). 

Response: Thank you for the comment. The units for the Root Mean Square Error 

(RMSE) are the same as those for the NH3 column concentration (×10¹⁵ molec cm⁻²). 

We have revised the sentence in the manuscript to include the appropriate units. 

Revision in Section 3: 

Most simulated NH3 total column concentrations are underestimated by more than 

30% compared with the observed values by satellite with the associated RMSE 

exceeding 10×1015 molec cm-2. 

4. Line 226: I presume you mean alpha and beta as in Equation 4, not a and b here? 

Response:  

Thank you for this comment. In our methodology, α and β are the initial regression 

coefficients derived directly from the Multiple Linear Regression (MLR) in each 

iterative step. In contrast, 'a' and 'b' represent the final, corrected adjustment factors that 

are used to update the emission inventory. 

These final factors (a, b) are derived from the initial coefficients (α, β) after a 

correction process that accounts for the goodness of fit and regression residuals. We 

have updated the methodology section to explicitly define 'a' and 'b' and to better 

describe how these adjustment factors are obtained. This clarification should improve 



the reader's understanding of our method. 

Revision in Section 4.1: 

If a regression is valid, the adjustment factors a and b are set to the new regression 

coefficients; if invalid, the factors are kept unchanged from the previous iteration. 
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