
Response to Reviewer 1

This study compares simulation output of the DGVM LPJ-GUESS using forcing data with different 

spatial resolution (approx.. 25 km² vs. approx.. 2500 km²). In particular, the authors emphasize on a 

comparison between two focal regions (one region with a high relief energy vs. another relatively 

flat region) as well as a pan-European simulation. The authors find that particularly in mountain 

regions (such as the Alps) the higher spatial resolution of the input data results in relatively large 

(up to almost 50%) differences in key output variables such as NEP, standing carbon mass, and 

LAI. Moreover, they emphasize on effects associated with coastal regions, where the coarse spatial 

resolution results in an overestimation of land-area and consequently related output variables, yet 

almost an order of magnitude lower as the effect reported for mountain regions. Based on this, the 

authors conclude that the biases introduced by coarse resolution should be taken into consideration 

when interpreting DGVM output since they rightfully claim this not to be a phenomenon 

specifically related to LPJ-GUESS.

As such, the study brings up an important aspect of dynamic vegetation modelling and consequently 

matches the scope of GMD very well. While I generally recommend publication of the study, the 

manuscript yet has to undergo substantial improvements regarding the overall structure and in 

particular the presentation of methods and results. In particular, I sometimes found the level of 

mathematical details overwhelming, whereas some textual parts of the manuscript lack sufficient 

detail to allow for reproduction of the approach. A general recommendation – in terms of readability 

– would therefore be to move mathematical deductions to the supplementary and elaborate textual 

descriptions. On a related note, I strongly recommend to transform the partly heavy tables into 

visual output (as done for Table 5 and Fig. 3) and present the tables in the supplementary. Finally, I 

wonder whether the effect of spatial resolution in coastal regions cannot be resolved more 

efficiently (see my specific comment on section 5.2 below).

We thank the reviewer for the overall positive assessment of our manuscript, and the detailed 

comments made, which have led to a substantial improvement of our draft. Please, find our replies 

in green text below. For quotations of the text we use Italic font, while the newly introduced 

amendments are in bold Italic.

In the following, I provide more specific suggestions on how to improve the manuscript. Once these 

issues have been resolved, the manuscript in my opinion is acceptable for publication. Please note, 

that since the line numbers are not continuous (only every 5th line is indicated) I mostly based my 

comments on section numbers and not line numbers.

 

Section 1:

The introduction is relatively short and would benefit from elaborating in depth, why higher 

resolution climate input is required to more accurately simulate ecosystems. For instance, examples 

on topographic effects on temperature and precipitation can be mentioned, as well as their 



consequences for simulating impacts of extreme events such as late-spring frosts and droughts.

Also, some relevant studies which have previously used high-resolution climate-data input for 

DGVMs deserve a mention. For instance, (Meyer et al., 2024) used a 250 m x 250 m spatially 

resolved thin-plate spline interpolation for single-point simulations as well as a downscaled 5 km x 

5 km set of forcing data for spatial simulations to better resolve the impact of late-spring frost 

which represents a phenomenon that requires high-resolution forcing data to account for small-scale 

variations in micro-climate as discussed in Meyer et al. (2024). Additionally, the work by (Levin, 

1992) and (Müller and Lucht, 2007) deserve a brief mention in the introduction and a discussion 

when interpreting the results. Müler and Lucht (2007) do not simulate at an as high spatial 

resolution as you do here, but they discuss the impacts of spatial resolution on simulation output, 

which is the main point of your paper.

Levin, S.A., 1992. The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award 

Lecture. Ecology 73, 1943–1967. https://doi.org/10.2307/1941447

Meyer, B.F., Buras, A., Gregor, K., Layritz, L.S., Principe, A., Kreyling, J., Rammig, A., Zang, C.S., 

2024. Frost matters: incorporating late-spring frost into a dynamic vegetation model regulates 

regional productivity dynamics in European beech forests. Biogeosciences 21, 1355–1370. 

https://doi.org/10.5194/bg-21-1355-2024

Müller, C., Lucht, W., 2007. Robustness of terrestrial carbon and water cycle simulations against 

variations in spatial resolution. Journal of Geophysical Research: Atmospheres 112. 

https://doi.org/10.1029/2006JD007875

Based on such an elaboration you may want to consider to present specific questions/hypotheses 

that your work addresses, e.g. that higher resolved climatic input allows for more precisely mapping 

spatial heterogeneity of key model output variables in mountainous/coastal regions. Thereby, 

readers would already get a better glimpse of the topics the paper actually touches.

Both the abstract and the introduction were elaborated. In particular, an overview of latest 

downscaling methods, an explanation of the physics behind CHELSA algorithm and a short 

summary of our findings were included. The abstract was augmented by adding the following text:

Distinctive features of this algorithm include orographic nature of formation of precipitation, a 

negative derivative of temperatures with respect to elevation, and also, detailed consideration of 

shadowing and exposure of the terrain to the Sun in computations of solar radiation. We design 

a custom experiment protocol and use it to perform LPJ-GUESS simulations on both resolutions.  

Comparative analysis reveals significant systematic discrepancies between the two resolutions. In 

mountainous areas, all of the considered output variables show statistically significant 

differences. In particular, carbon pools are smaller on the high resolution, with the total carbon 

pool being 37–39% smaller. Furthermore, we quantify the extent to which the under-

representation of orographic climate variation affects regional predictions across the European 

Union. This is expressed as a difference in the total value, which ranges from -3.8% for the net 

ecosystem productivity to 2.9% for the litter and soil C pools. These values are found to be 



comparable to differences caused by miss-representation of water bodies and shorelines on the 

low resolution.

We thank Reviewer 1 for bringing the additional studies to our attention. In the revised manuscript, 

we refer to Meyer et al., 2024 in the introduction, which provides a neat additional example for an 

LPJ-GUESS application that requires high-resolution data: 

For instance, using the dynamic global vegetation model LPJ-GUESS, Lagergren et al. (2024) 

explored how climate change and CO2 impacts of different vegetation types in Fennoscandia would  

affect habitats of rare and threatened species and also how reindeer grazing (an important source 

of income for the local population) would be affected. Another study based on LPJ-GUESS 

simulated the negative impacts of late-spring frosts on forest productivity, yielding a decline of 

NPP in frost years of around 50% compared to non-frost years (Meyer et al., 2024). 

Müller and Lucht demonstrated little impact on model results when running the DGVM LPJ 

between 10 and 0.5 degrees, indicating that the latter resolution is still too coarse to account for 

relevant effects of spatial heterogeneity.  We include these points in beginning of the revised 

discussion (Sect. 6) as follows:

Earlier work by Müller and Lucht (2007) showed little impact on model results when running the  

LPJ DGVM between 10◦ and 0.5◦, at 0.5◦ intervals, suggesting that a resolution of 0.5◦ is still too 

coarse to account for relevant effects of spatial heterogeneity. Our study suggests that the 

impacts of resolution on the modeled output, linked to the influence of orography on the input 

climate, become noticeable at higher resolutions. 

Section 2.1:

It is not clear whether this section describes a data source or an algorithm to process data (reading 

on, I understood it’s the latter). Please refine the section to make this clear. Recall, that CHELSA 

typically refers to a ready-to-use downscaled climate grid and most readers will likely initially 

interpret it as a data-set (as did I).

In line 45 there is an odd (3) behind the spatial resolution. I assume this is a LaTex typo.

We have changed the title of the section to “CHELSA downscaling algorithm”, so that it is clearer 

what exactly it describes. We note that the text of the Section unambiguously discusses the 

algorithm only. Specifically, the section starts with the following sentence:

CHELSA (Karger et al., 2017, 2021, 2023) is a family of semi-mechanistic algorithms designed to 

perform spatial downscaling of near-surface climate data.

At the same time, the section never mentions CHELSA data, which appears later in the text in 

Section 3.

As to (3), it is a common convention for denoting periodical decimals after the coma. For instance, 

1/3 = 0.3(3).

Section 2.1.1:



The adiabatic lapse rate depends on the moisture content, with more humid air featuring a lower 

lapse rate compared to dry air (roughly 0.65K/100m vs. 1K/100m). From the description, it seems 

you did not take this into consideration but simply used elevation and pressure to derive lapse rates. 

I wonder how much error is introduced by this approach and I propose to at least mention the 

applied lapse rate (dry vs. moist) and discuss the potential implications of this or ideally - if feasible 

- resolve it. But I understand that this might be too labor intensive, so possibly a thorough 

description and discussion is sufficient at this point. In any case, since this effect is larger in 

mountainous regions, i.e. where you reported the largest effect of topography, it deserves a critical 

discussion and suggestions for solutions in future work.

The applied lapse rate is not a constant “dry” or “moist” value. Instead, it is “empirically” 

calculated by CHELSA for each gridcell from the 3D information of the CMIP6 model. 

Specifically, the algorithm uses the difference in temperature values between atmospheric pressure 

levels at 850 and 950hPa to derive a daily average lapse rate, which is then applied to the surface-

interpolated temperature data, as described in Karger et al. (2023). For the details of CHELSA V2.1 

and its parametrization, we refer our readers to the original study in Karger et al. (2023).

Section 2.1.2:

The downscaling of precipitation is not reproducible. For instance, I wonder whether CMIP6 wind 

data is used to derive the wind effect index or whether this is a purely topographic measure. I guess 

the former, since otherwise luv and lee - which depend on wind direction - cannot be identified. So, 

this certainly needs to be better elaborated. Ideally, you add equations as for the previous section 

from which the actual data processing and input variables can be reproduced and refine the textual 

description of the processing.

We understand where confusion arises. To tackle it, we have elaborated the beginning of Section 2.1 

together with Section 2.1.2 to make them clearer.

We note that CHELSA algorithm we employ in this study is fully reproducible. We provide links to 

the original CHELSA articles where it was featured, as well as a link to the actual software 

implementation we use. To highlight these references, we added the following text in the beginning 

of Section 2.1:

For this study, we choose CHELSA V2.1 presented in Karger et al. (2023) and its original 

software implementation (Karger, 2022), that scales ISIMIP3b temperature, precipitation, and 

downwelling shortwave radiation from an input resolution of 0.5◦ down to 0.0083(3)◦.

In Section 2.1.2 we write that the precipitation algorithm is fully described in Karger et al. (2023 

and 2021). We also note, that since we use an algorithm that has been thoroughly described in 

separate scientific articles, there is no need to repeat exactly the same description in our article. 

Instead, we provide a brief explanation of how it works, and what physics it captures. A reader, 

interested in more details, can follow the links provided in our manuscript. Nevertheless, in order to 

give more insight into how downscaling of precipitation works, we include formulas for 

computation of index H together with a textual description (see Section 2.1.2 in the supplement to 

this reply).



Please note, that it is not recommended to use the same variable nomenclature for different 

variables. In section 2.1.1 ‘H’ refers to elevation, here ‘H’ refers to the wind effect index. Please 

revise.

This was fixed.

Section 2.1.3:

I do not fully get whether slope aspect and inclination are considered in the downscaling of rsds. 

Since this can make quite a difference in mountainous regions - which is a focal aspect of the paper 

- it should to the least be discussed and ideally implemented. But from the description on the 

'adjustment according to the surrounding topography' it is not clear whether slope and aspect are 

included, too. It rather reads as taking into consideration shadow effects but not slope aspect and 

inclination.

This Section was enlarged, and now includes a detailed explanation of how rsds downscaling 

works. See Section 2.1.3 in the appendix to this reply. In short, the downscaling procedure takes 

into account shadowing and obstruction of light, the position of the Sun, the slope and the aspect of 

the terrain, and cloud cover resulting from orographic precipitation formation. An interested reader 

can follow the link to the original CHELSA article Karger et al. (2023) in order to learn fine details 

of the algorithm.

General question: what spatial resolution does the underlying soil information have? Was this 

adjusted to match the spatial resolution of the forcing data? If not, this might explain some weird 

patterns observable in Fig. 4 (see my specific comment below).

Please include the relevant response already here.

The soil data was derived from the Digitized Soil Map of the World (Zobler, 1986; FAO, 1991), 

following Sitch et al. (2003). The underlying resolution is 0.5°x0.5°, like the climate used to feed 

the low resolution simulations. For the high-resolution simulations we used the same soil 

information at low-resolution to avoid introducing a confounding factor in the experiments. The 

same applies to the nitrogen deposition data used to force the European experiment (Tian et al. 

2018). We expanded the text to clarify these points:

(L164) The low-resolution simulations were forced with ISIMIP3b climate, while the high-

resolution simulations were forced with the downscaled dataset. Both simulations use the same 

soil properties dataset, derived from the Digitized Soil Map of the World (Zobler, 1986; FAO, 

1991), as in Sitch et al. (2003). In order to prevent introducing possible confounding factors, the 

soil information was not downscaled, and we kept nitrogen deposition at a constant pre-

industrial rate of 2 kgN ha-1 year-1. 

And for the European experiment:

(L242) The input to the model is as in the ensemble experiment, except now we use historical 

ISIMIP nitrogen deposition data (Tian et al. 2018). Both simulations were fed with the original 

0.5°x0.5° data.



Please, see also our response to the comment regarding Fig. 4.

Section 2.2:

This section lacks a clear rationale/message. The level of detail to which bootstrapping is explained 

is comparably high (and I wonder whether bootstrapping – which is a commonly applied procedure 

really needs that level of detail in the main text) but the purpose for running a bootstrapped 

hypothesis test is not clear. What is the main aim of bootstrapping and which data are used? Is this 

to show agreement or disagreement between the data from different spatial resolutions? This does 

not become clear the way it currently is presented.

And I wonder whether a wilcoxon rank-sum test (also known as Mann-Whitney U-test) would not 

perform equally robust since it has been designed for non-normally distributed data with low 

sample size.

In the beginning of Section 2.2, we added a few sentences explaining how we use the testing 

procedure later in our study:

In Sect. 4, we try to find systematic differences between high and low resolutions by comparing 

the corresponding regional averages of LPJ-GUESS output variables. We do this by testing if the  

mean values of the samples of the output variables are equal on both resolutions. Since on the 2 

resolutions LPJ-GUESS produces outputs with different distribution variance, we are interested 

in the mean values only instead of the whole distributions.

There are a couple of reasons for including a detailed description of the bootstrap test used in this 

study. First, bootstrap tests exist in many variants, and it is hard to find a single reference that would 

be easily readable by non-statisticians. Second, the test is one of the key components in our study 

protocol. In an analogous study, the downscaling techniques can be changed, but the hypothesis 

testing procedure may be changed only under very specific circumstances, e.g. if the number of 

simulations is much higher.

Our task is to test whether the mean values of 2 samples are equal while knowing nothing about the 

distributions behind the samples. In our case, the distributions of high- and low-resolution samples 

are always different. For this reason, we need a test of the class of two-sample heterogeneous 

location tests. Mann-Whitney U-test is designed to test if 2 samples come from the same 

distribution or that 1 of them is stochastically greater than the other. This test simply cannot answer 

our question.

Section 2.3.1:

In contrast to the previous sections, this section stands out due to its clarity in describing LPJ-

GUESS. I recommend to adopt the style of writing and presentation of methodological details from 

this section to the previous sections.

We introduced major changes in the manuscript in order to improve clarity.



Section 3:

I wonder why this section deserves its own main header (3). Why not simply adding this to section 

2 and term section 2 ‘material and methods’?

Section 2 describes existing methods that we adopted for our study without significant changes. 

Sections 3, 4 and 5 are our own work. Section 3 in particular describes the preparation of data for 

our experiment. This is not material that we had before we started the study.

Section 3.1:

I don't understand why you used a different downscaling approach for wind and relative humidity. 

Wind-speed is spatially quite heterogeneous so a detailed discussion on possibly introduced artifacts 

is certainly required if using a bilinear interpolation of wind-speed. Ideally, the authors would make 

suggestions on how to improve the downscaling of wind and relative humidity.

We did not use a different approach for these two variables. CHELSA algorithm uses B-spline 

interpolation for wind. We also use an interpolation, but in our case it is bi-linear. This is because 

CHELSA articles never mention the exact parameters for the B-spline. It is not so important 

because both techniques are from the same class- polynomial interpolation, and there is definitely 

no loss of heterogeneity since B-splines do not capture those effects in the first place. As for 

humidity, it is not a part of the CHELSA algorithm V2.1 that we use, so our downscaling method 

for humidity is not different from it. We added the following to Section 3.1:

The CHELSA original algorithm depends on a B-spline interpolation for wind, while we adopt 

here bilinear interpolation. Both techniques derive from the same class-polynomial interpolation,  

and bi-linear interpolation is expected to capture better terrain heterogeneity. Relative humidity 

is not included in the original CHELSA approach.

Sections 4 and 5:

I understand, that the authors decided to present the methodological approach for each of their two 

experiments before presenting the experiment outcome. Yet, I wonder whether these methodological 

aspects should not go into section 2 (to which section 3 is added, see my comment above) and then 

emphasize on the main findings in section 3 – the results. I personally would find this way of 

presentation more intuitive than the current version.

Sections 3, 4 and 5 present our original contribution. Experienced researchers in the field might 

wish to skip to this section and not to read Sections 1 and 2. Furthermore, we do not see the benefit 

of combining the Sections on methods, data preparation and the experiments into one section.

Section 4.1 – line 168: ‘The latter condition was intended to prevent significant global differences 

in climate between the two areas’ - This statement does not make sense. The Pannonian basin 

features a very distinct climate than the Alpine Arc. Yet, I wonder whether this similarity is really 

required or even possible for your analyses.



It was quite challenging to find a control region that is flat enough and at the same time comparable 

in size with Alpine region. We have modified the text in the beginning of Section 4.1 to make the 

choice of our control region more obvious to the reader:

The control region, located between the Dinaric Alps and the Carpathian Mountains, was chosen to  

contain comparatively little mountainous terrain (Table 2), while being in close proximity to the 

Alpine region and of approximately the same size. The climate between the Pannonian basin and 

the European alps naturally differs but is still influenced by similar, large-scale circulation 

patterns that affect the European continent and the choice of the control region intended to 

prevent significant global differences.

Very last statement on page 9: Only now it becomes clear why you applied a bootstrapping. As 

above, I recommend to restructure the methods section to link all of this related information more 

clearly, possibly in a specific section termed statistical evaluation or alike. And again, I wonder 

whether Wilcoxon rank-sum test might not also do the job. But this is more a philosophic question.

Regarding the Section on bootstraping, see our replies to the comment “Section 2.2”. As to 

restructuring, we refer to our answer to notes titled “Section 3” and “Sections 4 and 5”.

Line 190: why not running the whole experiment with these data from the very beginning? Please 

clarify why two different experiments are needed.

CHELSA is known to produce results that are close to the reality, but nonetheless it reveals a little 

bias. The latter is at least theoretically possible. We needed to prove that the difference in the Alpine 

region is due to the better representation of real climate, and not to the presence of bias. The results 

of the second experiment (Table 6 in the original manuscript) eliminate the influence of the 

potential bias on the differences, but their outcomes cannot be considered as realistic as those of the 

previous experiment. This is a simple and widely used control technique in statistical analysis, so 

we did not introduce additional explanations in the manuscript.

Section 4.2:

The tables presented in this section are difficult to digest and I wonder why tables 6 and 7 are not 

accompanied by figures as is table 5 with fig. 3. The authors may want to visualize tables 6 and 7 to 

then move the tables to the supplementary information and focus on the visual interpretation, which 

still can contain information on test-statistics if significance stars are added.

We chose to present the results of this section as tables as it allowed us to show all the necessary 

information in one place next to the text describing it. In comparison, the same results would 

occupy 8 separate images, which we would have to put in the appendix. This would make reading 

more tedious. But in case a reader needs visualizations, we provide the data in the supplementary 

materials, that can be used to either reproduce the table or to make the corresponding plots.



Table 5: While the table is quite informative, I personally find it to better fit into the supplementary 

information. Instead, I would add significance stars to Fig. 3 to make clear which variables showed 

a significant effect of the downscaling. In the text, I would also emphasize on the actual fractions 

observed, i.e. down to approx. -50% for the mountain region and only down to -10% for the 

Pannonian basin. This provides readers with a better relative impression on how much precision is 

gained for a given parameter when using finer-grained forcing data.

We placed Tables 5, 6 and 7 next to the text discussing values shown in those tables. This way, a 

reader would easily switch between the flow of ideas (text) and the source of data (table) and can 

easily make comparisons, e.g. between variables. Moving tables to the supplement would impede 

readability. A mere addition of stars to the image would be misleading- the plot depicts delta/mu_hr, 

while the statistical tests were for delta values, not delta/mu_hr.

Section 5.1:

Line 242: please indicate clearly which domain you're referring to. If you would move section 5.1 

to the methods you probably don’t have to make this link because you can generally describe your 

domain and then elaborate on the experiments.

As mentioned above, we find that the current structure of the manuscript benefits the readability and 

explanatory organization of our paper. However, to be clearer about the domain in question, we 

added the word “European” (as opposed to Alpine, study or control), and added a reference to the 

table where the coordinate box is specified. The text now reads:

In order to assess the impact of systematic biases in low-resolution LPJ-GUESS outputs on a 

European-regional level, we ran two simulations, at high and low resolutions, in the European 

domain specified in Sect. 3.1 (Table 1).

Figure 4: I wonder why the authors have chosen to not show fractions of the mean value as in 

section 4/Fig 3.

We chose to represent absolute change values on the map, rather than relative change values, to give 

the reader an impression of the magnitude of the figures involved. The tables contain also relative 

change values to give an idea of how large an effect the downscaled climate has on regional 

estimations. We feel that giving both values, absolute and relative, is more informative than sticking 

to only relative change values.

Moreover, it seems there are some weird pixels, e.g. in Norway or Finland, where a clear fingerprint 

of the LR data can be seen in between high delta values. I recommend the authors inspect these 

grid-cells to check for potential artifacts. Could this be related to the resolution of the underlying 

soil information in case this was not spatially downscaled? Did you downscale soil information?

These features are visible because the map in the figure represents the difference between the high 

resolution and the low resolution simulations, i.e., there is a low-resolution signal in the map, which 

is more visible in regions around the Alps or the Norwegian mountains. However, as pointed out by 



the reviewer, some of it might be related to the low-resolution input that we still use in the high-

resolution simulations, namely soil properties and nitrogen deposition data.

This comment prompted us to review the input data used in the high resolution simulation, and we 

realized we had made the mistake of downscaling the nitrogen deposition data for the high 

resolution simulation (this only concerns the European simulation, as the nitrogen deposition is kept 

constant in the stylized ensemble experiments). As pointed up above, downscaling the nitrogen 

deposition data introduced a confounding factor. We have therefore repeated the high resolution 

simulation, this time using the same low-resolution nitrogen deposition data as in the low-resolution 

simulation. To clarify these points, the text was modified as follows:

(L164) The low-resolution simulations were forced with ISIMIP3b climate, while the high-

resolution simulations were forced with the downscaled dataset. Both simulations use the same 

soil properties dataset, derived from the Digitized Soil Map of the World (Zobler, 1986; FAO, 

1991), as in Sitch et al. (2003). In order to prevent introducing possible confounding factors, the 

soil information was not downscaled, and we kept nitrogen deposition at a constant pre-

industrial rate of 2 kgN ha-1 year-1. 

(L242) The input to the model is as in the ensemble experiment, except now we use historical 

ISIMIP nitrogen deposition data (Tian et al. 2018). Both simulations were fed with the original 

0.5°x0.5° data.

Section 5.2:

Line 260: The climate effect alone is only 2.1%, i.e. much less compared to the topographic effect 

of mountains.

The "climate" effect referred to in this section is the effect derived from topographical downscaling 

in the previous section, whereas the "geographical" effect refers to that derived from the poor 

representation of the shorelines. We see how this choice of nomenclature can be confusing, so we 

propose to change the word “geographical bias” with “shoreline representation bias”.

The climate effect when considering the full European domain is smaller than the value derived for 

the Alpine region because in the former simulation there are large areas with low elevation 

variability that keep the overall bias lower in relative terms. We continue this discussion and 

describe the pertinent changes to the text in the next answer.

Since the geographic effect seems to be dominant (3.4 % vs. 2.1 %), I wonder whether this bias 

cannot be accounted for by adjusting the values for coastal grid-cells according to actual land-mass. 

So, in your example of Fig. 5 the output of the northeastern LR-grid-cell could be weighed by a 

factor of 1-25/64 (25 out of 64 grid cells are water pixels) to better represent the actual land-mass 

contribution in coastal regions. This might be a more efficient way of treating spatial effects in 

coastal regions. So, for coastal regions there might be a relatively quick fix to improve simulation 

accuracy, since the remaining 2.1 % of climate effects probably are within the ballpark of general 

uncertainty of DGVMs. This aspect deserves more attention in the discussion, i.e. the current 

section 6 (which I would intuitively see as section 4). For mountain regions I however fully agree, 



that a spatial downscaling is required to improve accuracy given the comparably stronger effects.

We fully agree with the reviewer’s observation that the shoreline bias could be mitigated by simply 

rescaling the low-resolution model output in those gridcells by the fraction of land area, given as an 

extra input to the model. However, some gridcells may have both water and high elevation 

variability, in which case downscaling the climate would be more appropriate. A criterion of 

whether to downscale a specific gridcell based only on elevation variability, independently of the 

shorelines, plus a rescaling of the model output on low-resolution shoreline cells by the fraction of 

land-surface area, as suggested, would completely address this problem.

We also agree that the climate-induced bias in the wider European region is comparatively small. 

Studies have shown that the spread of climate models used to force DGVMs leads to substantial 

uncertainty in carbon budget estimations (see citations in the modified text below). The impact in 

mountainous regions is much higher, and must be accounted for when the region of interest presents 

high orographical variability.

We have addressed these points by expanding the discussion as follows:

(L270) Earlier work by Müller and Lucht (2007) showed little impact on model results when 

running the LPJ DGVM between 10◦ and 0.5◦, at 0.5◦ intervals, suggesting that a resolution of 

0.5◦ is still too coarse to account for relevant effects of spatial heterogeneity. Our study suggests 

that the impacts of resolution on the modeled output, linked to the influence of orography on the 

input climate, become noticeable at higher resolutions. The relative importance of these effects 

depends strongly on the focus region. Europe-wide simulations show an impact of resolution on 

aggregated ecosystem pools and fluxes of  3%, likely smaller than the uncertainty derived from ∼

the spread in climate forcings by different GCMs (see, e.g., Schaphoff et al., 2006; Morales et al.,  

2007; Schurgers et al., 2018). By contrast, these differences increase up to  46% in an Alpine ∼

region. Additional bias may result from poor representation of shorelines and small inland water  

bodies, but this effect could be mitigated by scaling the model output by the land-cover fraction 

in the affected gridcells. In areas of low variability in surface elevation, the difference between 

LPJ-GUESS outputs at different resolutions is much smaller and may be safely ignored in 

calculations involving regional averages of ecosystem variables. For this type of studies, one 

could optimize the resource requirements of the simulations by using a coarser resolution in 

areas with low elevation variability.

Additionally, the summary was modified as follows:

(L323) We studied systematic differences between high-resolution LPJ-GUESS simulations, forced 

with the new dataset, and low-resolution simulations. We found that low-resolution simulations are 

systematically biased. Two main sources of bias were identified: (a) bias associated to the non-

linear response of the model to orographical climate variability, and (b) bias associated to the poor  

representation of coastlines and inland water bodies on a coarse grid. While the latter may be 

mitigated by rescaling the output by the land cover fraction in the affected gridcells, reducing the  

climate-response bias requires a finer grid resolution. These sources of bias are independent of 

the downscaling algorithm, and apply to other DGVMs, insofar as their response to climate 

forcings is non-linear. Climate-response bias can be very large in mountainous areas; low-



resolution simulations overestimated average predictions between ~ 4% and ~ 45% in an alpine 

region, as opposed to a mean bias of ~ 1.4% in a nearly-flat control region. Biases as large as in 

the alpine region were shown to be vanishingly unlikely in the control region. On a European 

scale, climate-response bias led to an overestimation of regional averages of ~ 3%. This suggests 

that this type of bias is very sensitive to overall changes in elevation, and should be accounted for  

when the focus region presents high orographical variability.

Line 267: I do not fully understand why LAI and FPC cannot be quantified in a similar manner. 

Please elaborate.

We thank the reviewer for pointing this out. This was a mistake on our part. Indeed, LAI and FPC 

can be separated into climate-input and shoreline-bias contributions. We have added the details of 

the calculation as an appendix to the manuscript, and attached it to this document as well (please see 

below)

Section 6:

I personally believe, that the topographic effect is more important than the coastlines based on your 

results shown above. In the Alps you showed fractions up to 50% deviation from the mean, whereas 

the effects of coastlines at most were 10.3 % which could partly be resolved by accounting for 

actual land-mass within the LR grid-cell (see my comment section 5.2 above). This aspect deserves 

more attention (see also my comment above).

Please refer to our comment above.

Line 276: I don't get the implication of this sentence. Why should it not affect other models? And 

below you even state that other models should be affected, too. Please clarify.

With this sentence we wanted to highlight that internal processes in LPJ-GUESS are not sensitive to 

gridcell size, and LPJ-GUESS gridcells are completely independent of each other. This might not be 

the case for other models. If there is, for example, lateral flow of matter between gridcells, the 

model processes themselves will be sensitive to the resolution of the grid, and hence the climate 

effects discussed in this paper will be entangled with those of the lateral information flow. In other 

words, all models whose processes are non-linear with respect to the climate forcings will be 

affected through the different, downscaled input as discussed in the manuscript, but those with 

lateral information flow will be additionally affected through the gridsize dependence on lateral 

transport processes.

We suggest the following rephrasing to make this point clearer in the manuscript:

We note, however, that gridcells in LPJ-GUESS are independent from each other (there is no lateral  

information flow) and completely unaware of gridcell size. Hence, resolution only affects LPJ-

GUESS simulations through the resolution of the input data, which is not necessarily the case for 

other models. By contrast, other models may include processes, such as lateral matter transport, 

which are sensitive to the coarseness of the grid. This introduces an additional dependence of the  



output on resolution, on top of the effects related to higher resolution climate forcings discussed 

in this study.

Instead of ‘growth season’ I would refer to ‘growing season’

We thank the reviewer for the suggestion. We have implemented this change in our revised 

manuscript.

Line 283: Spatial PFT realization is likely affected, too, beyond productivity and vegetation cover 

in general. Please include this aspect into your discussion.

In this study we focused on evaluating the likely magnitude of the impact of resolution on 

aggregated diagnostics. The spatial PFT distribution was consistent between the two simulations, 

but a full evaluation of species distribution, including a comparison with observations and with 

results of previous versions of the model, will be the object of future work.

Line 293: See my comment above. It should be possible to weigh the output achieved for coastlines 

according to the actual land fraction of a coarse grid cell. This does not resolve topographic effects 

but for coastlines it should do the job. Please discuss.

We refer the reviewer to the related comment above.

Line 300-316: I wonder whether this level of mathematical detail is required for a hypothetical 

framework which is designed for a future study. It does not really harm to have it, but it distracts 

from the actual point of the current manuscript and the discussion of its findings. I therefore suggest 

to simplify this paragraph and omit the theoretical/mathematical framework.

We agree with this point of view, and we have significantly simplified the end of the section by 

removing the proposed testing protocol and mathematical notation, while leaving only short textual 

description of the proposed studies. The revised section now reads:

Systematic biases in model outputs may arise as a consequence of differences in forcings other than  

resolution. For instance, high-resolution simulations might be sensitive to the algorithm used to 

downscale the forcings. In the context of climate change mitigation, correlations between different 

climate variables might influence relevant modeled variables (Zscheischler et al., 2019). To give an 

example of mechanisms responsible for these correlations, we notice that at points where light is 

obstructed, the temperature is lower than at neighboring points with no obstruction. 

Analogously, a spot with a significant amount of precipitation would be colder and darker than 

the same spot without precipitation. Such correlations are not built into univariate methods like 

CHELSA but can be captured by dynamical or multivariate downscaling methods. These methods 

are, however, generally more complex, and might require intensive use of computational resources. 

Therefore, it might be of interest to find systematic differences between simulations forced by the 

different methods. This could be done with the help of the methodology presented in Sect. 2.2 and 



4. A similar setup could also be employed to investigate systematic differences originating from 

alternative model configurations. For example, one could assess whether the modeled impacts of 

two different forest managing strategies on regional carbon sinks are significantly different from  

each other.
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Response to Reviewer 2

Otryakhin et al. applied downscaling to the meteorological input data for LPJ-GUESS and assessed 

the impact of using high- versus low-resolution climate data on model outputs. They statistically 

evaluated the differences introduced by the orographic downscaling by comparing mountainous and 

relatively flat regions, demonstrating that differences in model outputs due to climate data 

resolutions are more pronounced in mountainous areas. The statistically robust approach presented 

in the manuscript provides valuable insights not only for researchers applying downscaling 

techniques, but also for those using coarse-resolution climate data. For example, it provides 

information for evaluating whether statistical errors arising from the coarseness of climate data fall 

within the range of uncertainties caused by other factors, such as model parameterization or 

variability in input data.

I recommend this manuscript for publication in GMD; however, I request a major revision due to 

several concerns. While the writing is mostly logical and clear, there are sections where the lack of 

detail makes it difficult to fully understand the methodological flow from approach to results. 

Although the statistical procedures are described in detail, the downscaling method, the core aspect 

of the study, is not explained clearly. Individual comments are provided below. I believe that the 

revised manuscript will be suitable for publication in GMD.

We thank the reviewer for the positive assessment of our work and valuable suggestions, which we 

think have contributed to the increase of quality and clarity of our manuscript. We address those 

comments below and use green text for our replies. For quotations of the text we use Italic font, 

while the newly introduced amendments are in bold Italic.

Major comments:

L4-9

The abstract seems too simple. It should elaborate more on the unique aspects of this study, the 

insights gained, and its advantages. Specifically, the differences in climate variables caused by 

elevation gradients and their effects on the model should be clearly described. The introduction is 

similar in this regard. It would benefit from more detailed information that is linked to the 

experimental design. Since the analysis to investigate the effects of elevation differences is well-

executed, it would be better to explicitly explain how high-resolution climate data influences 

dynamic vegetation models.

We augmented the abstract by adding insights into the downscaling method used and the key results 

of the study:

Using the CHELSA algorithm, we create an elevation-informed high-resolution climate dataset for 

a domain encompassing the European Union. Distinctive features of this algorithm include 

orographic nature of formation of precipitation, a negative derivative of temperatures with 

respect to elevation, and also, detailed consideration of shadowing and exposure of the terrain to 

the Sun in computations of solar radiation. We design a custom experiment protocol and use it to  

perform LPJ-GUESS simulations on both resolutions. Comparative analysis reveals significant 



systematic discrepancies between the two resolutions. In mountainous areas, all of the considered 

output variables show statistically significant differences. In particular, carbon pools are smaller 

on the high resolution, with the total carbon pool being 37-39% smaller. Furthermore, we 

quantify the extent to which the under-representation of orographic climate variation affects 

regional predictions across the European Union. This is expressed as a difference in the total 

value, which ranges from -3.8% for the net ecosystem productivity to 2.9% for the litter and soil 

C pools. These values are found to be comparable to differences caused by miss-representation of  

water bodies and shorelines on the low resolution.

In the introduction, we added an overview on modern downscaling methods and put our study into a 

broader context of research of vegetation response to high-resolution climate forcings as follows: 

Downscaling methods can be applied to overcome the mismatch between coarse global climate 

projections, and the fine-resolution needs of impact models (Karger et al., 2023). At present, 

terrain-informed downscaling could be executed by either regional climate models for dynamical  

downscaling, or by topogaphic downscaling methods. Algorithms of the first class are very 

precise as they directly model physical and chemical processes in the atmosphere. This comes 

with the disadvantage of being computationally slow, which makes their application on large 

scales challenging (Giorgi et al., 2009; Sørland et al., 2021; Schär et al., 2020). Topogaphic 

downscaling uses mechanistic relationships to turn low-resolution climatologies into high-

resolution ones based on knowledge of terrain. These relationships are quite simple and do not 

capture atmospheric effects unrelated to topography, so this class of algorithms fails to represent 

some small-scale effects, such as convective precipitation (Karger et al., 2021). Also, topographic 

downscaling is characterized by less computational complexity than that of dynamical 

downscaling. The two best performing and widely known topogaphic methods are CHELSA 

(Karger et al., 2017, 2021, 2023) and PRISM (Daly et al., 1994, 1997). For this study we choose 

CHELSA to perform downscaling for two reasons. First, we need a computationally fast 

algorithm as we examine a region covering the whole of Europe. Second, out of the two best 

performing topogaphic downscaling methods, CHELSA provides the easiest way to interpret the 

results from the point of view of atmospheric physics.

Regarding explanation of how high-resolution climate data influences dynamic vegetation models, 

establishing the exact mechanisms of how high-resolution climate changes the vegetation dynamics 

was not one of the objectives of our study. In this paper, we rigorously prove that the vegetation 

dynamic does change when resolution increases, and we discuss what processes may be involved in 

this, but we do not analyze which processes play significant roles in that and which ones do not. 

Thus, we do not mention these processes in the introduction, since it is not a major part of our study.

Section 2.1

It would be better to include a justification for the selection of CHELSA. Clarifying the differences 

from dynamic downscaling methods would help make the objectives of this study clearer.

Please, see our comment above.



The version of CHELSA used in the study should be specified.

The CHELSA version used is V2.1 (we have added this information at the beginning of the revised 

Sect. 2.1).

L16

The authors mention local extreme weather events, but is the downscaling approach used in this 

study capable of reproducing such events? For instance, how accurately can CHELSA represent 

localized extreme precipitation caused by topographic effects, and what specific types of events can 

it capture?

Yes, downscaled data represents extreme events better than low-resolution ones. Consider a 50-by-

50 km gridcell with a narrow tall mountain chain. Due to the mechanism of orographic 

precipitation, wind pushes moisture from a large area towards the top of this chain, so that a large 

portion of water precipitates in a small area. On the low resolution, precipitation per square meter 

may be just slightly above average, but on the high resolution it may be extreme because of the size 

of the low-resolution gridcell. Another effect happens to the temperature. Since it is averaged on the 

low resolution, we cannot observe late spring frosts in high altitudes, which will be present on the 

high resolution. We decided not to go into details of this topic since local weather extremes have not 

been studied in the CHELSA setting. We leave it for future studies.

Precipitation in methods

What is the spatial resolution of the satellite data? In the manuscript, some information such as 

climate variables is summarized in tables. It may be helpful to include this information in a table as 

well. Overall, the description of the downscaling methods is ambiguous. In particular, for 

precipitation and shortwave radiation, additional details are needed to ensure reproducibility. It is 

necessary to include a clear explanation of how low-resolution data are distributed across the high-

resolution grid cells (e.g., Eq. 24 in Karger et al., 2023).

We checked once again the main reference for our version CHELSA V2.1 and also confirmed with 

the CHELSA team, that satellite data is not used in this version. The associated text was removed. 

We largely added details for the CHELSA method to improve the general understanding of it. See 

the updated Sections 2.1.2 Precipitation and 2.1.3 Surface downwelling shortwave radiation 

(RSDS) in the appendix at the end of this document. We note that, the CHELSA algorithm is 

reproducible in any case, as we provided the reference to the main article on the algorithm, and also 

included a link to the exact software implementation. In this work, we strive to give the working 

understanding of the downscaling method, rather than a thorough recipe for replicating it. An 

interested reader can follow the references, read file Readme, download the source code and data, 

and study the fine details of the algorithm.

L68-76

It is difficult to understand from the presented equations how the downscaling from low to high 

resolution is actually performed.



We added a more detailed description of the method in the revised manuscript. See the updated 

Section 2.1.3 Surface downwelling shortwave radiation (RSDS) in the appendix at the end of this 

document. We refer to the original article on CHELSA V2.1 (Karger et.al, 2023) for more 

information. 

L88-89

Is Equation (6) essential? The statistical testing is described in detail, whereas the downscaling 

method lacks sufficient explanation, leading to an imbalance in the presentation.

We believe that equation (6) is required to unambiguously define variables in equation (7). We 

enlarged the description of the downscaling methods, please see our responses above.

L101

It is unclear whether the “50-100 observations” refer to the number of grid cells at the downscaled 

or raw resolution. This should be stated more explicitly. Also, is this number limited by 

computational constraints? In Fig. 8, for instance, a simulation is performed at the European scale, 

so a more detailed explanation would be helpful.

We made clarifications in Sect. 2.2 explaining that “50-100 observations” refers to the regional 

averages of values computed over the period 1850 – 2014. We made a note that this limitation arises 

from the computational constrains. Whenever we do simulations at the European scale, we make it 

only 1 time on each resolution.

To clarify this point, the text was modified as follows:

In the context of studies of large regions over the historical period 1850–2014, LPJ-GUESS 

simulations are computationally demanding especially on the high resolution. Because of this, 

generating samples that contain more than 50–100 observations of averages in the Alpine region 

is a challenging task on both 0.5◦ and 0.083(3)◦ resolutions.

L118-119

Since the manuscript includes fire on–off experiments, it should include a more detailed explanation 

of the fire-related processes to enhance clarity and reproducibility.

We expanded on the description of the fire model within the context of the LPJ-GUESS model 

description. The fire model is composed of two submodels: the SIMFIRE model to estimate burned 

area annually, and the BLAZE model to simulate wildfire ignition stochastically and calculate CO2 

and N fluxes. The text now reads:

(L118) Wildfires are simulated explicitly with the SIMFIRE-BLAZE submodel (Knorr et al., 

2014, 2016; Rabin et al., 2017). The potential burned area for each gridcell is calculated 

annually as a function of land cover type, meteorological information, and the fraction of 

absorbed photosynthetically-active radiation (FAPAR) as a proxy for vegetation cover. This is 

then used to model ignition stochastically, and calculate combustion rates and associated carbon 

and nitrogen fluxes. A comprehensive description of the fire submodel is available in Molinari et 

al. (2021).



Fig. 2

It might be helpful to provide more information, such as what i represents and the sample size.

We changed the caption as follows:

Figure 2. Scheme of computations in the ensemble experiment. Here, X is the average of values 

at the end of the computation period 1850–2014 in the region, lr and hr are the indicators of the 

low and high resolution correspondingly, i = {1, .., 50} is the experiment id, μ’s are the sample 

mean estimates.

4.2 Results

It would be helpful to illustrate the characteristics of both the high-resolution and low-resolution 

climate data, for example using maps. This would make it easier to understand how downscaling 

affects climate variables, especially in regions with significant elevation differences.

Overall, the results are presented primarily as statistical information, but it would be helpful to also 

show the spatial differences visually using graphs or maps.

That is a very interesting topic. As a matter of fact, it is very hard to fully represent climate as a map 

because daily data is very dynamic--- there are lots of differences from day to day. Our historical 

dataset include about 60 000 days on the European scale, so visualization of every day is 

impossible. Averaging over time periods would smooth out this variation, so climates on both 

resolutions would look quite alike. An even stronger smoothing effect would happen after spatial 

averaging, so that analysis of time series is not possible this way. At the same time, this daily 

dynamics is what makes a difference in vegetation simulations. Therefore, we have a classical big 

data problem: we know the mechanics behind the dataset, but cannot inspect the data thoroughly. 

Partially, this problem was investigated in the CHELSA papers we cite (Karger et.al 2017, 2021, 

2023). These works explain the mechanisms behind the differences of climatologies on both 

resolutions and provide daily maps as examples. Of course, they also do not provide an exhaustive 

list of differences since they proceed from known causes to evidence, and cannot catch differences 

of unknown causes. We do not do the same investigation here, because we would like to avoid 

repetition.

In any case, the results are presented as maps in Sect. 5 with the images provided in the 

Supplementary material. Sect. 4 has a different purpose and is primarily focused on the rigorous 

proof that there are significant differences between resolutions. 

The statistical explanation of the errors arising from differences in resolution was very clear. Has 

the study examined whether using downscaled climate data improves the agreement between model 

simulations and observed fluxes?

If so, a brief description of this result would help strengthen the justification for using downscaled 

climate data in the modeling framework.



In this study, we have not investigated whether using downscaled climate data improves the 

agreement between model simulations and observed fluxes. Although this is a very important task,  

our study concerns itself with evaluating the differences between modeled outputs on high and low 

resolution. We note that the downscaled climate is closer to climate observations, so if the model 

output on low resolution was closer to observed fluxes, that would suggest that the model needs 

recalibration or revision. In any case, we leave this for future research.

Table 3

Aren’t the units of fluxes kgC m ² yr ¹? Isn’t stored carbon expressed on an area basis?⁻ ⁻

The units on this table refer to regional aggregates and averages of the variables, which is the focus 

of our study. Hence, the units are not on a per-area basis, even if the raw model output is. We now 

clarify this in the table's caption:

"List of ecosystem variables modeled by LPJ-GUESS that were included in the experiment. These 

include carbon fluxes (...), carbon pools (...), water cycle variables (...), and vegetation structural 

variables (...). The units refer to regional aggregates (for all variables except FPC and LAI) and 

regional averages (for FPC and LAI) of the selected variables."

Are the characteristic outputs of a DGVM, such as vegetation transitions, not evaluated in this 

study?

In this study we focused on evaluating the likely magnitude of the impact of resolution on 

aggregated diagnostics. The spatial PFT distribution was consistent between the two simulations, 

but a full evaluation of species distribution, including a comparison with observations and with 

results of previous versions of the model, will be the object of future work.

Fig3:

Roff showed remarkable difference between experiments in Fig. 3(b). Roff exhibited a notable 

difference between experiments in Fig. 3(b). Could you clarify the cause of this discrepancy?

The discrepancy is only in relative terms. The Roff values in the different experiments are actually 

very similar in absolute terms in the control region, ranging from 42.5 to 49 mm/y (see tables  

Therefore, a small difference between experiments of a few mm per year amounts to a large 

difference in relative terms. In the study region, the differences are much larger (~40mm/year), but 

smaller in relative terms because Roff in those regions is much larger. We draw attention to the 

small absolute Roff difference between the experiments by including the following text (L216):

“The differences between ensemble means in the study and control regions, δS and δC, are now 

both negative (Fig. 3). Runoff shows the largest relative discrepancy with respect to the previous 

experiment, but the difference in absolute terms is very small. This sign switch...”

L234



The discussion on the contribution of fire appears somewhat abrupt. Could you clarify why fire is 

considered to have a significant impact? Additionally, if fire events are infrequent, wouldn't 

ensemble averaging tend to smooth out their influence? 

Fire is a rare but destructive event, so ensemble averaging does not necessarily have to smooth out 

its influence. Because of this, we wanted to check whether it played an important role.

We added the following paragraph in section Discussion on the contribution of fire to LPJ-GUESS 

results:

“The effect of fire on simulation results was found to be somewhat important, but not as strong 

as those of non-conservative properties of CHELSA and differences in climate due to orography. 

The effect includes 2 parts. First, since ignition is stochastic, the presence of fire module is 

supposed to increase variation of the simulation results. Comparison of the standard deviations 

in Tables 6 and 7 shows that this effect does not play a significant role. Second, fire is a rare but 

destructive event which introduces changes in the potential vegetation structure. This could be 

one of the reasons why we see more variables with statistically indistinguishable muC_hr and 

muC_lr in the uCH/NoFire experiment than in the uCH/Fire one. In the study region on the 

high resolution, ignition is expected to occur more in valleys, which are warmer and drier than 

mountain tops, thus the effect of reduced vegetation in mountainous areas should be decreased 

in the uCH/NoFire experiment. However, from Fig. 3 we see that the influence of fire on 

vegetation in the study region is negligible compared to the influence of orography-induced 

climate difference.”

Is geographical bias a particularly important and non-negligible source of uncertainty for the 

processes simulated by LPJ-GUESS?  

Our results in Table 8 show that geographical bias is 3%-4% on the European scale, which is 

comparable to the climate-response bias (0.6%-3.8%). Together, these 2 sources constitute the total 

bias of up to 7%, which by far exceeds the standard deviation of the sample for almost all output 

variables. Therefore, this total bias might be a significant confounding factor in future studies 

involving statistical tests on samples of DGVM outputs. Also, please see our response under the 

question about the carbon budget calculations.

L265:

How were delta(cli) and (geo) calculated?

Please, see the appendix attached to this file for the details of this calculation. We will also include 

it as an appendix in the revised version of the manuscript.

In carbon budget calculations, the proportion of land cover within each grid cell is usually taken 

into account, so the error in the climate response would appear to be the more important factor.

We thank the reviewer for this observation. Scaling by land cover fraction is a very good 

approximation in gridcells that have both a fraction of water and small altitude variability. This is 

not always the case (as, eg., in the northern parts of the coast of Norway). We agree, however, that 



rescaling would work for most shoreline gridcells. A criterion for wether to downscale a particular 

gricell based only on elevation variability (independently of whether the gridcell in question 

contains water) would completely address this problem. We have expanded our discussion by 

including the following paragraph, where we mention this issue in the context of a broader 

discussion of the impact of resolution on model outputs:

(L270) Earlier work by Müller and Lucht (2007) showed little impact on model results when 

running the LPJ DGVM between 10◦ and 0.5◦, at 0.5◦ intervals, suggesting that a resolution of 0.5◦ 

is still too coarse to account for relevant effects of spatial heterogeneity. Our study suggests that 

the impacts of resolution on the modeled output, linked to the influence of orography on the input 

climate, become noticeable at higher resolutions. The relative importance of these effects depends 

strongly on the focus region. Europe-wide simulations show an impact of resolution on aggregated 

ecosystem pools and fluxes of  3%, likely smaller than the uncertainty derived from the spread in ∼

climate forcings by different GCMs (see, e.g., Schaphoff et al., 2006; Morales et al., 2007; 

Schurgers et al., 2018). By contrast, these differences increase up to  46% in an Alpine region.∼  

Additional bias may result from poor representation of shorelines and small inland water bodies, 

but this effect could be mitigated by scaling the model output by the land-cover fraction in the 

affected gridcells. In areas of low variability in surface elevation, the difference between LPJ-

GUESS outputs at different resolutions is much smaller and may be safely ignored in 

calculations involving regional averages of ecosystem variables. For this type of studies, one 

could optimize the resource requirements of the simulations by using a coarser resolution in 

areas with low elevation variability.

We now also mention this point in the summary:

(L323) We studied systematic differences between high-resolution LPJ-GUESS simulations, forced 

with the new dataset, and low-resolution simulations. We found that low-resolution simulations are 

systematically biased. Two main sources of bias were identified: (a) bias associated to the non-

linear response of the model to orographical climate variability, and (b) bias associated to the poor  

representation of coastlines and inland water bodies on a coarse grid. While the latter may be 

mitigated by rescaling the output by the land cover fraction in the affected gridcells, reducing the  

climate-response bias requires a finer grid resolution. 

L297 “correlations”

While I can infer the intended meaning, it would be better to explain it in more concrete terms.

In the real world, climate variables are correlated with each other. For example, at points where 

light is obstructed, the temperature is lower than that at neighboring points with no obstruction. 

Analogously, a spot with significant amount of precipitation would be colder and darker than the 

same spot with no precipitation.

CHELSA processes all climate variables independently of each other, possible correlations between 

variables that might exist in the physical world are not factored in by the algorithm. These 

correlations, however, might be built-in in more complex algorithms, and will likely be captured by 

dynamical downscaling, because it simulates the full physics of the system. To clarify this point, we 

modified the text as follows:



(L296) In the context of climate change mitigation, correlations between different climate variables  

might influence relevant modeled variables (Zscheischler et al., 2019). To give an example of 

mechanisms responsible for these correlations, we notice that at points where light is obstructed, 

the temperature is lower than at neighboring points with no obstruction. Analogously, a spot 

with a significant amount of precipitation would be colder and darker than the same spot without  

precipitation. Such correlations are not built into univariate methods like CHELSA but can be 

captured by dynamical or multivariate downscaling methods.

L278-290

The discussion lacks sufficient consideration of the model processes. While nonlinear responses are 

mentioned, it remains unclear how the model processes and the downscaled climate inputs interact 

and what specifically leads to the nonlinear responses. Is the influence of climate variables other 

than temperature not addressed in the discussion?

We agree with the reviewer that the discussion between lines 278-290 focus almost exclusively in 

the impact of temperature differences on productivity, although the redistribution of precipitation in 

the high-resolution grid is also mentioned. We suggest adding the following text to highlight the 

influence of radiation and precipitation on the modeled processes.

[L289] “The interplay between these factors will depend on the specific region being simulated, 

which emphasizes the complexity of the model’s response to orographical and climate drivers. 

There are many other modeled processes that respond non-linearly to climate forcings. Leaf-

level photosynthesis shows a saturating (as opposed to linear) response to absorbed 

photosynthetically-active radiation when not limited by RuBisCo production (see Haxeltine and 

Prentice, 1996, for a discussion of the scaling of leaf-level photosynthesis to canopy-level 

productivity). Soil water transport follows a power law of available water content, which in turn 

depends on the amount of rainfall (see Gerten et al. 2004). The amount of radiation reaching the  

forest floor, which determines potential establishment of new saplings, obeys an exponential law 

that depends on the forest canopy’s LAI (Monsi and Saeki, 1953, 2005). The decay rate of C in 

the different soil carbon pools is a non-linear function of soil temperature (driven by air 

temperature in the model) and soil water content (which depends non-linearly on precipitation 

rate, as mentioned above; see description of the carbon cycle submodel in Smith et al., 2014).

L300-315

The proposed testing protocol in this section lacks specificity and its necessity is questionable. The 

statistical tests already presented in methods are sufficient to serve as reference information for 

other future studies. If a new approach is to be proposed, it would be better presented in text rather 

than as equations.

We agree with this point of view, and we have significantly simplified the end of the section by 

removing the proposed testing protocol and mathematical notation, while leaving only short textual 

description of the proposed studies. The text was modified as follows:

These methods are, however, generally more complex, and might require intensive use of 

computational resources. Therefore, it might be of interest to find systematic differences between 

simulations forced by the different methods. This could be done with the help of the methodology 

presented in Sect. 2.2 and 4. A similar setup could also be employed to investigate systematic 



differences originating from alternative model configurations. For example, one could assess 

whether the modeled impacts of two different forest managing strategies on regional carbon 

sinks are significantly different from each other.

Minor comments:

L45 “(3)”

That is likely a typographical error.

Not at all. It is a common notation for a periodic decimal. E.g., 1/3=0.3(3).

References:

Gerten, Dieter, Sibyll Schaphoff, Uwe Haberlandt, Wolfgang Lucht, and Stephen Sitch. “Terrestrial 

Vegetation and Water Balance—Hydrological Evaluation of a Dynamic Global Vegetation Model.” 

Journal of Hydrology 286, no. 1 (2004): 249–70. https://doi.org/10.1016/j.jhydrol.2003.09.029.

Haxeltine, A., and I. C. Prentice. “A General Model for the Light-Use Efficiency of Primary 

Production.” Functional Ecology 10, no. 5 (1996): 551–61. https://doi.org/10.2307/2390165.

Karger, Dirk Nikolaus, Olaf Conrad, Jürgen Böhner, et al. “Climatologies at High Resolution for the 

Earth’s Land Surface Areas.” Scientific Data 4, no. 1 (2017): 170122. 

https://doi.org/10.1038/sdata.2017.122.

Karger, Dirk Nikolaus, Adam M. Wilson, Colin Mahony, Niklaus E. Zimmermann, and Walter Jetz. 

“Global Daily 1 Km Land Surface Precipitation Based on Cloud Cover-Informed Downscaling.” 

Scientific Data 8, no. 1 (2021): 307. https://doi.org/10.1038/s41597-021-01084-6.

Karger, Dirk Nikolaus, Stefan Lange, Chantal Hari, et al. “CHELSA-W5E5: Daily 1&thinsp;Km 

Meteorological Forcing Data for Climate Impact Studies.” Earth System Science Data 15, no. 6 

(2023): 2445–64. https://doi.org/10.5194/essd-15-2445-2023.

Knorr, W., L. Jiang, and A. Arneth. “Climate, CO2 and Human Population Impacts on Global 

Wildfire Emissions.” Biogeosciences 13, no. 1 (2016): 267–82. https://doi.org/10.5194/bg-13-267-

2016.



Knorr, W., T. Kaminski, A. Arneth, and U. Weber. “Impact of Human Population Density on Fire 

Frequency at the Global Scale.” Biogeosciences 11, no. 4 (2014): 1085–102. 

https://doi.org/10.5194/bg-11-1085-2014.

Molinari, Chiara, Stijn Hantson, and Lars Peter Nieradzik. “Fire Dynamics in Boreal Forests Over 

the 20th Century: A Data-Model Comparison.” Frontiers in Ecology and Evolution 9 (September 

2021). https://doi.org/10.3389/fevo.2021.728958.

Monsi, Masami, and Toshiro Saeki. “On the Factor Light in Plant Communities and Its Importance 

for Matter Production.” Japanese Journal of Botany 14, no. 1 (1953): 22--52.

Monsi, Masami, and Toshiro Saeki. “On the Factor Light in Plant Communities and Its Importance 

for Matter Production.” Annals of Botany 95, no. 3 (2005): 549–67. 

https://doi.org/10.1093/aob/mci052.

Morales, Pablo, Thomas Hickler, David P. Rowell, Benjamin Smith, and Martin T. Sykes. “Changes 

in European Ecosystem Productivity and Carbon Balance Driven by Regional Climate Model 

Output.” Global Change Biology 13, no. 1 (2007): 108–22. https://doi.org/10.1111/j.1365-

2486.2006.01289.x.

Müller, Christoph, and Wolfgang Lucht. “Robustness of Terrestrial Carbon and Water Cycle 

Simulations against Variations in Spatial Resolution.” Journal of Geophysical Research: 

Atmospheres 112, no. D6 (2007). https://doi.org/10.1029/2006JD007875.

Rabin, Sam S., Joe R. Melton, Gitta Lasslop, et al. “The Fire Modeling Intercomparison Project 

(FireMIP), Phase 1: Experimental and Analytical Protocols with Detailed Model Descriptions.” 

Geoscientific Model Development 10, no. 3 (2017): 1175–97. https://doi.org/10.5194/gmd-10-1175-

2017.

Schaphoff, Sibyll, Wolfgang Lucht, Dieter Gerten, Stephen Sitch, Wolfgang Cramer, and I. Colin 

Prentice. “Terrestrial Biosphere Carbon Storage under Alternative Climate Projections.” Climatic 

Change 74, no. 1 (2006): 97–122. https://doi.org/10.1007/s10584-005-9002-5.

Schurgers, Guy, Anders Ahlström, Almut Arneth, Thomas A. M. Pugh, and Benjamin Smith. 

“Climate Sensitivity Controls Uncertainty in Future Terrestrial Carbon Sink.” Geophysical Research 

Letters 45, no. 9 (2018): 4329–36. https://doi.org/10.1029/2018GL077528.



Smith, B., D. Wårlind, A. Arneth, et al. “Implications of Incorporating N Cycling and N Limitations 

on Primary Production in an Individual-Based Dynamic Vegetation Model.” Biogeosciences 11, no. 

7 (2014): 2027–54. https://doi.org/10.5194/bg-11-2027-2014.

Zscheischler, Jakob, Erich M. Fischer, and Stefan Lange. “The Effect of Univariate Bias 

Adjustment on Multivariate Hazard Estimates.” Earth System Dynamics 10, no. 1 (2019): 31–43. 

https://doi.org/10.5194/esd-10-31-2019.



B

A

C

A

Figure 1: High- and low- resolution gridcells overlayed on the high resolution
grid. The low-resolution gridcells are outlined in red. The thick black line
represents the shoreline. Gray: areas present in the low-res simulation but not
in the hi-res simulation. Blue: Areas present only in the hi-res simulation. Red:
Areas present only in the low-res simulation.

1 Bias decomposition
Let X be a modeled variable, SX the aggregated value of X over the simulated
domain, and µX the domain-average. In order to calculate the climate-response
and shoreline-representation components of the bias, we consider the following
quantities, defined in the high resolution grid:

1. XHR
ij : Value of the high-resolution output at grid point (i, j).

2. XLR
ij : Value of the low-resolution output at grid point (i, j). We note that

this value will be the same for all (i, j) within the same low-resolution
gridcell (see Fig. 1.

3. Aij : Surface area of the gridcell at gridpoint (i, j)

4. M
LR,HR

ij : Overlap mask. It takes the value 1 at land points where low-
resolution values and high-resolution values overlap (gray cells in Fig. 1),
and 0 everywhere else.

5. M
LR,HR

ij : Only high-resolution mask. It takes the value 1 at land points
present in the high-resolution simulation, but not present in the low res-
olution one (blue cells in Fig. 1) and 0 everywhere else.

1



6. M
LR,HR

ij : Only high-resolution mask. It takes the value 1 at land points
present in the low-resolution simulation, but not present in the high res-
olution one (red cells in Fig. 1) and 0 everywhere else.

1.1 Regionally aggregated quantities
For regionally aggregated variables, such as the carbon fluxes and pools, the
bias between high- and low- resolution outputs is:

δ = SLR

X − SHR

X (1)

=
∑

i,j

XLR

ij Aij(M
LR,HR

ij +M
LR,HR

ij )

−

∑

i,j

XHR

ij Aij(M
LR,HR

ij +M
LR,HR

ij ),

where the indices (i, j) cover the whole domain. In this equation, the first sum
represents the regional sum of the low resolution values, and the second term is
the regional sum of the high-resolution values. Rearranging terms yields:

δ =
∑

i,j

(XLR

ij −XHR

ij )AijM
LR,HR

ij

︸ ︷︷ ︸

δcli

(2)

+
∑

i,j

Aij(X
LR

ij M
LR,HR

ij −XHR

ij M
LR,HR

ij )

︸ ︷︷ ︸

δsho

.

The first term of the above equation, labeled as δcli, involves values of X at over-
lapping gridcells exclusively (shown as gray cells in Fig. 1). Hence this term
can be attributed to the difference in climate forcings between the two simula-
tions. The second term, labeled δsho involves values of X at non-overlapping
gridcells between the high- and low- resolution simulations. These gridcells are
the red and blue gridcells from Fig. 1, and are associated with poor shoreline
representation at low resolution.

1.2 Regionally averaged quantities
The variables FPC and LAI are averaged across the domain, rather than aggre-
gated. The bias in this case is calculated as:

δ = µLR

X − µHR

X (3)

=

∑

i,j X
LR
ij Aij(M

LR,HR

ij +M
LR,HR

ij )
∑

i,j Aij(M
LR,HR

ij +M
LR,HR

ij )

−

∑

i,j X
HR
ij Aij(M

LR,HR

ij +M
LR,HR

ij )
∑

i,j Aij(M
LR,HR

ij +M
LR,HR

ij )
,
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where the first term is the low-resolution regional average, and the second term
is the high-resolution regional average. Rearranging terms yields

δ = δcli + δsho, (4)

where

δcli =

∑

i,j X
LR
ij AijM

LR,HR

ij

∑

i,j Aij(M
LR,HR

ij +M
LR,HR

ij )
(5)

−

∑

i,j X
HR
ij AijM

LR,HR

ij

∑

i,j Aij(M
LR,HR

ij +M
LR,HR

ij )
,

and

δsho =

∑

i,j X
LR
ij AijM

LR,HR

ij

∑

i,j Aij(M
LR,HR

ij +M
LR,HR

ij )
(6)

−

∑

i,j X
HR
ij AijM

LR,HR

ij

∑

i,j Aij(M
LR,HR

ij +M
LR,HR

ij )
.
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: 1

1 2.1.2 Precipitation

CHELSA considers only orographic precipitation (Karger et

al., 2023), which is done by computing the wind effect in-

dex H for each high-resolution cell. This index reflects how

much moisture gets pushed up towards the top of a moun-5

tain as well as rain shadow in its leeward direction, and

it is computed using u-wind and v-wind components from

CMIP6 data. Those components were interpolated to the

high-resolution grid with a B-spline, and then were projected

onto a world Mercator projection.10

H =HW,L → dLHi
< 0×HW,L → dLHi

≥ 0, (1)

HW =

∑n

i=1
1

dWHi

tan−1
(

dWZi

d0.5

WHi

)

∑n

i=1
1

dLHi

+

∑n

i=1
1

dLHi

tan−1
(

dLZi

d0.5

LHi

)

∑n

i=1
1

dLHi

(2)

HL =

∑n

i=1
1

ln(dWHi)
tan−1

(

dLZi

d0.5

WHi

)

∑n

i=1
1

ln(dLHi)

(3)15

, where dWHi and dLHi denote the horizontal distances in

windward and leeward direction, while dWZi and dLZi are

the corresponding vertical distances. The summations in (2)

and (3) are performed within a circle with the radius of 75

kilometers.20

The H index is then corrected according to the atmo-

spheric boundary layer height to account for the contribu-

tion of the surface pressure level to the wind effect. Lastly,

the low-resolution precipitation plr is multiplied by the corre-

sponding H indices and normalized to obtain high-resolution25

precipitations phr, so that within each low-resolution grid cell

the sum of the values phr remains equal to plr (see section

Methods in Karger et al. (2021)).

2 2.1.3 Surface downwelling shortwave radiation

(RSDS)30

The total shortwave radiation, measured in W/m2 is repre-

sented as in (Karger et al., 2023), Sect. 2.2.2:

Sn = Ss +Sh. (4)

Here, Ss is direct solar radiation reaching the surface, com-

puted according to the position of the Sun with respect to the35

high-resolution grid cell. Diffuse solar radiation Sh, which is

the energy re-emitted by the atmosphere, takes into account

the percentage of the sky observable from a grid cell.

Computation of Ss component starts with astronomical

equations. For the sun elevation angle θ, sun azimuth ϕ, lat-40

itude λ, the solar declination angle δ, the Julian day number

J , hour h, and the hour angle in degrees ω̄, we have the fol-

lowing:

sinθ = cosλcosδ cos ω̄+sinλsinδ

cosϕ=
cosδ cos ω̄− sinθ cosλ

sinλcosθ

δ = 23.45 · sin

(

360◦[284+ J ]

365

)

ω̄ = 15◦(12−h). (5)

Using these identities, cosγ is computed as 45

cosγ = cosβ · sinθ+sinβ · cosθ · cos(ϕ−α), (6)

where γ is the angle between the Sun beam and the normal

to the terrain, while α and β are surface slope and aspect.

Then, Ss is computed using constants Gsc = 1367 kW ·m2,

τ = 0.8, and air optical thickness m defined in formula (13) 50

of Karger et al. (2023):

Ss(h) = ς(h) ·Gsc · τ
m
· cosγ. (7)

Diffuse solar radiation is calculated as

Sh = (0.271− 0.294τm)GscΨs, (8)

where Ψs is the sky view factor computed as 55

Ψs =
1

N

N
∑

i=1

[cosβ cosϕi+sinβ cos(Φi−α)·(90−ϕi−sinϕi cosϕi)]

(9)

for N = 8 azimuth directions Φi and the corresponding hori-

zon angles ϕi.

rsds= S̄n(1− 0.75 · clt3.4), (10)

where S̄n is an average of Sn over 24 hours, and clt is the 60

cloud cover computed according to formulas (19)–(22) of

Karger et al. (2023).

To summarize this procedure, we note that the Ss and Sh

components are obtained by taking into account shadowing

and obstruction of light, the position of the Sun, the slope 65

and the aspect of the terrain, and cloud cover resulting from

orographic precipitation formation.
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