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Abstract. Simulations of dynamic global vegetation models (DGVMs) are typically conducted at a spatial resolution of 0.5°,
while higher-resolution simulations remain uncommon. This coarse resolution eliminates detailed orographic features and
hence, associated climate variability, which are especially pronounced in mountainous regions. The impact of disregarding
such variability on vegetation dynamics has not been thoroughly examined. In this study, we explore the differences in regionat
vegetation outcomes between the DGVM LPJ-GUESS simulations conducted at high and low spatial resolutions. Using the

CHELSA algorithm, we create an elevation-informed high-resolution climate dataset for a domain encompassing the European

Union, Distinctive features of this algorithm include orographic nature of formation of precipitation, a negative derivative of
temperatures with respect to elevation, and also, detailed consideration of shadowing and exposure of the terrain to the Sun
in computations of solar radiation. We design a custom experiment protocol and use it to perform simultationsLPI-GUESS
simulations on both resolutions. Comparative analysis reveals significant systematic discrepancies between the two resolutions.
In mountainous areas, all of the considered output variables show statistically significant differences. In particular, carbon
pools are smaller on the high resolution, with the total carbon pool being 37-39% smaller. Furthermore, we quantify the extent
to which the underrepresentation-under-representation of orographic climate variation affects regional predictions across the
European Union. This is expressed as a difference in the total value, which ranges from -3.8% for the net ecosystem productivity.

to 2.9% for the litter and soil C pools. These values are found to be comparable to differences caused by miss-representation
of water bodies and shorelines on the low resolution.

1 Introduction

The rapidly progressing climate change reinforces the urgency with which political and societal measures need to be imple-
mented to reduce greenhouse gas emissions and to mitigate further climate change as much as possible, while also considering
appropriate adaptation measures. Due to the complexity of general circulation models, global climate change projections are
still available only at very coarse spatial resolutions (> 0.5 degrees; e.g., Masson-Delmotte et al., 2021). These allow to assess
very well the basic response of the earth system to climate change?). But impacts of climate change on ecosystems and so-

cieties are felt locally; weather extremes in particular can happen at scales of few km, rather than tenths or hundreds of km.
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Many mitigation and adaptation measures that are being discussed rely on the ecosystem services provided by natural and
managed ecosystems (Shin et al., 2022; Smith et al., 2022). Their design and permanence require climate change projections
of a spatial resolution much closer to the spatial extents of the ecosystems under study. For instance, using the dynamic global
vegetation model LPJ-GUESS, Lagergren et al. (2024) explored how climate change and CO2 impacts of different vegetation

types in Fennoscandia would affect habitats of rare and threatened species and also how reindeer grazing (an important source

of income for the local population) would be affected. Another study based on LPI-GUESS simulated the negative impacts of
late-spring frosts on forest productivity, yielding a decline of NPP in frost years of around 50 % compared to non-frost years
(Meyer et al., 2024). High-resolution climate for these analyses provided important information on, e.g., seasonal and altitudi-
nal distribution of snowfall Lagergren et al. (2024) and minimum temperatures (Meyer et al., 2024). Similarly, in the Spanish
region of Catalonia 1km downscaled climate projections supported simulations of future productivity of a number of species
of wild edible mushrooms, which provide both large economic and recreational value (Morera et al., 2024). In this study, too,
the capability to resolve climate gradients in mountain areas underpins confidence in the projected patterns.

Several-downsealing-methods-exist-that- Downscaling methods can be applied to overcome the mismatch between coarse
global climate projections, and the fine-resolution needs of impact models (Karger et al., 2023). Fhe-potential-advantage

At present, terrain-informed downscaling could be executed by either regional climate models for dynamical downscaling,
or by topogaphic downscaling methods. Algorithms of the first class are very precise as they directly model physical and
chemical processes in the atmosphere. This comes with the disadvantage of being computationally slow, which makes their
Giorgi et al., 2009; Sgrland et al., 2021; Schir et al., 2020). Topogaphic downscalin
uses mechanistic relationships to turn low-resolution climatologies into high-resolution elimate datafaces various-computationat
ehallengesones based on knowledge of terrain. These relationships are guite simple and do not capture atmospheric effects
unrelated to topography, so_this class of algorithms fails to represent some small-scale effects, such as memory; run-time;

lication on large scales challengin

se-s convective precipitation (Karger et al., 2021). Also, topographic downscaling is characterized
by less computational complexity than that of dynamical downscaling. The two best performing and widely known topogaphic
methods are CHELSA (Karger et al., 2017, 2021, 2023) and PRISM (Daly et al., 1994, 1997). For this study we choose CHELSA
to perform downscaling for two reasons, First, we need a computationally fast algorithm as we examine a region covering the
whole of Europe. Second. out of the two best performing topogaphic downscaling methods, CHELSA provides the easiest way

to interpret the results from the point of view of atmospheric physics.
Here we present a downscaled climate product for the European region at 0.05° for use in climate change impact studies

(Sect. 3). The downscaling adopts the approach presented in Karger (2022) and Karger et al. (2023), and uses ISIMIP3b 0.5°
climate data (Lange and Biichner, 2021) to obtain their high-resolution counterpart. We used the downscaled data to force LPJ-

GUESS simulations and, applying an ensemble approach, tested whether systematic differences in simulated output emerged
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between fine and coarse resolutions (Sect. 4). Lastly, we evaluated the impact of this bias on the scale of European Union (Sect.
5). The work is part of an ongoing effort to incorporate a simplified downscaling method into LPJ-GUESS, which eventually

should allow users to downscale flexibly different climate projections for different regions.

2 Methods

2.1 CHELSA downscaling algorithm

CHELSA (Karger et al., 2017, 2021, 2023) is a family of semi-mechanistic algorithms designed to perform spatial downscaling
of near-surface climate data. Fhe-original-For this study, we choose CHELSA V2.1 presented in Karger et al. (2023) and its
original software implementation (Karger, 2022), that scales ISIMIP3b temperature, precipitation, and downwelling shortwave
radiation from an input resolution of 0.5° down to 0.0083(3)°. The code additionally requires 3D data from the CMIP6

ensemble (Jungclaus et al., 2019), as well as static data such as high-resolution surface elevation.

2.1.1 Temperature

For every low-resolution grid cell, the temperature is projected to the sea level via Eq. (1);

I =Ty =y(HZ> - HZy,), (D

where - is the lapse rate, T;;°* is the temperature to compute, %75 is the sea-level elevation, and T} and H{-Z;, are,
correspondingly, the temperature and elevation of the cell. The lapse rate +y is obtained by applying linear regression to CMIP6
pressure-level data. The projected values 7};°* are interpolated using B-splines to obtain high-resolution sea-level temperatures
(T3:%). For every high-resolution grid point, the surface temperature is computed using the interpolated values, the surface

elevation, the lapse rates and Eq. (2):

Th Tsea (HZ ﬂgsea)_ )

r

Elevation values are from the Global Multi-resolution Terrain Elevation Data 2010 (Danielson and Gesch, 2011), with the

spatial resolution of 30 arcsec. This method is used to downscale mean, maximum, and minimum daily temperatures.

2.1.2 Precipitation

CHELSA considers only oro-
graphic precipitation —Fhe-downsealing-acecountingfor-orographic-preeipitation-(Karger et al., 2023), which is done by com-

puting the wind effect index H for each high-resolution cell. This index reflects how much moisture gets pushed up towards

the top of a mountain as well as rain shadow in its leeward direction-—, and it is computed using u-wind and v-wind components
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from CMIP6 data. Those components were interpolated to the high-resolution grid with a B-spline, and then were projected
onto a world Mercator projection.

H=Hwy 2 dom <0x Hwr 2 dew, 20, v
n 1 —1 ( dwzi n 1 —1( drz:
Zi:l dw mi tan (d[“ivvfu) Zi:l e ran (dfgl)
HW — 1 + no 1 (4)
Dl T Lic1 T
no 1 —1( drz:
HL _ Zi:l In(dw m4) tan (d(xJ/VSHi) (5)

it W
=1 hl(dLHi)

where d ; and dj,p; denote the horizontal distances in windward and leeward direction, while dy, 7; and dj 7; are the

corresponding vertical distances. The summations in (4) and (5) are performed within a circle with the radius of 75 kilometers.

The H index is then corrected according to the atmospheric boundary layer height to account for the contribution of the
surface pressure level to the wind effect. Lastly, the low-resolution precipitation py, is multiplied by the corresponding H

indices and normalized to obtain high-resolution precipitations py;, so that within each low-resolution grid cell the sum of the

values py, remains equal to py, (see section Methods in Karger et al. (2021)).

2.1.3 Surface downwelling shortwave radiation (RSDS)

The total shortwave radiation, measured in W/ m2 is represented as (Karger-et-al;2023):-in Karger et al. (2023), Sect. 2.2.2:
Sn = (Ss + Sh+Se) (1 —7). (6)

Here, S; is direct solar radiation reaching the surface, computed according to the position of the Sun with respect to the
high-resolution grid cell. Diffuse solar radiation Sy, which is the energy re-emitted by the atmosphere, takes into account
the percentage of the sky that-is—visible-observable from a grid cell. Stis i

Computation of S, component starts with astronomical equations. For the sun elevation angle 8 , sun azimuth ¢ , latitude
)\ , the solar declination angle ¢ , the Julian day number J , hour / , and the hour angle in degrees w , we have the following:

sinf = cos Acosd cosw + sin Asind

cosdcosw — sinf cos A

cosy =

sin A cos @
_(360°284 + J]
§=2345- _—
sin ( - >
©=15°(12 h). @



Using these identities, cos~y is computed as
cosy = cos - sinf + sin 3 - cosf - cos(p — a), (8

where ~ is the angle between the Sun beam and the normal to the terrain, while « and 3 are surface slope and aspect.

Then, S, is computed using constants G.. = 1367 kW -m? , 7 = 0.8, and air optical thickness m defined in formula (13

of Karger et al. (2023):
Ss(h) =¢(h) G- 7™ - cosy. 9)

115

Diffuse solar radiation is calculated as.
S, = (0.271 — 0.2947™) G, Vs, (10)

120 where W, is the sky view factor computed as
N

1
U, = N Z[cosﬁcosgoi +sinBcos(P; — o) - (90 — ; — sinp; cos p; )] (11)
i=1

for NV = 8 azimuth directions ®; and the corresponding horizon angles ; .
rsds = S, (1—0.75 - clt>), (12)

where S, is an average of S,, over 24 hours, and ¢!t is the cloud cover computed according to formulas (19)—(22) Karger et al. (2023

To summarize this procedure, we note that the 5s and 5y, components are obtained by taking into account shadowing and
obstruction of light—Jn-theend;-Si-isreducedin-accordance-with-the cloud-cover produced-by-orography,whichis-ecaleulated-in
asimilarway-to2-12, the position of the Sun, the slope and the aspect of the terrain, and cloud cover resulting from orographic

125

130 2.2 Bootstrap hypothesis test

In Sect. 4, we try to find systematic differences between high and low resolutions by comparing the corresponding regional
averages of LPJ-GUESS output variables. We do this by testing if the mean values of the samples of the output variables are
equal on both resolutions. Since on the 2 resolutions LPI-GUESS produces outputs with different distribution variance, we
are interested in the mean values only instead of the whole distributions. In order to test whether two random samples come

135 from distributions having equal means, we employ the so-called bootstrap two-sample heterogenic location test (see Dikta and
Scheer, 2021, Sect. 4.3) and its implementation in R package boot (Angelo Canty and B. D. Ripley, 2024; Davison and Hinkley,
1997). Assume that there are two samples: X,, = {X7,...,X,,} and Y, = {V3,...,Y,,}. X,, is drawn from distribution F,
and Y, is drawn from G, where both distributions are univariate and have finite (but not necessarily equal) variances o, and

oy as well as mean values /i, and ji,,. The goal is to test null-hypothesis H,, against the alternative H,:

140 Ho:pgp =py VS Hazﬂw#uy (13)
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Following the standard bootstrap approach,
X, o i€ll,..on], and Y, je[l,...om], [€[l,...,L], (14)

are obtained via sampling with replacement from sets { X1,...,X,, } and {Y1,...,Y},} respectively, and bootstrap counterparts

of the sample means and variances are computed:
1 n 1 n
Xin==Y_Xi sim=—=> (X;—X},)°
Iin n 4 - lis l;x n—1 ( li l,n) ’
1=

=1
Y :izm:y*. 5*2:Lzm:( Y )2 (15)
lym m < - lg» Ly m—1 < ly lym
j:

j=1
Under H,, the following limiting result holds, which is used by the test:

(Xl)tn - X’ﬂ) - (Y/l;n - Ym) d Xn - Ym

T = — =T,
\/Sia/n+si2 /m \/$2/n+s2/m
when n—oo, n/m—X\ 0<A<oco L>n+m. (16)

T is used as a test statistic with the distribution of T*, providing a p-value for the difference of the two populations. Here,
the classical two-sided test is used: if 7" lies beyond 95% of the generated sample of 7 (no matter to which side), then the
null-hypothesis is rejected, otherwise— accepted.

We chose this test for two reasons. First, its only restriction on data-is-pessessing-the data is the existence of a finite variance,
which is justified by the conservation laws of physics. On the contrary, parametric tests, such as Z-test, require assuming at least
a certain distribution family, which is too constraining, as we apply the testing procedure to a number of different quantities.
Also, a standard t-test cannot be used due to differences in variations of samples we obtain— the low resolution data have
smaller variation than the high-resolution ones (see Sect. 4.2). Second, our data is-are too small to make use of the central limit
theorem; see Sect. 4-H)-4.1 for the setup of the experiment. In the context of studies of large regions over the historical period
1850-2014, LPJ-GUESS simulations are computationally demanding especially on the high resolution;-thus-, Because of this,
generating samples that contain more than 50-100 observations is-already-of averages in the Alpine region is a challenging task
on both 0.5° and 0.083(3)° resolutions. When the number of observations is larger, for example in regional studies, the central
limit theorem ensures convergence in law of the means of the two samples to normal distributions, and it becomes possible to

use Welch’s t-test (Welch, 1947) as a good alternative to the bootstrap test.
2.3 LPJ-GUESS
2.3.1 Model description

LPJ-GUESS is a process-based Dynamic Global Vegetation Model (DGVM) that incorporates ecosystem biogeochemistry,
water cycling, and tree demography (Smith et al., 2001, 2014). The model is able to simulate several types of land cover
and land use change (Lindeskog et al., 2013; Olin et al., 2015; Lindeskog et al., 2021). At any given geographical location



170

175

180

185

190

195

(gridcell), the different land cover types constitute separate stands, which share the same climate forcings. We restrict our test
here to a model configuration that only includes potential natural vegetation. In natural forest stands, vegetation is represented
as a mixture of woody Plant Functional Types (PFTs), divided into age classes or cohorts, and a grassy understory. Yearly
establishment of new cohorts is subject to prescribed bioclimatic limits, which are specific to each PFT. Trees and grasses
coexist in the same patch, which roughly represents the area of influence of one large, mature tree. Competition for avail-
able water, light and nutrients determines the daily rate at which each cohort absorbs atmospheric CO5. At the end of every
simulation year, the assimilated carbon is allocated to leaves, sapwood, or roots according to a set of PFT-specific allometric
constraints. Within the stand, horizontal heterogeneity is represented by simulating a number of replicate patches. Establish-

ment of new cohorts, death of individuals, and vegetation-destroying disturbances are modeled as stochastic processes, giving

rise to different successional histories for each patch. Wildfires-are-modeled-expheitly-Rabin-et-als2047—Ecosystem pools
and fluxes are estimated by averaging over patches. Wildfires are simulated explicitly with the SIMFIRE-BLAZE submodel
a proxy for vegetation cover. This is then used to model ignition stocastically, and calculate combustion rates and associated

carbon and nitrogen fluxes. A comprehensive description of the fire submodel is available in Molinari et al. (2021).
In this paper we used the ‘European Applications’ branch of LPJ-GUESS. This version differs from the standard (global)

version in that the PFTs are parametrized based on observed characteristics of common European species (Hickler et al., 2012;
Gregor et al., 2022, 2024).

2.3.2 Model modification

Stochastic events in LPJ-GUESS are triggered by the outcomes of a Random Number Generator (RNG). In the unmodified
version of the model code, each stand keeps its own random number sequence, which is initialized (seeded) with a hard-coded
value when the stand is created at the beginning of the simulation. This implies that all stands in the simulation derive their
stochasticity from the same random number sequence. However, ensemble experiments require that observations within the
ensemble are statistically independent. In order to emulate statistical independence of stands and gridcells between ensemble

realizations, we modified the model code to initialize each stand’s seed as follows:

Seed;gs = (1000000 + Ny - i+ g) - 1000 + s, an

where 7 =0,..., N — 1 identifies the simulation within the ensemble, Ny is the total number of gridcells in the simulation
domain, g =0,..., Ny — 1 runs over gridcells, and s = 0,...,999 is a unique stand identifier. This method ensures that each
stand in every realization of the ensemble draws random numbers from a different sequence, up to 1000 stands per gridcell.

We emphasize, however, that each gridcell contains only one natural vegetation stand in the present study.



3 Climate data downscaling
3.1 Data processing

The CHELSA algorithm was used to downscale ISIMIP3b mean, maximum and minimum daily temperatures, precipitation
200 rate, and downwelling solar radiation in the domain defined by A € [26.75°W,35.25°E]; ¢ € [34.75°N, 71.75°N], where A
and ¢ are geographical longitude and latitude, respectively. This domain encompasses the continental European Union plus
Norway, Iceland, Switzerland, the United Kingdom, the non-EU Balkan states, Moldova, Belarus, and parts of Ukraine, Russia,
Morocco, Algeria, and Tunisia. CHELSA generates one TIFF file per day for each of the input variables at an output resolution
of 0.0083(3)° (approximately 1km near the Equator). LPJ-GUESS simulations covering the target domain at this resolution
205 are computationally impractical. We thus first upscaled the files to 0.05° by taking the mean of every 6 x 6 block of adjacent
0.0083(3)° x 0.0083(3)° gridcells. This upscaled version was stored in NetCDF format. Gaps produced by missing days in
CHELSA’s output (~ 0.34% in the historical period, and fewer than 0.14% in the scenarios) were filled with previous day
values. The daily NetCDF files were stacked along the time dimension, and we added CF-compliant metadata (Hassell et al.,
2017). LPJ-GUESS simulates the whole target period in one gridcell before proceeding to the next location. To optimize data
210 retrieval by the model code, the stacked NetCDF files were rechunked along the time dimension. This operation rearranges
the internal structure of the file in a way that greatly enhances performance when reading the full time series at a single
spatial location. The resulting files underwent quality control, which included checking that there were no missing days,
ensuring that all values were non-negative, and manually assessing that annual mean values were reasonable. In addition to the
variables downscaled with CHELSA, we remapped ISIMIP3b near-surface wind speed and air relative humidity data to high
215 resolution by applying bilinear interpolation to the original files. These variables are required when running LPJ-GUESS with
the SIMFIRE/BLAZE fire model (Knorr et al., 2014, 2016; Rabin et al., 2017) (see Sect. 5). The CHELSA original algorithm

depends on a B-spline interpolation for wind, while we adopt here bilinear interpolation. Both techniques derive from the same

class-polynomial interpolation, and bi-linear interpolation is expected to capture better terrain heterogeneity. Relative humidit
is not included in the original CHELSA approach. The pipeline scripts were implemented in Bash Script and Python, and use

220 the NetCDF Operators (Zender, 2008) and the Climate Data Operators (Schulzweida, 2023).
The data is freely accessible through KIT/IMK-IFU’s thredds storage server {Otryakhin-and Belda; 2024 Otryakhin and Belda (2024

, and is made available under the CC BY-SA 4.0 license. Table 1 summarizes the properties of the dataset.
4 Ensemble experiment
4.1 Setup

225 This experiment aims to find systematic differences in regional predictions between low- and high-resolution LPJ-GUESS
simulations, arising from underrepresentation of orography-induced climate variability in the low-resolution forcings. To this

end, we ran two sets of ensembles of LPJ-GUESS simulations (high- and low-resolution) in selected study and control re-
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Table 1. Characteristics of the final downscaled dataset. Variable names follow the ISIMIP3b nomenclature: daily average temperature,
minimum, and maximum (‘tas’, ‘tasmin’, ‘tasmax’), precipitation (‘prec’), downwelling shortwave radiation (‘rsds’), wind speed (‘sfcwind’),

and relative humidity (‘hurs’).

Spatial resolution 0.05°

Temporal resolution Daily

Format NetCDF4

Variables (CHELSA) | tas, tasmin, tasmax, pr, rsds

Variables (interp) sfcwind, hurs
Spatial extent A € [26.75°W, 35.25°E]
¢ € [34.75°N,71.75°N]
Temporal extent 1850 — 2100
GCM MPI-ESM1-2-HR
SSP/RCP scenarios Historical, SSP1-2.6, SSP3-7.0, SSP5-8.5
Total size 1.3TB

Table 2. Characteristics of elevations in the study and the control regions computed using values from GMTED2010
Danielson and Gesch, 2011). All values are in meters.

Region H Min. ‘ 1st Qu. ‘ Median ‘ Mean ‘ SD ‘ 3rd Qu. ‘ Max.

0
69

748
81

1310
88.0

1369
100.4

761
44.5

1941
105.0

4505
860.0

Study

Control

gions. The simulations spanned the historical period 1850-2014. The low-resolution simulations were forced with ISIMIP3b

climate, while the high-resolution simulations were forced with the downscaled dataset. Both simulations use the same soil

roperties dataset, derived from the Digitized Soil Map of the World (Zobler, 1986), as in Sitch et al. (2003). In order to
revent introducing possible confounding factors, the soil information was not downscaled, and we kept nitrogen deposition
at a constant pre-industrial rate of 2kgNha~!year ! , We chose the Alps as our study region for its high variability in sur-

face elevation. The control region, located between the Dinaric Alps and the Carpathian Mountains, was chosen to contain

comparatively little mountainous terrain (Table 2), while being in close proximity to the Alpine region —TFhelatter-condition

was-and of approximately the same size. The climate between the Pannonian basin and the European alps naturally differs but

is still influenced by similar, large-scale circulation patterns that affect the European continent and the choice of the control
region intended to prevent significant global differencesin-climate-between-the-twe-areas. Figure 1 shows the study and control

regions overlayed on an elevation map. The gridcell centers were chosen such that any low-resolution gridcell contains a block
of 10 x 10 high-resolution gridcells, with no high-resolution gridcells outside these blocks (i.e., a perfect overlap of the high-

and low-resolution grids). Prominent water bodies were avoided.
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Figure 1. Study (violet) and control (green) regions for the ensemble experiment, overlaid on an elevation map based on values of
GMTED2010 (Danielson and Gesch, 2011). The centers of low-resolution gridcells are indicated by solid circles. The smaller dots mark
the location of the high-resolution gridcells. Elevation is encoded as a color gradient ranging from dark brown (low elevation) to white (high

elevation).

The experimental design is outlined in Fig. 2. We considered the regional averages of each modeled variable (Table 3),
evaluated in the last year of the simulation (2014), as random variables. We run 50 simulations per region and resolution, giving
rise to 44 ensembles of random variables (11 modeled variables/simulation X 2 resolutions X 2 regions), each containing 50
observations of its random variable. For a given region and resolution, the simulations were identically set up, but used a
different seed for the random number generator (see Sect. 2.3.2). Model runs were assumed to be independent and identically
distributed. We note that such an assumption is not imposed on pairs of ecosystem variables within the same model run. The
patch number was set to 20 in all simulations.

Let pp , pp, uS, and < denote the ensemble means of any of the modeled variables, with superscripts ‘S’ and ‘C” identify-
ing the study and control regions, and subscripts ‘hr’ and ‘Ir’ denoting high- and low- resolution. The question of whether there

are systematic differences between low- and high-resolution regional predictions in areas with high orographical variability

10
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High
resolution
cells
Xh
M,

Figure 2. Scheme of computations in the ensemble experiment. Here, X is the average of values at the end of the computation period

1850-2014 in the region, Ir and hr are the indicators of the low and high resolution correspondingl

are the sample mean estimates.

can be cast in terms of two formal hypothesis tests:

HS: . =3 (There are no differences in the study region)

vs

HS: 3 # 3, (There are differences in the study region), (18)

a

and

HE :pf). =y} (There are no differences in the control region)

vs

HE: ,ugr #* uf;, (There are differences in the control region). (19)

a

where the subscript ‘0’ denotes the null hypotheses and ‘a’ identifies the alternatives. We tested these hypotheses for every
variable by applying the bootstrap test method described in Sect. 2.2.

CHELSA conserves the amount of precipitation in the upscaled output by construction (Sect. 2.1.2), but does not impose such
constraint on mean temperature and radiation. In order to investigate the possible biases associated with this non-conservative
downscaling we repeated the above experiment, this time forcing the low-resolution simulations with CHELSA climate, up-
scaled back to 0.5° by spatially averaging the high-resolution data. This ensures that mean temperature, radiation and precip-

itation are the same on both resolutions. In addition, we wished to investigate the impact of fire disturbance on the results of

11



Table 3. List of ecosystem variables modeled by LPJ-GUESS that were included in the experiment. These include carbon fluxes (GPP, NPP,

and NEP), carbon pools (Clit, Csoil, Cveg, and Ciot), water cycle variables (Tr. and R.g), and vegetation structural variables (FPC and

LAI). The units refer to regional aggregates (for all variables except FPC and LAI) and regional averages (for FPC and LAI) of the selected

‘ Variable ‘ Description Units
GPP Gross Primary Productivity kgC - yr~—*
NPP Net Primary Productivity kgC-yr—*
NEP Net ecosystem productivity kgC-yr—*
Chit Amount of carbon stored in litter kgC
Csoil Amount of carbon stored in the soil kgC
Cueg Amount of carbon stored in above-ground vegetation kgC
Chot Total amount of stored carbon kgC

Tr. Ecosystem transpiration mm - yr~
Rog Runoff mm-yr
FPC Foliar Projective Cover m?.m~?
LAI Leaf Area Index m?-m~?

Table 4. Ensemble experiments carried out in Sect. 4. The experiments differ in the climate data used to force the low-resolution simulations

and on whether wildfires are allowed.

Experiment LR forcing Fire

13b/Fire ISIMIP3b On
uCH/Fire Upscaled CHELSA  On
uCH/NoFire | Upscaled CHELSA  Off

the above experiments. This was motivated by the fact that, in LPJ-GUESS, fire disturbance depends on the climate forcings
through the fire model (Rabin et al., 2017). To explore this effect we rerun the last experiment with fire switched off. The

characteristics of the three ensemble experiments are summarized in Table 4.
265 4.2 Results and analysis

The results of the first experiment (I3b/Fire) are shown in Table 5. We found statistically significant differences between the
means of the high- and low-resolution samples (65 := uﬁ — uﬁr) over the study region. The bootstrap test returned a p-value of

0 for all the variables, leading us to reject HS in favor of the alternative H?.

12
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Table 5. Results of the I3b/Fire experiment. The ensemble means and standard deviations are denoted p and o, respectively. The superscripts
S and C identify the study and the control regions, respectively. The subscripts hr and Ir denote high- and low-resolution. The § is used
for the difference between the low- and high-resolution ensemble means for the given region. The p° and p© denote the p-values for the
statistical tests defined by Eq. 18 and Eq. 19. The p* are the p-values for the test defined in Sect. 4.2. A bold font face is used to identify

tests with a p-value below the significance threshold. The ratios 8°/.$_, /.S, and 8°/5C are expressed as percentages.

GPP NPP NEP Chit Csoit Cueg  Chot Tr. Rog FPC LAI

7 0.96 0.52 -0.05 107 137 158 402 | 328 827 | 0.70 2.64
od. 0.0005 0.0003  0.0005 | 0.014 0.004 0.027 0.02 | 020 0.14 | 0.0006 0.002
s 1.19 0.66 -0.06 156 192 212 560 | 374 789 | 0.80 3.12
ol 0.006  0.003  0.005 | 0.154 0.058 0257 0.17 | 211 1.60 | 0.006  0.03
65 022  -0.13 001 | -492 -544 541 -158 | -457 381 | -0.10 -048
p° 0 0 0 0 0 0 0 0 0 0 0

85/,8, -23.4 -25.5 -15.3 -46.0 -39.6 -342 -392 | -139 4.6 -14.8 -18.3

s 108 050 008 | 727 893 174 336 | 402 445 | 082 314
o | 00007 00004 00013 | 0.026 0005 004 003 | 035 022 | 0001  0.005
S 107 049 008 | 722 888 172 332 | 395 425 | 081  3.13
o | 00073 00037 00114 | 0216 0041 045 033 | 3.14 196 | 0013  0.036
5C 0012 00055 -0.0014 | 0.050 0047 023 033 | 679 200 | 0004 0014
»° 0 0 041 | 010 0 0 0 0 o0 | 0022 0003
/e |12 1.1 47 | 07 05 13 10 | 20 40| 05 05
#pe | 18 24 o7 | o8 —116 —24 48 | -7 19 | —25 34
oo 0 o | o 0 0 o o o] o 0

In the control region all differences between ensemble means, §¢ := uf — ut,, are substantially smaller than their study
region counterparts, ranging from |§°/6C| ~ 7 in the case of NEP and Transpiration to ~ 116 in the case of Csy. For the
majority of the variables, the p-values indicate a statistically significant difference between ensemble means 6. For NEP and
Ciit, however, we found no evidence in the data to reject the null hypothesis H, OC This indicates that, for these two variables,
either there are no significant differences between #S and ng or the ensemble size is too small to detect them with a sufficient
confidence level. Figure 3 shows 65 and §€, as a fraction of iy, for all variables. Fhe-ensemble-mean-differences These values
in the study region have the opposite sign to those in the control region, with the exception of NEP and R.g.

An additional bootstrap test was run to check whether random variability in the control region could give rise to differences
between ensemble means as large as those seen in the study region. With low- and high-resolution values in place of X; and Y},

we generated the distribution of 7* from the left side of (16), and found the two-sided p-values using —|6°| and +|3%|. These
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Table 6. Results of the uCH/Fire experiment. Repeated symbols are as in Table 5. ’A(SS | and {—AéiHAAjfﬂware the changes in magnitude of

85 and 6€ with respect to I3b/Fire, expressed as a percentage.

GPP  NPP  NEP Cit  Cun Cus Ciw | To  Reg | FPC  LAI
ey 0.96 0.52 -0.05 11 14 16 40 | 328 827 | 070  2.64
ohy 0.0005 0.0003  0.0005 | 0.014  0.004 0.027 0019 | 020 0.14 | 0.0006 0.002
s 1.18 0.65 -0.06 155 185 21 55 367 791 | 0.81 3.12
ob 0.0055  0.003  0.004 0.15 004 022 015 | 214 15 | 0006 0.025
65 022 -0.13 0.01 4.8 48 55 <15 | -39 36 | -0.11  -0.48
P> 0 0 0 0 0 0 0 0 0 0 0
/s | 228 244 -141 452 351 348 377 | -120 44 | -159  -182
s 1.08 0.50 0.08 7.3 89 174 336 | 401 44 | 082 3.4
ot 0.0007 0.0004 0.0013 | 0.026 0.005 0.04 003 | 035 022 | 0.002 0.005
s 1.08 0.50 0.08 7.37 9 1747 338 | 402 48 | 082  3.15
ol 0.007  0.003  0.01 0.24 004 04 0.3 3.7 2 0.01 0.04
6¢ -0.004  -0.003  -0.0006 | -0.1 008 -009 -026 | -0.7 -42 | -0.002 -0.009
pC 0 0 0.75 | 0.0025 0 0.16 0 021 0 026 0.10
C/us. | 04 -0.6 -0.7 -1.4 09 05 -08 | 02 94| -03 0.3
#fc | 56 41 12| 49 63 6 8 | s6 -9 | 53 52
| o 0 o | o 0 0 o [ o o] o 0
|A6°| 0.73 1.3 27 1.8 11 1.8 4 14 5 11 0.04
|AG°| 133 156 57 299 263 138 180 | 110 310 | 154 166

tests returned a p-value pX = 0 for all variables, which strongly suggests that control-region differences as large as those found
in the study region could not be explained by mere random variability of the ensemble means.

Table 6 shows the results of the second experiment (uCH/Fire). All beestrap-bootstrap tests returned a p-value of 0 in
the study region, again indicating very strong evidence of a mean difference between high- and low-resolution outputs. In
the control region, 5 of 11 tests failed to reject the null hypothesis: NEP, Cyeg, Tr., FPC, and LAI Interestingly, the Cl;

test switched to returning a significant p-value. The relative differences between ensemble means in the study and control

regions, 65-and-6<-§5 /S and 0 /uS | are now both negative (Fig. 3) except for the high-resolution R.g . Runoff shows
the largest relative discrepancy with respect to the previous experiment, but the difference in absolute terms is very small.

This sign switch of 6© with respect to I3b/Fire suggests that CHELSA’s non-conservative properties introduce a bias of sign
opposite to the response of the model to the altitude-driven climate differences. The relative importance of this effect is much
larger over the control region, where it determines the sign of the overall difference §€. The change in magnitude of 6© with

AS©

, was between ~ 110% and ~ 310%, except for NEP (~ 57%). By contrast,

respect to I3b/Fire, Ad S| is much smaller,
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Figure 3. Mean difference between high- and low- resolution ensemble means, as a percentage of the high-resolution ensemble mean, over
the study region (a) and the control region (b). The different symbols represent the three experiments; I3b/Fire: low-resolution simulations
are forced with ISIMIP3b climate; uCH/Fire: low-resolution simulations are forced with upscaled CHELSA climate; uCH/NoFire: low-

resolution simulations are forced with upscaled CHELSA climate and fire is switched off.

ranging between ~ 0.04% and ~ 14%. This may explain the significance switch in the Cy;; test over the control region; the
non-conservative bias present in the I3b/Fire experiment nearly compensates the altitude-induced differences for this variable.
This brings the high- and low-resolution means closer together, which makes it more difficult to discern them. When this bias

is removed in uCH/Fire, the difference between ensemble means increases, and the bootstrap test is able to detect it.
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The outcome of the uCH/NoFire experiment is shown in Table 7. Like before, the impact on the control region is compara-

tively larger than in the study region, as shown by the values of ]A(SS’ and |A60 , and by the fact that some of the tests in the
control region returned switched p-values again.

We summarize the analysis described in this section as follows. It was demonstrated that high- and low-resolution simula-
tions produce significantly different average predictions over a study region with high elevation variability. Differences in the
control region were also detected, but they are much smaller than in the study region. Climate data downscaled with CHELSA
introduces a bias related to its non-conservative treatment of temperature and radiation. This bias is comparable in magnitude
to the altitude-related differences in the control region, but small in relation to the magnitude of the variables, and largely
inconsequential in the study region. When this bias was removed, average NEP, C\s, Tr., and FPC were indistinguishable
in the high- and low-resolution simulations. Fire was found to be a significant contributor to the ensemble mean differences in
the control region.

CHELSA-downscaled climate data is closer to observations than the original, coarse resolution data (Karger et al., 2021, 2023).

This motivates us to consider the difference between high- and low-resolution simulations as a systematic bias incurred when

running LPJ-GUESS at low resolution, arising from the underrepresentation of orographical climate variability.
5 Comparison of Europe-wide simulations

5.1 Setup

In order to assess the impact of systematic biases in low-resolution LPJ-GUESS outputs on a European-regional level, we ran

two simulations, at high and low resolutions, in the demain-speeified-in-European domain from Sect. 3.1 (Table 1). The input to

the model is as in the ensemble experiment, except now we use historical ISIMIP nitrogen deposition data (Tian et al., 2018).

Both simulations were fed with the original 0.5°x0.5° data. To capture coastline features and inland water bodies as accurately
as possible for each resolution, we drop the restriction of one-to-one correspondence between blocks of 10 x 10 high-resolution
gridcells and the low-resolution ones (see Sect. 4.1). The number of patches was set to 100 for both runs, and wildfires were

enabled.
5.2 Analysis and results

Forcing LPJ-GUESS with low-resolution climate data introduces a bias in average predictions, related to the underrepresen-
tation of climate spatial variability (Sect. 4). Figure 4 shows this climate-response bias for GPP, averaged over the 2010-2014
period. Similar maps for the rest of the variables can be found in the supplementary materials -—(Sect. 1Supplement-ot—;
Supplement to Comparison of Europe-wide simulations). The most prominent discrepancies concentrate over highly moun-
tainous regions, such as the Alps, the Spanish mountains and the Scandinavian Mountains. Large differences are also seen in

Iceland, where the rapidly changing elevation leads to high spatial variability above and below the low-resolution predictions.
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Table 7. Results of the uCH/NoFire experiment. Repeated symbols are as in Table 5. |A65 | and {—Aé%:téé\ﬂgre the changes in magnitude

of 6° and §° with respect to uCH/Fire, expressed as a percentage.

GPP  NPP  NEP Cie  Cuwn Cus Cix | Tt Rex | FPC  LAI
o 0.96 0.53 -0.05 11 14 16 40 | 328 827 0.7 2.64
ooy 0.0005  0.0003 0.0004 | 0.013 0005 002 001 | 02 0.16 | 0.0005 0.002
s 1.18 0.65 -0.06 16 19 21 55 | 368 791 | 0.81 3.12
op 0.005  0.003  0.005 0.18 0041 028 0.8 2 1.48 | 0.006  0.022
55 -0.22 0.13  0.007 -4.8 -4.8 55 <15 | 40 36 | -0.11  -0.48
P> 0 0 0 0 0 0 0 0 0 0 0
S/ | -22.6 244 -145 -45.1 350 348 376 | -121 43 | -159  -182
e 1.08 0.5 0.08 7.28 8.93 17 34 | 402 45 082  3.14
og. 0.0008  0.0004  0.0011 0.02 0004 0042 003 | 03 022 | 0.0014 0.004
s 1.08 0.5 0.08 7.36 9.01 17 34 | 402 49 082  3.15
ot 0.007  0.004 0.01 0215 0036 0381 03 | 35 199 | 0013 0.043
6€ -0.0004 -0.0011 -0.0016 | -0.08 -0.079 -0.055 -021 | -02 -46 | -0.003 -0.013
p© 0.63 0.09 0.26 | 0.0025 0 0.37 0 | 069 0 0.09  0.04
§C/us. | -0.04 -0.22 -1.9 -1.1 0.9 03  -06 | 005 -104 | -04 0.4
#fsc | 545 117 5 60 61 wo 71|25 8 | 36 39
I 0 0 0 0 0 0 0 0 o | o 0
|AsS| 0.14 0.08 2.7 0.09 004 018 0.08 | 0.53 028 | 0.09 023
|AG| 90 65 167 20 2.9 37 19 | 74 10 48 36

Additional bias results from the limitations of the low-resolution grid in representing areas around coastlines and inland

water bodies (Fig. 5). In a low resolution simulation, some gridcells protrude outside the coastline, thus covering some sea-

surface area (marked A), which is simulated as land. Similarly, the low-resolution grid cannot resolve small lakes, which

adds to the overestimation of land-surface area. By contrast, some land-surface areas close to the seashore (marked B) are

correctly accounted for in high-resolution simulations, but cannot be captured in low-resolution. In the European domain under

consideration, these two counteracting effects amount to a ~ 3.5% increase in simulated surface area in the low resolution

runs. This leads to a geegraphiealshoreline-representation bias in regional estimates.

Aggregating GPP across the domain yields an average of 7.01 PgCyr~! over the period 2010-2014 for the high-resolution
simulation, and 7.40 PgCyr~* for the low-resolution simulation (a 5-5%-5.6% increase). The climate-response and geographieat

shoreline-representation contributions to this increase are dc; = 2.1% and Sge5=-234%,

= 3.4% , respectively. Table 8

shows aggregate high- and low-resolution values for the rest of the selected variables. FThe-geographical-In this region, the

shoreline-representation bias is larger in magnitude than the climate-response bias for all variablesexeept-the-ecarben—pools
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Figure 4. Climate-response bias in low-resolution modeled GPP, calculated as the difference between the low- and high-resolution predic-
tions, averaged over the period 2010-2014. The value from every high-resolution gridcell was subtracted from the value in the corresponding
10 x 10 low-resolution block. Only fully overlapping low- and high- resolution gridcells are represented. Red indicates a higher GPP value

in the low-resolution run than in the high-resolution run.

{Crir+CsoirCvegand-Gror). The largest relative discrepancy is seen in Ci; a $0-3%-6.6% increase respect to the high-
resolution value, with contributions z;r—=-6-3% oo =40%-0; = 2.9% and dgn, = 3.7% (the bias in NEP is even larger.

but NEP is a very small quantity resulting from the difference of two large quantities (GPP and ecosystem respiration)

and hence very sensitive to small variations in either of those terms. In the case of aggregate runoff, the geographical-bias
(0geo="4"1% shoreline-representation bias (dg, = 4.1% ) and the climate-response bias (dc;; = —1.3%) act in opposite direc-
tions, adding up to a net total of d;.; = 2.8%. : i oed oorey: : §

be-separated-into-geographteat-and-The calculation of the climate-response eontributionstn-the same-manneras-the restof the

variablesand shoreline-representation contributions to the total bias is detailed in Appendix A.
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Figure 5. Three low-resolution gridcells (outlined in red) projected onto a high-resolution grid. A small lake and the coastline are represented
with black, thick lines. The sea is to the right of the coastline. Red-shaded regions (marked A) indicate areas that are considered land in low-
resolution simulations and water in high-resolution simulations. The blue-shaded area (marked B) is accounted for in a high-resolution
run, but not in a low-resolution run. Gray areas (marked C) are represented in both high- and low-resolution simulations. White areas are

considered water points in both simulations.

345 6 Discussion

t-Earlier work by Miiller and Lucht (2007).
showed little impact on model results when running the LPJ DGVM between 107 and 0.57, at 0.5 intervals, suggesting that a
resolution of 0.5 is still too coarse to account for relevant effects of spatial heterogeneity. Qur study suggests that the impacts
of resolution on the modeled output, linked to the influence of orography on the input climate, become noticeable at higher

350  resolutions. The relative importance of these effects strongly depends on the focus region. Europe-wide simulations show an

impact of resolution on aggregated ecosystem pools and fluxes of ~ 3% , likely smaller than the uncertainty derived from the
Schaphoff et al., 2006; Morales et al., 2007; Schurgers et al., 2018).

spread in climate forcings by different GCMs (see, €.

3

By contrast, these differences increase up to -~ 46% in an Alpine region. Additional bias may result from poor representation
of shorelines and small inland water bodies, but this effect could be mitigated by scaling the model output by the land-cover

355 fraction in the affected gridcells. In areas of low variability in surface elevation, the difference between LPJ-GUESS simutations:
outputs at different resolutions is much smaller and may be safely ignored in calculations involving regional averages of
ecosystem variables. For this type of studies, one could optimize the resource requirements of the simulations by using a
coarser resolution in areas with low elevation variability.
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Table 8. Comparison of domain-wide aggregates of selected ecosystem variables for the high- and low- resolution European simulations
(HR and LR, respectively). dtot is the total bias, dges-dsp, is the geographieatshoreline-representation bias, and d.y; is the bias arising from

the difference in climate forcings. Percentages are calculated with respect to the high-resolution values.

HR LR Stot SgeoOsha_ et
GPP 7.01 7.40 0.39 (55%5.6% ) 0.24 (3.4%) 0.15 (2.1%)
NPP  3:69-3.68 3:923.90 0:24-6-4%-0.22 (5.9% ) 0.12 (34%-3.3%) 63+136%-0.09 (2.6% )
NEP —0.405 —0:420-—0.434  —0:615(38%—0.029 (-7.3% ) —0.014 (—34%—3.5%) —6:002(04%—0.015(—3.8%)
Chit 64.1 70-7-68.3 6:6-10:3%4.2 (6.6%) 2:6-(4:6%-2.3 3.7%) 4646-3%-1.9 (2.9% )
Choil 72.0 786767 6:6(9-2%-4.7 (6.5% ) 2:743:-7%2.6 3.6%) 3:9454%2.1 (2.9% )
Cyeg  99+99.0 105-6-104.4 6546:6%5.4 (5.5% ) 34432%-3.0 3.1%) 34-(34%2.4 (2.4%)
Crot  235:1235.0 25482494 19-748-4%-14.4 (6.1% ) 84+36%-8.0 3.4%) H-3-48%6.4 (2.7%)
Tr. 2:322.322 2:44-2.412 6:09-3-7%-0.090 (3.9% ) 6:68-0.076 (3.3%) 6:6+-¢6-5%-0.014 (0.6% )
Rog 2.54 2:622.61 0.07 (2.8%) 0.10 (4.1%) —0.03 (—1.3%)
FPC  6:36-0.305 6:32-0.321 8:02-5-3%-0.016 (5.2% ) —0.011 (3.6% ) —0.005 (1.6% )
LAI 1.14 1.20 0.06 (5-4%-5.2% ) -0.04 (3.4% -0.02 (1.8%

The high-resolution simulations are-were performed on a grid that captures coastlines and water bodies more precisely,

360 and are driven by climate that is generally closer to the observed regional climate (see validation sections in Karger et al.,
2021, 2023). This motivates us to interpret these differences as systematic biases incurred when running LPJ-GUESS on a
coarse grid. As these effects are not related to intrinsic properties of LPJ-GUESS, we infer that predictions by other DGVMs

are likely to be affected in a similar manner. We note, however, that gridcells in LPJ-GUESS are independent from each

other (there is no lateral information ﬁow) and completely unaware of gr1dcell size. Henee;resolution-onty-affeets EPI-GUESS
sBy contrast, other models
may include processes, such as lateral matter transport, which are sensitive to the coarseness of the grid. This introduces an
additional dependence of the output on resolution, on top of the effects discussed in this study.

One possible mechanism underpinning the difference in modeled GPP between high- and low-resolution simulations in

365

areas with high elevation variability is the non-linear relationship between the mean gridcell temperature and the duration of
370 the grewth-growing season, which is dynamically calculated by LPJ-GUESS. The linear relationship between temperature and
elevation (Egs. 1 and 2) implies that air temperatures in higher parts of resolved mountainous areas are lower than the average
value in the corresponding low-resolution gridcell, causing a shorter grewth-growing season. The lower parts will, in turn,
experience a longer growth-growing season. The shorter growth-growing season in high areas leads to reduced productivity
and vegetation cover. Because of the non-linear response of the model to climate forcings, this is not fully compensated by

375 the additional productivity in the lower, warmer parts. A similar argument can be made for the photosynthetic rate, which
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is temperature-dependent. On the other hand, rainfall redistribution in the high-resolution grid may provide a counteracting
effect. CHELSA tends to concentrate the total amount of rainfall towards high-elevation areas to account for the influence of
orography on precipitation, which may reduce water availability for plant growth in the lower areas. Another counteracting
factor is the excess land simulated in a grid too coarse to resolve small inland water bodies. The interplay between these factors
will depend on the specific region being simulated, which emphasizes the complexity of the model’s response to orographical

and climate drivers.

between EP-GUESS-outputs-at-differentresolutions-is-muech-smaller;- There are many other modeled processes that respond
non-linearly to climate forcings. Leaf-level photosynthesis shows a saturating (as opposed to linear) response to absorbed

hotosynthetically-active radiation when not limited by RuBisCo production (see Haxeltine and Prentice, 1996, for a discussion of the scal

- Soil water transport follows a power law of available water content, which in turn depends on the amount of rainfall
(see Gerten et al., 2004). The amount of radiation reaching the forest floor, which determines potential establishment of new.
saplings, obeys an exponential law that depends on the forest canopy’s LAI (Monsi and Saeki, 1953, 2005). The decay rate of
C.in the different soil carbon pools is a non-linear function of soil temperature (driven by air temperature in the model) and

soil water content (which depends non-linearly on precipitation rate, as mentioned above; see description of the carbon cycle

submodel in Smith et al. (2014)).

The effect of fire on simulation results was found to be somewhat important, but not as strong as those of non-conservative
properties of CHELSA and differences in climate due to orography. The effect includes 2 parts. First, since ignition is
stochastic, the presence of the fire module may be able to increase the variation of the simulation results. Comparison of
the standard deviations in Tables 6 and 7 shows that this effect does not play a significant role. Second, fire is a rare but
destructive event which introduces changes in the potential vegetation structure. This could be one of the reasons why we see

the uCH/Fire one. In the study region on the high resolution, ignition is expected to occur more in valleys, which are warmer
and drier than mountain tops, thus the effect of reduced vegetation in mountainous areas should be decreased in the u~CH/NoFire
experiment. However, in Fig. 3 we see that the influence of fire on vegetation in the study region is negligible compared to the

influence of orography-induced climate difference.
Systematic biases in model outputs may arise as a consequence of differences in forcings other than resolution. For instance,

high-resolution simulations might be sensitive to the algorithm used to downscale the forcings. In the context of climate

change mitigation, correlations between different climate variables might influence relevant modeled variables (Zscheischler

et al., 2019). To give an example of mechanisms responsible for these correlations, we notice that at points where light is
obstructed, the temperature is lower than at neighboring points with no obstruction. Analogously, a spot with a significant

amount of precipitation would be colder and darker than the same spot without precipitation. Such correlations are not built
into univariate methods like CHELSA +-but can be captured by dynamical or multivariate downscaling methods. These methods
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are, however, generally more complex, and might require intensive use of computational resources. Therefore, it might be of
interest to find systematic differences between simulations forced by the different methods. This ean-be-written-as-thefellowing

., dyn _ CH,
Ho- X _MX7

vs

. dyn CH
Hypy™ #pxs

wey-and-control-eroup TSy 2, and

could be done with the help of the methodolo

X
presented in Sect. 2.2
and 4. A similar setup could also be employed to investigate systematic differences originating from alternative model

configurations. For example, one could assess whether the modeled impacts of two different forest managing strategies on

regional carbon sinks are significantly different from each other. In-the-langunage-of-hypothesis-testing:-

., TW __, st .
H, : pNEP = HNEP;

vs

. TW st
H, : up\Ep # WNEP:

7 Summary

In this paper we presented a high-resolution climate dataset for ecosystem modeling applications in Europe. We applied the
CHELSA semi-mechanistic algorithm to scale four ISIMIP3b scenarios (historical, SSP1-2.6, SSP3-7.0, and SSP5-8.5) from
an original resolution of 0.5° down to 0.05°. Further processing involved quality checks, rechunking to optimize time-series
retrieval at a single location, and the addition of CF-compliant metadata. The new dataset is provided in NetCDF format (one
file per variable), and is publicly accessible under a CC BY-SA 4.0 license.

We studied systematic differences between high-resolution LPJ-GUESS simulations, forced with the new dataset, and low-
resolution simulations. We found that low-resolution simulations are systematically biased. Two main sources of bias were

identified: (a) bias associated to the non-linear response of the model to orographical climate variability, and (b) bias associated
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to the poor representation of coastlines and inland water bodies on a coarse grid. While the latter may be mitigated by rescaling
the output by the land cover fraction in the affected gridcells, reducing the climate-response bias requires a finer grid resolution.
These sources of bias are independent of the downscaling algorithm, and apply to other DGVMs, insofar as their response
to climate forcings is non-linear. Climate-response bias can be very large in mountainous areas; low-resolution simulations
overestimated average predictions between ~ 4% and ~ 45% in an alpine region, as opposed to a mean bias of ~ 1.4% in a
nearly-flat control region. Biases as large as in the alpine region were shown to be vanishingly unlikely in the control region.
On a European scale, both-sourees-of-climate-response bias led to an overestimation of regional averages between—-2%-and
~10%-of ~ 3% . This suggests that --when-such-differences-arerelevant-a-finer resolution-over mountainous-areas;-coastline

and-intand-waterbodiesshould-be-considered—this type of bias is very sensitive to overall changes in elevation, and should be
accounted for when the focus region presents high orographical variability.

Code availability. The code base used in this work along with intemediate and final results are available in 10.5281/zenodo.14941305
(Otryakhin and Belda, 2025)

Data availability. The high-resolution climate data described in Sect. 3 is available in IMK-IFU storage

https://thredds.imk-ifu.kit.edu/thredds/catalog/catalogues/luc_and_climate_catalog_ext.html (Otryakhin and Belda, 2024).

Appendix A: Bias decomposition

Let X be a modeled variable, S x the aggregated value of X over the simulated domain, and the domain-average. In order
to calculate the climate-response and shoreline-representation components of the bias, we consider the following quantities
defined in the high resolution grid:

XHR - Value of the high-resolution output at grid point (3, §

. XER : value of the low-resolution output at grid point (4, 7) . We note that this value will be the same for all (¢, j) within

the same low-resolution gridcell (see Fig. 5).
3. A;; : Surface area of the gridcell at gridpoint (7, ) .

NLRHR

4. . . Overlap mask. It takes the value 1 at land points where low-resolution values and high-resolution values

overlap (gray cells in Fig, 5), and 0 everywhere else.

5. MERUR - Only high-resolution mask. It takes the value 1 at land points present in the high-resolution simulation, but
not present in the low resolution one (blue cells in Fig. 5) and 0 everywhere else.
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480

6. MEBHR - Only low-resolution mask. It takes the value 1 at land points present in the low-resolution simulation, but not
resent in the high resolution one (red cells in Fig. 5) and 0 everywhere else.

Al Regionally aggregated quantities

For regionally aggregated variables, such as the carbon fluxes and pools, the bias between high- and low- resolution outputs is:

7ZXHRA LR HR+MLR HR)

where the indices (7, j) cover the whole domain. In this equation, the first sum represents the regional sum of the low resolution
values, and the second term is the regional sum of the high-resolution values. Rearranging terms yields:

Sror= > (XPR— X Ay M me (A2)

g

6cli

LR 5 sJLR,HR HR 3 /LR, HR
JFZAij(Xz’j Mij *Xij Mij )

Cssho

The first term of the above equation, labeled as d¢; , involves values of X at overlapping gridcells exclusively (shown as gray
cells in Fig,. 5). Hence this term can be attributed to the difference in climate forcings between the two simulations. The second
term, labeled gy, , involves values of X at non-overlapping gridcells between the high- and low- resolution simulations. These
grideells are the red and blue gridcells from Fig. 5. and are associated with poor shoreline representation at low resolution.

A2 Regionally averaged quantities

The variables FPC and LAI in Sec. 5 are averaged across the domain, rather than aggregated. The bias in this case is calculated

as:
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S, Ay (MERHR 4 AR

)

where the first term is the low-resolution regional average, and the second term is the high-resolution regional average.
Rearranging terms yields

Oror = Ocli + Osho, (Ad)
where

- XLR A, pfLRAHR
(zgg: Zz,j 1] J 1] (AS)

LR,HR LR,HR
g g M)

HR 4 . LR,HR
B Zq‘,,inj AlJMij
LR,HR LR,HR\
Zi,inj(Mij +Mij )

and

 XLR 4. /LR.HAR
5sho _ Zz,] 1] J 1] (A6)

LR,HR LR,HR
> Aij (M5 + M)

HR 4  1sLR,HR
Zi,inj AijM;;

B LR.HR LR, HR~
g Ay M)
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